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HELICOIDAL SURFACES IN THE 3-DIMENSIONAL 
LORENTZ-MINKOWSKI SPACE Ef SATISFYING ~m r = Ar 

By 

Bendehiba SENOUSSJ and Mohammed BEKKAR 

Abstract. In this paper the helicoidal surfaces in the 3-dimensional 

Lorentz-Minkowski space are classified under the condition△ lllr= 

Ar, where A is a real 3 x 3 matrix and△ Ill is the Laplace operator 

with respect to the third fundamental fom1. 

Introduction 

Let Ef be a three-dimensional Lorentz-Minkowski space with the scalar 

product of index I given by 

釦=ds2 = -dxr + dxi + dxf, 

where (x1 ,xとふ） are the canonical coordinates in R 3. 

Let r = r(u, v) be a regular parametric representation of a surface M in the 

3-dimensional Lorenrz-Minkowski space Ef which does not contain parabolic 

points. 

The notion of finite type submanifolds in Euclidean space・or pseudo-

Euclidean space was introduced by B.-Y. Chen 15]. A surface M is said to be of 

finite type if its coordinate functions are a finite sum of eigenfunctions of its 

Laplacian t.. B.-Y. Chen posed the problem of classifying the finite type surfaces 

in the 3-dimensional Euclidean space E3. Further, the notion of finite type can be 

extended to any smooth functions on a submanifold of a Euclidean space or a 

pseudo-Euclidean space. 

If H is the mean curvature vector of the immersion r, we know that: 

△ r = -21-f. 
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In [ 12] M. Choi, Y. H. Kim and G. C. Park classified helico1dal surfaces with 

pointwise I-type Gauss maps and harmonic Gauss maps. In [8] G. Kaimakamis 

and 8. J. Papantoniou classified the first t肛eetypes of surfaces of revolution 

without parabolic points in the 3-dimensional Lorentz-Minkowski space, which 

satisfy the condition 

!l11r = Ar, A E Mat(3, R), 

where Mat(3, R) is the set of 3 x 3 real matrices. They proved that such surfaces 

are either minimal or Lorentz hyperbolic cylinders or pseudospheres of real or 

imaginary radius. 

In [l] Ch. Baba-Hamed and M. Bekkar studied the helicoidal surfaces 

without parabolic points in Ef, which satisfy the condition 

△ 11r;=).;r;, l.:::;;i.:::;;3. 

In [3] Chr. Beneki, G. Kaimakamis and B. J. Papantoniou obtained a clas-

sification of surfaces of revolution with constant Gauss curvature in Ef and in 14] 

defined four kinds of helicoidal surfaces in Er C. W. Lee, Y. H. Kim and D. W. 
Yoon [ 13] studied the ruled surfaces in Ef which satisfy the condition 

△ rrr r = Ar, (1) 

where A E Mat(3, R). 

S. Stamatakis and H. Al-Zoubi in [ 11] classified the surfaces of revolution 

with non zero Gaussian curvature in E3 under the condition (I). 

In [9] G. Kaimakamis, B. J. Papantoniou and K. Petoumenos classified and 

proved that such surfaces of revolution in the 3-dimensional Lorentz-Minkowski 

space Ef satisfying (I) are either minimal or Lorentz hyperbolic cylinders or 

pseudospheres of real or imaginary radius. 

Recently, the authors [2] studied the translation surfaces in E「satisfying(1). 
In this work we classify the helicoidal surfaces with non-degenerate third 

fundamental form in the 3-dimensional Lorentz-Minkowski space under the 

condition (I). 

1. Preliminaries 

A vector X of Ef is said to be timelike if釦(X,X) < 0, spacelike i「
YL(X, X) > 0 or X == 0 and lightlike or null if 9L(X, X) = 0 and X -:J:. 0. A time-
like or light-like vector in Et is said to be causal. 
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For two vectors X = (ふ,X2, x3) and Y = (y1, Y2, y3) in Ef the Lorentz cross 
product of X and Y is defined by 

X IIL Y = (x3y2 -x2y.,, 入:3y1-XJY3内）勺 ーやY1)

The pseudo-vector product operation AL is related to the d etermmant function 
by 

det(X, Y, Z) = 9L(X IIL Y, Z) 

Th e matnces 
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are called the L orenrzwn rotation matrix in Ef, where 0 e R. 

For an open interval I c R, let y : J→ IT be a curve in a plane TT in Ef 

and let L be a straight line in n which d oes not mtersect the curve y (axis). A 
helicoidal surface in Minkowski space Ef is a surface invariant by a uni-

parametric group 

Gぃ ＝｛釦jgじ：Ef→ Ef;veR} 

0「helicoidalmotions. Each helicoidal surface is given by a group of helicoidal 

motions and a generating curve. A helicoidal surface parametrizes as 

r(u, v) = g心(u)), (u,v) E / x R 

Each group of helicoidal motions is characterized by an axis L and a pitch c #-O 

Depending on the axis L being spacelike, timelike or null, there are three types of 

motion. 

If the axis L is spacelike (resp. timelike), then L is transformed to the y-axis 

or z-axis (resp. x-axis) by the Lorentz transformation. Therefore, we may consider 

z-axis (resp. x-axis) as the axis if L is spacelike (resp. timelike). If the axis L is 

lightlike, then we may suppose that the axis is the line spanned by the vector 

(l, I, 0). We distinguish helicoidal surfaces in Ef into the following types. 

Case 1. The axis L is spacelike, i.e., (L =〈(0,0, l)〉）．

Without loss of generality we may assume that the profile curve y lies in the 

yz-plane or xz-plane. Hence, the curve y can be represented by 

y(u) = (O,f(u),g(u)) or y(u) = (f(u),O,g(u)), 

where f is a smooth positive function and g is a smooth function on I. 



342 

or 

Bendehiba SENOUSSI and Mohammed BEKKAR 

The helicoidal surfaces M in Ef given by [4] are defined by 

r(u, v) = (/(u) sinh v,f(u) cosh v, cv + g(u)), c ER+ (2) 

r(u, v) = (f(u) cosh v, f(u) sinh v, cu+ g(u)), c ER+. (3) 

We call (2) and (3) a helicoidal surface of type I and type II respectively 

Case 2. The axis L is time-like, i.e., (L = <(I, 0, 0)〉）．

In this case, we may assume that the profile curve y lies in the xy-plane. So 

the curve y is given by 

y(u) = (g(u),f(u), 0) 

for a positive function/= /(u) on /. Hence, the helicoidal surface M is given by 

[4] 

r(u, v) = (g(u) + cv,f(u) cos v,f(u) sin v), f(u) > 0, c ER+. (4) 

We call (4) a helicoidal surface of type III. 

Case 3. The axis L is light-like, i.e., (L = ((l, l,O)〉）．

In this case, we may assume that the profile curve y lies in the xy-plane. Then 

its parametrization is given by 

y(u) = (f(u), g(u), 0), u E /, 

where / and g are functions on /, such that f(u) # g(u), Vu E /. 

Therefore the helicoidal surface M may be parametrized as [4] 

r(u, v) = (f(u) + ~-h(u) + cv, g(u) + ~h(u) + cv, vh(u)), CE R, (5) 

where h(u) = f(u) -g(u). We call (5) a helicoidal surface of type IV. 

If we take c = 0, then we obtain a rotations group related to axis L. The 

helicoidal surface is a generalization of rotation surface. 

The immersion (M, r) is said to be of finite Chen-type if the position vector r 

admits the following spectral decomposition 

k 

r = ro +区r;,
i=I 

where r; are Er-valued eigenfunctions of the Laplacian of (M, r): △r、=A;r;, 
入;ER,i= 1,2, ... ,k [5]. If入;are different, then M is said to be of k-type. 
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Let {ぶ又}be a local coordinate system of M. For the components eii 
(i, J = I, 2) of the third fundamental form Ill on M we denote by (eii) the 
inverse matnx of th e matrix (eij)-

The Laplace operator△ 111 of the third fundamental form Ill on M is 

formally defined by 

△ Ill =議（五（爪eiJ五））， (6) 

where e = det(eij)-

The coefficients of the first fundamental fonn and the second fundamental 

form are 

£=g11 =〈ru,r,、〉, F = g12 =〈r,、,(V〉, G = g22 = (r.,rふ

L=h11 =〈Y11i;,N〉) M = h12 = (r,、,;,N〉, N = h22 = (rvv,N〉

Ill Ifり： M → R, (u, u)→ rp(u. u) is a smooth function and 6. the Laplace 

operator with respect the third fundamental form, then it holds [ 1 O]: 

by 

△ Ill り = if(羞（匂2((J,✓lel12((Jし）―羞 (e12((J1Jfel釘 l(/J"))- (7) 

The Gaussian curvature Kc and the mean curvature H of M are given 

KG=肛 (N,N)
(LN-Mり
EG-F2 

(EN+ GL -2FM) 
H= 
2IEG-Fり '

where N is the unit normal vector to M. 

2. Helicoidal Surfaces of Type I, II 

In this section we are concerned with non-degenerate helicoidal surfacesふi

without parabolic points satisfying the condition (1). 

Suppose that M is given by (2), or equivalently by 

r(u, u) = (u sinh u, u cosh見cu+g(u)), ceR玉 (8)

We define smooth function W as: 

W=凶尋1/¥/, I',;, l'u IIL I・じ）=J心 (I+ g'2) -c2) 
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The coefficients of the first and the second fundamental form are: 

where g 

E =I+ g'2, 

L 
-ug ” ＝ W ' 

I dg II d2g 
＝ 而） g =茄・

F = cg', G = c2 -u2 

C 
? I u-g 

M =- N=― 
W'W' 

The components of the third fundamental form of the surface M is given, 

respectively, by 

印＝命(U4ljlf2_召(ug"+ g')2ー召）：

-c 
e12 =ー(ug"+ g'), w2 

I 1 2 ,2 
知＝一 (c―一u g) w2 

hence 

e1R 
瓜＝加＇

where e1 =士landR=u3g'g"+c2. 

(9) 

From these we find that the curvature Kc and the mean curvature H of (8) 

are given by 

J I II u g g +c-
Kc= W4 

and 

H=-
心'(I+炉）ー2c憎―ug"(c2-厨）

2W3 
(l 0) 

We rewrite the above equation as [7] 

I 2'' 
H=五（予）

PROPOSITION 2.1. If H = 0, then the function on the profile curve y(u) = 
(0, u, g(u)) is as follows 

g(u) =士］ (11) 

in Ef, where a,b ER 
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PROOF. If H = 0, then we obtain 

心'=aW, aER 

Hence, if we solve 

then we have (11). 

,2 が(u2-c2) 
g = 
eu4 -a2記＇

If a surface M in Er has no parabolic points, then we have 
心'g"+ c2 =I-0, ¥/u E J. 
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D 

Suppose that LN -M2 > 0 (we have the same result if LN -M2 < 0) 
By a straightforward computation, the Laplacian I':,, 111 of the third funda-

mental form Ill on M with the help of (9) and (7) turns out to be 

砂V3 u1 !':,,'" = --(一（一eW2u沼g'"(c2-u2炉）+ c4u -3c2企g'2
R WR2 

+ 3c4炉u-3c2g'4企+6召g'g"u2-4c2g'g"企+c2砂g叩

a 
_ 2g'4gll]記_g'2g112u1 _ c2g112u5 + c4g"叩 -・6c切g"炉）一

au 

＋竺
WR2 
(eW2ug"'(c2 -g叩）一g'g"2us_ 2g" 9,2炉 — 2g'4g"u4

+ 3c2g'g"2企+3c2g"u2 + c2がu+ 7c2g"g'2u2 + c切u

a 
_ 2c4g" + c2g"3u4 _ g"3砂）一

枷

如 Wc(ug"+ g') 82 s1 W(c2 -g叩） a2 
+—+ -

R ouov R ou2 

十ee1(g"2炉 — c2ばr+ g')2 _ c2) t;)) 
By using (8) and (I 2) we get 

{~::: 位：:,: ~): ご〗::h'.こ鸞尺：；:: 
t:i.111(cv+g(u)) = T(u) 

(12) 

(13) 
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where 

P(u) =一誓(ecW叩gw(c2_ 9,2記）一cg"叩+c(l + 2g'2)g'g"2u6 

+ CJ g"3記+c3g'l'2u4 + c3(7g'2 + 5)g"u3 + 3ぎ(1+砂）g'u2 

-4c5g"u -2c沼），

Q(u) = —誓(eW2企g'g111(g'2u2-c2) + 2c4g'2u + 4c4g"g'u2 

-3召(g'2+ g'4)u3 _ c2(7g,3g" + Sg"g')u4 _ c2炉g"2uS

_ c2g"3g'u6 _ (2g,4戸+g'2戸）記+g賓閏）， (14) 

T(u) =—誓(eW2ug"'(c2-gい）2 + (-3g'2 -2)g'3g"2i、7

_ C2gll3研＋召(3g'2-l)g'g"2us + c2(c蒻112_ 79,2 _ 9g,4)g"u4 

+ Jc2(c2g112 _ g'4 _ g'2)g'記＋び(15g'2+ 4)g"u2 

+2び(2砂+l)g'u-3c6g") 

REMARK 2.2. We observe that 

ug'P(u) + cQ(u) = 0 

(~}(c2 -g叩）P(u) -cuT(u)) = H. 
2cW ・ 

(15) 

The equation (1) by means of (8) and (13) gives rise to the following system 

of ordinary differential equations 

{ (P(u) -a,iu) cosh v + (Q(u) -a,, u) sinh , -an(,o+ g) -0 

(Q(u) -anu) cosh v + (P(u) -a21u) sinh v -aぉ(cv+g)=O

a31 u sinh v + a32u cosh v +知 (cv+ g) = T(u), 

(16) 

where aり (i,j = I, 2, 3) denote the components of the matrix A given by 

(I). 

But sinh v and cosh v are linearly independent functions of v, so we finally 

obtain a32 = a31 = C133 = a13 = a23 = 0. 

We pul aぃ=a22 =)._ and a12 = a21 = 1--1, え，μER. Therefore, this system of 

equations is equivalently reduced to 



Helicoidal surfaces 347 

u

u

 

え

μ

0

=
＝
＝
 

ヽ

u

u

u

 

＇ー＇，

ー
＇
，
ー
，

Q

P

T

 

r

v

、

(] 7) 

Therefore, the problem of classifying the helicoidal surfaces M in Ef given by (8) 

and satisfying (I) is reduced to the integration of this system of ordinary dif-

ferential equations. 

Next we study this system according to the values of the constants ,l, μ. 

Case I. Letえ=0 andμi-0. 

The system of equations. (I 7) takes the form 

鳳〗u三゜ (18) 

Then g'() u = 0, which is a contrad1ct1on. Hence there are no helicoidal surfaces 

of Ef in this case which satisfy (l). 

Case 2. Letえ-#0 andμ= 0. 

In this case the system (17) is reduced equivalently to 

{t(u『~~ー,,
T(u) = 0 

But this is not possible. So, in this case there are no helicoidal surfaces of Ef. 

Case 3. Let 11 =μ= 0 then A = diag(O, 0, 0). 

In this case the system (17) is reduced equivalently to 

筐〗=~
From (15) we have H = 0. If we substitute (l 1} in (14) we get Q(u) = 0. By using 

(l 5) we get P(u) = 0 and T(u) = 0. Consequently M is a minimal surface. 

Case 4. Let). # 0 andμ-# 0. 

In this case the system (l 7) is reduced equivalently to 

入c
g(u) = -- ln(u) + k, k ER 

μ 

If we substitute (19) in (14) we get Q(u) = 0. So we have a contradiction and 

therefore, in this case there are no helicoidal surfaces o「Ef.

(19) 
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TI-IEOREM 2.3. Let r • M → Ef be an isometric immersion given by (8). Then 

6. llf r = Ar if and only if M has zero mean curvature. 

3. Helicoidal Surfaces of Type fl/ 

In this section, we study the case of helicoidal surfaces M in Et of type Ill. 

Suppose that M is given by (4), or equivalently by 

r(u, v) = (cv + g(u), u cos v, u sin v). 

The coefficients of the first and the second fundamental form are: 

E=  I -g'2, F= -cg', 

ug ” C 
L=- M=--
W ' W' 

G=記-c2, 

心＇N=-
w 

The unit normal vector field N on M is given by 

-I 
N = - (u -c sin v + g'u cos v, c cos v + g'u sin v), 
W ' 

where W = ✓8肛(r11/¥Lr., rll /¥L rv) = ve(u2(I -g12) -c2). 

(20) 

The components of the third fundamental form of the surface M is given, 

respectively, by 

eぃ = ~(u4g112_召(ug"+ g'ド＋＆），

e12 =伍(ug"+ g'), 1 
e22=-w2 (u2炉＋召））

(21 l 

hence 

e1R 
/fl e =-W3' 

where釘＝土Iand R = u愴g"-c2. 
By a direct computation, we can see that the Gauss curvature Kc and the 

mean curvature H of M are given by 

3 , " u g g -c― 
Kc= W4 

and 

H= 
心'(I-炉）ー2c2l-ug"(c2 -uり

(22) 
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We rewrite the above equation as [7] 
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I 2 I I 

H=五（精）．
PROPOSITION 3.1. If H = 0, then the function on the profile curve y(u) = 
(g(u), u, 0) is as follows 

g(u) =土］ (23) 

in Ef, where a,b ER 

PROOF. If H = 0, then we obtain 

心I=aw, a ER. 

Hence, if we solve 

0 a2(u2 -cり
g -= 
eu4 + a初2'

then we have (23). D
 

If a surface M in Ef has no parabolic points, then we have 

心Ig" -C2 "'F-0. 

Suppose that LN -M2 > 0 (we have the same result if LN -M2 < 0). 

By a straightforward computation, the Laplacian 11111 of the third funda-

mental form Ill on M with the help of (7) and (21) turns out to be 

1:W3 ee1 1>."'""T (戸(1:W2u3g'g111(c2+ g叩）+ (2g'2 _ J)g'2g"叩
+ c2(炉+l)g"2記+c2(4 -6砂）g'g"u4 

a 
＋召(3砂ー3g'4-c2戸）u3 -6c燿g"u2+c4(1-3g'2)u)-

初

＋竺
WR2 
(1:W2ug"'(c2 + g'2記）+ g"3研+g'g"2討

+ (2g'2 -2g'4 -c2戸）g"u4 -3c情g"2企+c2(3 -7g'2)g"u2 

+ c2(l -g'2)q'u -2c4g") 
a 
av 
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-(亙Wc(ug"+ g')) _!_ _ e1 W(c2 + gい）竺R 疇 v(R)  ou2 
-(恥(-g"2炉+cJ1" + g')2 -c2))砂

By using (24) and (20) we get 

r:: 塁二悶'~;(:(~~s,+ Q(u) sin, 
!'l111 (u sin v) = -Q(u) cos v + P(u) sin v, 

where 

eW2 
P(u) = -(eW2u愴g"'(c2+ g'2記）+g'g"氾+(2砂ーl)g'2g"叩
R3 

_ c2 g'g"3u6 _ c2炉g"2us+召(5-7炉）g'g"u4 + 3召(I-g'2)g叩

-4c4g'g"u2 -2c4g'1u), 

Q(u) = ~ 芦(ecW辺 "'(c2+ g叩）+cg"叩 +c(-1 + 2炉）g'g"2研

(24) 

(25) 

(26) 

_ c3g"3u5 _ c3g'g"2記＋（ー7g'2+ 5)c3g"記+3c愴(!-炉）u2 

-4c5g"u -2c5g'), (27) 

T(u) =誓eW2ug111(c2+ gい）2 + (3g'5 g"2 -2gl3戸）記+c2g"3u6 
+ (3c2g13戸 ~c愴g"2)us+ (-c4炉+7c29,2911 _ 9c2g,4g")u4 

+(-3ざg'g"2-3c2炉+3c2炉）u3 + (-15c4炉g"+ 4c4g")u2 

+ (-4c4炉+2c4g')u -3c6g") 

REMARK 3.2. We observe that 

（靡）(cuT(u) + (c2 + gい）Q(u)) = -H 
(28) 

cP(u) + ug'Q(u) = 0. 

The equation (1) by means of (20) and (25) gives rise to the following system 

of ordinary differential equations 
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｛の,ucos H anu sin H a,, (ce + g) -T(u) 
(P(u) -a22u) cos v + (Q(u) -a23u) sin v -a21 (cu+ g) = 0 

(Q(u) + a32u) cos v -(P(u) -a33u) sin v + a31 (cv + g) = 0 

(29) 

From (29) we easily deduce that a11 = a12 = a13 = a21 = a31 = 0, a22 = a33 

and a32 = -a23. We put an=知 ＝えand-a32 = a23 =μ, A,μER. Therefore, 

this system of equations is equivalently reduced to 

u

u

 

え

μ

O

=
＝

＝-

、
~
、

`
l
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·

u

u

u
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＇
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ー
し

P

Q

T

 

f

く

、
(30) 

Therefore, the problem of classifying the helicoidal surfaces M in Ef given by 

(20) and satisfying (I) is reduced to the integration of this system of ordinary 

differential equations. 

We discuss four cases according to the constants入andμ.

Case 1. Let }, = 0 andμ#-0 

{; □三゚
From this system we get g = 0, which is a contrad1ct1on. Hence there are no 

helicoidal surfaces of Er in this case 
Case 2. Let~ し ,faO andμ= 0. 

ln this case the system (30) is reduced equivalently to 

{ g'Q(u) = —えc
Q(u) = 0. 

But this is not possible. So, in this case there are no helicoidal surfaces of 

Ef. 
Case 3. Letえ=μ=0 then A = diag(O, 0, 0). 

In this case the system (30) is reduced equivalently to 

筐;"~~゜
Then, the equation (28) gives rise to H = 0. lf we substitute (23) in (26) we 

get P(u) = o. By using (28) we get Q(u) = 0 and T(u) = 0. Consequently M 1s a 
minimal surface. 
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Case 4. Let). # 0 and Jt # 0. 

In this case the system (30) is reduced equivalently to 

えc
g(u) = --ln(u) + k, k ER. 

p 
(31) 

If we substitute (31) in (27) we get Q(u) = 0. So we have a contradiction and 

therefore, in this case there are no helicoidal surfaces of Ef. 

We are now ready to state the following theorem. 

T細 0邸 M3.3. Let r: M → Ef be an isometric immersion given by (20). Then 

△ m r = Ar if and only if M has zero mean curvature 
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