- 1 Title:
- 2 Response to "Comments on 'Novel real-time tumor-contouring method using deep learning to
- 3 prevent mistracking in X-ray fluoroscopy"
- 4
- 5 Authors:
- 6 Toshiyuki Terunuma and Takeji Sakae
- 7 Faculty of Medicine, University of Tsukuba, Ten-nohdai 1-1-1 Tsukuba 305-8575, Japan

8

- 9 Corresponding author:
- 10 terunuma@pmrc.tsukuba.ac.jp
- 11 Tel: +81-29-853-7115
- 12 Fax: +81-29-853-7102
- 13

14 To the editor,

15	We would like to respond to the comments of Drs. Mori and Endo [1] on our research paper [2].
16	First, we wish to discuss their suggestion on the requirement for using actual fluoroscopic images in
17	the test stage. The necessity to validate our method using clinical fluoroscopic imaging was already
18	mentioned in the Abstract, Discussion, and Conclusion sections [2]. The sentences in the Discussion
19	section include the following: "We understand that our results were obtained from preliminary
20	simulated fluoroscopic images, and we must validate this method using real clinical fluoroscopy. The
21	anticipated primary difficulty is the different image qualities between the DRRs and the clinical
22	fluoroscopy images. However, we expect that this problem can be solved by improving the DRR
23	quality to be similar to the quality of clinical fluoroscopy images, or by creating a wide contrast
24	variation in the training images for the input dataset of deep learning" [2]. The last sentence might be
25	too optimistic; however, this was because we had already confirmed a successful result using clinical
26	fluoroscopic imaging. Our next report will demonstrate the feasibility of our method using clinical
27	fluoroscopic imaging.
28	We also wish to discuss their concern that the superior results were obtained as a result of overfitting,
29	because training images were similar to the test images. We demonstrated the advantages of our
30	method using geometric and simulated fluoroscopic models [2]. In the geometric model, the
31	probability of matching a training image to a test image was almost zero. Therefore, it was proven that

32	the good tracking results were not caused by overfitting. In the simulated fluoroscopic model, we
33	already mentioned that the possibility of matching a training image to a test image was 1 in 400. This
34	low value does not directly mean that there was overfitting, because deep learning can be considered
35	a statistical parameter optimization method. This is completely different from a template matching
36	method using a dictionary file [3]. In addition, in deep learning, "data augmentation" in and of itself
37	is well known to be one of the techniques for reducing overfitting. Famous data augmentation methods
38	are affine transformation and adding noise to training images. Although a uniform noise is generally
39	used, some reports selected a randomly arranged nonuniform pattern and demonstrated improvements
40	in accuracy [4, 5]. Our data augmentation method is similar to that in these reports because the
41	overlapped bone structure can be regarded as a nonuniform pattern. Our superior results were therefore
42	not caused by overfitting, contrary to their concern.
43	Other minor questions: It was not surprising that the amplitude of the tracking error was less than the
44	pixel size of the simulation image because the tumor position was calculated as the centroid by many
45	pixels, which identified the tumor region using our image segmentation method. This was simply a
46	statistical effect. It was also not surprising that our tracking error was less than that of other methods
47	because other methods included some additional errors such as the identification of a ground truth
48	position of tumors manually.

49	Finally, we wish to discuss their suggestion that we need to change the title of our report based on
50	their concern that the title could mislead RPT readers into believing that our study was performed with
51	actual fluoroscopic images. This suggestion cannot be accepted. The appropriateness of the title was
52	already judged by an editor and referees. In the Abstract [2], we clearly stated, "Our results from a
53	simulated fluoroscopy model showed" and "Further studies using clinical fluoroscopy are highly
54	anticipated." Moreover, in our paper [2], the subsection titles in the Methods and Results have
55	highlighted the use of "Simulated fluoroscopy model." We therefore think that their concern is
56	unfounded. This is also supported by the fact that an article, which was submitted before their
57	comment, cited our paper correctly as "They validated their method on simulated fluoroscopic images"
58	[6].

59

60 Compliance with ethical standard

61 Conflicts of interest

62 The authors declare that they have no conflicts of interest.

63 Ethical statement

64 This article does not contain any studies performed on human participants and animals.

66	Refe	Reference		
67	1.	Mori S. and Endo M. Comments on "Novel real-time tumor-contouring method using deep		
68		learning to prevent mistracking in X-ray fluoroscopy" by Terunuma et al. Radiol Phys		
69		Technol 2018. https://doi.org/10.1007/s12194-018-0447-4		
70	2.	Terunuma T, Tokui A and Sakae T. Novel real-time tumor-contouring method using deep		
71		learning to prevent mistracking in X-ray fluoroscopy. Radiol Phys Technol 2018;11(1):43-		
72		53. https://doi.org/10.1007/s12194-017-0435-0		
73	3.	Mori S, Karube M, Shirai T, et al. Carbon-ion pencil beam scanning treatment with gated		
74		markerless tumor tracking: an analysis of positional accuracy. Int J Radiat Oncol Biol Phys.		
75		2016;95(1):258-266. https://doi.org/10.1016/j.ijrobp.2016.01.014		
76	4.	Zhong Z, Zheng L, Kang G, et al. Random Erasing Data Augmentation. 2017;		
77		arXiv:1708.04896v2		
78	5.	Vries TD and Taylor GW. Improved Regularization of Convolutional neural Networks with		
79		Cutout. 2017; arXiv:1708.04552		
80	6.	Meyer P, Noblet V, Mazzara C, et al. Survey on deep learning for radiotherapy. Comp Biol		
81		Med. 2018;98:126-146. https://doi.org/10.1016/j.compbiomed.2018.05.018		