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Spontaneous simulation of land surface temperature in Tianjin city, China
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Abstract
Monitoring and simulating land surface temperature 

(LST) by using satellite images is an essential approach 
to understand land use/cover changes, especially in de-
veloping countries where the availability of ground truth 
and statistical data is limited. This study analyzed the 
relationship between LST and land use/cover types in 
Tianjin city from 2005 to 2015. Then, based on the LST 
distribution maps, we simulated LST in 2025 by employ-
ing a hybrid model of the artificial neural network and 
the cellular automata. The results show that the LST is 
gradually increasing from 2005 to 2025 with the changes 
in the land use/cover. This study provides significative in-
formation for sustainable development and environmental 
protection in the future.
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1.	Introduction
With the rapid urbanization and industrialization, land 

use/cover has changed enormously (Hao et al., 2016; 
Subasinghe et al., 2016). At the same time, heat island 
effect has received much attention in the urban planning, 
because there is a direct correlation between LST and 
land use/cover distribution (Estoque and Murayama, 
2017). Urban sprawl, environmental damage and crop-
land loss are widely recognized as influencing factors to 
enhance the heat island phenomena (Li et al., 2011; Xu et 
al., 2010). LST monitoring is a comprehensive expression 
of urbanization and environmental protection.    

Commonly, urban expansion has been emerged at the 
cost of reducing cropland and green area. The green space 
in the metropolitan area is the most effective land use/
cover type to avoid LST in a consistent exorbitant con-
dition (Phan et al., 2018). Therefore, analyzing the rela-
tionship between LST and land use/cover distribution is 
essential to keep abreast of the urban living environment. 
Simulating LST by considering land use/cover distribu-
tion can also promote urban structure to stability. Stability 

is the sustainability of land use pattern and ecological 
process, which reflects the coordination of regional land 
use pattern and environmental conditions (Frihy, 2017). 
Many studies have examined the spatiotemporal distri-
bution of LST in different years and simulated the LST 
under different scenarios. Zhang et al. (2017) simulated 
LST under the urban park green space scenario and the 
absence of that scenario in Haidian district by using a 
hybrid model composed of EnKF-3DVar and cellular 
automata model. This paper concluded that the allocation 
of the urban green space is significant in sustainable de-
velopment (Zhang et al., 2017). Maduako et al. (2016) 
predicted LST dynamics in 2028 and 2042 in Ikom city 
by employing an artificial neural network (ANN) model, 
and the result shows that if nothing is done to decline 
surface temperature, LST will increase. Even if there are 
many studies on LST, LST simulation for the prediction 
is still only experimental (Madurako et al., 2016). “Add 
or remove” of modeling variables will affect simulation 
outcomes. Furthermore, the LST depends mainly on ge-
ographical location, the structure of land use/cover and 
government policies. Therefore, a case study on a regional 
scale can provide valuable information for urban planning 
and sustainable development.

This analysis focuses on exploring the relationship 
between LST and the distribution of land use/cover to 
retrieve the spatiotemporal patterns of LST and simulate 
LST under the spontaneous scenario to observe temper-
ature variation in Tianjin city. The spontaneous scenario, 
assumes the development trend of the study area in near 
future without natural disasters, economic crisis, and poli-
cy reform. To reflect LST change in the study area, and to 
reduce the influence of original data, we standardized the 
range of LST into 0 to 1. This normalization significantly 
decreased the influence of uncertain factors of LST pat-
tern. 

2.	Materials and methods
2.1.	Study area

The study area, Tianjin city, is the largest city which 
covers an area of 11,860 km2 in northern China (Fig. 1). 
Tianjin port, which locates in the Binhai new area, is the 
top-level port and ranks fifth in the world (Song and van 
Geenhuizen, 2014). Tianjin city recorded China’s high-
est per-capita Gross Domestic Product (GDP) with USD 
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17,126 in 2014. According to the National Bureau of Sta-
tistics (NBS) of China in 2015, 15.62 million people live 
in Tianjin in 2016, including 13.65 million people in the 
urbanized area (“National data,” n.d.). The temperature in 
Tianjin city is distinctly different, season by season. The 
lowest monthly average temperature is -3.4 °C in January, 
and the highest is 26.8 °C in July.

2.2.	Data used and pre-processing
Satellite images with high resolution, consistence and 

fast updating, have been selected to create LST maps for 
detecting the relationship between land use/cover and 
LST distribution. In this research, we selected eight imag-
es with cloud-free (less than 10%) in 2005 and 2015 from 
United States Geological Survey. All the Landsat images 
are in autumn and winter with 30-m spatial resolution. 
We also used the land use/cover maps in 2005 and 2015 
which were collected from our previous research (Wang 
and Murayama, 2017). Other ancillary data, including 
Digital Elevation Model (DEM), slope, distance to built-
up areas in 2015 and Normalized Difference Vegetation 
Index (NDVI) were also employed as modeling variables 
in the simulation.

To eliminate the effect of atmospheric and correct 
irradiation difference for different topography, TerrSet 
software has been employed for correction (Estoque and 
Murayama, 2017). After correction, the Digital Number 

(DN) has been converted into surface reflectance values 
in multispectral bands, and at-satellite Brightness Tem-
perature (TB) has been expressed in degrees Kelvin (Ran-
agalage et al., 2018). 

2.3.	Research flow
A framework is designed to simulate the LST map (Fig. 

2). Three primary parts have been established. First, we 
used Landsat images to prepare NDVI and LST maps in 
Tianjin city. Second, using supervised maximum likeli-
hood classification method, land use/cover maps were ex-
tracted. Third, we employed land use/cover map in each 
category as modeling variables into LST map and used 
ANN training to calculate transition trend. Next, by using 
a cellular automata model, the spatial distribution of LST 
map in 2015 was obtained. After that, we compared the 
simulated map with the actual LST map in 2015. If the re-
sult is within the tolerance, we continue to simulate LST 
map in 2025. 

2.4.	Calculation of the LST
Using Landsat thermal bands for calculating LST, the 

spectral emissivity (ε) is required. To retrieve the emissiv-
ity values, the thermal bands were used in the following 
equations (Weng et al., 2004): 

	 LST = TB/[1 + (λ * TB/ρ) * ln ε� (1)

Fig. 1. Location of the study area.
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where TB = the Landsat TM band 6 or Landsat OLI/
TIRS band 10 at-satellite brightness temperature in degrees 
Kelvin; λ = wavelength of emitted radiance (λ = 11.5 μm 
for Landsat TM band 5 and 10.8 μm for Landsat OLI/TIRS 
band 10); ρ = h * cσ  (1.438*10-2mK), σ = Boltzmann constant 
(1.38 *10-23J/K), h = Planck’s constant (6.626 *10-34Js), and 
c = velocity of light (2.998 *108m/s); ε = emissivity, and the 
equation can be expressed as:

	 ε = 0.004*Pv + 0.986� (2)

where the proportion of vegetation (Pv) was expressed 
as follows: 

	 Pv = ( NDVI jr – NDVImin
NDVImax – NDVImin

 )2� (3)

To calculate land surface emissivity values, NDVI 
method has been employed. The NDVI can be expressed 
as follows: 

	 NDVI = (NIR-RED ) / (NIR + RED)� (4)

where NIR = the Landsat TM band 4 or Landsat OLI/
TIRS band 5; RED = the Landsat TM band 3 and Landsat 
OLI/TIRS band 4. 

Since the ranges of LST in different years are too di-
verse to compare, the normalization method has been 
applied to standardize the LST distribution maps (Li et 
al., 2013). In this study, LST results were normalized by 
using the fuzzy module in Terrset 18.31 software. The 
range of LST was normalized into 0 ~ 1.

2.5.	Simulation procedure
There are many algorithms for the simulation and pre-

diction including logistic regression, cellular automata, 
Markov chain, agent-based model and ANN (Parker and 
Meretsky, 2004; Vázquez-Quintero et al., 2016; Wang et 
al., 2018). Cellular automata model has been proved to 
be very suitable for simulating and predicting complex 
geographic process (Alexandridis et al., 2008; Mitsova 
et al., 2011; Santé et al., 2010). The ANN combined with 
the cellular model can effectively simplify the model 
structure, which is suitable for simulating complex geo-
graphic systems (Qiang and Lam, 2015). In this study, a 
hybrid model composed of ANN and cellular automata 
has been used for simulating. At first, the fuzzy module 
has been employed to standardize the range of LST map 
into 0 to 1. Next, we reclassified the LST map into ten 
categories. After this step, each pixel in the LST map has 
their own precise value to reflect the temperature. Third, 

Fig. 2. Workflow of analyzing and simulating the LST distribution.
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the ANN module has been used to calculate the proba-
bility of occurrence by employing the LST distribution 
map in 2015 and modeling variables. Finally, we have 
used the self-adaptive inertia and competition mechanism 
CA module to simulate LST in 2025. In this analysis, all 
the steps have been executed in TerrSet 18.31 and Geo-
SOS-FLUS V2.2 software.     

3.	Results and discussions
3.1.	Spatiotemporal changes in Land use/cover and LST 

Fig. 3 indicates the normalization result of LST dis-
tribution in each land use/cover category with the range 
between 0 and 1. In 2005, the LST ranged widely because 
of the high diurnal temperature variation. In contrast, 
LST’s scale was small in 2015 due to the low diurnal 
temperature variation. Even if there is a difference of di-
urnal temperature variation between the LST in 2005 and 
2015, we could find some similarities. The main LST was 
increasing from 0.47 in 2005 to 0.51 in 2015, which is 
consistent with urbanization process in the study area. At 
the same time, 725.36 km2 area had been changed from 
other land use types into the built-up category (Wang and 
Murayama, 2017). The main LST in cropland increased 
from 0.38 to 0.44, and high temperature regain changed 
from the central area to the surrounding area. The main 
LST in water area also increased from 0.19 to 0.31 with-
out area change. However, the main LST in the green area 
decreased from 0.47 to 0.38. Conversion from green space 
to built-up, owing to urbanization, is the main cause of 
this phenomenon. The LST of each land use/cover catego-
ry is granted in the lowest to the highest order, based on 
their location in Tianjin city. The LST in the built-up area 
is the highest, and the water is the lowest.

3.2.	Preparation of modeling variables  
For examining the spatial LST pattern, we select DEM, 

slope, distance to built-up and NDVI as modeling vari-
ables. DEM and slope are essential variables of terrain 
analysis. Different elevation produces different LST, 
especially in mountain areas. Distance to built-up is gen-
erated by using ArcGIS 10.2 software. Built-up expansion 
is another main source of the LST increase. We also put 
NDVI as modeling variables because the distribution and 
density of vegetation are closely related to LST. Finally, 
we standardize the range into 0 to 255 in all the modeling 
variables to keep consistency between original dataset. 

3.3.	Simulation of the LST in 2015 and 2025
Fig. 5 shows the spatiotemporal pattern of the LST in 

2005, 2015 and 2025. The ranges of LST maps were nor-
malized into 0 to 1. In this figure, the red color means the 

higher temperature, on the contrary, the blue means the 
lower temperature. By comparing these three LST maps, 
we found that the high temperature area is gradually in-
creasing from 2005 to 2025. The main cause of this phe-
nomenon is the urbanization. When the built-up area is 
expanding, some cropland and green space are forced to 
change. Most of water areas are reservoirs except for Bin-
hai port. The LST in water areas is incomparable in three 
phases because the water storage capacity of reservoirs 
varies slightly between years and seasons. Fig. 6 shows 
the probability distribution of the LST in 2005, 2015 and 
2025. The highest temperature was in the range of 0.4 to 
0.5 in 2005, and 0.6 to 0.7 in 2015. But in 2025, the high-
est temperature increased to the range of 0.7 to 0.8. 

For the modeling validation, we used the LST map 
and modeling variables in 2005 to simulate the LST in 
2015. By comparing the simulation map and actual map 
in 2015, we found that the total kappa value is 62.17% 
which can be acceptable in the analysis (van Vliet et al., 
2011). We found that from 2005 to 2025, the average 
temperature is increasing progressively. The result is an 
alert to government and city planners that protecting the 
environment and the rational assignment of land use/cov-
er are very crucial for sustainable development.

4.	Conclusion
The simulation result of LST shows that the temper-

ature increase and the built-up expansion are correlated 
with each other. The temperature of the cropland sur-
rounded by built-up will continue to increase. Therefore, 
green space distribution is very crucial to decrease the 
LST in the future. This result can also help to understand 
the structure of land use/cover in Tianjin city. Urban 
planners and the related department of the government 
should pay more attention to sustainable development and 
environmental protection. Economic growth and urban 
development should not be achieved at the expense of 
long-term environmental damage especially in develop-
ing countries.
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Fig. 3. Normalized LST and land use/cover distribution in 2005 and 2015.
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