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Abstract Identifying vortices is the key to understanding the turbulence in plasma shear layers. This paper
aims to provide general guidelines for identifying 3-D vortex structures. Currently, no single precise definition
of a vortex is universally accepted, despite the significance of vortices in fluid and plasma dynamics. Recently,
various vortex identification methods using Galilean invariance have been proposed by numerous
researchers. These methods are general for different fluid and plasma visualization applications. In the
present paper, we describe how we have identified 105 vortex structures by applying these methods to
Cluster data near the duskside of themagnetopause. Four sets of Cluster satellite magnetic field data are used
to linearly approximate the magnetic field. We identify the 3-D magnetic vortex structures by using various
vortex identification criteria as follows: (i) the first criterion is Q-criterion that defines vortices as regions in
which the vorticity energy prevails over other energies; (ii) the second criterion is the λ2-criterion that is
related to the minus eigenvalue of the Hessian matrix of the pressure terms; and (iii) the third criterion called
the geometrical line-type method requires the existence of Galilean-invariant vortex core inside the four
Cluster tetrahedral regions. In reality, both Q- and λ2-criteria are also related to Galilean invariance. The
present analysis evidences that the geometrical line-type method is more precise than the other two using
Cluster satellite magnetic field data.

1. Introduction

The Kelvin-Helmholtz instability (referred to as K-H throughout the paper) can occur in a fluid or a plasma
where a velocity shear is generated in a single continuous fluid or plasma or where a velocity difference is
generated across two fluids or plasmas (Chandrasekhar, 1968). The K-H instability has long been believed
to play a key role in plasma transport at the magnetospheric boundaries separating the solar wind and mag-
netospheric plasmas (Hasegawa et al., 2004; Johnson et al., 2014; Miura, 1984; Miura & Pritchett, 1982).
However, recent studies show that turbulent phenomena play more important role in plasma transport.
We will discuss this later in the present section.

When satellites cross the magnetopause boundary, they often encounter boundary waves that show some
characteristic signatures of the K-H instability, such as vortex structures. During these crossings, satellites
often observe wavelike fluctuations in pressure, bulk velocity, the magnetic field, and other quantities. The
Geotail mission has found a vortex-like flow moving past the spacecraft at the magnetopause boundary
(Otto & Fairfield, 2000). The determination of the boundary normal that defines the local coordinate along
themagnetopause has revealed that the nonlinear steepening of the waves is generated on the leading edge
of the waves. This observation coincides with some attributes of the K-H vortices evidenced in previous mag-
netohydrodynamic (MHD) simulations (Fairfield et al., 2000; Otto & Fairfield, 2000).

Cluster satellites have encountered some vortex structures in the velocity fields and related high-density
magnetosheath plasmas on the magnetospheric side of the magnetopause. Some vortex features like their
wavelengths are consistent with the K-H MHD simulations (Hasegawa et al., 2004). A few recent previous glo-
bal MHD simulations (Li et al., 2013; Merkin et al., 2013) have observed two rows of vortex trains, one located
in the magnetopause side and the other in the magnetosphere side (Li et al., 2013; Merkin et al., 2013). These
vortices are rotating, respectively, clockwise and counterclockwise around the core axis, which is
perpendicular to the uniform flow. The Cluster multipoint measurements have also provided quantitative
estimates of the K-Hwavelengths, powers, wavefront steepening, and propagation directions associated with
the thickness of the low-latitude boundary layer related the velocity shear (Foullon et al., 2008).
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It is also well known that 2-D vortices generated by K-H roll-ups (rotational flow motions) can evolve into 3-D
vortices and turbulence (Kida & Miura, 1998; Miura & Kida, 1997; Moffatt et al., 1994). These vortices have
spiral or helix structures around the vortex core direction as shown in Figure 1a (Garth et al., 2004). Thus,
the rotational motions are not uniform in the vortex core direction. These vortices can also be quickly shed
(i.e., vortex-shedding) or leave the shear layer, persist, and eventually align with the optimum energy position
(i.e., marginally stable position; von Karman, 1963). The vortices generated in the shear layers by K-H instabil-
ity can leave the shear layers and become free vortices. They are no longer influenced by the shear layers and
move freely. Eventually, they form the Karman vortex street, as illustrated in Figure 2, under a certain range of
the Reynolds number, Re = (inertial force)/(viscous force). As displayed in Figures 1b and 1c, the K-H vortices

Figure 1. (a) A schematic and intuitive view of a (longitudinal) vortex. The addition of the uniform flow (left) to the
rotational flow (middle) will generate a vortex flow structure (right). Schematic views of (b) a transverse and (c) a
longitudinal or stream-wise vortex. The vortex core line of a transverse vortex is perpendicular to the shear flow (in the
direction out of plane). The vortex core line of a longitudinal or stream-wise vortex is parallel to the uniform flow. Panel (a)
illustrates a longitudinal vortex taken from Garth et al. (2004).

Figure 2. Schematic diagram of the Karman Vortex Street. Vortices flow from left to right and align in two rows of opposite
rotation to one another in a staggered manner with the ratio a/b ~ 0.281. In reality, vortex sizes increase in proportion
to their rotation angle values or distances after shedding from the cylinder (see text). However, in the present figure, the
vortex sizes are kept constant, for simplicity. If a stationary satellite is located near one of vortex rows, the satellite can
detect vortex waves or Kelvin-Helmholtz waves.
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generated in the shear layer are sometimes also referred to as the transverse vortices because their vortex
core lines are perpendicular to both the shear and uniform flow direction. We will discuss these transitions
later in Figure 15 in section 4.1.

Hama (1967) and Kline et al. (1967) discovered that in some fluid shear turbulent flows (developed as a flow
stream along a ridged wall, for instance), long elongated stripe flow structures in the mainstream direction
persist stably near the walls in their visualization experiments. It was very surprising that such stable long
flowing structures exist in chaotic turbulent flow, and therefore, this ordered structure (the so called coherent
structure [CS]) attracted many researchers’ attention. After detailed investigation, many of such long stripe
flow structures turns out to be stream-wise or longitudinal vortex tubes located in the turbulent flow.
These vortices are called longitudinal or stream-wise vortices when their vortex core lines are parallel to the
uniform flow direction as illustrated in Figure 1c. These ordered, organized CSs, wheremany of them are com-
posed of a longitudinal vortex, have attracted the attention of numerous researchers (AKM Hussain, 1983).
Now it is widely accepted that these coherent long elongated stripe flow structures are used to define the
vortex structures, and thus, this makes very difficult to define the vortex in mathematics. This structure is more
simply referred as CS throughout this paper.

Topologies, and dynamics of these tubes, or longitudinal vortex tubes, which are subject to the geometrical
constraints of the flow pattern, can persist over a relatively long period of time (at least longer than one vor-
tex rotation period) if the Reynolds number is large enough. It is also surprising that the stream, or flow direc-
tion, and the component of these vortex-flow velocities cannot be smoothed out by taking the average of
flow velocities in both time and space (Kida, 2006; Kida & Miura, 1998). Kida and Miura reported that these
long-surviving longitudinal vortex structures play a significant role in mixing two different areas (e.g., outside
and inside shear layers; AKM Hussain, 1983, 1986; Kida & Miura, 1998; H Miura & Kida, 1997; Moffatt et al.,
1994). Despite the importance of CSs in the transport of masses, densities, momentum, and energies
between the solar wind flow and magnetosphere, only a limited number of studies have been performed
regarding 3-D CSs. In order to understand these 3-D structures, it is essential to identify and visualize vortices
in the interface between the solar wind magnetosheath flow and the magnetosphere (i.e., at/around the
magnetopause). By using the magnetic field data from the four Cluster satellite magnetometers, and the
Taylor series, we can (Taylor) expand the magnetic field around one of the satellite positions and obtain
the first-order Jacobian tensor of the magnetic field at that measured point (and at a certain fixed time).
Then, we attempt to identify the 3-D magnetic vortex structures using three conventional vortex detection
methods that use the Galilean invariance (Jeong & Hussain, 1995; Peikert & Roth, 1999; Sujudi &
Haimes, 1995).

All previous satellite measurements use hodograms generated by time series of velocity vector data (e.g.,
Hasegawa et al., 2004). These measurements can determine the K-H boundary wave structures. However,
these do not identify the vortex structures. The purpose of this paper is to provide general guidelines for
identifying 3-D vortex structures using fixed time four satellite velocity data, not velocity hodograms. The
paper is constructed as follows: The four basic methods commonly used for identifying vortex structures
are reviewed and summarized in section 2. We apply three (among the four) methods to the Cluster magnetic
field data and present primary quantitative results in section 3. Section 4 discusses some general introduc-
tions on flow regimes and their vortex dynamics. Discussions and conclusions are, respectively, presented
in sections 5 and 6.

2. Methods for Identifying 3-D Vortex Structures
2.1. General Formalism

The vortex identification is the main goal of the turbulent study in fluid or plasma shear layers. One difficulty
is that there is still no unique vortex identification method due to the lack of universally accepted mathema-
tical definitions up to now. However, for simplicity, herein, we define that the term vortex (or vortex core) is
associated with the region of Galilean invariance (Jeong & Hussain, 1995). In this section, we introduce four
basic methods to identify a 3-D vortex structure by using a fixed time flow vector data, while the analyses
of previous satellite measurements determine the boundary K-H wave structure (possibly, multiple K-H
waves) in time.
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Important confusion persists surrounding the long-lasting question of what constitutes a vortex structure or
CS. While particularly significant within academic society, this question has long been misunderstood since
CSs in turbulent flows are now commonly considered as vortex structures. Thus, the definition of a vortex
requires describing the CS consistently in the turbulent flow (Jeong & Hussain, 1995). Here the CS means that
the structures have to maintain the same form long enough over characteristic time or space to be detected
by calculating time or space average. For example, the CSs can be areas of a concentrated vorticity or a char-
acteristic organization of the flow.

We sketch one of the most straightforward and intuitive views in Figure 1a. The simple addition of a uniform
flowwith a rotational flow along a given axis can form a (longitudinal) vortex structure. The center of the rota-
tional flow is the vortex core line, and the region of influence of the vortex core line is the vortex core. The word
influence means that the vortex core is the region where the points or areas do not change by the rotation,
and we often refer this to Galilean invariance.

We define the 3-D vector field flow by ui, where i = 1, 2, and 3 (i.e., space coordinates x, y, and z). In the
present paper, 3-D vector field flow can serve as the plasma flow vector. In the following, we use the
notation vector flow u for our analysis. Here, u can be the velocity field, magnetic field, electric field,
etc. In section 3, we apply the existing common methods to identify vortex structures in the magnetic
field data issued from the Cluster multisatellite missions. The Jacobian tensor is the first-order term in
Taylor expansion of the vector field flows. This tensor is a physical quantity that describes the rate of
the deformation of a material in the neighborhood of a certain point, at a certain time. We define the
Jacobian tensor of the flow ui as

∇u ¼

∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

2
66666664

3
77777775
¼ SþΩ; (1)

where Sij and Ωij are, respectively,

Sij ¼ 1
2

∂ui
∂xj

þ ∂uj
∂xi

� �
and Ωij ¼ 1

2
∂ui
∂xj

� ∂uj
∂xi

� �
: (2)

Here, S denotes the symmetric part of the Jacobian tensor (also named shear) andΩ denotes the asymmetric
part of the tensor (or rotation; Haller, 2005; Jeong & Hussain, 1995). The vorticityωi as illustrated i.e., that is not
rotation in Figure 3a, and the rotation Ωij can be related by

ωi ¼ �2εijk Ωjk (3)

where ɛijk is the alternating symbol defined as

εijk ¼
0 for i ¼ j; j ¼ k; or k ¼ i

1 for i; j; kð Þ∈ 1; 2; 3ð Þ; 2; 3; 1ð Þ; 3; 1; 2ð Þf g
�1 for i; j; kð Þ∈ 1; 3; 2ð Þ; 3; 2; 1ð Þ; 2; 1; 3ð Þf g

8><
>: (4)

We define the helicity H as

H ¼ ω·u (5)

The vortex cores are ideally the lines denoting both streamlines and vortex line. As illustrated in Figures 3b
and 3c, when the vortex core line vector and the vorticity vector are in the same (opposite) direction, we call
it clockwise (counterclockwise) rotation. Thus, the helicity H > 0 (<0) corresponds the clockwise
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(counterclockwise) rotation. However, when identifying the vortex cores in a flow or a magnetic field, the
regions depending on the definitions and the methods used for their identification usually approximate
the vortex cores.

2.2. Galilean Invariants and Vortex Identifications

Although no single universally accepted vortex definition exists, researchers have long been searching for
vortex identification methods and criteria by use of Galilean-invariant (Jeong & Hussain, 1995; Peikert &
Roth, 1999; Sujudi & Haimes, 1995). Galilean-invariant defines a flow quantity, which remains unchanged
under the application of any Galilean transformation y =Mx + at to the flows, whereM is a proper orthogonal
tensor, x is a position vector of the flow, a is a constant vector, t is the time, and y is the transformed position
vector of the flow in space and time (Haller, 2005).

Among the existing vortex identification methods using Galilean invariant, historically, the most famous cri-
teria are the so-called Q, Δ, and λ2-criteria (sections 2.2.1 to 2.2.3). These methods assume that the vortex
exists if the flow is associated with the Galilean invariant. As a reminder, the vortex identification methods
can be classified into the region-typemethod and the geometrical-line-typemethod. The region-typemethods
(where the Galilean invariant regions are searched) are based on the definition of ∇u (=S + Ω) and will be
explained in sections 2.2.1 through 2.2.3. The geometrical-line-type method first developed by Sujudi and
Haimes (1995), which is mainly used in the present paper, will be explained in section 2.2.4. All region-type
vortex identification methods can only be applied to incompressible flow (Chong et al., 1990; Haller, 2005;
Holmen, 2012; AKM Hussain, 1986).
2.2.1. The Q-Criterion

Q ¼ Ωj jj j2 � Sk k2 > 0; (6)

where ||S|| = tr(SSt) and ||Ω|| = tr(ΩΩt) and Q is the second invariant of ∇u. The condition Q> 0 simply means
that the vorticity energy ||Ω||2 prevails over the strain energy ‖S‖2 (vorticity and rotation are related in equa-
tion (2); Hunt et al., 1988; Okubo, 1970; Weiss, 1991). We identify a vortex as a spatial region where Q> 0, that
is, and the vorticity tensor energy dominates the shear tensor energy.
2.2.2. The Δ-Criterion

Δ ¼ Q
3

� �3

þ R
2

� �2

>0; (7)

which means that the eigenvalues of ∇u are complex. Thus, the vector field flow pattern near this region is a

Figure 3. Sketches of (a) vorticity ω, (b) clockwise rotation, and (c) counterclockwise rotation associated with the vortex.
The rotational directions are defined with respect to the vortex-core-line flow vector ξR (defined in section 2).
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spiral (Chong et al., 1990). Equation (7) is coming from the characteristic equation of ∇u as follows (Chong
et al., 1990):

λ3 þ Qλ� R ¼ 0: (8)

Here Q (=||Ω||2 � ||S||2) and R are, respectively, the second and third invariants of ∇u ; therefore, we define Q
in equation (6) (Jeong & Hussain, 1995), R is the determinant of ∇u (i.e., R = det ∇u), and λ is the eigenvalue of
∇u. Note that the coefficient of the λ2 term that is the first invariant of ∇u in equation (8) has been canceled
due to the incompressibility, that is, λ1 + λ2 + λ3 = 0 (Chong et al., 1990). Here we identify a vortex as a spatial
region where Δ > 0.
2.2.3. The λ2-Criterion

λ1 > 0 > λ2 > λ3; (9)

where λ1, λ2, and λ3 (λ1 > λ2 > λ3) are the three eigenvalues of

S2 þΩ2: (10)

As illustrated in Figure 1a, a better way to identify the vortex core is to find a pressure-minimum point or
region in the plane perpendicular to the flow (Jeong & Hussain, 1995). Neglecting the (1) viscous effects,
(2) unsteady strains that can eliminate the pressure-minimum in a vortical flow, and (3) magnetic pressures,
and taking the gradient of the momentum equation of the flow, we obtain (Jeong & Hussain, 1995)

S2 þΩ2 ¼ � 1
ρ
P;ij: (11)

Here the term P;ij ¼ ∂2P
∂xi∂xj is the Hessian of the pressure. In the well-developed vortical flow, we can relate the

pressure-minimum point or region in the plane perpendicular to the flow to the Galilean invariant of the flow
and the vortex cores. From equation (11), we relate thematrix S2 +Ω2 to the opposite of the Hessianmatrix of
the pressure in the Navier-Stokes equations. Because the matrix is real and symmetric, it has two negative
eigenvalues (λ1 > 0 > λ2 > λ3), when the pressure is minimum (Jeong & Hussain, 1995). In 3-D, as a conse-
quence, λ2 has to be negative to be pressure-minimum. Again, we identify a vortex as a region where
λ2 < 0. In the case of several vortices existing in a tetra-mesh, it is difficult for this method to distinguish
between individual vortices. For practical visualization purposes, we can visualize the vortex structure by tak-
ing proper isosurfaces on a particular negative λ2 value.

The λ2-criterion can easily extend to MHD equations by adding the gradient of magnetic tension force
∇ B·∇ð ÞB
μ0ρ

in equation (1) (regarding magnetic tension force, e.g., see Kivelson & Russell, 1995). In the

present paper, we do not include the magnetic tension force, because in the magnetospheric flow,
inertial forces (finertial) are dominant, and the details are discussed in section 4.1. Presently, since the
the bulk velocity data in one of Cluster satellites are not available, we use the magnetic field data in
Cluster mission.
2.2.4. Geometrical-Line-Type Method: Vortex Core Line Extraction
We can classify the vortex identification methods into two types. The first one is the 3-D region-type, which
identifies the 3-D vortex regions as discussed in previous sections from 2.2.1 to 2.2.3. The second method is
the geometrical-line-type method that defines the 1-D vortex core line (Peikert & Roth, 1999; Roth & Peikert,
1998; Sujudi & Haimes, 1995). The 3-D region-type method is easier to implement, whereas the geometrical-
line-type method requires defining the vortex core line and may be more sensitive to measurements or
numerical errors. For example, the sizes of the tetrahedron compared to the vortex sizes can be sensitive
to what identification methods we use. However, we can implement the latter method in numerical simula-
tions with tetra-mesh and in the four Cluster satellite measurements with tetrahedron configuration. In addi-
tion, the geometrical-line-type method can easily extend to the higher order (nonlinear) terms of Taylor
expansion and time-dependent unsteady identification methods where the acceleration terms are used
(Peikert & Roth, 1999; Roth & Peikert, 1998).
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This method is similar to the critical point theory (bulk velocity zero or magnetic null), which allows us to
obtain the eigenvalues and eigenvectors of the first-order tensor at the critical point. In the present
method, we do not search the critical point and always obtain the first-order tensor. First, the eigenvalues
of the first-order tensor in the Taylor expansion of the vector field flow at the designated point have to
include one pair of complex eigenvalues in locations where the vector has rotational components. As
reported by Sujudi and Haimes (1995), both the critical point (where the vector flow u is 0) and the vortex
core line may not be contained in the tetra-mesh area. The vortex core line corresponds to the so-called
γ-line or null-line (Lau & Finn, 1990) that is the 1-D manifold, which spans in the eigenvector direction and
corresponds to the real eigenvalue of eigenvector (ξR in Figure 4), whether the two other eigenvectors are
associated to the complex conjugate pair eigenvalues in this case. To check whether the vortex core line
is contained in the tetra-mesh, the velocity field is projected into the plane normal to the eigenvector
associated to the obtained real eigenvalue. As illustrated in Figure 4, the method can be summarized
as follows:

1. From the four-point measurements made by the tetra-mesh configuration, we get the distortion-tensor
∇u using four vector values at four tetrahedral vertices as shown in Figure 4a. In other words, we linearly
interpolate the vector field using four measured vectors at each vertex. Then, we obtain the eigenvalues
and eigenvectors from ∇u, which is the Jacobian tensor of the flow.

2. If the eigenvalues contain one pair of complex conjugates, we subtract the vector flow components con-
taining the real eigenvectors ξR associated to the real eigenvalues λR from four measured vector flow data
at each tetrahedral vertex as illustrated in Figure 4b. After this subtraction, the vector field u is now pro-
jected onto the plane normal to the real eigenvector direction (thin dashed vector line on the right of
Figure 4a). We define this the reduced vector field w (thick arrows in Figure 4b):

w ¼ u� u·ξRð ÞξR: (12)

3. In vector flow field w, we check whether one has the zero-vector flow point (critical point) on each of the
four surfaces of the tetra-mesh. If we have two critical points (or zero w points) inside the tetrahedral sur-
faces, we connect these two points (points I and II in Figure 4c) to form a so-called vortex core line in this
tetra mesh. Let us note that since interpolation is defined at the linear (first order), only a core straight line
and not a curved line can be defined.

Figure 4. Schematic diagram of the geometrical-line-type method to extract the vortex core line (thick dashed segment I-II
in the plot (c)) from the tetrahedral configuration. (a) Four-vector data u define each vertex of the tetrahedral (thin arrows)
and the direction of real eigenvector ξR (thick dashed arrow) derived from the Jacobian tensor ∇u that is obtained from
four-vector data u (see equation (1)). (b) Four reduced vector data (thick arrows)w at each vertex. Reduced velocitiesw are
obtained by subtracting (u · ξR) ξR (dashed arrows) from vector data u at each vertex. (c) The segmented core line (thick
dashed line) of zero-reduced flow vectorw. We search for a zero-reduced velocity point that satisfiesw = 0 at all surfaces of
the tetrahedral configuration, and if two null vector points I and II are found, we connect these two points and define this
segment as the vortex core line.
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The proposed identification methods herein are strongly related to the
Jacobian tensor of the flow. In this sense, the methods also correspond
to the extension of the critical point analysis, that is, topology visualiza-
tion (Helman & Hesselink, 1991). However, the methods are different,
and both the critical point analysis and the vortex identification are
inclusive because they both require obtaining the Jacobian tensor of
the flow and the flow pattern has to be classified according to
the eigenvalues.

3. Applications: Identifying 3-D Vortex Structures for
Cluster Satellite Magnetic Field Measurements

In this section, we will provide general guidelines to identify 3-D vortex
structures. Herein, we use the Cluster satellite magnetic field measure-
ments as examples to identify the 3-D vortex structures.

3.1. Cluster Satellite Magnetic Field Measurements

It has been reported that the tetrahedral configuration of the Cluster
satellites encountered K-H waves related to K-H vortices from 20:00 to
21:00 UT on 20 November 2001 (Hasegawa et al., 2004). They measured
the K-H wavelength (not K-H vortex structure itself) using time series
data assuming that the satellites were almost stationary comparing with
the K-H wave speed. Vortices move tailward (from left to right of Figure
2) and Cluster satellites can detect these vortex waves if they are sta-
tionary. During the encounter, the Advanced Composition Explorer
(ACE) satellite observed that the upstream interplanetary magnetic field
(IMF) was pointed northward. This IMF orientation was in favor for the
K-H instability at the low-latitude magnetopause but not in favor for
magnetic reconnection around the subsolar point (Merkin et al., 2013).
First, we obtained the data from Cluster Science Archive. Herein, to
show the validity of the vortex identification methods discussed in

section 2, we apply these methods (mainly the geometrical-line-type method) to extract the vortex cores
by using four the Cluster data during this same encounter. We use B data, instead of u data, assuming
the frozen-in condition, as detailed later in section 4.2.

During the encounter on 20 November 2001 the satellites were very slow compared to the vortex motions
and can be considered as stationary as illustrated by immobile dots in Figure 5. We expect that vortices cross
the satellites when moving toward the magnetotail and the satellites observe the motion of magnetic field
deformation attributed to these vortices. On the left of Figure 5, the trajectories of Cluster 1 and 3 from
20:00 to 21:00 UT are represented as black (Cluster 1) and green (Cluster 3) dots, respectively. The crossing
is taking place on the duskside of the magnetosphere.

3.2. Applying Geometrical-Line-Type Method to Cluster Satellite Magnetic Field Data

We now apply the geometrical line-type method described in section 2 to identify the locations of 3-D
vortices. This method is more sophisticated and precise than the other ones. The procedure is based
on the magnetic field components averaged over 0.2 s. The geometrical-line-type method is applied to
the time series of B field data samples illustrated in Figure 6 at each time step. If the vortex core line
can be identifeid at a certain time, the vortex is captured or detected. We obtain the vortex core lines
according to the following steps:

1. At each time step, we obtain ∇B and linearly interpolate the B field measured by the four different satel-
lites at different times.

2. We look for the time locations where ∇B has complex eigenvalues, and where a B field vector parallel to
the real eigenvectors ξR of ∇B associated to the real eigenvalues exists inside the four satellite
tetrahedron.

3. This parallel B vector field line that crosses the tetrahedron is the vortex core line i.e., a vortex is detected.

Figure 5. Corresponding Cluster 1 and 3 trajectories in black and green, dur-
ing the Cluster encounter with the roll-up vortices on 20 November 2001.
Cluster satellites are almost stationary. Two trajectories in black and green
during the Cluster encounter with the roll-up vortices on 20 November 2001.
Cluster satellites are almost stationary. The speed of Clusters 1 and 3 is too
slow, and the trajectories are represented as dots. Clusters 2 and 4 are not
shown to avoid being overwhelmed by too many dots.
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4. The parallel B vector field lines segmented by the tetrahedron are plotted as shown in Figure 7.
5. If we define the plane (named P1) perpendicular to this vector field passing through the B1 location

inside the tetrahedron, the B1 is the minimum |B| point and is the center of the vortex rotation on the
P1 as displayed in Figure 7.

6. When one performs a spatial shift of this plane along this B vector direction, we get a new plane (named
P2) with a new associated |B| (named B2).

7. We now compare this B2 value with the minimum |B| value, named B3, within the plane perpendicular to
the vector field, which is deduced after the interpolation of the field from four satellites and assigned to
the new plane P2.

8. If B2 is the same as B3, the line B1-B2 represents the center of vortex
rotation, and the minimal |B| field path along which perpendicular
planes are defined; Then, the Galilean invariance is obtained (Peikert
& Roth, 1999; Roth & Peikert, 1998; Sujudi & Haimes, 1995).

9. Thus, the B1-B2 line allows us to define the final vortex core line.
10. In contrast, if B3 is different from B2, no vortex core line can be

defined.
11. We calculate the rotation vector ω of this vortex from equation (3)

using ∇B.
12. If the B vector on the vortex core line and ω is the same and have dif-

ferent direction (B · ω > 0 and B · ω < 0), we use the label clockwise
and counterclockwise, respectively.

In summary, the full 3-D structure of the vortex will be obtained by consid-
ering the vortex core line and the rotation within the plane perpendicular
to this line. The vertical red and blue lines of Figure 6 correspond to the
time when the B1-B2 line (vortex core line) is defined inside the tetrahe-
dron. The location of some lines may correspond to those of the magneto-
pause, magnetosheath, or magnetosphere, so that we may define 3-D
vortex structures at and around the magnetopause. The Q and λ2 values
can be obtained simultaneously using ∇B at different times.

3.3. Results: Identification of 105 Events

We have identified 105 vortex core lines at different times that we indicate
as red (clockwise rotation) and blue (counterclockwise rotation) vectors in
magnetic field data shown in Figures 8–10. In these figures, one arrow

Figure 6. The corresponding Cluster magnetic field data measured from 20:00 to 21:00 UT on 20 November 2001. These data are shown for reference. The red and
blue vertical lines represent the encounter of the clockwise and counterclockwise vortex-rotations, respectively. The symbols on the top P, SP, and SH represent the
encounters at magnetopause, magnetosphere, and magnetosheath, respectively.

Figure 7. Vortex core line and rotational flow on its perpendicular planes P1
and P2. The planes P1 and P2 are the ones perpendicular to the vortex core
line. The vortex core line crosses the planes P1 and P2 at the points B1 and
B2, respectively.
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indicates one vortex core line, which evidence a vortex structure detected
in these measurements. In this encounter, the vortex wavelengths of the
crossing vortices are about 40,000–50,000 km, and the average intersatel-
lite distance of the Cluster tetrahedron is about 2,000 km, that is, less than
any vortex wavelength (Hasegawa et al., 2004). Thus, the vortices can be
captured using the methods described in the previous sections. In reality,
Hasegawa et al. (2004) detected or observed the K-H waves (hodogram
obtained using time series of one satellite measurement) but not the 3D
vortex structures themselves at a fixed time.

In Figures 8–10, the most-encountered vortex core lines are pointing
close to the north and are distributed into two groups of 47 clockwise
(red arrows) and 58 counterclockwise (blue arrows) rotations, respec-
tively. The length of each arrow is equal to the length of the line
crossed by (and measured within) the Cluster tetrahedron, that is, seg-
ments I–II of Figure 4c. The directions of the vectors are reported in
Figure 11, which shows that the almost vortex core lines are within
10°–50° angles to the z axis defined perpendicular to the flow. In
Figure 11, the x axis indicates the time of the Cluster trajectories, and
the satellites remain at almost the same location at/around the magne-
topause as shown in Figure 5. Since the satellites are almost stationary,
the identified 105 vortices are those that crossed these regions toward
the magnetotail. Thus, the vortex-like magnetic field structures move
toward the magnetotail with the vortex motions at/around the magne-
topause. We remind the reader that we are analyzing fixed time B field
data and not the time varying flow velocity data, assuming the frozen-
in condition.

In Figure 6, we plot the corresponding magnetic field data from this
encounter for reference. In this figure, both red and blue lines indi-
cate the encounter of vortices that are reported in Figures 8–10.
The red (blue) vertical line shows that the vortex rotates clockwise
(counterclockwise) on its vortex core line. The steepened sinusoidal
waves, which are typical features of the developed K-H waves, are
observed in all B components. These steepened waves are stronger
(especially after the time 20:32) and may indicate the K-H waves
(Hasegawa et al., 2004). For each encounter, the magnetosheath
crossing is characterized by smaller |Bx|, larger |Bz|, higher density,
and lower temperature, while the magnetosphere crossing is charac-
terized by larger |Bx|, smaller |Bz|, lower density, and higher tempera-

ture. The magnetopause is the interface between the magnetosheath and magnetosphere (see
(Hasegawa et al., 2004)). By applying the geometrical-line-type method for each vortex encounter
identified in Figures 8–10, the line label SP, SH, and P at the top of Figure 6, respectively, stand for
magnetosphere, magnetosheath, and magnetopause, when the vortices can be identified. Present sta-
tistics show that we have more counterclockwise vortices in the magnetosphere and more clockwise
vortices in the magnetopause.

Since the Cluster satellites are not moving significantly along the z-direction, the vectors of Figures 8–10 are
almost transverse to the solar wind flow (which corresponds to 3-D vortices spiraling perpendicular to the
direction of the solar wind flow). They are also within a 0°–60° angle to the z axis except for a few, which
slightly point to the negative x direction, which is the direction of the solar wind flow. Results of Figures 8–
10 and 11 show that most vortex core lines point slightly tailward.

The striking point of Figures 8–10 is that the vortices have almost half clockwise (red arrows) and half coun-
terclockwise rotations (blue arrows). We depict the typical 3-D vector plots as viewed from the vortex core
directions and B field hodograms around the vortex core lines for both rotations in Figures 12a and 12b

Figure 8. The red and blue vectors indicate the identified 105 vortex core
lines from the Cluster magnetic field data averaged over 0.2-s time inter-
vals. The vortex core lines are projected onto the X-Z plane, where GSM
(geocentric solar magnetospheric) coordinates are used. The four Cluster
satellite trajectories are indicated as black lines. The directions of arrows
indicate the direction of the real eigenvector ξR. The red and blue arrows,
respectively, represent the clockwise and counterclockwise rotations
with respect to ξR. The satellite positions are almost stationary and at/near
the magnetopause. The green lines indicate the trajectory of the tetrahedron
barycenter.
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(clockwise) and Figures 12c and 12d (counterclockwise), respectively.
Please note that if we assume that all vortices are generated by the sim-
ple K-H roll-up, the rotation has to be always positive or clockwise on
the duskside of the magnetosphere. However, Figures 12a, 12b, 12c,
and 12d clearly evidence, respectively, clockwise and counterclockwise
rotating magnetic fields, and magnetic field hodograms are spiraling
around the vortex core line to the north and slightly tailward. Note that
in the B magnetic streak lines at the right of Figure 12, the arrows are
not segmented by the Cluster tetrahedron and are much longer than
the size of tetrahedron.

To reinforce the previous results, Q-criterion and λ2-criterion methods
have also been applied to the same set of the 105-magnetopause cross-
ings made by the Cluster satellite set. We depict the corresponding
values obtained for each method in Figures 13 and 14. For all 105 vor-
tex core lines, Q values are all positive, and λ2values are all negative
except for six cases. Since almost all identified vortex core lines are also
identified as vortices using Q and λ2-criteria, we may conclude that the
four Cluster satellites have crossed structures that are identified as 3-D
vortices in the magnetic field during this encounter. As mentioned in
the previous section, both Q and λ2-criteria correspond to region-type
methods. We can define the vortex as a region where Q > 0 and/or
λ2 < 0. In MHD simulations, however, in the cas several vortices coexist,
it is difficult to distinguish between them. Therefore, it is useful to use
larger Q or smaller λ2 values to identify the vortex regions. Thus, these
absolute values are considered to be a pseudo-measure of vortex struc-
ture (Jeong & Hussain, 1995). These values do not indicate the direction
of the rotations as illustrated in Figure 3. We remind that we define the
clockwise and counterclockwise rotations with respect to the direction
of the vortex core line flow (ξR), and, thus, the direction of rotations
can be visualized only by tracing the vector field lines around the
vortex core.

As discussed before, after the time mark 20:32 in Figure 6, the wave
steepening is relatively strong in By and Bz, while few steepest waves
are observed between 20:32 and 20:35. This wave may correspond to
the largest value of Q-criterion in Figure 13 (indicated by a black
arrow around 20:35). In Figure 14 at the same time, the λ2 value
(indicated by a black arrow in the figure) is negative but is not the
smallest one. However, it is the smallest one in local time between
20:30 to 20:40.

4. Flow Regime, Karman Vortex, and Vortex Structures

One important point in understanding both the observed results in
section 3 and the general vortex dynamics in the magnetospheric physics
is to determine how individual rotating structures such as those identified
in section 3 developing within almost the same area can interact one each
other. Can this interaction lead to some stable and/or larger-scale struc-
ture? The stability of the vortex is crucial when applying the vortex
identification methods.

4.1. Flow Regime and Karman Vortex Street

Let us remind a few basic points in tee fluid dynamics. Von Karman (1963)
found that during the interaction of a flow with a cylinder, two series of

Figure 9. The same figure as Figure 8 except that vortex core lines are pro-
jected onto the Y-Z plane.

Figure 10. The same figure as Figures 8 and 9 except that vortex core lines
are projected onto the X-Y plane.
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repeating vortices can be generated behind the cylinder or obstacle (some reviews can be found, for
example, in Wille, 1960). Namely, a set of paired vortices facing each other and rotating in opposite
directions in a staggered manner is formed behind the obstacle as illustrated in Figure 2. This process is
called vortex-paring. After the vortex-paring, the repetitive pattern of two series of vortices extends
spatially to form a so-called Karman Vortex Street. This vortex street takes place for a flow with a relatively
large Reynolds number ranging from ~47 to 105 (Wille, 1960). Once the Karman Vortex Street occurs, these
vortices are aligned in two rows and are stable when the ratio is represented as R = b/a ~ 0.281. Here a is
the distance between two vortex centers in one row and b is the distance between the two-row alignment in
Figure 2 (Wille, 1960). The famous linear analysis showing R = 0.281 can be found in von Karman (1963). We
remind that K-H vortices are the signatures of unstable waves generated inside the shear layer between the
flow and cylinder, which are shed from the shear layer behind the cylinder and become free vortices. A vortex
is named K-H vortex only inside the shear layer. The width of the shear layer determines the size of the K-H
vortex. Indeed, the size of these free vortices grows linearly, and in the flow, their sizes are proportional to
their rotation (or the distance to the cylinder). However, their growth suddenly stops by the vortex
breakdown due to some significant nonlinear instabilities (Sarpkaya, 1995).

In the case of magnetospheric flow, the inertial force fintertial, the viscous force fviscous, and the electromag-
netic force felectromagnetic can be estimated as follows:

f inertial∼
ρu2

L
;

f viscous∼
μu
L2

; and

f electromagnetic∼B2uσ;

(13)

where ρ is the mass density of the flow, u is the flow velocity, and L is the characteristic length of the magne-
tosphere, μ is the dynamic viscosity of the flow, B is the magnetic field, and σ is the electric conductivity of the
flow (Cramer & Pai, 1973). We expect that in the magnetospheric flow, the inertial force is larger than the vis-
cous force and the electromagnetic force (Hultqvist, 1999).

Dimensionless quantities are commonly used to classify similar flow patterns in different flow conditions in
order to identify which effect is dominant among the inertial force, viscous force, and electromagnetic force.
The most significant quantity of both fluids and MHD approach is the Reynolds number. This number is often
used to classify similar flow patterns observed in different flow conditions. We define the Reynolds number as
Re = finertial/fviscous = uL/ν, where u is the flow velocity relative to the obstacle (here the magnetosphere), L is
the characteristic linear dimension that is the length the flow travels, and ν is the kinematic viscosity. The

Figure 11. Angles measured between the vortex core line and the z axis. In this figure, the horizontal axis represents the
time from start to end in Figures 8 and 9. The z axis is defined as the direction perpendicular to the flow. The lower
angles correspond to the vortex core lines parallel to the z axis and indicate that the vortex cores are perpendicular to the
flow; that is, the vortices are almost transverse-vortices.
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Reynolds number for the magnetospheric flow is estimated to Re ~ 400–3,600 by using Hultqvist parameters
(Hultqvist, 1999). This Reynolds number is high enough so that one can safely state that the plasma flow
patterns at/around the magnetopause and at the wake of the magnetosphere are in the regime of the
Karman Vortex Street.

In addition to the Reynolds number, we should consider other dimensionless numbers such as the
Alfven number that is the only entity to estimate the inertial force to the electromagnetic force in
the flow behind an obstacle. The Alfven number is defined as Al = (inertial force)/(electromagnetic

force) = uL
ffiffiffiffiρμ
B

p e1014 in the magnetospheric plasma where the flow is parallel to the magnetic field

(Jerrard, 2012). Both Reynolds number (Re ~ 400–3,600) and Alfven number (Al ~ 1014) are large.
Although the Alfven number refers to the flow parallel to the magnetic field, we can safely expect that
the inertial force effect is dominant in the magnetospheric flow. Thus, a large wake can be generated,
enters into the magnetotail region, and approaches or crosses the Dawn-Dusk (DD) line. Thus, the
opposite-rotational vortices can easily be generated, which is part of this large wake as schematically
illustrated in Figure 15. At the same time, we remind that the vortices with opposite rotation are not
generated or induced in another flank of the magnetosphere because the distance between these two
flanks is too far. Rather, they are generated by the large wake within the magnetotail as shown in
Figure 15.

Figure 12. (a and c) Typical vector plots viewed from the (b and d) top of the vortex core lines and trajectories of the typical clockwise (a and b) and counterclockwise
(c and d) vortex core lines detected during encounters with the roll-up vortices on 20 November 2001. In the left column (a)-(c), the vectors are viewed from the
direction of the vortex core (top view). The dots show the vector core lines, and the tetrahedral indicate the Cluster formation. In the right column (b)-(d), spiral
trajectories (streak lines) are plotted around the vortex core lines. Note in these two plots in the right column (b)-(d), the arrows are not segmented by the tetra-
hedron and are much longer than their pictured sizes.
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Previous MHD simulations of Merkin et al. (2013) and Li et al. (2013) have evidenced the formation of one row
of K-H vortices rotating in one direction before x ~ 0 (near the DD line) defined in Figures 5 and 15. This row
evolves into two rows of staggered vortices rotating in relatively opposite directions after x ~ 0 in the 3-D glo-
bal MHD simulation, for example, Figures 7 and 8 of Merkin et al. (2013). Thus, these figures indicate that after
the subsolar region only one row of the K-H vortices rotating in one direction develops (Region I in Figure 15).
Behind x ~ 0, instead of one line of the K-H vortices rotating in one direction, K-H vortices are shed from the
shear layer (Region II in Figure 15), and vortices rotating in the opposite direction quickly develop inside the
magnetospheric wake. Within the magnetotail, they evolve into a pair of staggered vortices facing each other
in two rows and form a so-called Karman Vortex Street (Figure 2 and Region III in Figure 15), although the
mechanism generating vortices with opposite rotation is not identified in these simulations. The measured
ratio R = b/a is about ~0.29 that is very close to the typical stability ratio value 0.281, which characterizes a
series of vortex pairs found by von Karman in 1911 (von Karman, 1963).

Cluster satellites may have crossed the region of the magnetopause located after the DD line (i.e., negative x
in Figures 5 and 15) where we expect the Karman Vortex Street. However, the measured region in Figure 5 is
too narrow to evidence these vortices, and the satellites are almost stationary within/around the

Figure 14. The λ2-criterion values versus time are measured for the extracted 105 vortex core line cases. Almost all identi-
fied vortex core lines (except six) correspond to negative λ2-criterion values that indicate the existence of vortices. The
black arrow indicates one of the steepest waves around the time 20:35.

Figure 13. TheQ-criterion values (Q =½ (||Ω||2-||S||2) versus time are measured for the identified 105 vortex core line cases.
All Q-criterion values are positive, which also indicates the existence of vortices. The black arrow indicates one of the
steepest waves around the time 20:35.
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magnetopause. Herein, we use magnetic data. We remind the reader that the 2-D K-H roll-up is always rotat-
ing in one direction and not two (Hasegawa et al., 2004). Also, the direction of the K-H roll-up rotation is
unique in our definition in Figure 3. The observed almost half positive and negative rotating vortices might
indicate that the vortices encountered by Cluster satellites are the Karman (free) vortices. As evidenced in
Figure 7 of Merkin et al. (2013), before the DD line, the K-H roll-ups occur only in one row and along one rotat-
ing direction (Region I in Figure 15). However, behind x ~ 0, vortices are shed (Region II in Figure 15), opposite
rotating vortices are generated, and in the magnetospheric wake, vortex-paring immediately starts so that
vortices are lined up along two rows (Region III in Figure 15). However, the detailed mechanism of the forma-
tion of the Karman-like street requires further study, which is beyond the aim of our paper.

4.2. Magnetic and Flow Vortex Structures

Onemay wonder howmagnetic and flow vortex structures are related to each other. Answering this question
is not an easy task since no universally accepted definition of a vortex exists, to the knowledge of the authors.
However, one can attempt to answer intuitively. As displayed in the schematic diagram of Figure 16 and the
previous MHD simulation results (Figure 1 of Merkin et al., 2013) near the equatorial plane, the magnetic field
is almost perpendicular to the flow vortices. The magnetic field involved in the K-H rotational flow motions
moves with the plasma flow due to the frozen-in-condition (Merkin et al., 2013), although the magnetic field
outside the magnetosphere shear layer is fixed according to the magnetic field connects to the Earth dipole
or to the IMF. If the vortex core line continues to both the North and South Pole, the magnetic field at both
ends is fixed. Thus, the magnetic field lines are spiraled and are twisted in the same direction as the K-H roll-
up as illustrated in Figure 16. When the magnetic field lines are twisted near the equatorial plane, they are
spiraled toward north and south in opposite rotations (Merkin et al., 2013); thus, the rotational flow motion
also occurs in the magnetic field structures. This motion can be the reason why we have identified the spir-
aled magnetic field structure as a vortex in section 3 by using both the region-type and geometrical-line-type
methods. However, as mentioned in Figure 3, we define the clockwise and counterclockwise rotations with
respect to the vortex core line flow vector ξR. If the ξR directions are identical as in this case (Figure 17), only

the sign of the shear term du1
dy determines the rotation, and the north and south spiral rotations in

Figure 17 are identical in this definition. As discussed in section 3 and in Figures 8–10, almost all the

Figure 15. Schematic view of five steps illustrating the scenarios of vortex developments and coherent structures (Regions
I to V) within the equatorial plane (X-Y). The dashed wavy lines in the magnetotail indicate the occurrence of the vortex
breakdown and the emergence of turbulent flows.
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vortex core line flow vectors ξR are pointing toward the north. Thus, these clockwise and counterclock-

wise vortices are generated by the different signs of the shear du1
dy .

5. Discussions
5.1. Summary of Four Methods

The purpose of this paper is to introduce the rules commonly used for identifying 3-D vortex structures and pre-
sents a set of 105 individual vortex detection events, as examples, using a tetrahedrally satellite set. In section 2,
we reminded threemethods to identify vortices. By using the Cluster satellite magnetic field data and three vor-
tex identificationmethods (i.e., two region-type and one geometrical-line-typemethods), we have detected 3-D
vortex structures at different times during the encounter of the Cluster satellites at/around the magnetopause,
where the IMF is northward. Such IMF conditions are in favor of evidencing of K-H instability (rather than recon-
nection around the subsolar area). Herein, we used the methods based on the Q-criterion, the λ2-criterion (for

the region-type ones) and the geometrical-line-type vortex core extraction
method. With the geometrical-line-type method, we have identified 105
vortex core lines. Moreover, the results obtained from Q and λ2-criteria for
these 105 cases are also almost identical to those deduced from the
geometrical-line-type method. The vortices are found to rotate either clock-
wise or counterclockwise, in the northward direction. The vortex core lines
also deviate slightly from northward to stream-wise (i.e., parallel to the flow
direction), when moving further tailward behind the DD line.

In summary, the advantages and limitations of each method can be listed
as follows:

1. The Q-criterion does not provide geometrical information, more precisely,
the directions of vortex core line and associated rotation. Even if the vortex
core line is near (but not inside) the tetrahedron, the vortex can be
detected. This method is easy to use, and more general than λ2-criterion
but does not precisely identify the vortex. Thus, we did not use here.

2. The Δ-criterion does not provide either geometrical information and is
independent of the location of the vortex core line with respect to the
tetrahedron. It is easy to use but does not precisely identify the vortex.

3. The λ2-criterion does not provide either geometrical information. The
minimum pressure point or region, i.e., the Galilean invariance has to

Figure 16. Schematic diagram of the northward interplanetary magnetic field lines (solid lines) moving with a plasma flow
(dashed lines) (a) without a Kelvin-Helmholtz (K-H) vortex roll-up and (b) with a K-H vortex roll-up near the equatorial plane.
The magnetic field lines are fixed on the top (plots a and b) and twisted in the bottom (plot b). This figure only shows north
hemisphere.

Figure 17. Schematic diagram of the northward interplanetary magnetic
field lines (solid lines) moving with a plasma flow (dashed lines) with a
Kelvin-Helmholtz (K-H) vortex roll-up near the equatorial plane. The mag-
netic field lines are fixed both on the top and bottom. The twisted spirals
propagate toward north and south.
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be inside the tetrahedron. It is more difficult to use but more pre-
cisely identifies the vortex than the Q and Δ-criteria.

4. The geometrical-line-type method provides geometrical informa-
tion, that is, the direction of the vortex core line and associated
rotation. However, it is difficult to use and requires that the vortex
core line has to be strictly inside the tetrahedron.

The comparison of the four methods is summarized in Table 1. From
the observation of the tetrahedral satellite configuration, the
geometrical-line-type method reveals to be better than the other
three methods and can provide geometrical information including
the rotational and flow directions, and the vortex core location inside
the tetrahedron. However, the geometrical-line-type method requires

the vortex core line to be strictly inside the tetrahedron and is therefore less sensitive to detect the vortex.

These four methods also can be applied to other tetrahedrally configured satellite system like MMS
(Magnetospheric Multiscale) that has different intersatellite distances. As discussed in section 2, only the neces-
sary condition to identify the vortex is the Galilean invariant must be verified or the vortex core must be inside
the tetrahedron. Thus, if themagnetic field is strongly perpendicular to vortexmotion and intersatellite distance
is smaller than the length scale at which themagnetic field changes, themethod does not capture the vortex. If
the size of vortex core is larger than the satellite tetrahedron, the vortex cannot be captured.

5.2. Discussions Related to Magnetospheric CS

By assuming that the inertial force is dominant in the magnetospheric flow, the scenario of well-known
coherent structures necessary for the development of vortices in Figure 15 (from left to right hand side) as
proposed in the previous simulations and theoretical works, can be summarized as follows (Kida & Miura,
1998; Miura & Kida, 1997; Moffatt et al., 1994):

1. The K-H vortices where their vortex core lines are transverse to the flow grow linearly in the shear layer
generated between the solar wind and magnetopause (Region I in Figure 15) and are rapidly shed from
the magnetopause shear layer (vortex-shedding: Region II in Figure 15) behind the DD line. These vortices
are transverse-type as defined in Figure 1b.

2. The transverse vortices move freely reaching the marginal stable configuration forming two-vortex rows
(i.e., Karman Vortex Street) inside/outside the velocity shear region across the magnetopause, which is a
part of the large wake of the magnetotail (Region III in Figure 15).

3. The aligned transverse vortex sets (Karman Vortex Street) mentioned above soon become unstable. The
so-called breakdown of the transverse vortex occurs: the vortex cores are broken into pieces, and the flow
becomes turbulent (the wavy dashed-lines in Region IV of Figure 15; Kida & Miura, 1998; Miura & Kida,
1997; Moffatt et al., 1994).

4. Finally, those scraped vortex cores reconnect and reform into the longitudinal or stream-wise vortices and
survive over a long time period (Region V of Figure 15). The physical process responsible for this reforma-
tion a is still not known.

The CS concept described in Figure 15 is general, and the current results based on Cluster satellite data evi-
dence the coexistence of clockwise and counterclockwise vortices mainly located at/around the magneto-
pause and magnetosheath regions, which suggests the possible existence of the Karman Vortex Streets
(Wille, 1960). The existence of such organized structures also represents a symptom of some organized form
of MHD turbulence at/along the tailward magnetopause. The estimated magnetospheric Reynolds number
(Hultqvist, 1999) and the 3-D global MHD simulation results (Merkin et al., 2013) also support these results.
However, our results only show a local region of the magnetosphere, and an extended statistical analysis
in different regions based on more tetrahedral satellite observations is essential to evidence this CS concept.
Extensively, the present methods could apply to other regions of the magnetosphere where the 3-D struc-
tures of plasma turbulence need to be identified quantitatively.

Another important region where we can identify K-H vortices is the dayside magnetopause region as in
Stawarz et al. (2016). The K-H type waves are due to an instability of the linear theory and can generate linear
vortex in the dayside boundary layer. After these vortices leave the shear layer, nonlinear instability transform

Table 1
The Comparison of Four-Vortex Identification Methods/Criterion

Method/Criterion Accuracy Sensitivity
Ease
of use

Geometrical
information

Δ × ○ ⊚ ×
Q △ ○ ○ ×
λ2 ○ ○ ○ v
Geometrical-line-
type

⊚ △ △ ⊚

Note. The four methods are compared it terms of accuracy and sensitivity to
identify vortex, ease of use of these methods, and if the method has geometri-
cal information. ⊚, very good; ○, good; △, medium; ×, not recommended.
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these vortices into CS or coherent structure as mentioned in this section. It seems Stawarz et al. (2016) have
observed the linear growths of vortices, which eventually grows to be linear K-H vortices. Such very initial lin-
ear stages of vortices are difficult to be identified since they do not have clear Galilean invariance neither vor-
tex core. However, if they grow enough to develop vortex cores, these should be identified using the
methods introduced in the present paper. In addition, the linear stage of vortex growth mentioned in
Stawarz et al. are less important than the CS since the energy transport in these linear stages are smaller com-
pared with the CS region mentioned in this section. At the same time, vortices in the turbulent layers usually
can be identified using these methods since they are already well-developed.

As reported in Sundkvist et al. (2005), ion scale drift kinetic Alfvén vortices (DKA) are observed in themagnetic
cusp using Cluster measurements. The DKA vortices are generated by the nonlinear interaction of coupled
finite-amplitude, low-frequency drift, and kinetic Alfvén waves, which accompany density, potential, and
sheared magnetic field perturbations. It is quite interesting that the DKA vortices should be able to be iden-
tified using Cluster magnetic field measurements using methods discussed in this paper.

6. Conclusions

Major contributions of our work can be summarized as follows:

1. The vortices have 3-D structures, and we have to identify them in the 3-D analysis. For the first time to our
knowledge, a tetrahedral cluster is used to measure the 3-D magnetic vortex structures at/around the
magnetopause at the flank of the magnetosphere on the duskside by using local magnetic field data.

2. We use both geometrical-line-type and region-type methods to identify the 3-D magnetic field vortex
structures. All results obtained by the different methods almost coincide and provide complementary
information.

3. Nearly half clockwise and half counterclockwise rotating vortices have been detected. This observation
may suggest that the identified vortices are free vortices shed from the shear layer, and their region is
turbulent. However, further statistical observation is required.

Despite the lack of a universally acceptedmathematical definition of vortex, both region-typemethods based
on Q and λ2-criteria and the geometrical-line-type method reveal to be very powerful identifying the vortex
structures in the satellite observations with a tetrahedral configuration. Using the region-type method, we
identify the vortex as a region where Q > 0 or λ2 < 0. If the size of the tetrahedral configuration is too large
and includes several vortices, it is not easy to distinguish these vortices individually. In the worst case, the
vortex pattern may not be identifiable. The most famous and popular identification method in the fluid phy-
sics is the λ2-method, and the value is related to the Hessian of the pressure in the Navier-Stokes equations
(Jeong & Hussain, 1995). By using the geometrical-line-type method in the present study, we have identified
105 vortex events. In Figures 13 and 14, we plot both Q and λ2 values for 105 vortex events. The Q-criterion
reveals to be better in our analysis of B field data as discussed in section 3 for these 105 vortex events than λ2-
criterion. Since Q and λ2-criteria do not exactly require the vortex core lines to be inside the tetrahedron, we
can identify the vortices over many different times or events. However, the direction of both the vortex core
line and associated rotations cannot be obtained. In contrast, the geometrical-line-type method provides
geometrical information, such as the direction of the vortex core line and its rotational direction. The only
constraint is that the vortex core line has to be strictly inside the tetrahedron.
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