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PERIODICITY AND EIGENVALUES OF MA TRICES OVER 

QUASI-MAX-PLUS ALGEBRAS 

By 

Horst BRUNOTTE 

Abstract. We extend the notion of a max-plus algebra and study 

periodicity and eigenvalues of matrices over this new structure 

thereby generalizing some well-known resμlts on matrices over a 

max-plus algebra. 

1. Introduction 

The concept of the standard max-plus algebra over the real numbers has 

turned out to be a useful tool in applications (discrete event systems, optimal 

control, game theory) and several other fields of mathematics (matrix theory, 

combinatorics, asymptotic analysis, geometry). The reader is referred to /4, 9, 12] 

for details. M. Gavalec I I OJ introduced the notion of a max-plus algebra in a 
broader framework (see Section 2 for details) and proved among other things that 

every irreducible matrix over a max-plus algebra in this new setting is almost 

linear periodic. We establish a generalization of this result (see Theorem 3.5 

below). 

Our main concern is an extension of the notion'max-plus algebra'by 

introducing a quasi-max-plus algebra (see the Definition 2.3). This concept is 

inspired by a certain dioid over the integers which was introduced in [J] for the 

description of primitive matrices over polynomial rings. We study periodicity 

properties and eigenvalues of matrices over a quasi-max-plus algebra (see 

Theorems 3.7, 3.8 and 3.10). ln an appendix we mainly collect some results which 

are well-known under stronger prerequisites, but which are needed here in a more 

general setting. 
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2. Definition and Examples of Quasi-Max-Plus Algebras 

In this paper we always let (欲EB,O) be a commutative dioid with neutral 

elements s and e, respectively, i.e., :IJ is a commutative unital semmng with 

idempotent addition (see [2, Definition 4.1 ]). 1 As customary we often omit the 

multiplication sign o if there is no fear of confusion. In particular, we wnte 

a" = aO ··•Oa (aEqJ,nEN>o) 
、マ j

II「actors

and a0 == e. If not stated otherwise we always use the natural (partial) order 

on~, i.e., a ::;; b if and only if a① b = b (see [2, Section 4.3.2]). [n particular, the 
natural order is compatible with addition and e is the minimal element of砂 (see

[2, Theorem 4.281). 

For the sake of completeness we recall several definitions. The dioid fJ is 

called 

・entire if for allタ，fJE g the equationッfJ= e implies ct.= e or f] = e (see 
[2, Definition 4.11 ]), 

・cancellative if for a, f], y E q with祁=ay and'J. i= e we have {J = y, 

・archimedean if for all IJ., (J e g there is some y E 5!l such that y{J;?: a 

provided fJ i= e (see [2, Definition 4.331), 
・algebraically closed2 if for every'J. E~and n E N>o the equation x" = a 
admits a solution in§. 

Finally we say that珍 satisfiesthe weak stabilization condition (see [8, 
Definition I. I. 51) if for all a, /J,)., 11 E fJ there exist y, v e 9 and N e N such that 

for all 11~N we have 

心．＂④ /Jp" ==加".

A particular class of dioids was introduced under the name'extremal algebra' 

by J. Nedoma [141 in 1974 and under the name'max-plus algebra'by M. Gavalec 

(lO] in 2000. Here we prefer the more suggestive latter notion. Let (G, +, ::;;) be 
an abelian linearly ordered divisible group with neutral element O and e¢G a 

new element. We call the dioid (GU { t:}怠 0)the max-plus algebra generated 

by G where the operations are given by④ = max and O = + and e enjoys the 

1 By abuse of notation we use th e same symbols r. and e「orthe neutral clements o「alldioids which 
occur in the subsequent text. 
2 In [4] this property ,s called rad1cablc. In the translation 171 this propcny is im1dvertently named 
'algebraic completeness' 
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properties 

e < g (g E G), 

and 

e + g = g + e = e (g E G U { e}). 

Correspondingly, the dioid ~ is called a max-plus algebra if there exists a 
commutative linearly ordered divisible group G such that砂 isthe max-plus 

algebra generated by G. 

EXAMPLE 2.1. Let G be an additive divisible subgroup of the real 

numbers R. Then (GU {ーro},max,+)i"s a max-plus algebra.3 In par-

ticular, the standard max-plus algebra (or simply max-algebra) fits into 

these setlings. For details and applications we refer the reader to [4]. 

The following elementary properties of max-plus algebras can be verified in a 

straightforward manner. 

PROPOSITION 2.2. le1 qJ be a max-plus algebra. 

(i)~is a commutative linearly ordered idempotent semifield4。ifcharacteristic 
zero and with neutral elements e and e, respectively. Moreover, e is the 

minimal element of~. 
(ii)砂 iscancellative. 

(iii) For every a E砂 andn E N>o the equation x" = a has a unique solution in 

砂， namely

('/_ 

et./n := -
n 

In particular, ~ is algebraically closed, and we have e/n = e 
(iv) Let !Y.E~and n,m.EN>O・Then 

“i ＇ 
ーー

”5 =-. 
nm n 

J Jn connection with the set RU f -oo, co} we always use the conventions (-co)士(-co)=-co and 
-co< x, I—CO[> X 「or~I I x ER. Furthermore, every positive real divides士co.
4 See [2, Definition 3.1). 
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(v) Let a,PE.(i} and n,mEN>o-Then 

!Y. !Y. + /J 
-< 
n n + m 

implies a./n < P/m. 

It is well-known that new dioids can be formed on cartesian products of§: 

Either we equip§" with componentwise sum and product or we form the free 

symmetrized dioid on !?J (see 18, Sections 1.1 and 2.21). Based on ideas of [I] we 

now introduce a different construction thereby extending the notion of a max-plus 

algebra. 

DEFINITION 2.3. The dioid (fl怠 O)is called a quasi-max-plus algebra if it 

satisfies the following properties: 

(i) There exist a max-plus algebra F and a totally ordered set S with at 

most two elements such that ~ £F  x S. 

(ii) The projection on the first component n: • q→ F is a dioid homomo・r-
phism which enjoys the following properties: 

(a) n: ーI({紆})=£and戸 ({er})= e. 

(b) For all a,(J e~the following implication holds 5 

冗(Cl.)= n:(/3)⇒ （り④/Jh = max{CJ.2,/Jサ (Cl.,{J E釘．

(iii) The second components of the neutral elements of fl equal the minimal 

element of S, i.e., we have約=e2 = min S. 

(iv) For all o. E qJ we have (外minS) e g_ 

(v) For all a.,(J e鉛{r.}we have 

停）2 = max{C1.2,(Jサ

(vi) g is algebraically closed. 

EXAMPLE 2.4. Plainly, every max-plus algebra can be regarded as a 

quasi-max-plus algebra: Just take S to be a singleton 

5 We write x; for the i-th component o「theclement x of th 
仇）ie I 

c Cartesian product of a family of sets 
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In addition to the natural order we impose the lexicographical order on a 
quasi-max-plus algebra by 

C/. <1ex /J⇔ C/.1 < []1 or (釘 ＝佑 andC12くfJサ

The following basic properties of a quasi-max-plus algebra will be 1.1sed in the 

sequel. 

PROPOSITION 2.5. Let笏 thequasi-max-plus algebra contained in F x S where 

F is a max-plus algebra and S a totally ordered set with at most two elements. 

(i) @ is a commulatiue unital entire semiring of characteristic zero with 

idempolent addi1ion, and its neutrat" elements are (e, min S} and 

(e,min S), respectively 

(ii) @ is LOta/ly ordered by the lexicographical order, and (e, min S) is its 

minimal element. 

(iii) Let a, /3 E砂 1vithrt ;5; /3. Then we have rJ. :5:iex /3 
(iv) Let'.1.,/JE砂 withrt <1cx /3. If y E !0¥ { e} then ay <1ex /Jy. 
(v) For all (1.,/3 E@ and 11 E N>o the equation a"= /311 implies rJ. = /J. 

(vi) For every a E@ and n E N>o the equation x" = Cl. admi1s a unique so-

lu1io11 i11 $, namely (幻/11,幻）， and1ve also write this solution as 

o:/n. 

(vii)冗(qJ)is an algebrnically closed max-plus algebro 

(viii) Leiぷbea subdioid of a qJ Thenぷisquasi-max-plus algebra if and only 

1ぷisalgebraically closed and (a1, min S) E If for all a E g_ 

PROOF. (i), (vii) This can easily be checked. 

(ii) Let Cl., /3 E少 By Proposition 2.2 we may assume a1 s []1, hence 

Cl. Slex /J. 

(iii) By assumption we have a EB /J = /J, thus r:t.1 EB /J1 = /31, hence a1 s /J1・
Thus we are clone provided幻</31 or S = 0. Therefore, let us assume約=/J1 
and S ,t; 0-Then we have C1.2 s /32 by definition. 
(iv) Assume ay ;?:10,[Jy. Then we have 

C1.1Y1 = (ay), ;;;,: (/Jy), = /J1Y1 

which implies a1 ;:,,_ /J1. But then we have a. 2Jex /J: Contradiction 
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(v) If a= e then clearly f3 = e. Therefore we let a.,/J # e and assume a <1ex /J. 
From (iv) we infer 

祈<1e、硝くlexfJ2 

and analogously a" <1c, /311: Contradiction. Similarly we show the impossibility of 

a >1ex f3 and then deduce our assertion. 
(vi) The existence of a solution is clear by divisibility. In case a =・e the only 

solution is e. Otherwise, uniqueness follows from the fact that (~\ { e}) 1 is 

contained in a group. 

(vii), (viii) Clear by the above. D 

We now construct our principal example, namely a quasi-max-plus algebra 

over the nonnegative real numbers. On the set 

咳 ：= ((R~oU {ーoo})x {O, l})¥{(-co, 1),(0, l)} 

endowed with the usual order relation we introduce two binary operations: 

(r,a)R(s,b) = (max{r,s},b.r((r, a), (s, b))), and 

(r,a)O(s,b) = (r+s, ふ((r,a), (s, b))), 

where the functionsふふ qfX笏→ {O, I} are defined as follows. First, 

b+((r, a), (s, b)) = I if one of the following four conditions is satisfied: 

(i) max{lr -sl, a,b} = I, 

(ii) r > s + I and a = I, 

(iii) s > r + I and b = I, 

(iv) 0 < Ir -sl < I, 
otherwise b+((r,a), (s,b)) = 0. Second, ox((r,a), (s,b)) = max{a,b} if r,s ER, and 

ふ((r,a),(s, b)) = 0, other.wise_ Obviously, these definitions extend the one given 
in [I, Section 6.3]. 

Now we collect some properties of subsets of ,gf_ 

THEOREM 2.6. Let T # {O} be an additively closed subset of R凶 andset 

fl= ((T x {0, l}¥{(0, l)})U {e,e},EB,Cう）

with e = (-co, 0) and e = (0, 0). 

(i) .o/ is a commutatwe entire archimedian dioid wilh neutral elements e 
and e , respectwely. 
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(ii) For all et., f] e :Y with f] =I= e, e there exists N e N such that for all n~N 

we have 

a④ f]" = f]り

(iii) :Y satisfies the weak stabilization condition. 

(iv) If t/n E T for all t e T and n e N>o then :Y is an algebraically closed 
quasi-max-plus algebra. 

PROOF. We leave the rather lengthy, but straightforward verification to the 

reader. 口

REMARK 2.7. In general, g-cannot be embedded into the standard max-plus 

algebra. Otherwise, for t E T n (0, I] we would have 

(t, I)= (t,0)c(0,0) E {(t,0),(0,0)} 

which is impossible. 

3. Matrices Over Quasi-Max-Plus Algebras 

In this section we let ~ ~ F x S be a quasi-max-plus algebra where F is a 

max-plus algebra and S a linearly ordered set with at most two elements. For 

r E N>o the set of matrices ~,x, is a dioid and a欲 semimodulewhere the matrix 

operations are defined as usual. 

Let A E~rxr_ The digraph6夕(A)is the weighted digraph ([r], E, w) with 

vertex set [r], edge set 

E = {(i,j) E [,-j2: Aリ-1:-c} 

and weight function w : E→ §¥{s} with 

w(i,J) = Au 

for all (り）e E; here we use the abbreviation [r] = {l, ... ,r}. We write q'£d 

if the path q is a cycle extension of the path q', and we denote by ¥qi the length 

of q. We let P ~'l(i, j ) (PA,ei(i,j), respectively) be the set of all paths of length n 

(all elementary paths, respectively) from i to j. 

6 If 1101 slaled 01herwise we use the lerminology of 11 I] 
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Let q = (io, it, ... , i,,) be a path of positive length n in <§(A). We call 

supp(q) = {io, i1, ... , i11} the support, 

w(q) = Ai0.,, 0・ ・ ・0 A;,, .. , i、、

the weight and 

ll'(<J) 
叫q)=-
!qi 

the mean weight of q (see Proposition 2.5). 

Let洸・bea subgraph of的(A).x・is said LO be nontrivial if it contains at 

least one cycle of positive length. The high period of .% is defined by 

hper(X-) = gcd{lcl : c cycle of positive length in x・and面(c)=列(A)},

if the set on the right hand side is non void, and hper(Jf') = 0, otherwise; here 7 

）.げ） = max{w(c): c cycle of positive length in洸｝

is the maximal cycle mean weight of洸.(c「[10,p. 1691). Every cycle c in洸 with

叩 ）＝入(Jf)is called a critical cycle in :,f', and a cycle in~§(A) is critical i「it
takes the maximal mean weight i.(A) := i. 夜(A)).Further, we use the abbre-

viation SCC <§(A) (SCC* <§(A), respectively) for the set of strongly connected 

components (nontrivial strongly connected components, respectively) of <.§(A). 

Following [ 10, p. 169] we say that the vertices i and j are highly connected 

if i and j are contained in a critical cycle; in this case we write 1声 j.The 

subgraphs of <§(A) induced by the classes of三 1, are called highly connected 

components of <§(A). A highly connected component is called trivial if it does 

not possess a cycle of positive length with cycle mean weight equal to J.(A). 

Analogously as above, we denote by HCC <.§(A) (HCC <§(A), respectively) the 

set of highly connected components (nontrivial highly connected components, 

respectively) of <§(A). 

LEMMA 3. I. Assume). げ）=}_}or all :I{ E SCC'<§(A). 

(i) We have入(A)=i 

(ii) Let },、=e. Then we have iv(c) 1 s; e for all cycles c of 0'(A), and }or all 

洸.,E SCC* <§(A) there exists a虎 EI-ICC* <§(A) wilh :I{~ 災・1.Fur-

thermore, if'C is Cl cycle in <§(A) which consis1s of verlices belonging lO 

Cl・iticalcycles then c is critical. 

7Th I roug 1out we use the convention max 0 = min S ii'(S. 5:) is an ordered set with a minimal 
element 
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PROOF. (i) Let c be a critical cycle in夕(A).Jt is easy to see that there is 

a洸 ESCC'o/(A) with supp(c) s洸 .Thus c is a cycle of洸 andtherefore 

え(:/t)~le入 w(c) . Now the proof can easily be completed. 

(ii) Clearly, we have 

w(c)1 
―＝面(c)1s e, 
Jcl 

thus w(c), s e" = e. Let .:I{'E sec・<§(A) and choose a cycle C in ,j['with 
w(c) = e. Then all vertices of c are highly connected, thus there is洸 E
HCC* G(A) with supp(c) s虎.Let k E弧 .Then k is highly connected to a 

vertex of c, thus k e洸・1,and this shows :Y{£ 洸.,_The last assertion is clear by 

12, Theorem 3.96]. 口

The following two technical lemmas provide an essential step in the proof of 

Theorem 3.5. For convenience we introduce 

/JA = lcm{hper(虎）：虎EHCC <&(A)} 

LEMMA 3.2. There exisls some M EN such that for all n~M and every 
J[ E HCCキr.§(A)there is a critical cycle c in ::I{ with the follo1Vi11g properties. 

(i) /c/ = 11p A 
(ii) Eじeryelementary cri1ica/ cycle in ::I{ occurs in c al feast once 

PROOF. This is a straightforward application of a well-known result of 

elementary number theory (e.g., see I 15, Lemma A 3]) 口

LEMMA 3.3. Let i.(.~/") = e for all洸.E SCC* <§(A). There exists NE N such 
1h01 .for all 11~N, i,j E [r] and qo E PA,eJ(i・;j) the following sta1e111ents hold: 
(i) Ei1her !here does 1101 exisl a cycle exlension q EPA (i; j) qf q。withlql = n 
or every cycle extension q E PA (i, j) of qo with lql三 n(mod PA) and 

喰）= max{1v(q"): q" E P岬(i,Jl qo c_;;c q"} 

,s of the form 

q = qoc1・ ・ ・c,, 

where c1, ... , c, are cri1ical cycles of <§(A), and 111e have w(q) = 1ャ(qo)and 
lql = lqol (mod PA)-
(ii) I/ q E P仇(i;j) is a cyde extension q/ qo, m E N>o and q := qoc1• -• c, E 

p~'+"'JJ.,) (i; j) 1vi1h critical cycles C1; ... ; c, thenりEP鍔＂’以）(i;j). Here we 



60 Horst BRUNOli'E 

set 

P凰(i,j)= {q E p(1l(i,j): w(q):::: w(q') }Or af/ q'E pり(i,j)} 

for t E N>O・ 

PROOF. This can be proved analogously to [ I 3, Lemma 3.2] using 

Lemma 3.2. ロ

In order to mitigate the condition).(:f{) == e for all ~-E SCC* <5(A) we need 

some preparation. The reader is referred to the appendix for the periodicity 

notions we are using in the sequel. 

LEMMA 3.4. Let珍 bea quasi-max-plus algebra, A E~,x, and B :=冗(A).

(i) <§(A)= <5(n(A)), in particular the cycles of <§(A) and<§(冗(A))coincide 

(ii) :ft E sec <6(A)リ・andonlyリ洸'ESCC的 (A))
(iii) Every critical cycle of <s(A) is a critical cycle of~(}(n:(A)), and we have 

ん(A),=),(冗(A))
(iv) For each 洸 cHCC-0(A) 1/iere is a :;I(''E HCC* 0(冗(A)) with 

洸呵こ虎＇．

(v) A is irreducible if. and onlyリn(A)is irreducible. 
(vi) Assume that A has at least one cycle and).(A); = min S. Then the 

critical cycles in <§(A) and <5(n(A)) coincide 

(vii) If'A is almost linear periodic 1hen n(A) is almost linear periodic, 

ldef(冗(A))::;;ldef(A) and lper(冗(A))divides lper(A), and冗(Qu)are the 

entries of a linear Ji-1ctor matrix of n(A) where Q is a linear factor matrix 

of A 

(viii) Ifえ（災..)=).(.;.f') for all :ft', :f("'E SCC <§(A) then),(:ft.) =え（虎')for 

all :f(",:%'E sec <!f(B) 

PROOF. (i), (ii) This can easily be checked. 

(iii) We only showえ(A)1=),(n(A)) using (i). Assume、l(A)1>),(n(A)) =: X 

Then there exists a cycle c in <§(A) with iv(c)1 > J., but c is a cycle in<§(冗(A)):

Contradiction. Thus we have え(A)1~).. The assumption of strict inequality leads 

to a cycle c'in <§(冗(A))with叫c')1> 2(A)1, hence iv(c) >).(A): Contradiction 

(iv) Let i, j E災 andc a critical cycle with vertices i, j. Then w(c)1 = 

応 (A))by (iii), thus there is a %'E HCC'~lf(n(A) ) which contains every vertex 
of c. We easily check %£%' 
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(v) Clear by (i). 

(vi) In view of (iii) it suffices to show that every critical cycle c in <§(冗(A))

is a critical cycle in <§(A). Suppose to the contrary that there is a cycle c'in 

<§(A) with印(c)< w(cり.The same relation then holds for the first components 
because 

w(c)i~ 入(Ah=w(c'h, 

and we deduce the contradiction 

w(冗(c))
w(冗(c)) w(c) w(c')1 w(冗(c'))
＝ ＝ ＜ ＝ 
le! lcl lc'I lc'I 

= w(冗(c')).

(vii) By assumption the sequence A• := (A")n.EN is almost linear periodic. Let 
i,Je[rj, piJ:=lper(A*)ijeN>o and入uE :0 with 

(A'i+P;;)ij = (A")uび (n> ldef(A *);) 

In particular, this bolds for the first components, hence冗(A)is almost linear 

periodic, and ldef(n(A)) :s; ldef(A). Furthem1ore, using Proposition 2.5 we check 

that lper(n(Aり）り dividespリ， hence

lper(n(A)) = lcm{lper(n(A拿））iJ: i,j E [rl} I lcm{p,1: i,j E [r]} = lper(A). 

The proof can now easily be concluded. 

(viii) Let 洸r,f'ESCC拿 <!f(B). Then 洸，洸r1E SCC'<§(A) by (ii) and 

入（虎）,=え（虎')1by assumption. This shows that there cannot be a cycle c in .% 

with w(冗(c)))(虎')I > . which implies our assertion. ロ

Now we can state our fu-st main result which slightly extends the structural 

part of II 0, Theorem 3. 1] and generalizes a classical theorem on matrices over the 
standard max-plus algebra 12, Section 3.7]. 

THEOREM 3.5. Let珍 bea max-plus algebra, え E~\{c} and A E勁rxrwith 

入（虎）＝えforall虎 ESCC'<§(A). Then A is almost linear periodic, lper(A) = PA 

and (lfac(A))ij =A.for all i,j E [r] More explicitly, we have 

(A"十P•)ij=炉(A");; (,:, j E [r]) 

for all s吼icient/ylarge n. 

PROOF. By Lemma 3.1 we have),(A)= A, and for B := (-A)A we have 

入(B)= e by Lemma 4.7. 
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Let p := p,1 and N be a constant given by Lemma 33, n ;;:: N and 

i, j E [r]. Assume that there is some q E P1,.c1(i. j). By I I 0, Lemma 2. I] we have 
(B")ij = a,~"l, and by Lemma 3.3 we have ( B"・~/18 ),j・ ＝ 叫11>, hence 

(I) (8"トl'H)ij= (B")ij 

On the other hand, if P,1.cl(i, j) = 0 then both sides of (I) equal e by Lemma 
3.3. 

Thus Bis almost linear periodic with lfac(B) == e by Lemma 4.6 and lper(B) 

divides p8 by Proposition 2.2. Arguing as in the proof of [ I 0, Lemma 3.3] we see 

that lper(B) cannot be smaller than p8, thus lper(B) == Po・

An application of Lemma 4.7 concludes the proof. 口

We can certainly recover the first part of [ I 0, Theorem 3. I]. 

COROLLARY 3.6. Let fl be a ma、¥'-plusalgebra and A E grx, be irreducible. 

Then A is a/mos! linear periodic, and ire haじelper(A) = p,, and lfac(A) = 

え(A)# e. 

PROOF. As SCC <ff(A) is a singleton the assertion drops out of the 

Theorem. 口

Now we establish the analog of I 5, Theorem 2.41 

THEOREM 3.7. lei砂 bea quasi-max-plus algebra 1vith weak stabilization 
condition. letぷbea subdioid of§and A Eぷrxrbe irreducible. Then A and 

冗(A)are almost linear periodic and).(A) # r.. Furthermore, we have ldef(A)~ 
ldef(冗(A)),P,r(A) divides p := lper(A), (人(A)1,min愈2)"E if and 

A11・1・11 = U(A)1,min免）fl A" (n > ldef(A)) 

PROOF. (i) Using Lemma 3.4 ( v), (1u) and Corollary 3.6 we find that the 
matrix B := n:(A) is irreducible and almost linear・ penodic, and lper(B) = /J!J and 
lfac(B) =).1 with). :=),(A). 

(ii) Let i,j E [r]. By the above we have 

(2) (A"+'1'n¥1 = (B"+iPr,¥ = (B")炉化=1;""(A")リ1 (n > ldef(B), t e N>0). 
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Furthermore, from [8, Proposition 1.2.2] we infer the existence of i,ii E珍 and

NかPiiE N>o such that 

(3) (A11+1P•)ij = J.if(A")iJ (n 2. Nり,l E N>o). 

(iii) Let N = max{ldef(B),Nり：i,j E [r]} and p = le叫/JB,Pij:i,je[r]}.By 

(2) and (3) we have for all I, j e [r] 

(A"+P)ijl =えf(A"¥,=汀化(A");; (n > N). 

Now, Proposition 2.2 (ii) yields 

靡＇）り ＝砕，

hence by (3) and the properties of a quasi-max~plus algebra 

(A'H・fJ)ij = (祐知）(A")ij = (},,,i.!i州(A")ij (n > N) 

Thus A is almost linear periodic, and from Lemma 3.4 (vii) we know that p8 

divides lper(A) and ldef(A) ::.c: ldef(B)). 

(iv) In case Card命=I we are done. Otherwise we write珍2= {O, I} and 
show that there is some M ::.C: N such that 

(4) (An+p)リ＝（え,,O)P(A")り (i,j E [r), 11 > M) 

Note that by the definition of p we have (J. ぃotE~- We distinguish two 

cases. 

Case I. For all i,j E [r] and n > N we have (A")ij2 = 0. 
ln this case we set M = N. 
Case 2. There is some i, j E [r) and nij > N such that (Aりij2= I. 
For all i, j with this property we fix some nij. Now we choose M to be the 

maximal nij and check that (4) is satisfied. This completes the proof 口

Now we study eigenvalues of certain matrices over quasi-max-plus algebras. 

THEOREM 3.8. LeL蛎 bea quasi-max-plus algebra and A E笏rxr_

(i) If A is nilpotent then c is the unique eigenvalue of A. 

(ii) Let !?2 sati約 theiveak stabilization condition and A be irreducible. 

Then r. is not an eigenvalue of A, bul (え(A)1,min !?22) is an eigenvalue 

of A. 

(iii) Suppose !?22 = {O, I}, (え(A)1,I) E !?2 and (v,i, I), ... ,(vr1, I) E珍forsome 
eigenvecwr (v1, ... , v,.) E窟 ()fA with eigenvalue (え(A)1,0). Then 

（え(A)1,I) 1s an eigenvalue of A with eigenvector ((v11,l), ... ,(v,1,1)). 
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PROOF. (i) This is a well-known classical result. 

(ii) The first part is clear by Lemma 4.3, and for the second part we closely 

follow [6, proof of Teorema l]. By Theorem 3.7 there exist n,m EN such that 

m > n > 0 and 

A111 =)."'-"A" 

where we set入:=(J.(A) I, min ~2) E鉛 {e}.Then Theorem 4.5 yields our 

assertion. 

(iii) For each i E [r] the equation 

implies 

④ Aりり＝（入(A)1,0)v,
)E{rl 

④ ん(v11,l) = (i_(A)1, l)(v;1, I). 
Je[,j 

We illustrate Theorem 3.8 by two easy examples 

ロ

EXAMPLE 3.9. (i) The only eigenvalue of the matrix (0, 0) E俄 is(0, 0), and 

every element in俄＼｛（一oo,O)}is an eigenvector. 

(ii) The matrix (1, 0) E fl,f has exactly two eigenvalues, namely (I, 0) and 

(I, I). In both cases (x, I) is an eigenvector provided x > 0. 

Finally, we extend Theorem 3. 7 and [ l, Proposition 6. I 91 for the particular 

dioid /?4. 

THEOREM 3.10. Let T # {O} be an additively closed subset of R~o and f7 
be defined as in Theorem 2.6. Further, lei A E f;,x, be a non-nilpotent matrix 

and assume入(%)=入（洸')for all 洸， .~' E SCC*~(A). Then A and n(A) are 
almos1 linear periodic. Furthermore, we have ldef(A) ;?:: ldef(冗(A)),(え(A)1,0YE f7 

and p := lper(A) divides Pn(A) 

A"+P = (え(A)1,0)"A" (n > ldef(A)). 

Thus 

（え(A)I: O)i.JE!il E ,{f?,rxr 

defines a linear factor matrix of A 
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PROOF. As A is non-nilpotent the digraph <§(A) has at least one cycle 

of positive length. In view of Lemma 3.4 (viii) and Lemma 3.1 (i) we have 

） l(幻=}, ば）＝入（ぶ） for all %, 虎 'ESCC・気B)where we set B :=冗(A).We 

infer from Theorem 3.5 that B is almost linear periodic, え：＝え（威）1 defines the 

linear factor of B, and lper(B) = p8. Thus (A, O)Ps E§" and there exists NE  N 

such that 

(5) ((A"+Pn),)1 = (B"+PB)ij = (Bn)iji._PB = ((An)ij)l)/8 = ((A")ij, (),, O)l)PB 

Now, Lemma 3.4 shows that (5) also holds for the second components provided 

n is large enough. This means that A 1s almost lmear periodic, (),, 0) 
i,j E Ir) de-

fines a linear factor matrix of A and the relation・between the linear defects of A 

and B is clear by Lemma 3.4. Finally, Lemma 4.1 yields that lper(A) divides p0. 

ロ

A central result o「[13, Theorem 3.1] can now easily be generalized 

COROLLARY 3.11. Let A E~rxr and assume that (§(A) has at least one cycle 

of positive length. The matrix A is eventually periodic if and only if J.(::I() = e for 
all .:Yf'E SCC'W(A). In this case per A divides p11 

PROOF. We first observe that [ I 3, Theorem 3. I] holds for any matrix over a 

max-plus algebra whose graph has at least one cycle of positive length. 

Let A be eventually periodic. Then B :=冗(A)is eventually periodic, hence for 

any虎 ESCC・<§(冗(A))we have入（洸）1 = e by [ I 3, Theorem 3. I]. Then Lemma 

3.4 (ii) yieldsえ(:%)= e for all虎 Esec・<§(A). 

Conversely, ifえ（洸）= e for all洸 ESCC'<§(A) then Theorem 3.10 yields 

(A"+P)ii = (A")ij (n~N, i,J E [r]) 

with some Ne  N, and an application of Lemma 4.1 completes the proof. D 

4. Appendix 

Let (S, •) be an abelian semigroup and a*= (a,,)11eN be a sequence of 
elements of S. Following [ I 0, Definition 2.3, 2.4] we say that a• is almost linear 

periodic8 if there are NE N, p EN>。andb E S such that 

(6) a11+p=bP・a,, (n>N). 
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In this case the smallest p E N>o such that there are NE N and b ES with (6) is 

called the linear period of a•, and we write p = I per a'. The minimal NE N such 
that there is some b ES which satisfies (6) for p = lper a* is called the linear 
defect of Ct', and we write N = ldef a• . Finally, an element b with (6) for 

p = !per a• and N = !def a• is called a linear factor of a'. In case b is unique we 

write b = lfac a•. 

LEMMA 4. I. let (S, •) be an abelian cance//ative semigroup and assume that 

for all x, y ES and n E N>o 1he equa1ion x" = y" implies x = y. Further, lei 
が=(ak¥eN be an almost linear periodic sequence in S, i.e., there exis1 b ES, 

NE N and m E N;,o with 

a,, が II=a,,b111 

for every n > N. 
(i) We haue 

for eve,y t E N>o and n > N. 
(ii) lfac(a') = b. 
(iii) lper(が） divides m. 

PROOF. (i) Clear by induction. 

a11+m, = a,,b 1111 

(ii) Assume that there are c e S, Me N and k e N>o with 

II・;.k II .k 
a = a c 

for all n > M. For large enough n we then have by (i) 

a,,c km = a,,+km = a,,b km I 

which yields ckm = bk111 and then c = b. 
(iii) Clearly, we have p := lper(a') :;::; m. Write m = qp + r with q, r EN, 
q > 0 and r < p. If r = 0 we are done. Otherwise , applying (i) again we find for 
large enough n 

a,,b'IP+r = a,,b111 = a 
砂"== a,n十r)+qp= a11・ト,b竺

8 Our definition slightly differs from the one given in I 1, Definition 6.11 
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hence 

a,,b" = C111+r: 

contradicting the definition o「P D 

We collect some well-known results for commutative unital semirings. The 

first one is stated in [3, Theorem 3.24] for matrices over the complex numbers. 

However, it is easy to see that it remains true in a more general setting (cf. 

[5, Theorem 2.51, [7 , Assertion 7 .2]). 

THEOREM 4.2 l3, Theorem 3.24]. Lei S b e a commuraiwe uni/a/ semiring and 
M E 5,x,_ Then !here exis1s a permu1a1io11 111a1rix PE S"x" such that 

(7) 
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Here n~I and the blocks M 11, ... , M,111 that occur in the diagonal in (7) are 

square ma/rices 1vhich are either O or irreducible. 9 The blocks M 11, ... , M,111 are 

uniquely derermined 10 11,i1h,:n simultaneous permutation of their roivs and columns, 

but their ordering in (7) is not necessarily unique. The form on the right hand side 

of (7) is called the Frohenius normal form of M. 

For the study of the ultimate behavior of the sequence of powers of a matrix 

over S we recall the following definitions. The matrix A E 5,x, is called 

・eventually periodic if the sequence A*:= (A"),,E_N is eventually periodic 

(see for instance [ 13, Definition 2.4] where the notion'almost periodic'was 

coined for this property); in this case we write 

per(A) = per(A *). 

• aimost linear periodic if for all i,j E [r] the sequence 

(AりiJ= ((A山），•EN E 5N 

90bserve the different notion of irreducibility in 13] 
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1s almost linear periodic. In this case we write 

ldef(A) = !def(が） lper(A) = lper(A*) 

If there is a unique linear factor we write lfac(A) = lfac(A'). 
From now on we let !?J be a commutative entire dioid. The following result is 

well-known for the standard max-plus algebra (e.g., see [4l). 

LEMMA 4.3. Let A E f?Jrxr be irreducible and assume A =I-(e). Funher, let 

J.. E !?J be an eigenvalue of A with eiyenvecwr v E即 Theni. =I-e and v; =I-e for al/ 

i E [r]. 

PROOF. 

have 

(8) 

By definition we have v1 # e for some j E [r) 

Ak;V、::;;、Uk、

Let us assume入=e. Then by (8) we find 

Ak; 佑 =E'.

For all i, k E [r] we 

for all i, k e [r], thus in particular A砂=c and then化 =c for all k E [r] which 
is impossible. 

Let us now assume vk = e for some k E [r] and 
(A")勾#e. Then we are lead to th e contrad1cし1011

e < (A")研'i~)."vk = e 

pick n E N>o such that 

口

LEMMA 4.4. 

M" # e and 

let ME~rxr , ；，E !?Z¥{t} and n,m EN such that m > n > 0, 

Mm=}."'―"M" 

Then A. is an eigenvalue of M. 

PROOF. Our . proof is taken from [6, proof of Teorema I . For the con-
vemence of the reader 

l 
we give the details here. Let z E朗 suchthat y := 

M"z #-e. Then we have 

(9) 

Therefore, the vector 

M11'-11y = M"'z =え111-11M"z = ;_111-11 y. 

Ill—·II -

x:= ④ ぇ'Mm-11-l-i
i=O y 
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is not the zero vector because otherwise we have入iMm-n-l-iy= e for all 

i = 0, ... ,m -n -1 which implies 

J.'M"'ーl-iz=e (i=O, ... ,m-n-1) 

yielding the contradiction 

がn-n-lY=入＂＇ー)J— IMm-1-(m-n-!)2 = e. 

Thus x is an eigenvector of M with eigenvalue l because by (9) we have 

111-11-I m-n-1 
Mx=⑤ ； l;M,,,_"―;y = M"'-"y EB④) liMm-n-iy 

i=O •i=I 

111-11-l 111-ll 
= ,:111-/lyR ① がMm-n-iy=④ J..'M"'_,,_,.y =えX. 口

i=I i=l 

THEOREM 4.5. Let 9 be a commutative entire dioid and M E~rxr be not 

nilpotent. Further, let i, E~\{r,} and n,m EN such that m > n > 0 and 

M"'=).111-IIM". 

Then ;, is an eige,walue of M. 

PROOF. We use induction on r and closely follow the proof of他 proofof 

Teorema I]. lf M is irreducible then M" ,t. s and we are done by Lemma 4.4. 

Now, let M be reducible, hence r > I and by Theorem 4.2 we find a permutation 

matrix PE~,x,· such that we can write 

PMPT = ( 
A B 

o c) 
with square matrices A, B of smaller size than M. At least one of these matrices 

is not nilpotent because otherwise M is nilpotent. W.l.o.g. we assume that 

A E~kxk is not nilpotent. Then we find 

Am=え111-"A".

hence by induction hypothesis there is an eigenvector a E釘 ofA with eigenvalue 
T 1' ・ ( え.Now, the vector P v with 1; := a, e, .. , e) E笏 isan eigenvector of M with 

eigenvalue入口

We formally state some results which were implicitly used in [JO]. 
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/ A E g,rxr be almost /111ear LEMM." 4.6. Let§be a 1nax-plus a/9ebra anc 

periodic. Then A has a unique linear .fc1c101 

PROOF. Clear by Proposition 2.2 and Lemma 4.1. ロ

LEMMA 4.7. Let砂 bea max-plus algebra, a. E鉛 {e},A E grxr and B = o:A. 

(i) We have <§(A)= <.#(B) =: <§and四=Pll-

(ii) For every pa1h q of posilive lengi/1 in <!J we have和(q)= o:w,,(q). 

(iii) The set of critical cycles w.r. I応⑩incides wi1h 1he se, of cri1ical cycles 

w.r.t. 西．

(iv) lj洸 ESCC* <.; andダ＝一ねげ） ,hen位(.ff)=e. 

(v) A is almost linear periodicリandonly if B is alrnosl linear periodic. In 
this case we have lper(A) = lper(B), ldef(A) = lclef(B) and lfac(B) = 

a. lfac(A). 

郎OOF. (i) Obvious. 

(ii) We have 

西(q)
四 (q) 四 (q)が,1

. = = = ¥I . 
lql k,I 

-・,1(q)'l.. 

(iii) Clear by (i) and (ii). 

(iv) This can easily be checked. 

(v) Let A be almost linear periodic with p = lper(A) and ;_ = lfac(A), 

hence 

B"+P = Cf.,i+p A11+P = a"A"えfl砂=B"(板）＇｝＇

for n > ldef(A). Thus B is almost linear periodic with lper(B)~p. However, 
strict inequality is impossible, hence lper(B) = p. Similarly, we find ldef(B) = 

ldef(A), and finally lfac(B) =~ 心'.in view of Lemma 4.6. 

Conversely, let B be almost linear periodic with q = lper(B) and f.l = lfac(B), 

hence 

o."+り"+"= B"+、I=8"11" =ダIA"11" 

for n > ldef(B). As砂 iscancellative we have 

A"+'I = (-a)'la'IA"+'I = A"(ーが11"= A"(-t:1.p)'', 

and the proof can be completed analogously as above. 口
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