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WEIGHTED LPーび ESTIMATESOF THE STOKES 
SEMIGROUP IN SOME UNBOUNDED DOMAINS 

By 

Takayuki KOBAYASHI and Takayuki Kuno 

Abstract. We consider the Navier-Stokes equations in half-space 

and a perturbed half-space in LP space with Muckenhoupt weight. 

As the first step, we shall describe the Hel叫holtzdecompostion of LP 

space with Muckenhoupt weight and the weighted resolvent estimates 

for the Stokes equations. Next we shall show the LP -Lq estimates 

of Stokes semigroup withくx〉stype weight. Finally as the applica-

tion of the weighted LP -U estimates, we shall obtain the weighted 

asymptotic behavior of the solution to the Navier-Stokes equations. 

1 Introduction 

Let n ;::: 2. Let Q c R II be the half-space H or a perturbed half-space 

with smooth boundary an. To be precise, the half-space H is defined by H = 
{x = (入，',、¥'.11)ER" Ix" > O} and the perturbed half-space is a unbounded domain 

which has a positive number R satis「ying

Q¥BR = H¥B凡 (!.I) 

where BR= {x ER" I lxl < R}. 

ln this paper, we consider the following Navier-Stokes equations in Q: 
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Here u ( t , ヽヽ） = (u 1 ( t , x) , . . . , u,, ( t , x) ) a nd 冗( 1 , x) deno te u n k nown ve l oci t y tield a nd 

scalar pressure and a(x) is a given vector function. 

The Navier-Stokes equations (NS) have been already studied by many 

authors in some bounded domains and unbounded domains. In particular, we 

have many results concerning to (NS) in L''-framework. 

The results of F,mvig and Sohr [ ¥4] and Miyakawa [33] are the first 

step to discuss the nonstationary problem (NS) in the l''-space. They showed 

the Helmholtz decomposition of the LP-space of vector fields U(Q) = 
U(Q)RG1'(Q) for n~2 and l < p < oo, where Lt叩） andび（幻 denoteas 

follows: 

L叩 ）= { u E cg: (n) I▽ . u = 0 in Q}ll・llu,n,, 

G"(Q) = {"v冗 EU(Q) 1 n E L/~JQ)} 

Let P be a continuous projection from U(Q) to Lt(O) associated with the 

Helmholtz decomposition. The Stokes operator A is defined by A = -Pt:. with 
some domain. It is proved by Farwig and Sohr I 14] that -A generates a bounded 

analytic semigroup e―,A on Lt(O) 

When we prove the existence theorem of global solution to (NS) with small 

data, the following LP -l" estimates of the Stokes semigroup play the important 

role 

lie―ヽAIiiぃ::;o-n(l/p-l/q)/211/llu-

!I've―"'/IIぃ::;Ctー11(I/p-1 /q)/2-1 /211.lll LP 

ヽ
ー、

、`
ー

2

3

 

9

9
 

,1,

＇ー・

for f EL加） and t > 0, where I .s p .$ q .s cc, (p i=翌 qi= I) for (1.2) and 

lspsqく翌 (q=I=!) for (1.3). The L" L - " estimates of the Stokes semigroup 

have been already studied by many authors in some domains. In fact, when Q is 

the whole space, applying the Young inequality to the concrete solution formula, 

we have (l.2) and (1.3) for I .$ p sq.$ c.o (p ,f co, q ,ie I). When Q is the half-

space, it is proved by Ukai [35) and Borchers and Miyaka wa [4] that (1.2) and 

(1.3) hold for I s; p::;; q s oo (p #翌 q# I) (cf. Desch, Hieber and Prtiss [ 111). 

When .Q is an infinite layer case, Abe and Shibata [lj proved that (1.2) and (1.3) 

hold for I < p sq< ct:,. When Q is a bounded domain, (1.2) and (1.3)「or

l < P sq < oo follow from the result of Giga [22] on a characterization of the 

domains of fractional powers of the Stokes operator. In an infinite layer case 

and a bounded domain case, an exponential decay property of the semigrolip is 

available. 
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When Q is an exterior domain, (1.2) holds for I s p sq s w (p #-co, 

q,;,. I) but (1.3) holds only for 1 s p sq s n (q # 1). At first Iwashita [25] 

prov叫 that(1.2) holds「or1 < p sqく roand (1.3) for 1 < p sq s n when 

n~3 The refinement o「hisresult was done by the following authors: Chen [6] 

(n = 3, q = w), Shibata [34] (n = 3, q = co), Borchers and Yarnhorn [5] (n = 2, 

{'i.2) for p = q), Dan and Shibata [8], [9) (n = 2), Dan, Kobayashi and Shibata 

l 101 (n = 2, 3), and Maremonti and Solonnikov [31] ()  n 2 2 . Especially, 1t was 

shown by Maremonti and Solonnikov [31] that lwashita's restriction q s n in 
r, へ
t_t.J) JS unavoidable. 

When Q is a perturbed half-space, Kubo and Shibata [30] proved (J.2) for 

l :,;; p sq s w (p # w, q #-1) and (1.3) for I s p sq< cx, (q # l) when n z 2. 
When Q is an aperture domain, Abels [2], Hishida [24] and Kubo [29] proved 

(1.2) for lspsqsco (pi'-co,q#-1) and (1.3) for lspsqく改 (q=I=-I) 

when n. ~ 2. 

Jn usual U'-framework, it is well-known that we can prove the global 

existence of the solution to the Navier-Stokes problem with small L" data. ln 

fact, the time-global existence was proved by many authors in the following 

domain cases: Giga and Miyakawa [23] for bounded domains, Kato [27] for the 

whole space, Ukai [35] and Kozono [28] for the half-space, Iwashita /25} for the 

exterior domain, Abe and Shibata fl] for the infinite layer, Kubo and Shibata 

I 301 for the perturbed half-space and so on 

On the other hand, the results on the weighted U'space case are not so 

much than one o「tbeU'space case. For the whole space and an exterior domain 

case, Fa「wigand Sohr [ 13] proved the Helmholtz decomposition of the L''space 

with Muckenhoupt weight. Moreover they considered the resolvent Stokes equa-

tion in the weighted LP space and showed the weighted resolvent estimate and 

that the Stokes operator generates an analytic semigroup in L''space with 

Muckenhoupt weighl. The result on the weighted LP -LIJ estimate of Stokes 

semigroup was not obtained. For the half-space case, H. 0. Bae [3] proved the 

Helmholtz decomposition of U'space with some weights (for example, w(x) = 
(l+lxl)'for Oss<l/p') and he obtained the certain U'-L q estimate of 

Stokes semigroup with the certain weight. A. Frolich [ 16) proved the one of LP 

space with the Muckenhoupt weight and the weighted resolvent estimate of the 

resolvent Stokes equation in half-spaces and aperture domains (see [ 16], [17] for 

detail). However, he did not obtain the results on the weighted U'-L" estimate 

of Stokes semigroup. 

This paper consists of six sections. In the next section, after notation is fixed 

we present the statement of our main results: Theorem 2.3 on the resolvent 
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estimate with Muckenhoupt weight, Theorem 2.4 on the Helmholtz decomposi-

tion of the weighted U space, Theorem 2.5 on the generation of the Stokes 
semigroup as one of the corollary of Theorem 2.3, Theorem 2.7 on U'-llJ 

estimates of Stokes semigroup with〈x〉s(O.ss<n-2+1/n) which plays 

important role when we prove the asymptotic behavior for the solution to (NS) 

and Theorem 2.8 on the asymptotic behavior for the solution to (NS) obtained by 

Kozono l28J or Kubo and Shibata l30]. 

In section 3, we introduce the known results concerning the weighted LP 

space which we use through this paper. In secton 4, we shall showしheHelmholtz 

decomposition of L[:,(n) in perturbed half-space. Moreover we shall consider the 

resolvent Stokes equations corresponding to (NS) and shall show the resolvent 

estimate. Our proof is based on the method dLie to Farwig and Sohr I 13]. Since 

the results on the bounded domains and half-space are proved by Frohlich 

[ I 8] and [20], by cut-off technique with their results, we can prove the resolvent 

estimate for large i., which implies that the Stokes operator -A gene「atesanalytic 

sem1group m Li.c:(Q). 
In secton 5, we shall prove the weighted Lfl -L<t estimate of Stokes semi-

group obtained in section 4. First we consider the whole space case and the half・

space case. For the whole space case, we can easily prove by Young's inequality. 

For the half-space case, using Ukai's solution formula (see [351), we can reduce 

to the whole space case. For a perturbed half-space case, we derive the weighted 

LP -L<t estimates from the results for the half-space case and the estimate for 

n n BR which is proved by Kubo and Shibata [30]. Finally, we consider the 

application of the weighted LP -L'1 estimates to the Navier-Stokes equations 

in section 6. As we mentioned, the Navier-Stokes equations in the half-space 

and a perturbed half-space ad1'nits a unique strong solution u when the initial 

data is sufficient small. As the application of the weighted L" -l" estimates, 

we consider the case where the initial data belongs to L訊Q)n l"(Q), where 

w(x) =〈X〉snfor O .$ s < n -2 + I/ n 

2 Main Theorems and Notations 

In this paper, we shall consider the Navier-Stokes equations in the half-space 

and a perturbed half-space. For this purpose, we first introduce the definition of 

their domains. Let H denote the half-space by H = {x = (兄ふ） ER" Ix,,> O}. 

We call a domain n perturbed half-space if there exists a positive number R such 
that 

0¥BR = H¥B凡 (2.1) 
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where BR= {x ER" I lxl < R}. We next introduce the class of weight functions 

and weighted U'spaces. 

DEFlN!TlON 2.1 (Muckenhoupt class叫(Rn)). Let I < qく C/J.A weighted 

function O =,:; w E Li'oc(R") belongs to Muckenhoupt class s19 if the function w 

satisfies 

supいJwぬ=)(~J w―l/(q-1) dx)"ー I:;; Cくの
Q IQI. Q IQI Q 

where the supremum is taken over all cubes Q c R" and IQI denotes the 

Lebesgue measure of Q 

For example, the weighted function w(x) =(I+ lxl)'or w(x) = lxl~ 
(-n < o: < n(q -I)) belong to Muckenhoupt class威iR").For a perturbed half 

space Q we introduce a restricted class of s,1,1 on Q. 

DEflNITION 2.2. Let n be a perturbed half space wi!li C2-boundaryぬ wirh

恥 salisfies(2.1). Then for I s; qく迄叫＝叫(Q)is the class of weighted 

function defined as follows The each element w of払'qbelongs to呂(R11)and has 

the bounded domain G = G(iv) c nnB11+1 such that w E c0(G) and wit> 0. 

We define a weighted L'I space with Muckenhoupt weight 1F E威;,as follows. 

L;;(D) = { u E Lioc(Q) I !lull⑳ )  = lluw11"11い(Q)= (J。[ul"ivdx}/q < oo} 

for I < qくoo.Similarly, we define the weighted spaces as follows: 

w,~•'l(Q) = {u E LJ,(Q) 1 v ~u E LJ,(Q), lal,:::; k}, 

尻• 'i(Q) = {u EL蛤(D)l 'v 'u E L、~(n) , lal = k} 

and 

Wぷ、'.;(Q)= C印 ）ll·ll,.;·•1111 

for I < q < oo, k EN and 1v E吟 Thespace w},'l(Q) equipped with the norm 

llullw!·•coJ ,~ (五U"知111,,,o,r ,

ts a reflexive Banach space. 
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For I < q < oo, let q'denote the dual exponent: 1/q + 1/が=I and w' 

denote the dual weight: 1111 = w―1/(q-I). The dual space of四国）is denote by 

~v.~1, 叩） ＝尻:."'(叩 andendowed with the norm 

/IF l/i./1,~• ・"(O):::: sup 
l〈F,り〉l

O#rpe w '-•'(Q) IIVrp¥l・ 見(Q)

for FE応 -lf(Q).

For the half-space and the perturbed half-space, we shall investigate the 

Navier-Stokes equations (NS). As firs.t step of analysis o「Navier-Stokesequations 

(NS) in Kato's argument ¥27], we ne,ed the weighted U'-L'1 estimates of Stokes 

semigroup. To this end, we consider the generalized resolvent Stokes equations 

corresponding to (NS): 

(). ―△) u + Vn = f, div u = g in Q u:::: 0 on on, (GS) 

where / E L~(.(Q), g E W、'."(D)n f41,~l.l/(Q) and).et,=VEC¥{O}llarg).¥< 

冗ーe}(0 < e < n/2). Then the following resolvent estimate holds. 

THEOREM 2.3. Let Q c R" be a perturbed lwlj:.1pace with C2-boundary 

and let l < q < co, w E出， O<c<n/2and o>O For every Jel;((Q), gE 

w,; り(Q)n r"jl, 戸（幻 andi. E こ I i.I~o, the problem (GS) has a unique solution 

(u, 冗） E W}叩） x刷 ．．｛叩）．和rthermore(u, 冗） satisfies the a priori estimate 

II (I入Iし1,V2し,,Vrr)IIば(!1)~C(t:, '5)(11(/, Vg))Iばen)+lli.gll fv,~'-•(n)). (2.2) 

In order to define the Stokes operator, we need the Helmholtz decomposition 

of the weighted space L:{.(切 forperturbed half-spaces. 

THEOREM 2.4. Let .Q c R" be、iperturbed halj:space with C2-boundary and 
lei I < q < oo and w E吟・

(i) L[((.Q) has a unique algebraic and topological decomposition 

L,;.(.Q) ,= L;;._a(.Q)④▽尻，（叩 ），

where Li .. a(.Q) is Lhe closure of C, 筍~(.Q) = {u E C0(.Q) I▽ u = O} with 

respect 10 the norm II . IIばcnJi・ Inpar1icular there exists a unique hounded 
projection operator 

Pqぃ:L~;,(Q) • L此(Q)

with null space v'尻叩） = {v'叫冗e尻叩）} and range L如(Q)
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(ii) (P、I,"'「=P,!', w'and (Lら(Q))*= L'.~'.,{J, ・
(iii) If u EL悶(Q)nL腐(Q)for qie(l,oo) and wie払，，(J=l,2),then 

Pq,,..-,u = Pq,,w,U-

Given the Helmoltz projection Pq,,v, the Stokes operator A'I,"'in L1,_q(Q) for 

a perturbed half-space is defined by Aぃ ＝ーP,1,w△ with domain 

~(Aq w) = {u E W}・'i(Q) n L忍_q(Q)I u = 0 onぬ｝．

For the Stokes operator, we obtain the following results which say that the 

Stokes operator generates an analytic sem1group m L: 后（切：

THEOREM 2.5. Let Q こ R"be a perturbed half-space with C2-boundary 

and let I < qく唸 wE dq and O < & <冗/2. Then for everyえELr. and every 

/ELら(Q)the resolvent problem 

iしU+ Aq,1,・U = J, U E~(Aq.w) 

has a unique solution u E砂(A,f.11.).

(i) For i. E Lr. and I 入I~<5 > 0, 1his solution satisfies the resoluent estimate 

II (入u,Aq,,u)IIばen>:,; C(i,o)Jl/11ば(Q)・

(ii) The Stokes operator generates an analytic semigroup { e―tAqヽ．｝心0

(iii) Moreover A'I," is a closed operator and (Aq wJ* = Aq'.w'・

In this paper, for simplicity, we use the abbreviations A for Aq . .., and P for 

pい .if there is no confusion. 

REMARK 2.6. The same results as Theorem 2.3-2.5 for half-space and 

exterior domains have been proved by Frohlich [18] and Farwig and Sohr [13]. 

We next consider the weighted U'-L" estimates for the Stokes semigroup 

e―rA. As well-known, The LP -Lり estimatesplay an important role when we 

prove the unique existence of a global solution to (NS). Here setting the weighted 

function w as w(x) =〈X〉・'1'=(I+lxf)'P/2 (I < p < co), we obtain the following 
weighted LP -L" estimates「orthe Stokes semigroup in the half-space and a 

perturbed half-space: 

THEOREM 2.7 (Weighted LP -Lq estimates). Let n~2 and let Q be the 

halfこspaceor a perturbed haif-space . with C2-boundary. Let I < p ::;; q < co, 
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〇 ~s< (n -1)(1 -1/p) and w(x) = (x〉sp.Then }or a E Lfv(D) n U'(.Q), we 

have 

ll<x〉'e-iAPallu ::5: Ct―11(1/p-1/qJ/2 ll<x〉sallu+ er-11(1/p-l/q)/2+s/2llallu, 

II〈入〉sve―'11Pallu::5: Ct―11(1/p-l/q)/2-1/211〈、r〉sallu+ Ctー11(1/p-l/q)/2+(s-l)/2llall LP 

for I> 0. 

Finally we shall apply the weighted LP -L" estimates to Navier-Stokes 

equations (NS). Following Kato's argument [27], we can prove the unique 

existence of global solution to (NS) with small initial data. By applying the 

Helmholtz projection P to (NS), we can rewrite (NS) as follows: 

如 +Au+P[(u鼻 V)uj= 0, u(O) = a. 

By Duhamel's principle, we obtain the integral equation: 

u(t) = e―iAa -J e―(i-r)A P[(u・V)u](r) dr 

゜

(P-NS) 

By the usual LP -U1 estimate and contraction mapping principle, we can prove 

that there exists the unique strong soluton u to (NS) with small initial data and 

the solution u satisfies the following asymptotic behavior as t→ co: 

llu(t)IIい(!1)s Ct―1/2十nf(2q) for n s q :$の）

II'vu(t) II L叩 lsCt―i+nf(2q) for n s qくの

(see Kozono [28] and Kubo and Shibata [30]). Here for given a E L;(n) and 

0 < T s oo a measurable function u defined on n x (0, T) is called a strong 

solution to (NS) on (0, T) if u belongs to 

u E C([O, T}; ば(Q))n C((O, T); D(A)) n C1 ((0, T); L;(n)) 

together with Jim』 lu(t)-allL" = 0 and satisfies (P-NS) for O < t < Tin L;(切
When the initial data belongs to L:;(n) (w(x) = <x〉s,,)additionally, we can 

show the following theorem on the weighted asymptotic behavior as t→ oo by 

the weighted LP -l叉 estimates:

THEOREM 2.8. Let n~2, Q be the half-space and a perturbed half-space. Let 

0 :S; s < n -2 + 1/n and w(x) =〈X〉sn_If a E L:~(Q) n L;(n) with small llallcn, lhe 

solution u(t) sati: 茄esthe following asymptotic behavior 
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II〈X〉-'u(t)IIL・:s;;Ctーl/2+n/(2q)+s/2 for n :s;; q < ct:!, (2.3) 

ll<x〉s'ilu(t)IIぃ:s;;Ct―I +n/(2q)+s/2 for n :s;; qく CX) (2.4) 

as t→ OO 

3 Preliminaries 

In this section, we shall introduce some facts and lemmas which we use 

in this paper. First we shall introduce the lemma concerning the Muckenhoupt 

weight function. The weigl1ts w E威',,have the important property that regular 

singular integral operators are constinuous on L!(Rりintoitself. 

LEMMA 3.1. let l < q < co, we叫 andlet T be a regular singular integral 

operator. Then T is bounded on L忍(R").More precisely, there is a positive 

constant C such that for all / E L'.~(R"), we have 

IIT/11ば:~Cll/11ば．

PROOF. See [21, Chapter IV, Theorem 3. I] 口

By Lemma 3.1, the Riesz transforms R1J and the partial Riesz transform S1J 

define by 

叩(x)・＝町［畠叩fl(ど）] j = I, ... , n, (3.1) 

S1J(x) :=バ［侶巧[fl(ど，x,,)] j=I, ... ,n-I (3.2) 

are continuous on L,~(R ") and L ,~,(H) into itself respectively. Here克 and乞

denotes the Fourier transform with respect to x and the partial Fourier transfom1 

with respect to x'= (x1, ・..,x,._i) respectively. These Riesz transforms are used 

in Ukai's solution fomrnla. Here the weight w(x) = (x)5 considerd for fixed x11 as 

weight in R 11-1 is in the class約 only-(n -1)/q < sく (n-1)(1 -1/q). 

In this paper, we consider a perturbed half-space by using the cut-off 

technique. For this purpose, we introduce the cut-off function. We fix Ro sat-

isfying (2.1). Given R :2::. Ro, let ,j; E C1 (R) be nondecreasing with ,j;(<;) = 1 if 

lc;I :2::. R and if;(ど)= o if IとI:.,:;R -I and set ,j;R = ,j;(lxl). 

By this cut-off「unction,we can show the following lenu11a which means the 

interpolation between Wジ(.Q)andば(.Q).
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LEMMA 3.2. Let Q be a perturbed h叫/~space 1vi1!, C2-boundary and let 

I < q < oo and w E吟.Then ther,e is a conswnt c = c(q, 111, Q) > 0 such that for 

all u E W昇(Q)and all e E (0, I), 

ll'vullLJ(n):::; c(el応 IIば(Q)+~llull L: 加）） (3.3) 

PROOF. Since the half-space case is proved by Frohlich / 18, Corollary 4.51, it 

is sufficient to consider a perturbed half-space case. Let ijl 11 be a cut-off function 

defined above. Recall that the following estimate holds in a bounded domain C 

with Lipschitz boundary: 

ll 'vul/ば(C)~C(ell'i/2ullい(G)+~!lullい(G)) (3.4) 

for all u E W2・<J(G) and O < e < I (see Frohlich [ I 8]). Applying u(I —む） to (3.4) 

and uむ to(3.3) for half-space H, we have 

JIVullL叩） s: ))V(u( l — ぬ））IIば(QR)+))V(u加）IIば(Q)

s: c(eu炉(u(I--む）） II い（幻）十 ~iiu(I —む）IIい(QR))

+ c(e11炉(mt,R)IIば(HJ+~ II由IIば(fl))

S: Ce)IV1ullば(Q)+ c(eり）!lullば(fl)+Cel!VullL叫）・

Applying the third term IIVullム加）to (3.4), we obtain (3.3). 仁l

The following four lemmas proved by Frohlich [ 18], [ l 6] and [20]. 

first lemma says that the weighted resolvent estimate holds in bounded 
domains. 

LEMMA 3.3. let G c R" be a bounded domain with boundary of class 
Cl I , and let I < q < oo, 0 < c <冗/2and w E吟.Then for every f E L;~(G), g E 

w, ↓ •tJ(G) n W,~ l,q (G) and }, E L1: U { O} the resolvent S1okes equation (GS) with 

boundary condition: u = 0 on oG has a unique solution (u, n) E W}-"(G) x 
尻，q(G). Further 

II (巫V2u,Vn)IIば(G)_::; C,(ll(f, ▽ g)IIば(G)+ ll,lqll f佐l.q(G))
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with a consrant Cc > 0 independent qf" I, g, Aし andu, 冗. Here II▽ 2ulll』(G)may be 

replaced by !lull w;•cGr 

Second lemma means that the weighted resolvent estimate in half-space H. 

THEOREM 3.4. Let n~2, I < q < oo, w E叫 andO < e < 11./2. Then for 

every f E L;{,(H), g E W,~•<t(H) nル，戸(H)and J. E r,, there exists a unique solu-

rion (u, 冗） ro the resolvent problem (GS). This solution satisfies the estimate 

II(¥入¥u,炉u,▽ 11.)¥1ば(1-1>$; C(l¥(f, "ilg)IIば(H)+ ¥¥J.g¥¥ W,'.1.q(/1)), (3.5) 

where C > 0 dependenls only on n, q, e. Moreover if for some r E (I, oo) and 

some v E威',.additionally f e L;(H) and g E Wj,'(H) n W;;1"(H), then (u, 冗） E 

w,、~'(H) X W~"(H) 

Next two lemmas are used when we consider the Helmholtz decomposition of 

the weighted LP space. 

LEMMA 3.5. Let I < q < co and w E威;,.Then there is a constanl c E R such 

that 

II咋 llq,w:$ C sup 
|〈'vn,v¢ 〉I

O,t,,pe ,v:f (fl) ll'v</Jllq'.w' 

for n E W, 門(H)

LEMMA 3.6. Let 1 < qく coand iv E威q・Then―△q,u-is an isomorphism, i.e. 

for any FE w.~l.q(H), !here exisls冗 EW,(,q(H) such 1ha1 

（▽m▽ゆ） ＝〈F,ゆ〉 forゆEWげ'(H)

and 1he weak solwion n sa1i.ifzes 

II四IIば(H)~ CIIFII1.v; ーl.q(H)

4 Helmholtz Decomposition and Resolvent Estimate 

The goal of this section is to prove Helmholtz decomposition of the weight 

L''-space (Theorem 2.4) and the resolvent estimate (Theorem 2.3) in a perturbed 

half-space. Since their facts can be proved by the method due to Farwig and Sohr 

[ 13], we may omit their complete proof. Here we shall describe the outline of the 

proof. 
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We shall fu-st show the Helmholtz decompositon (Theorem 2.4). In order to 

prove Theorem 2.4, we need the uniquness theorem of the corresponding weak 

Neumann problem which implies the Helmholtz decompos1t1on (Theorem 2.4) 

(see [ I 3] for detail). 

THEOREM 4.1. Lei .Q be a perturbed half-space and lei l < q < <:J:) and 

WE叫.Then for every F E W王(D)the weak Neumann problem 

J'i/11・ ▽ ijJdx=〈F,1/1〉， i/JE四、q'(Q)
Q 

has a unique solution n E四叩）• Furthermore 

11v叫IL如） s; CIIFII応叩）

(4.1) 

(4.2) 

with a constant C = C(Q, q, w) > 0. Moreoue1リFE灰い(n)n尻尺(Q)for 

weiglus wi E威qi,qi E (l, ②）， j = l, 2, then the weak solution u of (4. l) satisfies 

咋尻1q•(n)n w炉(Q)

PROOF This theorem can be proved by the method due to [ 13]. Here we 

shall remark the difference between the exterior domains case considered in [ l 3] 

and the perturbed half-spaces. Compared with the exterior domains case, proof of 

the following preliminary estimate is different: 

11'7n11L${0) S C(IIFII fii,;:'-q(O) + llnilL!(OR)) (4.3) 

given FE財:1,q(Q)and冗 E尻げ(0)satisfying (4.1). If we obtain (4.3), we can 

prove Theorem 4.1 in a same way as [ 13]. Therefore here we shall prove the (4.3). 

A wel卜knownvariational inequality on W'. い(QR)yields 

II▽ (n(l -1/JR))IIL:t.(nR) :s; C(l!Fllfiな→.q(n> + llnllば(nR)),

where 1/1 R is the radially symmetric cut-off defined in section 3 (see Frohlich [ 16] 

for example). Therefore it is sufficient to prove 

II▽(冗i/1R)IIL!Uf) s; C(IIFII w:1.q<n> + II冗IIL!.(OR)). (4.4) 

To prove (4.4), we consider a test function ゆ E~印） and define J = 

¢ — 叫I― 1 fnR rp dx. Then we see叫 E圧 (H)and 

L V(叫） Vrp dx = In'i/n・V(ljl謹） dx-LR Vn炒Vむ dx+LR叫 Vゅdx

= L'i/n-'i/(, 心） dx+ J応冗 div(約む） dx+ J応叫 'v</>dx, 
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where we used the fact: supp'vむ c:QR and e"・ 'vむ =011む(x)= i/11(lxl)x11/lxl 

vanishes at x,, = 0. By using Lemma 3.6, we obtain (4.4). O 

Theorem 2.4 can be proved by the method due to [13] with Theorem 4.1 

The next lemma tells us a regularity property of the Helmholtz decomposition. 

By using their method, we can obtain the following lemma 

LEMMA 4.2. Let I < q < oo, we 威~and f e L;{,(Q) sa1isfying'V('V・f) E 

L;t(n) and N・f = 0 on an, where N denotes the ouier normal vector on an. 

Fur/her le! J = Jo十▽n with Jo E r.: い(n),冗 eW,i/1(n) be the Helmholtz de-

composition off. Then'¥12冗 Eば(n)iand'V・f e L;~(n). 

We next consider the weighted resolvent estimate (Theorem 2.3). For this 

purpose, we consider the generalized resolvent problem 

（入 — △)u+▽ rr = J, div u = g, u = 0 on an, (GS) 

where J e L'.;.(D), g e w .. 1』 "(Q)n W,~1."(D) and 入EL,;={J.、EC¥{0}) jarg J.J < 
1[一r,}(Q < C <冗/2).Since we can prove Theorem 2.3 in the same way as l I 3], 

we shall show the outline of its prnof. First step of its proof is to show the 

following lemma which tells us a pu-iori estimates. 

LEMMA 4.3. For a yiven solution (u, 冗） E W,~•'i(Q) X ル，'.;''(Q)10 (GS) it holds 

the a priori estimates 

II (瓜 叫巧 ）IIば(n):.,;C(IIU, <va)II⑳)  + lli:all,.v.::'竹Q)

+ ll(u, ▽ u, n)IIい(QR)+II入ullw1.q'(QR)') (4.5) 

with a constant C = C(Q, R, w, q, e) > 0 independenr ofえE1:,. Here W1・"'(QR)* is 

the dual .1pace of Wげ '(QR)

Next step is to show that the operator Sq,11,(入） defined as follows is injec-

tive: Sq,..,(入） is the operator from W,~•f/(.Q) x陀，f/(.Q)to L:{(.Q) x 足~ 1 , q(.Q) by 

S1 ,..(J.)(11, n) = ((え-!i)u + Vn, V・u) with domain 砂(S,1,11(.i.))= (W,~q(D)n 

叩 (.Q))X 叫‘叩） The following lemma implies the uniquness of the solution 

to the resolvent problem. 

LEMMA 4.4. Sq,w(え） is injectiv<e and its range 俄(Sぃ（え）） is dense in 

LJ,(Q) X w,~1 ·"(Q) for all ,(E Le・
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Lemma 4.3 and Lemma 4.4 can be proved by the method due to Farwig 

and Sohr [ 13]. By two lemmas above and Lemma 3.2, we can prove Theorem 2.3 

(see [ 13]). 

5 Weighted U'-L" Estimates of Stokes Semigroup 

In this section, we shall prove weighted U'-Llf estimates of Stokes semi-

group in half-sapces and perturbed half-spaces. To this end, we begin lo prove 

the following lemma on weighted L" -Llf estimates in the whole space R" and 

the half-space H. 

LEMMA 5.1. Let n 2:: 2, I < p, r _::;; q < oo and ,v =〈x〉並 Let.Q. be the iv/role 

space R" or the halfspace H. Lei s be a positive numberぐuclr!frat O :::; s < 

n(l -1/p) if D. = R" or O _::;; s < (n -1)(1 -1/p) if D. = H Then for a EL<(D.)n 
L叩）， ive/rave 

II〈、¥〉Se―,,1Pall国)_::;; o-n{l/p-1/q)/1/1〈x〉'allu(Q)+ Ct - n(l / r- 1/q)/2+s/1lla lll'(Q) • 

II〈x〉sve―tAp(I"い(D)_::;; o-11(1/p-1/q)/2-1/211〈,＼〉'allu(Dl

+Ctー11(l/r-l/q)/2+(s-l)/2 llcdl l.'(D) 

for t > 0. 

PROOF. We shall first consider the whole space R" case. In this case, it is 

well-known that the Stokes semigroup e―111 is represented by 

e-lAJ = (£,。*f)(x) := J局(t,X - y)f(y) dy 
R" 

for /EL<G( R"), where Eo(t) is heat kernel: £0(1) = (4111)―"12e-f-,f/(4,)_ Since 

〈X〉s::;;; 〈x-y〉s+〈y〉-'",we have 

ク

l<x〉'V四—,APal< 
C -―01]〈x-y〉s(二） e―: < -、1f/4r

(4冗t) 2t 
Pa(y) dy 

R" 

C x-y a 

+~ し（了） e—I-• ー）・11/4,〈y〉-'Pa(y)dy 

=: C1 * Pa+ G2 * (〈X〉-'Pa).

We first consider the first term C1. Since G ・1 1s estimated by 

IG1 (1, x)I::;;; o - 11/2-~<s-fal)/2e—lxl2 /(81), 
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we obtain 

IIC1 llu s er-n(l-lt;J/2+(s-i~Dt2 

for I<;:< ro. Thus by Young's inequality with I+ 1/q = 1/r+ 1/i', we have 

IIC1 * Pallu s IIG1 llullPall,_, s Ct―11(1 /rーI/q)/2+(.v-1:,1)/211 Pall'-' 

We next consider the second term G2. By Young's inequality, we have 

IIC2 * (<x〉'Pa)II,_.s IIG叶IL,ll<x〉'Pallus er-n(l/p-l/q)/2-171/211〈X〉'Pallu・

Since the weight function〈x〉-'"and the Helmholtz projection P can be com-

mutable when the exponent s satisfies -n/p~s < n(! -1/p), we obtain the 

desired result for the whole space. 

Next we consider the half-spac,e case. In half-space, we have the solution 

formula obtained by Ukai [35]. Let R1 and S1 be the Riesz transform and the 

partial Riesz transform defined by 1(3.1) and (3.2). And let yf = JIH, yf = JIH 

and e zero extension operator from H to R". Finally, let E(t) be the solution 

operator for the heat equation in H, which is derived from E0(t) by odd ex-

tension from H to R". Then the solution (u(r), n(t)) of the non-stationary Stokes 

equations in H is 

u(t) = WE(r) Va, n(I) = -D成，E(r)V直

where 

W = (~-~U), V = (~J 
with 

S=1(S1,---,S11-1), V=rR'-S(R'-S+R,,)e, R1=1(R1,---,R11-1) 

v,a = -S・が +a", V祁 =a'+Sa" 

and D is the Poisson operator for the Dirichlet problem of the Laplace equa-

tion in H. Taking the fact that凡ands1 is bounded operator on L;{(R") and 

L;f.(R11-1) to themselves respectively into account, we can reduce to the whole 

space case, so that we obtain the desired result for the half-space. 口

Next we shall prove the perturbed half-space case by using cut-off technique 

with Lemma 5.1. We first consider the LP -L" estimates for 1 > 2. 

LEMMA 5.2. Lei n ;::,, 2, I < p, r s q < oo and Q be a perturbed half-space 

1vi1h C2-boundary. Lets be a positive number such that Os s < (n -1)(1 -1/p). 
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Then for a E Lt(O) n L'(O) and w =〈x〉-'1',we have 

II 〈X〉'e―,APall L叩） ~ 0-11(1/pー 1/q)/2 11 〈x〉'all い(fl)

+Ct―11(1/r-1 /q)/2+s/2 llall国 ）， (5.1)

II 〈x〉sve―111Pa ll い(fl) ~0-11( 1 /pー 1/q)/2-1 /2 11 〈X〉 ―'allい(fl)

+Ctー11(1/r-1/q)/2+(.,-1)/211 all L'(fl) (5_2) 

for I> 2. 

PROOF. By using the cut-off technique, we divide O in Q¥幻 andOr< By 

the result on Kubo and Shibata [30] and Sobolev's embedding theorem, we can 

obtain 

II〈X〉なtAJIIい（叩 ::;;qeーt,IJIIL叫） ::;; Ctー11/(2p}-l/211/llu::;;o-11/(2p}-1/211〈x〉・'./IIぃ

for f E L<"(Q). This implies (5.1) for QR, Similarly we can prove the (5.2) 

for Op, 

We shall next consider the LP -llf estimate for O¥OR. For R ~ R。 + 2, set 

g = e-AJ E到AN),u(1) = e-(i+llAJ_ We set 

Z(t) = i/;Ru(t)-B[(Vi/;R)・u(t)j, ① (t) = if; R冗(1)'

where u(1) and冗(t)are the solution to Stokes equations with 

l冗(t)dx = 0, 
DR 

(5.3) 

where DR= {x E QI R -I < lxl < R} and B is the BogovskiI operator. It is 

observed that (Z(1), ① (1))~atisfies the equations: 

o,Z(t)一△Z(t) +▽① (t) = L(t), 'il・Z(t) = 0, in H, 

Z(O) =加a-B[('ili/1 R)a] =: zo, 

where 

L(t) = -2▽ i/JR:'i/u(t)-(△ル砂u(t)+(o,―△) B[('vi/J砂・u]+ (¥/1/; 砂n(t).

Since Z(t) E C1(10, co): L(:,_c(H)) n C([O, co);PJ(AH)), we can write Z(t) as 
follows: 

Z(I) = e―u111zo -『e―(t-r)AuPL(,) dr = z, + z2 (5.4) 
.o 

where e-,AH is the semigroup in half-space obtained by Frohlich [ 18] 
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Given r/> E~ 炉(H),we set 

I 〇 ＝叫）ゆ—―l 叫）rp dx 
DR DR 

and then J叫0dx = 0. By a property of Bogovskii operator, we can choose 

X. E W1 •P'(D砂 such that'v・x = 0, xlaDR = 0 and 

llxll w'-P'(Du) s Cll0llu'(/JR) s Cll¢llu'(DR) 

for I /p + I /p'= I. On the other hand, by (5.3), we have 

(('y崎 (i),</1)= J叩）0 dx = (冗，'v・x).=-('vu,'vx) -(い）．
DR 

Here we recall the estimate for QR obtained by Kubo and Shibata 130]・

II▽e―rAP/11じ(QR)+llo,e―tAPJ¥Iじ（幻 ）s o-ll/(2r)-I 1211111じ(Q)

for 1 > 2, I < rく roand f E L~(Q). This estimate implies that 

I ((▽ ,fl R)冗(tL¢)Is 11▽ ull1.rcn,>II▽ xiiい'(QR)+ l¥orullい(QR)ll1.IIい'(QR)

~C(l + 1)-"1'2p)-l/2ll/llullxl¥w1.r'(nR)・ 

By duality argument, we see 

ll(V1/咽）冗(r) llu ~C(I + 1)―11/(2μ)ー11211/111.,・

Since we have supp L(r)こ 011,we obtain 

II PL(t)llu~CIIL(t)IIじ ~CIIL(1)llu~C(I + 1)-111(2p)-l/2ll/llu, I::::,,_ l 

for I < r < p < oo. Therefore we see 

ll<x〉"PL(t)II,_,:S Cll(x〉'ゞL(t)IIじ :s;C(l + 1)―11/(lp)-I /211〈x〉'fllv- (5.5) 

Now we consider the estimate Z(t) by using (5.5). We can show the estimate 

of z1 in (5.4) by using the weighted U'-L q estimates in the half-space as 

follows: 

ll<x〉'e―rAPzollい(//):s; Ct―11(1/pー1/q)/211〈X〉'zolllP(H)+ Ct―11(1/rーl/q)/2+s12llzo IIじ(H)'

II〈x〉.,・▽e―rA Pzollい(//):s; Ct―11(1/p-1/q)/2-1/211〈x〉szollu(N)

+Ctー11(1/rー1/q)/2+(s-lJ/2llzollu{I{). 
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We shall estimate ;;2 in (5.4). To this end, we assume that I < Pl, r1 < p, r < co 

withμ1,r1 < min(p,11), n(l/p-1/q) < 2 and n(l/r-1/q) < 2+s. By Lerruna 

5.1 we have 

!l(x〉"z21lい(fl)S: Cr (1 -r)-ll(l/p-l/q)/211(x)'PL(r)llu dr 
1-1 

+cf (t-r)―11(1/rーl/q)/2+-'/211PL(r)llu dr 
1-l 

+Cr-'(r -r)ー11(1/p,-l/q)/211〈、V〉"'PL(r)llu,dて

゜
+CI← I (t -r)―11(1/q-l/ヽi)/2+-'/2II PL(r)JIじ,dr 

゜= 11 + /2 + /3 + /4. 

By using (5.5), we can estimate /1 and /2 as follows: 

/1::; Cr (t-r)-11(1/p-l/q)/2(1 + r)―n/(2p)-1/2 drll〈入〉ゾIIぃ
r-1 

::; Ctー11/(211)-I /211〈x〉'.fllu

and 

l2~Cr (t -r)―,1(l/1-l/q)/2+s/2(1 + r)-11/(2r)-l/2 drll/ll L'~o-11/(2r)- 1/2 11/IIじ
1-l 

We next consider the estimate of /J. 

I,.::;; f"¥ I + t -r)―11(1/p,-l/ql/2(1 + r)―n/(2p)-l/2 clrll〈X〉;'IIぃ
.o 

+ r ¥1 +r)―n(l/p1ー1/q)/2(1+ I -r)-n/(2p)-1/2 drl[(x〉'.lllu
.o 

Taking (I + r)―1;:;:,: (I +1ーて）―1for O~r~t/ 2 into accont, we obtain 

l3~C( l + 1)ー11(1/p-l/q)/2r/2 (J十て）―n/(2μt)-1/2drll(x〉・'./llu

゜~C( I + 1)ー11(1/qー1/p)/211〈X〉s/11ぃ
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In a similar way to estimate of /3, we can get the estimate of 14 as follows: 

/4 :s; C(I + t)iー11(1/rー11"l12+"'12llf II'-' 

Summing up, we obtain (5.1) for n(l/p-1/q) < 2 and n(l/r-1/q) < 2+s. 

Finally we remove the restriction n(I /p -I /q) < 2 and n(I /r -l /q) < 2 + s 

by using the property of semigroup. We choose p1, ... , p、insuch a way that 

p = Plく肛く ・..< Pc = q and n(I /Pi-1 -I /pi) < 2 for j = 2, ... ,t and r1, ... , 

r111 in such a way that r = りく r2<・・・<rm= q and n(l/ri-1 -1/ri) < 2 +s for 

j = 2, ... ,m. By (5.1), we have 

ll<x〉.,・e―IA.fllぃ:,;o-11(l/JJ1-1-l/p1)/211〈x〉'e-{t-2)/(t-l),A.fllu←I

+ o-11(1/r,_,--lfrt)/2+s/2lle―(/.-2)/(/ーI),A/IIL't一l

:,; ci-"('I"ー1/q)/211〈x〉sfllぃ+Cl―11(1/r-l/q)/2約 211.fllu,

which implies (5.1). Similarly, we can obtain (5.2). Therefore we obtain the 

weighted LP -L 1 estimate or Stokes semigroup 口

しEMMA5.3. Lei n ~2, I < p s q < oo and n be a perturbed ha!fspace with 

C2 boundary. Leis be a positwe number such ,hat Os s < (n -1)(1 -1/p) and let 

IV= <x〉"'"・Then伽 aE Lf,(D), we have 

II〈X〉・'e―'"Pall1.q(O) s 0-11(1/p-1/ヽ,J/211<x〉'allい(Q), (5.6) 

II〈x〉S▽e―,APall1.,,cn) s Cl―11(1 /p-l/11)/2ー1/211〈x〉'011い(Q) (5.7) 

for O <Is 2. 

PROOF. In view of the weighted resolvent estimate (2.2), we have 

IIVe―IA Ill'-!(!:l} ::; Ctー1/211/11ば(0)

for I < p < CfJ and O < 1 < 2. Theriefore it is sufficient to prove (5.6). We set 

rJ = n(l/p -1/q). By Sobolev's embedding theorem, we have 

I I 〈x〉 ·'e―IA/IIいcni, ~ CII 〈x〉'e―tAIll W•·P(Q) 

for I < p ~ q く C/J and O < rJ < 2. By real interpolation for a e (0, 2), we 

have 

W"・'囮 ）＝（口(n),w2・"(Q)¥;2.v 
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・hted resolvent estimate (2.3), we have Moreover by using the we1g 

IIがe ―llf/ 11 ば(n)~Ci―k/2\1/\1は'(n)

for k = O, 1, 2 and O < 1 < 2. Therefore we see 

II〈x〉se-'"JI¥w••P(O) ~II<入〉ゞeー1A/\I ~;a/2 11 〈入〉'e― "'/II腐

for l < p < oo and O < 1 < 2. Here taking the fact 

ll'i/〈x〉S▽e-1,1/llu = II二〈、＼．〉｀▽e―,;1/~Cl\〈入〉S▽e―111/llu
(l+lxl・) ぃ

(5.8) 

into account, by using (5.8) we can estimate the second term II〈x〉Se―111/IIw2-r as 

follows: 

II 〈X〉況•ー/jリllw,r~C(IIれ、Y〉'e-lA/11ぃ+ 11v〈入〉''ve―111./IIぃ+II〈入〉＇炉 e―111/llu)

~C(ll<x〉Se― IA/II ぃ +II 〈x〉"'ve ―'"/II ぃ+ II〈x〉"'v2e―111/llu)

~C(II/IIL⑩) + 1-11211/IIビ(n)+ 1-111/111.t(n)) 

~Ct― 111/IIL⑳ 

for O < 1 < 2 and I < p < c.c. Summing up, we obtain 

II〈X〉Sが,Afllい(0):,;CII〈X〉Se―'A/llw"叩） :;; Ctー11(1;,,-1/q)/211〈x〉・'./llu

for 1 < p :;; qく ooand O < n(l/p -1/q) < 2. We can remove the restriction 

n(I/ p -I/ q) < 2 by using the property of semigroup. This completes the proof of 

the weighted LP -L<J estimate for O < 1 < 2. 口

6 Navier-Stokes Equations 

ln this section, we shall consider the application of the weighted LP -L" 

estimates to Navier-Stokes equations. As we mentioned in Introduction (section 

1), we know the unique existence results for Navier-Stokes equations in the half-

space and a perturbed half-space (see Kozono [28] for half-space case and Kubo 

and Shibata [30] for a perturbed half-space case for detail). We consider the case 

where the initial data a belongs to l"(Q) nば(Q).Since a E L"(Q), we know that 

there exists the unique strong solution u to (NS) and the solution u satisfies the 

following assymptotic behavior: 
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llu(t)llu s Cit—1/2+n/(2•)lla llu, for n s rs co, (6.1) 

II▽ u(t)IIじ SC2C1十n/(2r)llallL• for n Sr< CO. (6.2) 

In order to prove Theorem 2.8, we begin to prove that there is a constant M 

independent of T~4 such that 

sup (1 l/2-11/(2qJ II〈入”〉ゞ u(t)IILq)+ sup (t1 /2-11/(2q)-.,12 II<x>5u(t) ll u)~ M (6.3) 
O:s;,:,;2 2:,;1:s; T 

for q :c n. To this end, we set 

泊=sup (1 I/2-11/(2q) II〈x〉.,u(t)ll1..), J'v/ = sup (tl/2-n/(2,1)- s/2ll(x>5u(t)ll1.•)
0!>1!>2 2srsT 

We first consider the case for O :::; I :::; T::;; 2. By using the weighted U'-L q 

estimate (5.6) and the relation (6.2), we have 

ll<x〉沿(1)llu

:=::; II 〈X〉•e-'Aa llぃ +f II〈X〉'e-(,-,)AP(u・'il)u(r)llu dて

.o 

$ Ct―1;2; ,,;,2"i II〈X〉沿IIぃ+r (t-r)―11(1 /q+ l/11-1/q)/2 II〈X〉切(r)11ぃll'vu(r)ll1_.dて

゜:;:;; c(11<., 〉'allぃ+C2 1la ll 1.•lr1B(~ ,!!_))1ー J/2+11/(2q)
2 2q 

where B(・, ・) denotes the beta function. Choosing l1a ll1.• smaller if necessary, we 

obtain n1 :=;; q〈x〉・'allぃ

Next we consider the case for 2 :=::; 1 :=::; T :=;; 4. To this end, we set 

り(J=1, ... ,4) as follows: 

1-2 
1, = II〈x〉・'e―,Aall1.む 12= J II〈x〉-'e-(1-r)AP(u▽) u(て）llu dr, 

゜
I.,= L211〈x〉'e-(1-r)AP(u▽) u(r)JJぃ五 /4 = L IJ(x〉-'e―(1-r)AP(u▽) u(r)IIぃむ

By the argument for , s; 2, we see that there exists the positive constant C such 

that 

sup (1'/2-11/(2q)II<X >-'u(t)IIL~) S Cl/(x>"'a /IL•
0<t<2 

(6.4) 
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withしheconstant C indenpendent or I. /1 is easily estimated as follows: 

/1 s; Cl―1/hn/(2q)II〈x〉'allぃ+Ct-l/2+n/(2q)い/2jj<,1Jl.・ (6.5)

Sinceてく 2and t -r ~ 2, /2 is estimated by the weighted U'-L" estimates (5. 1) 

as follows: 

/z s; r-Z C(t -r) ー 1/211〈A〉511(r)llull'v11(r)IIL• dr 

+゚ r-2 C(t -,)-l+11/(2q)が121i11(r)IIL.l1V11(r)lludr 

゜
s; CC21lallL・・L-2(£-r)ーl/2rー1/2-1/211』!(2qldr(。翌~2 rl/2 11/(211)11〈¥〉切(r)llu)

+ cc, C2lla11z. r 2 (t -r) 1111112、iit-.•/2 r-1/2 d r 
.o 

s; CC21lallull〈X〉・'alJu1-1f2t-ヽヽ112")+ CC1 C2llal1[.t― l/2+11/(21/)+.</2 _ 

Similarly, we can estimate /3 and /4 as rollows: 

/3 s; 『C(1-r)-1/211〈x〉'u(r)llull'vu(r)II,.• dr 
1-2 

s; CCJallu .f。:-¥1_ ,)-1/2, 1+11/(2q) dr(。悶~2 て 1 12 111(21/JII〈X〉'u(r)Iい）
s; CC21la1Ju,II〈X〉・'allL• (-1/2 t-n/(2q) 

and 

/4 .$ r C(I -r)ー1/2
2 

II〈X〉su(r)IIL,IIVu(r)IIL"dr 

I 

.$ CC2llal/u Ii (1 -r)ーI/2r-1+11/(2q)+.r/2dr C!~f Tて1/2-11/(2q)-.,;2II (x> 'u(r)IIL•)

.$ CC2 llall L• iir1 -1 12+11/(21J) ・ト,;2

Summing up, we obtain 

M = sup (1112→ 1/(2q)-.</2 s 
II〈X〉u(r)llu)

2StST 

::; C/1 <X >-'allL• + Cl/a/IL. + C/1〈x〉sail』/aに +CMl/allぃ
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If necessary, choose llallL" small, we obtain 

M = sup (tl/2-11/(2q)-s/2II〈x〉'u(r)llu)
2s;i!,4 

s; C(II 〈．入'〉sallL• + llallL" + II<入'〉'011L"llall'-'』). 

1-Cllall'-" 
(6.6) 

By (6.4) and (6.6), we conclude that there exists a positive constant M indepen-

dent of T satisfied (6.3). 

In order to consider the case for 4~1~T, setり(j= I, ... , 4) as follows: 

2 

11 = II <x>•·e—1Aull1.•, h = J II〈x〉'"e―(/-r)AP(u・ 'v)u(r)IIぃ在

゜1-2 
!3 = f ll<x〉"'e―(,-,)AP(u・'v)u(r)IIぃ心

-2 

14 = f ll<x〉-'e~<1-r)AP(u▽) u(r)IIぃむ
. 1-2 

We notice that from the argument above, (6.4) and (6.5) hold. We next estimate 

h by using Theorem 2.7. Noticing thatてく 2and I -r > 2, we have 

h s; C『(,-,)-)、1211〈x〉,・u(て）111.. IIVu(r)ll1.• dr 

゜
+Cf ¥1 -,)-l+n/(2<1)+s/2llu(r)ll1.,,1iv'u(r)li1.,, dr 

.o 

2 

s; CC2llall,.,II〈Y〉'0111.,』J(t -r)―1/2,-l+n/(2q) dr 

゜
+ CC1 C2 llallf,, 『(t-r)ーI+11/(2q)+s/2てー1/2む

゜s; CC2llall,.,,(II〈X〉"'all1.,,t―.,;2+ c, llallu,)t―I /2+11/(2q)+s/2 

Similarly, we can estimate /3 and /4 as follows: 

/3 s; r-2 (t -r)―,;2ll<x〉沿(r)IIL.llv'u(r)II,.,,dて

+『-¥r-r)ーl+11/(2q)+s/211u(r)ll,.,,l!v'u(r)II,..dて

、2
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~ CC2IIGII L" [ tvf r-¥, -r)ー1/2てーl+11/(2q)+ゞ12dr 
2 

+ C1 llallL" I-¥, -r)-l+n/(Zq)い/2r-1/2dて］

~CC2llall l n(M + CdlallL")i 
ーl/2+11/(2q)+s/2

/4 .-;; Cr (t -,)―1/211〈入〉5u(r)II L• II Vu(r)II ,. ,』 dr~ CC2Mlla ll l n l ー1/2・トrr/{2q)+.</2

1-2 

Summing up, we obtain 

iit~q<x>' a ll u, + Cllallu + CC2llallL,(II〈x〉"all,_.. + C1 llall1." + M). 

Choose lkiil L• small if necessaly, we have 

sup (1112ーn/(2q)--</2II (x〉・'u(r)II,_.)
2<t<"f 

s; C(II〈x〉"'allL"+ llallL" + C1 C2llctlli." + C2llctllし,II〈、V〉・'all1.,l

I - CCJ allL• 
. (6. 7) 

By (6.4) and (6.7), we conclude that there exists a positive constant M inde-

pendent o「Tsatisfied (6.3). Since we obacin a positive constant M independent 

of T, we can conclude 

sup (t 112-11/(lq) II〈X〉'u(1)IIL.)+ sup (1112ー11/(2q)-s/2II〈¥'〉su(t)ll1..)5, M, 
0<t<2 2<I<プー

which implies the weighted asymptotic behavior (2.3). 

Finally we shall prove the asymptotic behavior for II<入〉''i/u(t)llu 「or

n s; r < oo and O s; sく (n-1)(1 -1/n). To this end, fix s as the number sat-

isfying O s; sく (n-I)(I -I /n). Then we remark that there exists the positive 

number q such thats< (n-1)(1-1/n-l位）holds. We have 

II〈X〉"Vu(1)IIじ s:ll<x〉'Veー,Aallu+j II〈x〉'e―(1-,)AP(u▽) u(r)llu dr =I+ II. 

゜Since we can prove the asymptotic behavior for / easily by using Theorem 2.7, 

we shall estimate only the second term II. Since we see sく (n-1)(1-

(n + q)/nq) for q > max(q, r), we obtain 
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I 

II scf (1-r)―11(1/q+l/11-I /r)/2-1 /211〈X〉sP(u・'il)u(て）II圧 /(q仕） む

.o 

s Cr (1 -r)―I +11(1 /r-1 /q)/211 (x〉"(u ▽)u(て） IIL••/(qい）む

I゚ 

s CJ (t -r)―1+11{1/r-l/q)/211〈x〉'u(r)ll,A▽u(て)IIL" dr 

゜
s Cr (t -r)ー1+11(1/r-1/q)/2!―l+11/2q十ゞ 12dr 

゜sCl―I +11/2r➔·.1/2 

Therefore we obtain the asymptotic behavior (2.4) 
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