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Abstract. The purpose of this paper is to study a class of semilinear

elliptic boundary value problems with degenerate boundary con-

ditions which include as particular cases the Dirichlet and Robin

problems. The approach here is distinguished by the extensive use

of the ideas and techniques characteristic of the recent developments

in the theory of partial di¤erential equations. By making use of a

variant of the Ljusternik–Schnirelman theory of critical points, we

prove very exact results on the number of solutions of our problem.

The results here extend earlier theorems due to Castro–Lazer to the

degenerate case.

1. Statement of Main Results

Let W be a bounded domain of Euclidean space RN , Nb 2, with smooth

boundary qW; its closure W ¼ WU qW is an N-dimensional, compact smooth

manifold with boundary. Let A be a second-order, elliptic di¤erential operator

with real coe‰cients such that

Au ¼ �
XN
i¼1

q

qxi

XN
j¼1

aijðxÞ qu
qxj

 !
þ cðxÞu: ð1:1Þ
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Here:

(1) aij A CyðWÞ and aijðxÞ ¼ a jiðxÞ for all x A W and 1a i; jaN, and there

exists a constant a0 > 0 such that

XN
i; j¼1

aijðxÞxixj b a0jxj2 for all ðx; xÞ A W� RN :

(2) c A CyðWÞ and cðxÞb 0 in W.

Let B be a first-order, boundary condition with real coe‰cients such that

Bu ¼ aðx 0Þ qu
qn

þ bðx 0Þu: ð1:2Þ

Here:

(3) a A CyðqWÞ and aðx 0Þb 0 on qW.

(4) b A CyðqWÞ and bðx 0Þb 0 on qW.

(5) q=qn is the conormal derivative associated with the operator A:

q

qn
¼
XN
i; j¼1

aijðx 0Þnj
q

qxi
;

where n ¼ ðn1; n2; . . . ; nNÞ is the unit exterior normal to the boundary qW.

Our fundamental hypotheses on the boundary condition B are the following:

(H.1) aðx 0Þ þ bðx 0Þ > 0 on qW.

(H.2) bðx 0Þ2 0 on qW.

It should be noticed that if aðx 0Þ1 0 and bðx 0Þ1 1 on qW (resp. aðx 0Þ1 1 on

qW), then the boundary condition B is the Dirichlet condition (resp. Robin

condition). Moreover, it is easy to see that the boundary condition B is non-

degenerate (or coercive) if and only if either aðx 0Þ > 0 on qW or aðx 0Þ1 0 and

bðx 0Þ > 0 on qW. Therefore, our boundary condition B is a degenerate boundary

value problem from an analytical point of view (cf. [17]). Amann [3] studied

the boundary condition B in the non-degenerate case where the boundary qW

is the disjoint union of the two closed subsets M ¼ fx 0 A qW : aðx 0Þ ¼ 0g and

qWnM ¼ fx 0 A qW : aðx 0Þ > 0g, each of which is an ðN � 1Þ-dimensional, compact

smooth manifold.

The intuitive meaning of condition (H.1) is that the absorption phenomenon

occurs at each point of the set M, while the reflection phenomenon occurs at each
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point of the set qWnM (see [24]). On the other hand, condition (H.2) implies that

the boundary condition B is not equal to the purely Neumann condition (see

Remark 1.1).

In this paper we study the following semilinear non-homogeneous elliptic

boundary value problem: Let gðtÞ be a real-valued function defined on R. Given a

function hðxÞ in W, find a function uðxÞ in W such that

�Auþ gðuÞ ¼ h in W;

Bu ¼ aðx 0Þ qu
qn

þ bðx 0Þu ¼ 0 on qW:

8><
>: ð1:3Þ

In order to study problem (1.3), we consider the linear elliptic boundary

value problem

Au ¼ f in W;

Bu ¼ 0 on qW

�
ð1:4Þ

in the framework of the Hilbert space L2ðWÞ. We associate with problem (1.4) a

densely defined, closed linear operator

A : L2ðWÞ ! L2ðWÞ

as follows:

(1) DðAÞ ¼ fu A W 2;2ðWÞ : Bu ¼ 0 on qWg.
(2) Au ¼ Au for every u A DðAÞ.

Here and in the following Wk;pðWÞ denotes the usual Sobolev space for k A N

and 1 < p < y.

Then we have the following fundamental spectral results (i), (ii), (iii) and (iv)

of the operator A (see [25, Theorem 5.1]):

(i) The operator A is positive and selfadjoint in L2ðWÞ.
(ii) Let lj be the eigenvalues of the operator A that are arranged in an

increasing sequence

l1 < l2 a � � �a lj a ljþ1 . . . ;

each eigenvalue being repeated according to its multiplicity. The first

eigenvalue l1 is positive and algebraically simple, and its corresponding

eigenfunction j1 A CyðWÞ may be chosen to be strictly positive in W.

(iii) No other eigenvalues lj , jb 2, have positive eigenfunctions.

(iv) The family fjjg
y
j¼1 of eigenfunctions of A forms a complete orthonormal

system of L2ðWÞ.
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Remark 1.1. If the boundary condition B is equal to the purely Neumann

condition, then the first eigenvalue l1 is equal to zero. This is the reason why we

study the semilinear elliptic boundary value problem (1.3) under condition (H.2).

In this paper we consider problem (1.3) under the assumption that the range

of g 0ðtÞ contains eigenvalues lj of A, and prove non-uniqueness results for

problem (1.3).

First, the next existence theorem is a generalization of Castro–Lazer [10,

Theorem A] to the degenerate case:

Theorem 1.1. Assume that g A C1ðRÞ with gð0Þ ¼ 0 and that g 0ðtÞ is bounded
on R. Then we have the following two assertions (I) and (II):

(I) If there exist an integer J A N and constants g > 0, g 0 > 0 such that

lJ < g < g 0 < lJþ1;

g 0ðtÞa g 0 for all t A R

�
ðAÞ

and that

inf
t AR

ð t
0

gðsÞ ds� gt2

2

� �
> �y; ðBÞ

and if the condition

g 0ð0Þ < lJ ðCÞ

is satisfied, then the homogeneous problem

�Auþ gðuÞ ¼ 0 in W;

Bu ¼ 0 on qW

�
ð1:5Þ

has at least two solutions—one trivial solution and at least one non-trivial solution

u A C2þaðWÞ with exponent 0 < a < 1.

(II) Let h A C aðWÞ with exponent 0 < a < 1. If, in addition to condition (C),

the function gðtÞ satisfies the condition

g 0ð0Þ0 lj for all j ¼ 1; 2; . . . ; ðDÞ

then the non-homogeneous problem (1.3)

�Auþ gðuÞ ¼ h in W;

Bu ¼ 0 on qW

�
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has at least three solutions u1; u2; u3 A C2þaðWÞ provided that khkL2ðWÞ is su‰ciently

small. In particular, the homogeneous problem (1.5) has one trivial solution and at

least two non-trivial solutions.

Example 1.1. A simple example of the nonlinear term gðtÞ is given by the

formula

gðtÞ ¼

l1þl2
2

�
tþ 1

2t � 5
4

�
for t > 1;�l1þl2

8

�
t2 for 0a ta 1;

�
�l1þl2

8

�
t2 for �1a ta 0;

l1þl2
2

�
tþ 1

2t þ 5
4

�
for t < �1:

8>>>>><
>>>>>:

It is easy to verify that this function gðtÞ satisfies conditions (A), (B), (C) and (D)

for J ¼ 1:

g 0 ¼ l1 þ l2

2
; g ¼ 3l1 þ l2

4
;

g 0ð0Þ ¼ 0 < l1 < g 0ðGyÞ ¼ l1 þ l2

2
< l2:

The next corollary is a simplified version of Theorem 1.1 with J :¼ nþ k:

Corollary 1.2. Let h A C aðWÞ with exponent 0 < a < 1. Assume that g A

C1ðRÞ with gð0Þ ¼ 0 and that g 0ðtÞ is bounded on R. If the finite limits g 0ðGyÞ ¼
limt!Gy g 0ðtÞ exist and if there exist two positive integers n and k such that

ln < g 0ð0Þ < lnþ1 a � � �a lnþk < g 0ðGyÞ < lnþkþ1; ðEÞ

then the non-homogeneous problem (1.3) has at least three solutions u1; u2; u3 A

C2þaðWÞ provided that khkL2ðWÞ is su‰ciently small.

Rephrased, Corollary 1.2 asserts that the non-homogeneous problem (1.3) has

at least three solutions provided that g 0ðtÞ crosses eigenvalues lj of A if jtj goes
from 0 to y.

Remark 1.2. Ambrosetti–Prodi [6] considered the case where the range of

g 0ðtÞ contains only the first eigenvalue m1 of the Dirichlet problem, and studied

the non-homogeneous problem (1.3) in the framework of singularity theory in

Banach spaces ([22, Chapter 6]). They characterized completely the solution
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structure of the non-homogeneous problem (1.3) ([6, Theorem 3.1], [7, Chapter 4,

Theorem 2.4], [8, Theorem 3]). Their result is generalized to the degenerate case

by Taira ([26, Theorem 1.1]).

With stronger assumptions on gðtÞ, we can give the exact number of solu-

tions. In fact, the next existence theorem is a generalization of Castro–Lazer [10,

Theorem B] to the degenerate case (see also [5, Theorem 1.2]):

Theorem 1.3. Let h A C aðWÞ with exponent 0 < a < 1. Assume that g A

C2ðRÞ with gð0Þ ¼ 0 and that

tg 00ðtÞ > 0 for all t0 0: ð1:6Þ

If the finite limits g 0ðGyÞ ¼ limt!Gy g 0ðtÞ ¼ limt!Gy gðtÞ=t exist and if there

exists a positive integer J such that

lJ�1 < g 0ð0Þ < lJ < g 0ðGyÞ < lJþ1; ðFÞ

then there exists a constant r > 0 such that the non-homogeneous problem (1.3) has

exactly three solutions u1; u2; u3 A C 2þaðWÞ provided that khkL2ðWÞ is smaller than r.

In particular, the homogeneous problem (1.5) has one trivial solution and exactly

two non-trivial solutions.

Example 1.2. A simple example of the nonlinear term gðtÞ is given by the

formula

gðtÞ ¼

l1þl2
2

�
tþ 1

2t � 4
3

�
for t > 1;�l1þl2

12

�
t3 for �1a ta 1;

l1þl2
2

�
tþ 1

2t þ 4
3

�
for t < �1:

8>><
>>:

It is easy to verify that this function gðtÞ satisfies condition (F) for J ¼ 1:

g 0ð0Þ ¼ 0 < l1 < g 0ðGyÞ ¼ l1 þ l2

2
< l2:

If the nonlinear term gðtÞ is an odd function of t, then we can improve

assertion (I) of Theorem 1.1. The next existence theorem is a generalization of

Castro–Lazer [10, Theorem C] to the degenerate case (see also [16, Theorem 2];

[32, Theorem 1]):
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Theorem 1.4. Let gðtÞ be a function as in assertion (I) of Theorem 1.1.

Moreover, if gðtÞ is an odd function of t and if K is a positive integer such that

Ka J and

lK�1 < g 0ð0Þ < lK a lJ ; ðGÞ

then the homogeneous problem (1.5) has at least 2ðJ � K þ 1Þ non-trivial solutions

in C2þaðWÞ with exponent 0 < a < 1.

Example 1.3. A simple example of the nonlinear term gðtÞ is given by the

formula

gðtÞ ¼

lJþlJþ1

2

�
tþ 1

2t � 5
4

�
for t > 1;�lJþlJþ1

8

�
t2 for 0a ta 1;

�
�lJþlJþ1

8

�
t2 for �1a ta 0;

lJþlJþ1

2

�
tþ 1

2t þ 5
4

�
for t < �1:

8>>>>><
>>>>>:

It is easy to verify that this function gðtÞ satisfies conditions (A), (B), (C) and (G)

for K ¼ 1:

g 0 ¼ lJ þ lJþ1

2
; g ¼ 3lJ þ lJþ1

4
;

g 0ð0Þ ¼ 0 < l1 < lJ :

The next corollary is a simplified version of Theorem 1.4 with J :¼ nþ k and

K :¼ nþ 1:

Corollary 1.5. Assume that g A C1ðRÞ is an odd function of t with gð0Þ ¼ 0

and that g 0ðtÞ is bounded on R. If the finite limits g 0ðGyÞ ¼ limt!Gy g 0ðtÞ exist

and if condition (E) is satisfied, then the homogeneous problem (1.5) has at least 2k

non-trivial solutions in C2þaðWÞ.

Our method of proving Theorems 1.1, 1.3 and 1.4 consists of reducing a

certain infinite dimensional problem to a finite dimensional problem and then

applying finite dimensional critical point theory as in Castro–Lazer [10]. The

approach here is based on the extensive use of the ideas and techniques charac-

teristic of the recent developments in the theory of semilinear elliptic boundary

value problems with degenerate boundary conditions ([26]–[31]).
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The rest of this paper is organized as follows. In Section 2 we discuss some

preliminary material such as di¤erential calculus in Banach spaces, Brouwer

degree, the index theorem (Theorem 2.4) and the three-solution theorem (The-

orem 2.5) in finite dimensional critical point theory which will be used throughout

the paper. In Section 3 we introduce the notion of weak solutions of problem

(1.3), and prove that any weak solutions of problem (1.3) is a classical solution

in the usual sense. This section is the heart of the subject. In Subsection 3.1

we introduce an underlying Hilbert space H for the study of problem (1.3)

(Theorems 3.1 and 3.2). The crucial point in our variational approach is how to

use the theory of fractional powers of analytic semigroups developed in [23]. In

Subsection 3.2 we prove that any weak solutions of problem (1.3) is a classical

solution (Theorem 3.3). The proof of Theorem 3.3 is essentially based on the

regularity, existence and uniqueness theorems for the linear elliptic boundary

value problem (1.4) ([24]). Section 4 is devoted to the proof of Theorem 1.1. By

virtue of Theorem 3.3, we have only to prove Theorem 1.1 for weak solutions.

Subsection 4.1 is devoted to an abstract theorem on Hilbert space functionals

(Theorem 4.1) essentially due to Castro–Lazer [10] which will play an important

role in the proof of Theorems 1.1, 1.3 and 1.4. In Subsection 4.2 we prove that

if conditions (A), (B) and (C) of Theorem 1.1 are satisfied, then the homogeneous

problem (1.5) has at least two weak solutions. If we introduce an energy

functional F on the Hilbert space H, then we find that the weak solutions of the

homogeneous problem (1.5) coincide with the critical points of F . We verify all

the conditions for assertion (I) of Theorem 4.1 (Proposition 4.2). In Subsection

4.3 we prove that if conditions (B), (C) and (D) of Theorem 1.1 are satisfied, then

the non-homogeneous problem (1.3) has at least three weak solutions provided

that khkL2ðWÞ is su‰ciently small. First, by using the inverse mapping theorem we

construct a weak solution f of problem (1.3). Moreover, if we introduce a new

energy functional F1 on H, then we find that the weak solutions of the non-

homogeneous problem (1.3) coincide with the critical points of F1. We verify all

the conditions for assertion (II) of Theorem 4.1 (Proposition 4.4), and construct

two weak solutions fþ u0, fþ u2 of problem (1.3) di¤erent from f. Section 5 is

devoted to the proof of Theorem 1.3. The proof is carried out in a series of

several lemmas (Lemmas 5.1 through 5.6). In the proof of Theorem 1.3 we make

essential use of the comparison property of eigenvalues of degenerate elliptic

boundary value problems with indefinite weights (Lemma 5.3). The last Section 6

is devoted to the proof of Theorem 1.4. Our proof is based on a result of Clark

[12] concerning the Ljusternik–Schnirelman theory of critical points (Theorem

6.1). More precisely, we mention that the notion of category introduced by
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Ljusternik–Schnirelman [19] is a topological invariant for the estimate of the

lower bound of the number of critical points (see [11, Chapter 5, Section 5.2]).

2. Preliminaries

In this section we discuss some preliminary material such as di¤erential

calculus in Banach spaces, Brouwer degree and finite dimensional critical point

theory. The results of this section will be used in the proof of assertion (II) of

Theorem 1.1 and in the proof of Theorem 1.3 (Theorems 2.4, 2.5 and 2.6).

2.1. Di¤erentiability and the Inverse Mapping Theorem

In this subsection we give an outline of di¤erential calculus in Banach spaces

(see [1], [13]; [21]). The next proposition generalizes the usual notion of symmetry

of the second partial derivatives of a function f : Rn ! R:

Proposition 2.1. Let X and Y be Banach spaces. If f A C2ðX ;YÞ, then the

second derivative d 2f ðxÞ of f at x A X is symmetric, that is, we have the formula

d 2f ðxÞðu; vÞ ¼ d 2f ðxÞðv; uÞ for all u; v A X :

The inverse mapping theorem provides a criterion for a map to be a local

Cr-di¤eomorphism in terms of its derivative:

Theorem 2.2 (the inverse mapping theorem). Let X and Y be Banach

spaces, and let f be a Cr-map ðrb 1Þ of an open subset U of X into Y. Assume

that the derivative df ðx0Þ : X ! Y is an algebraic and topological isomorphism

at a point x0 of U. Then the map f is a Cr-di¤eomorphism of some neighborhood

of x0 onto some neighborhood of f ðx0Þ.

The next theorem is one of the most important applications of Theorem 2.2:

Theorem 2.3 (the implicit function theorem). Let X , Y , Z be Banach spaces,

and let f be a Cr-map ðrb 1Þ of an open subset U � V of X � Y into Z. Assume

that the partial derivative dy f ðx0; y0Þ : Y ! Z is an algebraic and topological

isomorphism at a point ðx0; y0Þ of U � V. Then there exist neighborhoods U0 of

x0 and W0 of f ðx0; y0Þ and a unique Cr map g : U0 �W0 ! V such that

f ðx; gðx;wÞÞ ¼ w for all ðx;wÞ A U0 �W0:

319Semilinear degenerate elliptic boundary value problems



2.2. Functionals and Critical Points

Let X be a real Banach space. A functional on X is a continuous, real-valued

map F : X ! R. A point u A X is called a critical point of F if F is Fréchet

di¤erentiable at u and if dF ðuÞ ¼ 0, that is, if we have, for all v A X ,

dFðuÞðvÞ ¼ 0:

Let H be a real Hilbert space with inner product ð� ; �ÞH . If F A C 1ðH;RÞ and
u A H, then it follows from an application of the Riesz representation theorem

([33, Chapter III, Section 6, Theorem]) that there exists a unique element ‘FðuÞ
of H such that

dFðuÞðvÞ ¼ ð‘F ðuÞ; vÞH for all v A H:

The element ‘FðuÞ of H is called the gradient of F at u. We can identify dFðuÞ
with ‘F ðuÞ. It should be noticed that a critical point u of F is a solution of the

equation ‘F ðuÞ ¼ 0.

Moreover, if F A C2ðH;RÞ, we can define the derivative D2FðuÞ of ‘F at u

by the formula

d 2FðuÞðv;wÞ ¼ ðD2F ðuÞv;wÞH for all v;w A H: ð2:1Þ

By virtue of Proposition 2.1, we find that the linear operator D2F ðuÞ is selfadjoint
on H.

2.3. Brouwer Degree and the Index Theorem

In this subsection we consider the following (see [20]):

(a) W is a bounded open set in Rn with boundary qW.

(b) f ¼ ð f1; . . . ; fnÞ : W ! Rn is a continuous map.

(c) p is a point of Rn such that f ðxÞ0 p for all x A qW.

For each triplet ð f ;W; pÞ, we can define an integer-valued function degð f ;W; pÞ.
The integer degð f ;W; pÞ is called the Brouwer degree of the map f with respect to

the set W and the point p.

Since the Brouwer degree degð f ;W; pÞ enjoys the excision property, we can

define the index of an isolated solution of the equation f ðxÞ ¼ p as follows: Let

x0 be a point of W such that f ðx0Þ ¼ p. If there exists a constant r > 0 such that

f ðxÞ0 p for all x A Brðx0Þnfx0g;

then it follows from an application of the excision property that

degð f ;Brðx0Þ; pÞ ¼ degð f ;Brðx0Þ; pÞ for all r A ð0; rÞ:
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Thus we can define an integer ið f ; x0Þ by the formula

ið f ; x0Þ ¼ lim
r!0

degð f ;Brðx0Þ; pÞ; p ¼ f ðx0Þ:

The integer ið f ; x0Þ is called the index of the map f with respect to the point x0.

The next theorem will play an important role in the proof of Theorem 1.3 in

Section 6 (see [21, Theorem 2.8.1]):

Theorem 2.4 (the index theorem). Let f A C1ðW;RnÞVCðW;RnÞ. If x0 is a

point of W such that Jf ðx0Þ0 0, then we have the formula

ið f ; x0Þ ¼ ð�1Þb; ð2:2Þ

where Jf ðx0Þ is the Jacobian determinant of f at x0 and b is the sum of the

algebraic multiplicities of the negative eigenvalues of the derivative Df ðx0Þ.

2.4. Finite Dimensional Critical Point Theory

Let f A C1ðRn;RÞ. If x is a point of Rn such that ‘f ðxÞ ¼ 0, then we say

that x is a non-degenerate critical point of f if the Hessian matrix D2f ðxÞ of f at

x is non-singular.

The next theorem will play an important role in the proof of Theorem 4.1

(see [10, Theorem 3]):

Theorem 2.5 (the three-solution theorem). Let f A C2ðRn;RÞ. Assume that

the following three conditions (i), (ii) and (iii) are satisfied:

(i) f ðxÞ ! y as kxk ! y.

(ii) There exists a point x0 of Rn such that f ðx0Þ ¼ minx AR n f ðxÞ.
(iii) There exists a non-degenerate critical point x1 of f such that x1 0 x0.

Then the map f has at least three distinct critical points.

The next theorem will play an important role in the proof of Theorem 1.3 in

Section 6 (see [4, Corollary 1]):

Theorem 2.6. Let f A C 1ðRn;RÞ. If f ðxÞ ! þy as kxk ! y and if the set

of solutions of ‘f ðxÞ ¼ 0 is a finite set fx0; x1; x2; . . . ; xkg, then we have the

formula Xk
j¼0

ið‘f ; xjÞ ¼ 1:
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3. Regularity of Weak Solutions

In this section we introduce the notion of weak solutions of problem (1.3),

and prove that any weak solutions of problem (1.3) is a classical solution in the

usual sense. This section is the heart of the subject. In Subsection 3.1 we in-

troduce an underlying Hilbert space H for the study of problem (1.3) (Theorems

3.1 and 3.2). The crucial point in our variational approach is how to use the

theory of fractional powers of analytic semigroups developed in [23]. In Sub-

section 3.2 we prove that any weak solutions of problem (1.3) is a classical

solution (Theorem 3.3). The proof of Theorem 3.3 is essentially based on the

regularity, existence and uniqueness theorems for the linear elliptic boundary

value problem (1.4) ([24]).

3.1. Hilbert Space H

In this subsection we introduce an underlying Hilbert space H for the study

of problem (1.3). Since the operator A is positive and selfadjoint in the Hilbert

space L2ðWÞ, we can define its square root

C ¼ A1=2

as follows ([23]):

Cu ¼
Xy
m¼1

ffiffiffiffiffiffi
lm

p
ðu; jmÞL2ðWÞjm in L2ðWÞ: ð3:1Þ

Here we recall that the family fjmg
y
m¼1 of eigenfunctions of A

Ajm ¼ lmjm in W;

Bjm ¼ 0 on qW

�

forms a complete orthonormal system of L2ðWÞ.
Moreover, we can introduce an underlying Hilbert space H with inner

product ð� ; �ÞH as follows:

H ¼ the domain DðCÞ with the inner product

ðu; vÞH ¼ ðCu;CvÞL2ðWÞ for all u; v A DðCÞ:

The next theorem gives a more concrete and useful characterization of the

Hilbert space H (see [26, Theorem 3.1]):
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Theorem 3.1. The Hilbert space H coincides with the completion of the

domain

DðAÞ ¼ fu A W 2;2ðWÞ : Bu ¼ 0 on qWg

with respect to the inner product

ðu; vÞH ¼ ðAu; vÞL2ðWÞ

¼
XN
i; j¼1

ð
W

aijðxÞ qu
qxi

qv

qxj
dxþ

ð
W

cðxÞu � v dx

þ
ð
faðx 0Þ00g

bðx 0Þ
aðx 0Þ u � v ds for all u; v A DðAÞ: ð3:2Þ

Here the last term on the right-hand side is an inner product of the Hilbert space

L2ðqWÞ with respect to the surface measure ds of qW.

Our approach is based on the following imbedding result for the Hilbert

space H (see [26, Corollary 3.2]):

Theorem 3.2. We have the inclusions

DðAÞHHHW 1;2ðWÞ ð3:3Þ

with continuous injections.

Remark 3.1. The following diagram gives a bird’s eye view of the right

Hilbert space H for the variational approach (see [15, Theorems 1 and 2]):

B H aðx 0Þ and bðx 0Þ

The Dirichlet case W
1;2
0 ðWÞ aðx 0Þ1 0 and bðx 0Þ1 1

The Robin case W 1;2ðWÞ aðx 0Þ1 1 and bðx 0Þ2 0

The degenerate case DðA1=2Þ (H.1) and (H.2)

First, we have, by formula (3.1),

ðu; uÞH ¼
Xy
m¼1

lmðu; jmÞ
2
L2ðWÞ: ð3:4Þ
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Indeed, it su‰ces to note the following:

ðu; uÞH ¼ ðCu;CuÞL2ðWÞ

¼
Xy
m¼1

ffiffiffiffiffiffi
lm

p
ðu; jmÞL2ðWÞjm;

Xy
l¼1

ffiffiffiffiffi
ll

p
ðu; jlÞL2ðWÞjl

 !
L2ðWÞ

¼
Xy
m¼1

lmðu; jmÞ
2
L2ðWÞ: ð3:5Þ

Secondly, since we have the Fourier series expansion formula

u ¼
Xy
m¼1

ðu; jmÞL2ðWÞjm in L2ðWÞ;

it follows that

ðu; uÞL2ðWÞ ¼
Xy
m¼1

ðu; jmÞL2ðWÞjm;
Xy
l¼1

ðu; jlÞL2ðWÞjl

 !
L2ðWÞ

¼
Xy
m¼1

ðu; jmÞ
2
L2ðWÞ: ð3:6Þ

Thirdly, we have, by formulas (3.5) and (3.6),

ðu; uÞL2ðWÞ a
1

l1
ðu; uÞH: ð3:7Þ

If J is the positive integer as in Theorem 1.1, we let

X ¼ spanfj1; j2; . . . ; jJg;

and

Y ¼ X ? ¼ fv A H : ðv; uÞH ¼ 0 for all u A Xg:

In other words, X ? is the set of all those elements of H which are orthogonal to

every element of X .

From formulas (3.4) and (3.6), we obtain the inequality

ðv; vÞH b lJþ1ðv; vÞL2ðWÞ for all v A Y : ð3:8Þ

Indeed, it follows that
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ðv; vÞH ¼
Xy
m¼1

lmðv; jmÞ
2
L2ðWÞ ¼

Xy
m¼Jþ1

lmðv; jmÞ
2
L2ðWÞ

b lJþ1

Xy
m¼Jþ1

ðv; jmÞ
2
L2ðWÞ ¼ lJþ1

Xy
m¼1

ðv; jmÞ
2
L2ðWÞ

¼ lJþ1ðv; vÞL2ðWÞ for all v A Y :

Similarly, we have the inequality

ðu; uÞH a lJðu; uÞL2ðWÞ for all u A X : ð3:9Þ

Indeed, it follows that

ðu; uÞH ¼
Xy
m¼1

lmðu; jmÞ
2
L2ðWÞ ¼

XJ
m¼1

lmðu; jmÞ
2
L2ðWÞ

a lJ
XJ
m¼1

ðu; jmÞ
2
L2ðWÞ ¼ lJ

Xy
m¼1

ðu; jmÞ
2
L2ðWÞ

¼ lJðu; uÞ2L2ðWÞ for all u A X :

3.2. Weak Solutions of Problem (1.3)

In this subsection we prove that any weak solutions of problem (1.3) is a

classical solution. The proof of Theorem 3.3 is essentially based on the regularity,

existence and uniqueness theorems for the linear elliptic boundary value problem

(1.4) ([24]).

A function u A H is called a weak solution of problem (1.3) if it satisfies

the condition

ðu;wÞH �
ð
W

gðuÞw dxþ
ð
W

h � w dx

¼
XJ
i; j¼1

ð
W

aijðxÞ qu
qxi

qw

qxj
dxþ

ð
W

cðxÞu � w dx

þ
ð
faðx 0Þ00g

bðx 0Þ
aðx 0Þ u � w ds�

ð
W

gðuÞw dxþ
ð
W

h � w dx

¼ 0 for all w A H: ð3:10Þ

The next theorem asserts that any weak solution u of problem (1.3) is a

classical solution:
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Theorem 3.3. Let gðtÞ be a function in C1ðRÞ such that the derivative g 0ðtÞ
is bounded on R, and let h A C aðWÞ with exponent 0 < a < 1. If u A H is a weak

solution of problem (1.3), then it follows that

u A C2þaðWÞ

with exponent 0 < a < 1. In particular, u is a classical solution.

Proof. The proof of Theorem 3.3 is based on the regularity theorem and

the existence and uniqueness theorem for the linear elliptic boundary value

problem (1.4) ([24, Theorem 8.2 and Theorem 9.1]). We make use of a standard

‘‘bootstrap argument’’.

Assume that a function u A H satisfies condition (3.10). Then we have, for all

w A DðAÞHDðA1=2Þ ¼ H,

ðu;AwÞL2ðWÞ ¼ ðu;wÞH ¼ ðgðuÞ � h;wÞL2ðWÞ:

This proves that

u A DðAÞ;
Au ¼ gðuÞ � h;

�

since the operator A is selfadjoint in L2ðWÞ. In particular, it follows from as-

sertion (3.3) that

u A W 1;2ðWÞHL2ðWÞ:

Now we assume that u A LqðWÞ for some qb 2. Since g 0ðtÞ is bounded and

hðxÞ A C aðWÞ, we obtain that

f ðxÞ :¼ gðuðxÞÞ � hðxÞ A LqðWÞ:

Therefore, since u is a weak solution of the linear boundary value problem

Au ¼ f in W;

Bu ¼ 0 on qW;

�

if follows from an application of the regularity theorem ([24, Theorem 8.2]) that

u A W 2;qðWÞ:

(a) If 2qbN, then it follows from the Sobolev imbedding theorem (see

[2, Theorem 4.12, Part I]) that

u A LrðWÞ for all rb 1:
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(b) If 2q < N, then it follows that

u A LrðWÞ for r ¼ Nq

N � 2q
> q:

Repeating this procedure, we have, after a finite number of steps,

u A W 2; rðWÞ for r so large that
N

r
< 1� a;

so that

u A W 2; rðWÞHC1þbðWÞ

with exponent

b ¼ 1�N

r
> a:

Since g 0ðtÞ is continuous and bounded on R, it follows that

f ðxÞ ¼ gðuðxÞÞ � hðxÞ A C aðWÞ:

Therefore, by applying the existence and uniqueness theorem ([24, Theorem 9.1])

we can find a unique classical solution v A C2þaðWÞ of the boundary value

problem

Av ¼ f in W;

Bv ¼ 0 on qW:

�
ð3:11Þ

Since u and v are both solutions of problem (3.11) in W 2; rðWÞ, by applying the

uniqueness theorem ([24, Theorem 8.6]) we obtain that

u ¼ v A C2þaðWÞ:

Summing up, we have proved that any weak solution u of problem (1.3) is a

classical solution.

The proof of Theorem 3.3 is complete. r

4. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. By virtue of Theorem

3.3, we have only to prove Theorem 1.1 for weak solutions. Subsection 4.1 is

devoted to an abstract theorem on Hilbert space functionals (Theorem 4.1)

essentially due to Castro–Lazer [10] which will play an important role in the
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proof of Theorems 1.1, 1.3 and 1.4. In Subsection 4.2 we prove that if conditions

(A), (B) and (C) of Theorem 1.1 are satisfied, then the homogeneous problem

(1.5) has at least two weak solutions. If we introduce an energy functional F on

the Hilbert space H, then we find that the weak solutions of the homogeneous

problem (1.5) coincide with the critical points of F . We verify all the conditions

for assertion (I) of Theorem 4.1 (Proposition 4.2). In Subsection 4.3 we prove

that if conditions (B), (C) and (D) of Theorem 1.1 are satisfied, then the non-

homogeneous problem (1.3) has at least three weak solutions provided that

khkL2ðWÞ is su‰ciently small. First, by using the inverse mapping theorem

(Theorem 2.2) we construct a weak solution f of problem (1.3) (Lemma 4.3).

Moreover, if we introduce a new energy functional F1 on the Hilbert space H,

then we find that the weak solutions of the non-homogeneous problem (1.3)

coincide with the critical points of F1. We verify all the conditions for assertion

(II) of Theorem 4.1 (Proposition 4.4), and construct two weak solutions fþ u0,

fþ u2 of problem (1.3) di¤erent from f.

4.1. An Abstract Theorem on Hilbert Space Functionals

Let H be a real Hilbert space. If F A C2ðH;RÞ, then, by using the Riesz

representation theorem ([33, Chapter III, Section 6, Theorem]) we can define a C 1

map

‘F : H ! H

u 7! ‘FðuÞ

by the formula

dFðuÞðwÞ ¼ d

dt
Fðuþ twÞjt¼0 ¼ ð‘FðuÞ;wÞH for all w A H:

The element ‘FðuÞ of H is the gradient of F at u A H.

Moreover, the derivative D2FðuÞ of ‘F at u A H can be defined by the

formula

d 2FðuÞðv;wÞ ¼ d

dt
ðdFðuþ tvÞðwÞÞjt¼0 ¼

d

dt
ð‘F ðuþ tvÞ;wÞH jt¼0

¼ ðD2F ðuÞv;wÞH for all v;w A H:

We recall that D2FðuÞ is a selfadjoint operator on H.
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The next theorem is adapted from Castro–Lazer [10, Theorem 4] (see also

[9]; [18]):

Theorem 4.1 (Castro–Lazer). Let F A C2ðH;RÞ. We assume that the fol-

lowing two conditions (a) and (b) are satisfied:

(a) ‘F ð0Þ ¼ 0 and there exist closed subspaces X1 and Y1 of H and a constant

m1 > 0 such that

(i) H ¼ X1 lY1.

(ii) dim X1 < y.

(iii) ðD2Fð0Þx; xÞH a 0 for all x A X1.

(iv) ðD2Fð0Þy; yÞH bm1kyk2H for all y A Y1.

(b) There exist closed subspaces X and Y of H and a constant m > 0 such

that

(v) H ¼ X lY .

(vi) dim X1 < dim X < y.

(vii) ðF jX ÞðxÞ ! �y as kxkH ! y, where F jX is the restriction of F to X.

(viii) ðD2FðuÞy; yÞH bmkyk2H for all y A Y and all u A H.

Then we have the following two assertions (I) and (II):

(I) There exists a non-zero element u0 of H such that ‘Fðu0Þ ¼ 0. Moreover,

we have the formula

Fðu0Þ ¼ max
x AX

min
y AY

Fðxþ yÞ:

(II) If condition (iii) is replaced by the condition

(iii�) ðD2F ð0Þx; xÞH < 0 if x is a non-zero element of X1,

then there exists a non-zero element u2 with u2 0 u0 such that ‘F ðu2Þ ¼ 0.

We remark that the proof of Theorem 4.1 is based on the three-solution

theorem (Theorem 2.5).

4.2. Proof of Theorem 1.1, Part I

In this subsection we prove that if conditions (A), (B) and (C) of Theorem

1.1 are satisfied, then the homogeneous problem (1.5) has at least two weak

solutions. We verify all the conditions of Theorem 4.1. The proof is divided into

two steps.
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Step 1: By condition (C), we can choose a positive integer Ka J such that

lK�1 a g 0ð0Þ < lK a lJ ; ð4:1Þ

where l0 ¼ �y. We let

X ¼ spanfj1; j2; . . . ; jJg; Y ¼ X ?;

X1 ¼ spanfj1; j2; . . . ; jK�1g; Y1 ¼ X ?
1 :

We remark that

dim X1 ¼ K � 1a J � 1 < J ¼ dim X : ð4:2Þ

Now we define an energy functional

F : H ! R

by the formula

F ðuÞ ¼ 1

2
ðu; uÞH �

ð
W

GðuðxÞÞ dx

¼ 1

2

XN
i; j¼1

ð
W

aijðxÞ qu
qxi

qu

qxj
dxþ 1

2

ð
W

cðxÞu2 dx

þ 1

2

ð
faðx 0Þ00g

bðx 0Þ
aðx 0Þ u

2 ds�
ð
W

ð uðxÞ
0

gðsÞ ds
 !

dx for all u A H; ð4:3Þ

where

GðtÞ ¼
ð t
0

gðsÞ ds:

The next claim asserts that u A H is a weak solution of the homogeneous

problem (1.5) if and only if it is a critical point of the energy functional F

(cf. [18]):

Claim 4.1. If g A C1ðRÞ and g 0ðtÞ is bounded on R, then we have the

following two assertions (i) and (ii):

(i) F A C2ðH;RÞ.
(ii) The weak solutions of the homogeneous problem (1.5) coincide with the

critical points of F.
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Proof. (i) First, we recall (assertion (3.3)) that

HHW 1;2ðWÞ

with continuous injection. Moreover, it follows from an application of the

Sobolev imbedding theorem (see [2, Theorem 4.12, Part I]) that

W 1;2ðWÞH L2 � ðWÞ for 2� ¼ 2N=ðN � 2Þ if Nb 3;

LrðWÞ for all rb 1 if N ¼ 2:

�

Therefore, we have the continuous injections

HHW 1;2ðWÞH L2 � ðWÞ for 2� ¼ 2N=ðN � 2Þ if Nb 3;

LrðWÞ for all rb 1 if N ¼ 2:

�
ð4:4Þ

By virtue of assertion (4.4), since g A C1ðRÞ and g 0ðtÞ is bounded on R we

can prove the following formulas (4.5) and (4.6) (see [7, Chapter 1, Theorem

2.9]):

ð‘F ðuÞ;wÞH ¼ d

dt
F ðuþ twÞjt¼0

¼ ðu;wÞH �
ð
W

gðuðxÞÞw dx

¼
XN
i; j¼1

ð
W

aijðxÞ qu
qxi

qw

qxj
dxþ

ð
W

cðxÞu � w dx

þ
ð
faðx 0Þ00g

bðx 0Þ
aðx 0Þ u � w ds�

ð
W

gðuðxÞÞw dx for all w A H; ð4:5Þ

and

ðD2FðuÞv;wÞH ¼ d

dt
ð‘F ðuþ tvÞ;wÞHjt¼0

¼ ðv;wÞH �
ð
W

g 0ðuðxÞÞv � w dx for all v;w A H: ð4:6Þ

Therefore, we obtain from formulas (4.5) and (4.6) that F A C2ðH;RÞ.
(ii) By formula (4.5), we find from formula (3.10) with h :¼ 0 that the weak

solutions u of the homogeneous problem (1.5) coincide with the critical points

of F . Indeed, it su‰ces to note that

ðu;wÞH �
ð
W

gðuðxÞÞw dx ¼ 0 for all w A H , ‘F ðuÞ ¼ 0:

The proof of Claim 4.1 is complete. r
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The next proposition is an essential step in the proof of Theorem 1.1:

Proposition 4.2. Assume that conditions (A), (B) and (C) are satisfied. Then

the function F ðuÞ satisfies all conditions (i) through (viii) of Theorem 4.1, where

X ¼ spanfj1; j2; . . . ; jJg; Y ¼ X ?;

X1 ¼ spanfj1; j2; . . . ; jK�1g; Y1 ¼ X ?
1 :

Proof. (1) Conditions (i), (ii) and (v) are trivially satisfied.

(2) Condition (viii): We have, by formula (4.5),

ðD2FðuÞv;wÞH ¼ ðv;wÞH �
ð
W

g 0ðuðxÞÞv � w dx for all v;w A H:

Thus we obtain from inequality (3.8) and condition (A) of Theorem 1.1 that we

have, for all v A Y ,

ðD2FðuÞv; vÞH b ðv; vÞH � g 0ðv; vÞL2ðWÞ

b 1� g 0

lJþ1

� �
ðv; vÞH ¼ mkvk2H; ð4:7Þ

with

m ¼ 1� g 0

lJþ1
> 0:

Hence, condition (viii) of Theorem 4.1 is satisfied.

(3) Condition (vii): If u A X , it follows from condition (B) of Theorem 1.1

that there exists a constant c0 such thatð uðxÞ
0

gðsÞ ds� g

2
uðxÞ2 b c0 for all x A W:

Hence we have the inequality

F ðuÞ ¼ 1

2
ðu; uÞH �

ð
W

ð uðxÞ
0

gðsÞ ds
 !

dxa
1

2
ðu; uÞH � g

2
ðu; uÞL2ðWÞ � c0jWj;

where jWj denotes the volume of W. By using inequality (3.9) and condition (A)

of Theorem 1.1, we have, for some constant c,

FðuÞa 1

2
ðu; uÞH � g

2
ðu; uÞL2ðWÞ þ ca

1

2
1� g

lJ

� �
kuk2H þ c for all u A X ;
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with

1

2
1� g

lJ

� �
< 0:

Therefore, we obtain that the restriction F jX of F to X satisfies condition (vii)

of Theorem 4.1.

(4) Conditions (iii) and (iv): From the definitions of X1 and Y1 and formulas

(3.4) and (3.6), we have the inequalities

ðr; rÞH a lK�1ðr; rÞL2ðWÞ for all r A X1

and

ðs; sÞH b lKðs; sÞL2ðWÞ for all s A Y1 ¼ X ?
1 :

Hence, by using condition (4.1) and formula (4.6) we obtain that

ðD2Fð0Þr; rÞH ¼ ðr; rÞH � g 0ð0Þðr; rÞL2ðWÞ a ðr; rÞH � lK�1ðr; rÞL2ðWÞ

a 0 for all r A X1;

and that

ðD2Fð0Þs; sÞH ¼ ðs; sÞH � g 0ð0Þðs; sÞL2ðWÞ

b 1� g 0ð0Þ
lK

� �
ðs; sÞH ¼ m1ksk2H for all s A Y1;

with

m1 ¼ 1� g 0ð0Þ
lK

> 0:

Therefore, we find that conditions (iii) and (iv) of Theorem 4.1 are satisfied.

(5) Finally, we have only to note that

dim X1 ¼ K � 1a J � 1 < J ¼ dim X :

This verifies condition (vi).

The proof of Proposition 4.2 is complete. r

Step 2: By applying assertion (I) of Theorem 4.1, we obtain that conditions

(A), (B) and (C) of Theorem 1.1 imply the existence of at least two solutions of

the homogeneous problem (1.5).

The proof of Theorem 1.1, Part I is complete. r
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4.3. Proof of Theorem 1.1, Part II

In this subsection we prove that if conditions (B), (C) and (D) of Theorem

1.1 are satisfied, then the non-homogeneous problem (1.3) has at least three weak

solutions provided that khkL2ðWÞ is su‰ciently small. We verify all the conditions

of Theorem 4.1 including condition ðiii�Þ. The proof is divided into three steps.

Step 1: Now we assume that condition (D) of Theorem 1.1 is satisfied. In this

case we obtain from condition (C) that

lK�1 < g 0ð0Þ < lK : ð4:8Þ

First, we construct a weak solution f of the non-homogeneous problem (1.3).

More precisely, we prove the following:

Lemma 4.3. There exist constants r > 0 and d1 > 0 such that if h A L2ðWÞ
with khkL2ðWÞ <

ffiffiffiffiffi
l1

p
r, then the non-homogeneous problem (1.3)

�Auþ gðuÞ ¼ h in W;

Bu ¼ 0 on qW

�

has a unique weak solution f A DðAÞ such that kfkH < d1.

Proof. (1) If we introduce a linear operator T : H ! H by the formula

T ¼ A�1jH : H �! L2ðWÞ �!A
�1

H; ð4:9Þ

then we obtain that T is a compact operator. Indeed, it su‰ces to note the

following three assertions:

(a) The injection

H ,! W 1;2ðWÞ

is continuous (see assertion (3.3)).

(b) The injection

W 1;2ðWÞ ,! L2ðWÞ

is compact (the Rellich–Kondrachov theorem (see [2, Theorem 6.3])).

(c) The resolvent

A�1 : L2ðWÞ ! H

is continuous.
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Moreover, we have the formula

ðTv;wÞH ¼ ðv;wÞL2ðWÞ for all w A H: ð4:10Þ

Indeed, it follows from formula (4.9) that

ðTv;wÞH ¼ ðA�1v;wÞH ¼ ðAðA�1vÞ;wÞL2ðWÞ ¼ ðv;wÞL2ðWÞ for all w A H:

(2) Secondly, by combining formulas (4.5) and (4.10) we obtain that

ð‘F ðuÞ;wÞH ¼ ðu;wÞH �
ð
W

gðuðxÞÞw dx ¼ ðu;wÞH � ðgðuÞ;wÞL2ðWÞ

¼ ðu;wÞH � ðTðgðuÞÞ;wÞH ¼ ðu� TðgðuÞÞ;wÞH for all w A H:

This proves that

‘FðuÞ ¼ u� TðgðuÞÞ for all u A H: ð4:11Þ

Similarly, we have, by formulas (4.6) and (4.10),

D2FðuÞ ¼ I � Tðg 0ðuÞÞ for all u A H: ð4:12Þ

In particular, we have the formula

D2Fð0Þ ¼ I � g 0ð0ÞT : ð4:13Þ

(3) Thirdly, we show that if condition (4.8) is satisfied, then the continuous

operator

D2F ð0Þ ¼ I � g 0ð0ÞT : H ! H

is bijective. To do this, we have only to show the injectivity of D2F ð0Þ, since

formula (4.9) implies that the Fredholm alternative holds true for the operator

D2Fð0Þ.
Assume that v A H and D2F ð0Þv ¼ 0. Then it follows from formulas (4.9)

and (4.13) that

v ¼ g 0ð0ÞTv ¼ g 0ð0ÞA�1v:

This proves that

v A DðAÞ;
Av ¼ g 0ð0Þv:

�

However, we see from condition (4.8) that v ¼ 0, since g 0ð0Þ is not an eigenvalue

of the operator A.
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(4) Since the Fréchet derivative

D2F ð0Þ : H ! H

of ‘F at 0 is bijective and since ‘Fð0Þ ¼ 0, it follows from an application of the

inverse mapping theorem (Theorem 2.2) that there exists an open neighborhood

U of the origin 0 in H such that:

(i) The restriction of ‘F to U is bijective.

(ii) ‘FðUÞ is an open neighborhood of 0 in H.

(iii) ‘F restricted to U has a C1 inverse map.

Without loss of generality, we may assume that

U HBð0; d1Þ ¼ fu A H : kukH < d1g for some constant d1 > 0;

and that

Bð0; rÞ ¼ fv A H : kvkH < rgH‘F ðUÞ for some constant r > 0:

(5) We show that if h A L2ðWÞ and khkL2ðWÞ <
ffiffiffiffiffi
l1

p
r, then there exists a

unique weak solution f of the non-homogeneous problem

�Afþ gðfÞ ¼ h in W;

Bf ¼ 0 on qW

�

such that kfkH < d1.

To see this, we note that the linear functional

H C w 7! �ðh;wÞL2ðWÞ

represents a continuous linear functional on H. Hence it follows from an

application of the Riesz representation theorem ([33, Chapter III, Section 6,

Theorem]) that there exists a unique function v A H such that

�ðh;wÞL2ðWÞ ¼ ðv;wÞH for all w A H: ð4:14Þ

By using the Schwarz inequality and inequality (3.7), we obtain that

kvk2H ¼ ðv; vÞH ¼ jðh; vÞL2ðWÞja khkL2ðWÞkvkL2ðWÞ

a khkL2ðWÞ
1ffiffiffiffiffi
l1

p kvkH < rkvkH:

This proves that

v A Bð0; rÞH‘F ðUÞ:
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Since we can find a unique function f A U such that

‘F ðfÞ ¼ v;

we have, by formula (4.14),

ð‘FðfÞ;wÞH ¼ ðv;wÞH ¼ �ðh;wÞL2ðWÞ for all u A H:

Therefore, we obtain from formula (4.5) that

ðf;wÞH � ðgðfÞ;wÞL2ðWÞ ¼ ð‘F ðfÞ;wÞH ¼ �ðh;wÞL2ðWÞ for all w A H:

This proves that f is a weak solution of the non-homogeneous problem (1.3).

Moreover, since we have, for all w A DðAÞHDðA1=2Þ ¼ H,

ðf;AwÞL2ðWÞ ¼ ðf;wÞH ¼ ðgðfÞ � h;wÞL2ðWÞ

and since the operator A is selfadjoint in L2ðWÞ, we obtain that

f A DðAÞ;
Af ¼ gðfÞ � h:

�

The proof of Lemma 4.3 is now complete. r

Step 2: We find two weak solutions fþ u0, fþ u2 of the non-homogeneous

problem (1.3) di¤erent from f constructed in Step 1. To do this, we fix h A L2ðWÞ
and f A H, and introduce a new energy functional

F1 : H ! R

by the formula

F1ðuÞ ¼ Fðuþ fÞ þ ðh; uþ fÞL2ðWÞ

¼ 1

2
ðuþ f; uþ fÞH �

ð
W

Gðuþ fÞ dxþ
ð
W

h � ðuþ fÞ dx for all u A H:

Then we obtain that uþ f A H is a weak solution of the non-homogeneous

problem (1.3) if and only if u is a critical point of the energy functional F1.

Indeed, since we have, for all w A H,

ð‘F1ðuÞ;wÞH ¼ d

dt
F1ðuþ twÞjt¼0

¼ ðuþ f;wÞH �
ð
W

ðgðuþ fÞw� h � wÞ dx

¼ ðuþ f;wÞH � ðgðuþ fÞ � h;wÞL2ðWÞ; ð4:15Þ
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it follows that

ðuþ f;wÞH �
ð
W

ðgðuþ fÞ � hÞw dx ¼ 0 for all w A H

, ‘F1ðuÞ ¼ 0:

In this case, we have the assertions

uþ f A DðAÞ;
Aðuþ fÞ ¼ gðuþ fÞ � h:

�

Now we show that F1ðuÞ satisfies all the conditions of Theorem 4.1, with

condition (iii) replaced by condition ðiii�Þ. The next proposition is an essential

step in the proof of Theorem 1.1:

Proposition 4.4. Assume that conditions (B), (C) and (D) are satisfied. Then

the function F1ðuÞ satisfies all conditions (i) through (viii) and (iii�) of Theorem 4.1,

where

X ¼ spanfj1; j2; . . . ; jJg; Y ¼ X ?;

X1 ¼ spanfj1; j2; . . . ; jK�1g; Y1 ¼ X ?
1 :

Proof. (1) First, conditions (i), (ii) and (v) are trivially satisfied.

(2) Now we recall the following two inequalities

ðD2Fð0Þs; sÞH ¼ ðs; sÞH � g 0ð0Þðs; sÞL2ðWÞ

b 1� g 0ð0Þ
lK

� �
ðs; sÞH ¼ m1ksk2H for all s A Y1 ð4:16Þ

and

ðD2Fð0Þr; rÞH ¼ ðr; rÞH � g 0ð0Þðr; rÞL2ðWÞ

a 1� g 0ð0Þ
lK�1

� �
ðr; rÞH ¼ �m2krk2H for all r A X1: ð4:17Þ

Here it follows from condition (4.8) that

m1 ¼ 1� g 0ð0Þ
lK

> 0; m2 ¼
g 0ð0Þ
lK�1

� 1 > 0:
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Since D2F is continuous, there exists a constant d1 > 0 such that

kD2FðuÞ �D2Fð0Þk < min
m1

2
;
m2

2

� 	
if kukH < d1:

Hence, by inequalities (4.17) and (4.16) it follows that if kukH < d1, then we have

two inequalities

ðD2F ðuÞr; rÞH ¼ ðD2F ð0Þr; rÞH þ ðD2F ðuÞr�D2F ð0Þr; rÞH

a ðD2Fð0Þr; rÞH þ kD2FðuÞ �D2Fð0Þkðr; rÞH

a�m2krk2H þm2

2
krk2H ¼ �m2

2
krk2H for all r A X1; ð4:18Þ

and

ðD2F ðuÞs; sÞH ¼ ðD2Fð0Þs; sÞH þ ðD2F ðuÞs�D2F ð0Þs; sÞH

b ðD2Fð0Þs; sÞH � kD2FðuÞ �D2Fð0Þkðs; sÞH

bm1ksk2H �m1

2
ksk2H ¼ m1

2
ksk2H for all s A Y1: ð4:19Þ

(3) Condition (viii): Since we have, by formula (4.15),

ðD2F1ðuÞv;wÞH ¼ d

dt
ð‘F1ðuþ tvÞ;wÞHjt¼0

¼ ðv;wÞH �
ð
W

g 0ðuþ fÞv � w dx for all v;w A H;

it follows from formula (4.12) that

D2F1ðuÞ ¼ D2F ðuþ fÞ for all u A H:

Consequently, we obtain from inequality (4.7) with u :¼ uþ f that

ðD2F1ðuÞv; vÞH bmkvk2H for all v A Y and all u A H:

This verifies condition (viii).

(4) Conditions ðiii�Þ and (iv): Since kfkH < d1, we see from inequalities

(4.18) and (4.19) that

ðD2F1ð0Þr; rÞH ¼ ðD2FðfÞr; rÞH a�m2

2
krk2H for all r A X1;
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and that

ðD2F1ð0Þs; sÞH ¼ ðD2FðfÞs; sÞH b
m1

2
ksk2H for all s A Y1:

Hence we find that conditions ðiii�Þ and (iv) are satisfied.

(5) Condition (vii): Let u be an arbitrary element of X . By inequality (3.9)

and condition (B) of Theorem 1.1, we have, for some constants c and c 0,

F1ðuÞ ¼
1

2
ðuþ f; uþ fÞH �

ð
W

Gðuþ fÞ dxþ ðh; uþ fÞL2ðWÞ

a
1

2
kuþ fk2H � g

2
kuþ fk2L2ðWÞ þ cþ khkL2ðWÞkukL2ðWÞ þ khkL2ðWÞkfkL2ðWÞ

a
1

2
½kuk2H � gkuk2L2ðWÞ� þ

1

2
kfk2H � g

2
kfk2L2ðWÞ þ gkukL2ðWÞkfkL2ðWÞ

þ kfkHkukH þ cþ khkL2ðWÞkukL2ðWÞ þ khkL2ðWÞkfkL2ðWÞ

a
1

2
1� g

lJ

� �
kuk2H þ kfkHkukH

þ 1ffiffiffiffiffi
l1

p ðkhkL2ðWÞ þ gkfkL2ðWÞÞkukH þ c 0 for all u A X ;

with

1

2
1� g

lJ

� �
< 0:

Hence we obtain that the restriction F1jX of F1 to X satisfies the condition

ðF1jX ÞðuÞ ! �y as kukH ! y:

This verifies condition (vii).

(6) Finally, we have only to note that

dim X1 ¼ K � 1a J � 1 < J ¼ dim X :

This verifies condition (vi).

The proof of Proposition 4.4 is complete. r

Step 3: By Proposition 4.4, we can apply assertion (II) of Theorem 4.1 to

obtain two distinct non-trivial functions u0 and u2 such that

‘F1ðukÞ ¼ ‘Fðfþ ukÞ ¼ 0; k ¼ 0; 2:
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Summing up, we have proved that the non-homogeneous problem (1.3) has three

distinct weak solutions f, fþ u0 and fþ u2.

Now the proof of Theorem 1.1, Part II, and hence that of Theorem 1.1, is

complete. r

5. Proof of Theorem 1.3

In this section we prove Theorem 1.3 in a series of several lemmas (Lemma

5.1 through Lemma 5.6). By virtue of Theorem 3.3, we have only to prove

Theorem 1.3 for weak solutions. In the proof of Theorem 1.3 we make use of

the comparison property of eigenvalues of degenerate elliptic boundary value

problems with indefinite weights ([24] and [25]). The proof is divided into seven

steps.

Step 1: Let H be a real Hilbert space and let F A C2ðH;RÞ. Assume that

FðuÞ satisfies conditions (v), (vii) and (viii) of Theorem 4.1 with dim X < y.

Then we can define a map j : X ! Y as follows: For a given element x A X , jðxÞ
is the unique element of Y such that

ð‘F ðxþ jðxÞÞ; kÞH ¼ 0 for all k A Y ; ð5:1Þ

and that

F ðxþ jðxÞÞ ¼ min
y AY

Fðxþ yÞ: ð5:2Þ

By using the implicit function theorem (Theorem 2.3), we obtain from condition

(viii) that the map j is of class C1 (see [18, pp. 597–598] for the details).

Moreover, we have the following:

Claim 5.1. If we define a function

G : X ! R

by the formula

GðxÞ ¼ Fðxþ jðxÞÞ; x A X ;

then it follows that G is of class C2 on X.

The next lemma is essentially obtained in the proof of Theorem 4.1:

Lemma 5.1. Assume that F ðuÞ satisfies conditions (v), (vii) and (viii) of

Theorem 4.1 with dim X < y. Then ‘FðuÞ ¼ 0 for u A H if and only if u ¼
xþ jðxÞ for some x A X and ‘GðxÞ ¼ 0.
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Proof. (1) The ‘‘if ’’ part: Indeed, it follows from the formula

ð‘GðxÞ; hÞH ¼ ð‘F ðxþ jðxÞÞ; hþ j 0ðxÞðhÞÞH

¼ ð‘F ðxþ jðxÞÞ; hÞH for all h A X ð5:3Þ

that

ð‘F ðuÞ; hÞH ¼ ð‘Fðxþ jðxÞÞ; hÞH ¼ ð‘GðxÞ; hÞH ¼ 0 for all h A X :

On the other hand, we have, by formula (5.1),

ð‘FðuÞ; kÞH ¼ ð‘F ðxþ jðxÞÞ; kÞH ¼ 0 for all k A Y :

Therefore, we obtain from condition (v) that

ð‘F ðuÞ; vÞH ¼ 0 for all v A H ¼ X lY ;

so that

‘FðuÞ ¼ 0; u ¼ xþ jðxÞ:

(2) The ‘‘only if ’’ part: Assume that

‘FðuÞ ¼ 0;

u ¼ xþ y A H ¼ X lY :

�

Then we find from the proof of Theorem 4.1 that if we have, for all k A Y ,

ð‘Fðxþ yÞ; kÞH ¼ ð‘F ðuÞ; kÞH ¼ 0;

then it follows that y ¼ jðxÞ. Hence we have the formula

u ¼ xþ jðxÞ:

Therefore, we obtain from formula (5.3) that

ð‘GðxÞ; hÞH ¼ ð‘Fðxþ jðxÞÞ; hÞH ¼ ð‘FðuÞ; hÞH ¼ 0 for all h A X :

This proves that

‘GðxÞ ¼ 0:

The proof of Lemma 5.1 is complete. r
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Step 2: We prove the following:

Lemma 5.2. If the function gðtÞ satisfies the conditions of Theorem 1.3, then

the function FðuÞ, defined by formula (4.3), satisfies all conditions (i), (ii), (iii�), (iv)

through (viii) of Theorem 4.1 where

X ¼ spanfj1; j2; . . . ; jJg; Y ¼ X ?

and

X1 ¼ spanfj1; j2; . . . ; jJ�1g; Y1 ¼ X ?
1 :

Proof. Assume that the function gðtÞ satisfies the conditions of Theorem

1.3. Let g and g 0 be any numbers satisfying the condition

lJ < g < minfg 0ð�yÞ; g 0ðyÞgamaxfg 0ð�yÞ; g 0ðyÞga g 0 < lJþ1:

Then we can find a constant t0 > 0 such that

ga
gðtÞ
t

a g 0 for all jtjb t0:

Hence we have the inequalityð t
0

gðsÞ ds� gt2

2
b c0 for all t A R;

where

c0 ¼ min
jtjat0

ð t
0

gðsÞ ds� gt2

2

� 	
:

This verifies condition (B) of Theorem 1.1.

Since we have, by condition (1.6),

tg 00ðtÞ > 0 for all t0 0;

it follows from condition (F) that

lJ�1 < g 0ð0Þa g 0ðtÞamaxfg 0ð�yÞ; g 0ðyÞga g 0 < lJþ1: ð5:4Þ

This verifies conditions (C) and (D) of Theorem 1.1.

Therefore, we obtain from Proposition 4.2 and inequality (4.17) that the

function F satisfies all the conditions (i), (ii), ðiii�Þ, (iv) through (viii) of Theorem

4.1.

The proof of Lemma 5.2 is complete. r
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Step 3: The next lemma is an essential step in the proof of Theorem 1.3:

Lemma 5.3. Assume that ‘Fðu0Þ ¼ 0 for u0 A H, and further (by Lemma 5.1)

that u0 ¼ v0 þ jðv0Þ with v0 A X and ‘Gðv0Þ ¼ 0. Then it follows that v0 is a non-

degenerate critical point of G. More precisely, we have the formula

sgn det D2Gðv0Þ ¼
ð�1ÞJ if v0 0 0;

ð�1ÞJ�1
if v0 ¼ 0:

(
ð5:5Þ

Here it should be noticed that u0 ¼ v0 þ jðv0Þ0 0 if and only if v0 0 0.

Proof. The proof of formula (5.5) is based on the index theorem (Theorem

2.4), and is divided into two steps.

Step 3-1: We consider the case where ‘F ðu0Þ ¼ 0 for u0 0 0. Then it follows

that u0 is a weak solution of the homogeneous problem problem

�Au0 þ gðu0Þ ¼ 0 in W;

Bu0 ¼ 0 on qW;

�
ð5:6Þ

as is shown in the proof of Theorem 1.1.

By Theorem 3.3, we remark that u0 is a classical solution of problem (5.6),

that is,

u0 A C 2þaðWÞ:

We introduce a bounded, continuous function cðtÞ defined on R by the

formula

cðtÞ ¼
gðtÞ
t

if t0 0;

g 0ð0Þ if t ¼ 0:

(

We consider the eigenvalue problem with the weight cðu0ðxÞÞ

Aw ¼ acðu0ðxÞÞw in W;

Bw ¼ 0 on qW;

�
ð5:7Þ

and the eigenvalue problem with the weight g 0ðu0ðxÞÞ

Aw ¼ bg 0ðu0ðxÞÞw in W;

Bw ¼ 0 on qW:

�
ð5:8Þ

We let

a1ðcðu0ÞÞ < a2ðcðu0ÞÞa � � �a akðcðu0ÞÞa akþ1ðcðu0ÞÞa � � � ;
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and

b1ðg 0ðu0ÞÞ < b2ðg 0ðu0ÞÞa � � �a bkðg 0ðu0ÞÞa bkþ1ðg 0ðu0ÞÞa � � �

denote the eigenvalues of problems (5.7) and (5.8), respectively, each eigenvalue

being repeated according to its multiplicity (see [25, Theorem 1.2]).

Then we have the following comparison property of eigenvalues bJðg 0ðu0ÞÞ
and bJþ1ðg 0ðu0ÞÞ where J is the positive integer given in Theorem 1.3:

Claim 5.2. The eigenvalue problem (5.8) does not have 1 as eigenvalues.

More precisely, we have the inequality

bJðg 0ðu0ÞÞ < 1 < bJþ1ðg 0ðu0ÞÞ for u0 0 0: ð5:9Þ

Proof. First, we have, by inequality (5.4),

lJ�1 < g 0ð0Þa g 0ðtÞa g 0 < lJþ1 for all t A R:

This implies that

lJ�1 < g 0ðu0ðxÞÞ < lJþ1 for all x A W:

Hence it follows from an application of the comparison property of eigenvalues

([25, Corollary 3.6]) that

1 < bJþ1ðg 0ðu0ÞÞ: ð5:10Þ

On the other hand, we have, by problem (5.6),

Au0 ¼
gðu0Þ
u0

� u0 ¼ cðu0Þu0 in W;

Bu0 ¼ 0 on qW:

8><
>:

This proves that

akðcðu0ÞÞ ¼ 1 for some kb 1: ð5:11Þ

However, since we have, by inequality (5.4),

lJ�1 < cðu0ðxÞÞ < lJþ1 for all x A W;

it follows from an application of the comparison property of eigenvalues

([25, Corollary 3.6]) that

aJ�1ðcðu0ÞÞ < 1 < aJþ1ðcðu0ÞÞ:
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Hence we obtain from assertion (5.11) that

aJðcðu0ÞÞ ¼ 1: ð5:12Þ

Moreover, we have, by condition (1.6),

cðu0ðxÞÞ ¼
ð1
0

g 0ðsu0ðxÞÞ ds < g 0ðu0ðxÞÞ for all x A W;

it follows from assertion (5.12) that

bJðg 0ðu0ÞÞ < aJðcðu0ÞÞ ¼ 1: ð5:13Þ

Therefore, by combining assertions (5.10) and (5.13) we obtain the desired

assertion (5.9) for u0 0 0.

The proof of Claim 5.2 is complete. r

Let fykgyk¼1 be a sequence of orthonormal eigenfunctions of problem (5.8).

Namely, we have the assertions

Ayk ¼ bkðg 0ðu0ÞÞg 0ðu0ðxÞÞyk in W;

Byk ¼ 0 on qW;

�

and ð
W

g 0ðu0ðxÞÞykðxÞyjðxÞ dx ¼ dkj :

If we let

V ¼ spanfy1; y2; . . . ; yJg; ð5:14Þ

then it follows from a variational characterization formula of eigenvalues (see

[26, Proposition 3.4]) that

ðv; vÞH a bJðg 0ðu0ÞÞ
ð
W

g 0ðu0ðxÞÞv2 dx for all v A V :

Therefore, we conclude from formula (4.12) that

ðD2Fðu0Þv; vÞH ¼ ðv; vÞH �
ð
W

g 0ðu0ðxÞÞv2 dx

a 1� 1

bJðg 0ðu0ÞÞ

� �
ðv; vÞH

¼ � 1

bJðg 0ðu0ÞÞ
� 1

� �
kvk2H for all v A V : ð5:15Þ
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In order to apply formula (2.2) with f :¼ �‘G, we show that all of the

eigenvalues of the selfadjoint operator

D2Gðv0Þ : X ! X

are negative.

Assume, to the contrary, that there exists h1 A X such that

ðD2Gðv0Þh1; h1ÞH b 0:

If we let

m ¼ h1 þ j 0ðv0Þðh1Þ; ð5:16Þ

then it follows from the formula (see formula (5.1))

ðD2GðxÞh; hÞH

¼ ðD2Fðxþ jðxÞÞðhþ j 0ðxÞðhÞÞ; hþ j 0ðxÞðhÞÞH for all h A X ð5:17Þ

that

ðD2Fðu0Þm;mÞH ¼ ðD2Gðv0Þh1; h1ÞH b 0: ð5:18Þ

Moreover, by using the formula

ðD2Fðxþ jðxÞÞðhþ j 0ðxÞðhÞÞ; kÞH

¼ d

dt
ð‘F ðxþ thþ jðxþ thÞÞ; kÞHjt¼0 ¼ 0 for all k A Y ; ð5:19Þ

we obtain that

ðD2Fðu0Þm; kÞH ¼ 0 for all k A Y : ð5:20Þ

We recall from Lemma 5.2 that there exists a constant m > 0 such that

ðD2F ðu0Þk; kÞH bmkkk2H for all k A Y : ð5:21Þ

Since D2F ðu0Þ is selfadjoint in H, we obtain from assertion (5.20) and

inequalities (5.18) and (5.21) that

ðD2Fðu0Þðk þ amÞ; k þ amÞH

¼ ðD2Fðu0Þk; kÞH þ a2ðD2Fðu0Þm;mÞH b 0 for all k A Y and a A R: ð5:22Þ

Thus, if Z is a subspace of H defined by the formula

Z ¼ fz ¼ k þ am A H : k A Y ; a A Rg; ð5:23Þ
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then we have, by inequality (5.22),

ðD2F ðu0Þz; zÞH b 0 for all z A Z: ð5:24Þ

Extend h1 to a basis fh1; h2; . . . ; hJg of X and let

X̂X ¼ spanfh2; . . . ; hJg:

Since H ¼ X lY , we obtain from formulas (5.16) and (5.23) that

H ¼ X̂X lZ:

Consequently, it follows that

yk ¼ lk þ zk; l A X̂X ; zk A Z; 1a ka J:

Since dim X̂X ¼ J � 1, there exist constants c1; . . . ; cJ such that

c1l1 þ � � � þ cJlJ ¼ 0; ðc1; . . . ; cJÞ0 ð0; . . . ; 0Þ:

Therefore, we obtain that

v ¼ c1y1 þ � � � þ cJyJ ¼ c1z1 þ � � � þ cJzJ A Z;

and from the independence of fy1; . . . ; yJg that

v ¼ c1y1 þ � � � þ cJyJ 0 0:

By inequality (5.24), it follows that

ðD2Fðu0Þv; vÞH b 0:

However, we have, by inequalities (5.15) and (5.9),

ðD2F ðu0Þv; vÞH a� 1

bJðg 0ðu0ÞÞ
� 1

� �
kvk2H < 0:

This contradiction proves that all the eigenvalues of D2Gðv0Þ should be negative.

The proof of the first case where ‘Gðv0Þ ¼ 0 for v0 0 0 is complete.

Step 3-2: We consider the case where ‘Gðv0Þ ¼ 0 for v0 ¼ 0.

In order to apply formula (2.2) with f :¼ �‘G, we show that D2Gð0Þ has

one positive eigenvalue and ðJ � 1Þ negative eigenvalues. To do this, it su‰ces to

prove the following three assertions:

(i) D2Gð0Þ is non-singular.

(ii) The quadratic form associated with D2Gð0Þ cannot be negative definite

on all of X .
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(iii) The quadratic form associated with D2Gð0Þ cannot be positive definite

on any two-dimensional subspace of X .

(a) Assertion (i) follows from Lemma 5.2, since condition ðiii�Þ of Theorem

4.1 implies that 0 is a non-degenerate critical point of G. Indeed, we have the

following:

Claim 5.3. If condition (iii�) is satisfied, then it follows that 0 is a non-

degenerate critical point of f ðxÞ ¼ �GðxÞ.

Proof. First, we show that the kernel of D2Fð0Þ is trivial. Assume that

D2F ð0Þu ¼ 0 for some u ¼ rþ s with r A X1 and s A Y1:

Then it follows from the selfadjointness of D2F ð0Þ that

0 ¼ ðr� s;D2F ð0Þðrþ sÞÞH

¼ ðr;D2F ð0ÞrÞH þ ðr;D2Fð0ÞsÞH � ðs;D2Fð0ÞrÞH � ðs;D2Fð0ÞsÞH

¼ ðr;D2F ð0ÞrÞH � ðs;D2Fð0ÞsÞH;

so that

ðr;D2Fð0ÞrÞH ¼ ðs;D2Fð0ÞsÞH:

However, we have, by conditions (iii) and (iv),

0b ðr;D2Fð0ÞrÞH ¼ ðs;D2F ð0ÞsÞH bm1ksk2H > 0 if s0 0;

and, by conditions ðiii�Þ and (iv),

0am1ksk2H a ðs;D2Fð0ÞsÞH ¼ ðr;D2Fð0ÞrÞH < 0 if r0 0:

These contradictions prove that u ¼ rþ s ¼ 0.

Now we assume that

D2f ð0Þh1 ¼ �D2Gð0Þh1 ¼ 0 for some h1 A X :

Then it follows from formula (5.3) that we have, for all h2 A X ,

0 ¼ ðD2Gð0Þh1; h2ÞH ¼ d

dt
ð‘Gðth1Þ; h2ÞHjt¼0

¼ d

dt
ð‘Fðth1 þ jðth1ÞÞ; h2ÞHjt¼0 ¼ ðD2Fð0Þðh1 þ j 0ð0Þh1Þ; h2ÞH: ð5:25Þ
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On the other hand, it follows from formula (5.19) with x :¼ 0 that

ðD2Fð0Þðh1 þ j 0ð0Þh1Þ; kÞH

¼ ðD2F ð0þ jð0ÞÞðh1 þ j 0ð0Þh1Þ; kÞH ¼ 0 for all k A Y : ð5:26Þ

Since H ¼ X lY , we obtain from formulas (5.25) and (5.26) that

ðD2Fð0Þðh1 þ j 0ð0Þh1Þ; uÞH ¼ 0 for all u ¼ h2 þ k A H:

Hence we have the formula

D2Fð0Þðh1 þ j 0ð0Þh1Þ ¼ 0:

However, since the kernel of D2F ð0Þ is trivial, it follows that

h1 þ j 0ð0Þh1 ¼ 0; h1 A X ; j 0ð0Þh1 A Y ;

so that

h1 ¼ 0:

This proves that the Hessian matrix D2f ð0Þ of f at 0 is non-singular.

The proof of Claim 5.3 is complete. r

(b) To establish assertion (ii), we assume, to the contrary, that the quadratic

form associated with D2Gð0Þ is negative definite on all of X . Namely, we have

the inequality

ðD2Gð0Þh; hÞH < 0 for all non-zero elements h of X : ð5:27Þ

If we let

ŴW ¼ fŵw ¼ hþ j 0ð0ÞðhÞ : h A Xg;

then it follows that dim ŴW ¼ dim X ¼ J. Moreover, since jð0Þ ¼ 0, we obtain

from formula (5.17) and inequality (5.27) that

ðD2Fð0Þŵw; ŵwÞH ¼ ðD2Fð0Þðhþ j 0ð0ÞðhÞÞ; hþ j 0ð0ÞðhÞÞH

¼ ðD2Gð0Þh; hÞH < 0 for all non-zero elements ŵw of ŴW :

Since codim Y1 ¼ J � 1, we can find a non-zero element w1 of ŴW VY1. Hence we

have the inequality

ðD2F ð0Þw1;w1ÞH < 0:
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However, we obtain from Lemma 5.2 and condition (iv) of Theorem 4.1 that

ðD2F ð0Þw1;w1ÞH bm1kw1k2H > 0:

This contradiction proves that D2Gð0Þ cannot be negative definite on all of X .

(c) To prove assertion (iii), we assume, to the contrary, that there exists a

two-dimensional subspace Q of X such that the quadratic form associated with

D2Gð0Þ is positive definite on Q. Namely, we have the inequality

ðD2Gð0Þq; qÞH > 0 for all non-zero elements q of Q: ð5:28Þ

If Q̂Q is a subspace of H defined by the formula

Q̂Q ¼ fq̂q ¼ qþ j 0ð0ÞðqÞ : q A Qg;

then we have, by formula (5.17) and inequality (5.28),

ðD2Fð0Þq̂q; q̂qÞH ¼ ðD2F ð0Þðqþ j 0ð0ÞðqÞÞ; qþ j 0ð0ÞðqÞÞH

¼ ðD2Gð0Þq; qÞH > 0 for all non-zero elements q̂q of Q̂Q: ð5:29Þ

On the other hand, we have, by formula (5.19),

ðD2F ð0Þq̂q; kÞH ¼ ðD2F ð0Þðqþ j 0ð0ÞðqÞÞ; kÞH ¼ 0 for all k A Y :

Therefore, we obtain from inequality (5.29) and condition (viii) of Theorem 4.1

that

ðD2Fð0Þðq̂qþ kÞ; q̂qþ kÞH

¼ ðD2F ð0Þq̂q; q̂qÞH þ ðD2F ð0Þk; kÞH

> 0 for all q̂q A Q̂Q and k A Y with ðq̂q; kÞ0 ð0; 0Þ: ð5:30Þ

This implies that

Q̂QVY ¼ f0g:

Moreover, since we have the formula

codimðQ̂QlYÞ ¼ codim Y � dim Q̂Q ¼ J � 2

and dim X1 ¼ J � 1, we can find a non-zero element z1 of X1 V ðQ̂QlYÞ.
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Therefore, we obtain from inequality (5.30) with q̂qþ k :¼ z1 and condition

ðiii�Þ of Theorem 4.1 with x :¼ z1 that

0 < ðD2F ð0Þz1; z1ÞH < 0:

This contradiction proves that D2Gð0Þ cannot have two positive eigenvalues.

Now the proof of Lemma 5.3 is complete. r

Step 4: By using the inverse mapping theorem (Theorem 2.2), we prove a

local existence and uniqueness theorem for the non-homogeneous problem (1.3):

Lemma 5.4. If u0 is a weak solution of problem (1.5), then there exist

constants d > 0 and d 0 > 0 such that if h A L2ðWÞ and khkL2ðWÞ < d, then there

exists a unique weak solution u of problem (1.3) with ku� u0kH < d 0.

Proof. As a by-product of the proof of Lemma 5.3, we find that if u0 is

any solution of problem (1.5), then it follows from formulas (4.9) and (4.12) that

the Fréchet derivative

D2Fðu0Þ ¼ I � Tðg 0ðu0ÞÞ : H ! H

of ‘F at u0 corresponds to the linear eigenvalue problem with the weight

g 0ðu0ðxÞÞ

Aw ¼ g 0ðu0ðxÞÞw in W;

Bw ¼ 0 on qW:

�
ð5:31Þ

However, problem (5.31) has only the trivial solution. Indeed, it su‰ces to note

the following:

(a) If u0 is not identically equal to zero, then 1 is not an eigenvalue of

problem (5.31), since we have, by inequality (5.9),

bJðg 0ðu0ÞÞ < 1 < bJþ1ðg 0ðu0ÞÞ:

(b) If u0 is the trivial solution, then g 0ðu0ðxÞÞ ¼ g 0ð0Þ is not en eigenvalue

of the operator A, since we have, by condition (F),

lJ�1 < g 0ð0Þ < lJ :

Hence we obtain from the Fredholm alternative for D2F ðu0Þ that D2F ðu0Þ
is bijective. Therefore, it follows from an application of the inverse mapping

theorem (Theorem 2.2) that there exists an open neighborhood Uðu0Þ of u0 such

that:
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(i) The restriction of ‘F to Uðu0Þ is bijective.

(ii) ‘F ðUðu0ÞÞ is an open neighborhood of the origin 0.

(iii) ‘F restricted to Uðu0Þ has a C1 inverse map.

Without loss of generality, we may assume that

Uðu0ÞHBðu0; d 0Þ ¼ fu A H : ku� u0kH < d 0g for some constant d 0 > 0;

and that d > 0 is so small that khkL2ðWÞ < d for all h A ‘F ðUðu0ÞÞ.
Summing up, we have proved that if khkL2ðWÞ < d, then there exists a unique

weak solution u of problem (1.3) such that ku� u0kH < d 0.

The proof of Lemma 5.4 is complete. r

Step 5: The next lemma asserts that if h A L2ðWÞ is bounded in L2ðWÞ, then
any weak solution u of the non-homogeneous problem (1.3) is bounded in H:

Lemma 5.5. Given a number r > 0, there exists a constant RðrÞ > 0 such that

if h A L2ðWÞ with khkL2ðWÞ a r, then any weak solution u of problem (1.3) satisfies

the condition

kukH aRðrÞ:

Proof. Let g and g 0 be constants such that

lJ < g 0 amaxfg 0ðyÞ; g 0ð�yÞga g < lJþ1: ð5:32Þ

Then there exists a constant t0 > 0 such that

g 0 a
gðtÞ
t

a g for all jtjb t0:

We extend the restriction of gðtÞ=t to ð�y;�t0�U ½t0;yÞ to a continuous function

gðtÞ on R ¼ ð�y;yÞ (for example, linearly between �t0 and t0) such that

lJ < g 0 a gðtÞa g < lJþ1 for all t A R: ð5:33Þ

Since the function HðtÞ ¼ gðtÞ � gðtÞt is continuous and has compact support, it is

bounded on R. Hence we have the formula

gðtÞ ¼ gðtÞtþHðtÞ; jHðtÞjaL; ð5:34Þ

with some constant L > 0.
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Assume that h A L2ðWÞ with khkL2ðWÞ a r. Let u A H be any weak solution

of problem (1.3). Namely, we have, for all z A H,

ðu; zÞH � ðgðuÞ � h; zÞL2ðWÞ ¼ 0: ð5:35Þ

If u ¼ vþ w with v A X and w A Y ¼ X ?, then we let

z ¼ w� v A H:

We remark that

kzk2H ¼ kvk2H þ kwk2H ¼ kuk2H:

Hence we obtain from formula (5.34) with t :¼ u and formula (5.35) that

ðw� v;wþ vÞH �
ð
W

gðuÞðw2 � v2Þ dx ¼ ðz; uÞH �
ð
W

gðuÞu � z dx

¼ ðu; zÞH �
ð
W

ðgðuÞ �HðuÞÞz dx

¼
ð
W

ðHðuÞz� h � zÞ dx:

By inequality (5.33), it follows from an application of the Schwarz inequality and

inequality (3.7) that

kwk2H � gkwk2L2ðWÞ þ g 0kvk2L2ðWÞ � kvk2H

¼ kwk2H � kvk2H � gkwk2L2ðWÞ þ g 0kvk2L2ðWÞ

a ðw� v;wþ vÞH �
ð
W

gðuÞðw2 � v2Þ dx

¼
ð
W

ðHðuðxÞÞzðxÞ � hðxÞzðxÞÞ dx











a ðLjWj1=2 þ khkL2ðWÞÞkzkL2ðWÞ a ðLjWj1=2 þ rÞ 1ffiffiffiffiffi

l1
p kzkH

¼ ðLjWj1=2 þ rÞ 1ffiffiffiffiffi
l1

p kukH: ð5:36Þ

Moreover, by using inequalities (3.8) and (3.9) we obtain from inequality

(5.36) that
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1� g

lJþ1

� �
kwk2H þ g 0

lJ
� 1

� �
kvk2H

a kwk2H � gkwk2L2ðWÞ þ g 0kvk2L2ðWÞ � kvk2H

a ðLjWj1=2 þ rÞ 1ffiffiffiffiffi
l1

p kukH:

Therefore, if we let

b ¼ min 1� g

lJþ1
;
g 0

lJ
� 1

� 	
;

we have the inequality

bkuk2H ¼ bðkvk2H þ kwk2HÞa ðLjWj1=2 þ rÞ 1ffiffiffiffiffi
l1

p kukH:

This proves that

kukH aRðrÞ;

where

RðrÞ ¼ 1ffiffiffiffiffi
l1

p
b
ðLjWj1=2 þ rÞ:

The proof of Lemma 5.5 is complete. r

Step 6: The next lemma proves that the homogeneous problem (1.5) has

exactly three solutions:

Lemma 5.6. Under the conditions of Theorem 1.3, there exist exactly three

solutions, one trivial solution 0 and two non-trivial solutions v1, v2 of the ho-

mogeneous problem (1.5).

Proof. By Lemma 5.1, it su‰ces to show that there are exactly three

solutions of ‘GðvÞ ¼ 0. If ‘GðvÞ ¼ 0, then u ¼ vþ jðvÞ is a solution of the

equation ‘FðuÞ ¼ 0 or, equivalently, u is a weak solution of problem (1.5). Hence

we obtain from Lemma 5.5 with r :¼ 0 that

kukH aRð0Þ ¼ 1ffiffiffiffiffi
l1

p
b
ðLjWj1=2Þ:
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However, since v and jðvÞ are orthogonal in H, it follows that

kvkH a kvþ jðvÞkH ¼ kukH aRð0Þ:

Now, by virtue of Lemma 5.3 and the inverse mapping theorem (Theorem 2.2)

we find that the solutions of ‘GðvÞ ¼ 0 are isolated. Hence there exist only a

finite number of solutions of ‘GðvÞ ¼ 0. Let v1; v2; . . . ; vk denote the non-zero

solutions of ‘GðvÞ ¼ 0. By Theorem 1.1, it follows that

kb 2:

Since the critical points of G and f ¼ �G coincide, we have, by formula (5.5),

sgn det D2f ð0Þ ¼ ð�1ÞJ sgn det D2Gð0Þ ¼ ð�1Þ2J�1 ¼ �1 ð5:37Þ

and

sgn det D2f ðviÞ ¼ ð�1ÞJ sgn det D2GðviÞ ¼ ð�1Þ2J

¼ 1 if 1a ia k: ð5:38Þ

We remark that

F ðxþ jðxÞÞaFðxÞ for all x A X :

By condition (vii), it follows that

GðxÞ ¼ F ðxþ jðxÞÞ ! �y as kxkH ! y;

so that f ðvÞ ¼ �GðvÞ ! þy as kvkH ! y.

Therefore, we have proved that f satisfies all the conditions of Theorem 2.6.

Since we have the formulas

ið‘f ; vjÞ ¼ sgn det D2f ðvjÞ; j ¼ 0; 1; . . . ; k;

it follows from an application of Theorem 2.6 and formulas (5.37) and (5.38) that

1 ¼
Xk
j¼0

ið‘f ; vjÞ ¼ �1þ ðk � 1Þ ¼ k � 1:

This proves that

k ¼ 2:

The proof of Lemma 5.6 is complete. r
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Step 7: To complete the proof of Theorem 1.3, let u0, u1 and u2 be the three

solutions of problem (1.5). By Lemma 5.4, we can choose constants d > 0 and

d 0 > 0 such that if h A L2ðWÞ and khkL2ðWÞ < d, then there exist solutions ~uuk,

k ¼ 0; 1; 2 of problem (1.3) with

k~uuk � ukkH < d 0; k ¼ 0; 1; 2:

Since d and d 0 may be chosen to be arbitrarily small, these solutions are distinct

provided that if khkL2ðWÞ is su‰ciently small.

(1) Assume, to the contrary, that Theorem 1.3 does not hold true. Then

there exists a sequence fhmgym¼1 in L2ðWÞ such that

khmkL2ðWÞ ! 0 as m ! y

and that there exist four distinct solutions ulm, l ¼ 0; 1; 2; 3, of the non-

homogeneous problem (1.3) with h :¼ hm. Namely, we have, for all w A H,

ðulm;wÞH �
ð
W

ðgðulmÞw� hm � wÞ dx ¼ 0; l ¼ 0; 1; 2; 3: ð5:39Þ

If we introduce a map N : H ! H by the formula

N ¼ A�1ðgð�ÞÞ : H �! L2ðWÞ �!gð�Þ L2ðWÞ �!A
�1

H; ð5:40Þ

then it follows that the map N is compact. Indeed, it su‰ces to note the following

four assertions:

(a) The injection

H ,! W 1;2ðWÞ

is continuous (assertion (3.3)).

(b) The injection

W 1;2ðWÞ ,! L2ðWÞ

is compact (the Rellich–Kondrachov theorem (see [2, Theorem 6.3])).

(c) The map

gð�Þ : L2ðWÞ ! L2ðWÞ

is continuous, since gðtÞ is Lipschitz continuous on R.

(d) The resolvent

A�1 : L2ðWÞ ! H

is continuous.
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Moreover, we obtain from formula (5.40) that

ðNðuÞ;wÞH ¼ ðgðuÞ;wÞL2ðWÞ for all w A H: ð5:41Þ

Indeed, it su‰ces to note that

ðNðuÞ;wÞH ¼ ðA�1ðgðuÞÞ;wÞH ¼ ðAA�1ðgðuÞÞ;wÞL2ðWÞ

¼ ðgðuÞ;wÞL2ðWÞ for all w A H:

(2) From the Riesz representation theorem ([33, Chapter III, Section 6,

Theorem]), there exists a unique function vm A H such that

ðhm;wÞL2ðWÞ ¼ ðvm;wÞH for all w A H:

Then we have the inequalities (see inequality (3.7))

kvmk2H a khmkL2ðWÞkvmkL2ðWÞ a khmkL2ðWÞ
1ffiffiffiffiffi
l1

p kvmkH;

so that

kvmkH a
1ffiffiffiffiffi
l1

p khmkL2ðWÞ:

This proves that

kvmkH ! 0 as m ! y: ð5:42Þ

(3) By using formula (5.41), we can rewrite formula (5.39) in the form

ðulm;wÞH ¼ ðNðulmÞ;wÞH � ðvm;wÞH

¼ ðNðulmÞ � vm;wÞH for all w A H:

Hence we have the formula

ulm ¼ NðulmÞ � vm; l ¼ 0; 1; 2; 3: ð5:43Þ

Since the sequence fhmgym¼1 is bounded in L2ðWÞ, it follows from Lemma 5.5 that

the sequences fulmgym¼1 are bounded in H. Thus, by using the local sequential

weak compactness of Hilbert spaces ([33, Chapter V, Section 2, Theorem 1]) we

can choose a subsequence fulmj
gyj¼1 which converges weakly to some function zl

in H for 0a la 3:

ulmj
* zl; l ¼ 0; 1; 2; 3: ð5:44Þ
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However, we recall that the map

Nð�Þ ¼ A�1ðgð�ÞÞ : H ! H

is compact. This implies that the sequence Nðulmj
Þ converges strongly to NðzlÞ

for 0a la 3:

Nðulmj
Þ ! NðzlÞ; l ¼ 0; 1; 2; 3: ð5:45Þ

By passing to the limit in formula (5.43), we obtain from assertions (5.42), (5.44)

and (5.45) that the sequence fulmj
g converges strongly to zl and that

zl ¼ NðzlÞ; l ¼ 0; 1; 2; 3:

Therefore, we have the formula

ðzl;wÞH ¼ ðNðzlÞ;wÞH for all w A H; l ¼ 0; 1; 2; 3;

or equivalently,

ðzl;wÞH �
ð
W

gðzlÞw dx ¼ 0 for all w A H; l ¼ 0; 1; 2; 3:

This proves that zl is a weak solution of the homogeneous problem (1.5).

Since each solution zl, l ¼ 0; 1; 2; 3, is equal to some solution uk, k ¼ 0; 1; 2.

This implies that some two of the four sequences fulmj
g, l ¼ 0; 1; 2; 3, should

converge to the same weak solution of the homogeneous problem (1.5). However,

we obtain that the four solutions ulmj
, l ¼ 0; 1; 2; 3, of the non-homogeneous

problem (1.3) are distinct for each j and khmj
kL2ðWÞ ! 0 as j ! y. This con-

tradicts Lemma 5.4 for j su‰ciently large.

Now the proof of Theorem 1.3 is complete. r

6. Proof of Theorem 1.4

This last section is devoted to the proof of Theorem 1.4. By virtue of

Theorem 3.3, we have only to prove Theorem 1.4 for weak solutions. The proof

of Theorem 1.4 is divided into three steps.

Step 1: To prove Theorem 1.4, we make use of the following variant of the

Ljusternik–Schnirelman theory due to Clark [12, Theorem 11]:

Theorem 6.1 (Clark). Let H be a real Hilbert space and let f ðxÞ be an

even, real-valued C2 function defined on H. Assume that f ðxÞ has the property that

whenever fxngHH is a bounded sequence such that f ðxnÞ < 0, f ðxnÞ is bounded

from below, and ‘f ðxnÞ ! 0, then fxng contains a convergent subsequence. More-

over, we assume that the following four conditions (a) through (d) are satisfied:
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(a) f ð0Þ ¼ 0.

(b) f ðxÞ is bounded from below.

(c) There exists a subspace M of H of dimension l > 0 such that

ðD2f ð0Þx; xÞH < 0 for all non-zero elements x of M:

(d) f ðxÞb 0 for kxkH su‰ciently large.

Then there exist at last 2l non-zero solutions of the equation ‘f ðxÞ ¼ 0.

Step 2: If gðtÞ is an odd function of t, then it follows from formula (4.3) that

the energy function

F ðuÞ ¼ 1

2
ðu; uÞH �

ð
W

GðuðxÞÞ dx ¼ 1

2
ðu; uÞH �

ð
W

ð uðxÞ
0

gðsÞ dsdx

is an even function of u and from formula (4.11) that the gradient

‘FðuÞ ¼ u� TðgðuÞÞ

is an odd function of u.

We recall that the function F ðuÞ satisfies all the hypotheses of Theorem 4.1,

as is shown in the proof of Theorem 1.1.

Step 3: Now we obtain from condition (G) that inequality (4.1) holds true

lK�1 < g 0ð0Þ < lK a lJ

and that

X ¼ spanfj1; j2; . . . ; jJg; dim X ¼ J;

Y ¼ X ?;

X1 ¼ spanfj1; j2; . . . ; jK�1g; dim X1 ¼ K � 1a J � 1 < J ¼ dim X ;

Y1 ¼ X ?
1 :

Step 3-1: We have the following:

Claim 6.1. If gðtÞ is an odd function of t, then the function jðvÞ is an odd

function of v and the function

GðvÞ ¼ F ðvþ jðvÞÞ; v A X ;

is an even function of v.
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Proof. First, we prove the oddness of jðvÞ. By the oddness of ‘FðuÞ, it

follows from formula (5.1) that

ð‘F ð�v� jðvÞÞ; kÞH ¼ �ð‘F ðvþ jðvÞÞ; kÞH ¼ 0 for all k A Y :

Since jð�vÞ is the unique element of Y such that

ð‘F ð�vþ jð�vÞÞ; kÞH ¼ 0 for all k A Y ;

we obtain that

jð�vÞ ¼ �jðvÞ for all v A X :

This proves the oddness of jðvÞ.
Secondly, since jðvÞ is odd and F ðuÞ is even, it follows that

Gð�vÞ ¼ Fð�vþ jð�vÞÞ ¼ F ð�v� jðvÞÞ ¼ Fðvþ jðvÞÞ

¼ GðvÞ for all v A X :

This proves the evenness of GðvÞ.
The proof of Claim 6.1 is complete. r

Step 3-2: We have the following:

Claim 6.2. If condition (G) is satisfied, then the quadratic form associated

with D2Gð0Þ is positive definite on some subspace M of X of dimension J � K þ 1.

Proof. Assume, to the contrary, that D2Gð0Þ has at least K non-positive

eigenvalues. Then there exists a subspace W of X with dim W bK such that

ðD2Gð0Þw;wÞH a 0 for all w A W : ð6:1Þ

If ŴW is a subspace of H defined by the formula

ŴW ¼ fŵw ¼ wþ j 0ð0Þw : w A Wg;

then, since jð0Þ ¼ 0, it follows from formula (5.17) and inequality (6.1) that

ðD2F ð0Þðwþ j 0ð0ÞðwÞÞ;wþ j 0ð0ÞðwÞÞH

¼ ðD2Fð0þ jð0ÞÞðwþ j 0ð0ÞðwÞÞ;wþ j 0ð0ÞðwÞÞH

¼ ðD2Gð0Þw;wÞH a 0 for all w A W ;
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so that

ðD2Fð0Þŵw; ŵwÞH a 0 for all ŵw A ŴW : ð6:2Þ

However, we have, by inequality (4.16),

ðD2Fð0Þs; sÞH bm1ksk2H for all s A Y1; ð6:3Þ

with

m1 ¼ 1� g 0ð0Þ
lK

> 0;

and that

codim Y1 ¼ K � 1:

Since dim ŴW ¼ dim W bK , we can find a non-zero element z of ŴW VY1.

By using inequality (6.3) with s :¼ z and inequality (6.2) with ŵw :¼ z, we

obtain that

0 < m1kzk2H a ðD2F ð0Þz; zÞH a 0:

This contradiction proves the existence of an ðJ � K þ 1Þ-dimensional subspace

M of X on which D2Gð0Þ is positive definite.

The proof of Claim 6.2 is complete. r

If we let

f ðvÞ ¼ �GðvÞ ¼ �Fðvþ jðvÞÞ; v A X ;

then it follows from Claim 6.2 that

ðD2f ð0Þv; vÞH < 0 for all non-zero elements v of M:

This verifies condition (c) of Theorem 6.1 with l :¼ J � K þ 1.

Moreover, since we have, for all v A X ,

F ðvþ jðvÞÞaFðvÞ;

we obtain from Proposition 4.2 (condition (vii) of Theorem 4.1) that

GðvÞ ¼ Fðvþ jðvÞÞ ! �y as kvkH ! y;

so that

f ðvÞ ¼ �GðvÞ ! þy as kvkH ! y:

This verifies conditions (b) and (d) of Theorem 6.1.
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Condition (a) of Theorem 6.1 is trivially satisfied.

Step 3-3: Since X is finite-dimensional, it follows from an application of [14,

Theorem 4.3.3] that every bounded sequence has a convergent subsequence.

Summing up, we have proved that the function

f ðvÞ ¼ �GðvÞ ¼ �Fðvþ jðvÞÞ; v A X ;

satisfies all the conditions of Theorem 6.1 with H :¼ X and l :¼ J � K þ 1.

Hence there exist at least 2ðJ � K þ 1Þ non-zero solutions v1; v2; . . . ; v2ðJ�Kþ1Þ of

the equation

‘GðvÞ ¼ 0:

Therefore, by applying Lemma 5.1 to our situation we can find at least

2ðJ � K þ 1Þ non-zero solutions u1; u2; . . . ; u2ðJ�Kþ1Þ of the equation

‘F ðuÞ ¼ 0

with

ui ¼ vi þ jðviÞ; 1a ia 2ðJ � K þ 1Þ:

This proves that there exist at least 2ðJ � K þ 1Þ non-trivial solutions of problem

(1.5), since critical points of F are weak solutions of the homogeneous problem

(1.5).

The proof of Theorem 1.4 is complete. r
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