
remote sensing  

Article

Monitoring of an Indonesian Tropical Wetland by
Machine Learning-Based Data Fusion of Passive and
Active Microwave Sensors

Hiroki Mizuochi 1,*, Chikako Nishiyama 2, Iwan Ridwansyah 3 and Kenlo Nishida Nasahara 4

1 Earth Observation Research Center, Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen,
Tsukuba 305-8505, Ibaraki, Japan

2 Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai,
Tsukuba 305-8572, Ibaraki, Japan; nishiyama.chikako.ry@alumni.tsukuba.ac.jp

3 Research Center for Limnology, Indonesian Institute of Sciences (LIPI), Cibinong, Bogor 16911,
Jawa Barat, Indonesia; iwanr@limnologi.lipi.go.id

4 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572,
Ibaraki, Japan; 24dakenlo@gmail.com

* Correspondence: mizuochi.hiroki@jaxa.jp; Tel.: +81-50-3362-6534

Received: 11 June 2018; Accepted: 2 August 2018; Published: 6 August 2018
����������
�������

Abstract: In this study, a novel data fusion approach was used to monitor the water-body extent in a
tropical wetland (Lake Sentarum, Indonesia). Monitoring is required in the region to support the
conservation of water resources and biodiversity. The developed approach, random forest database
unmixing (RFDBUX), makes use of pixel-based random forest regression to overcome the limitations
of the existing lookup-table-based approach (DBUX). The RFDBUX approach with passive microwave
data (AMSR2) and active microwave data (PALSAR-2) was used from 2012 to 2017 in order to obtain
PALSAR-2-like images with a 100 m spatial resolution and three-day temporal resolution. In addition,
a thresholding approach for the obtained PALSAR-2-like backscatter coefficient images provided
water body extent maps. The validation revealed that the spatial patterns of the images predicted by
RFDBUX are consistent with the original PALSAR-2 backscatter coefficient images (r = 0.94, RMSE
= 1.04 in average), and that the temporal pattern of the predicted water body extent can track the
wetland dynamics. The PALSAR-2-like images should be a useful basis for further investigation of
the hydrological/climatological features of the site, and the proposed approach appears to have the
potential for application in other tropical regions worldwide.
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1. Introduction

Lake Sentarum in Kapuas Hulu Regency, West Kalimantan Province, Indonesia, is a well-known
seasonal wetland that experiences drastic seasonal changes in its water body. The lake includes the
floodplain of the Kapuas River, which is the longest river in Indonesia. During the rainy season,
more than 25% of the river water enters the lake. On the other hand, during the dry season, 50% of the
lake water exits to the river [1,2]. The lake, therefore, plays an important role as a flood buffer for the
Kapuas River [3], and the monitoring of the water-body area is necessary for watershed management
and preservation.

Lake Sentarum is also known for its biodiversity. It has been designated as a Ramsar Convention
site since 1994 and has been part of the Danau Sentarum National Park (DSNP) since 1999. However,
there have been forest destructions and forest fires in the area, and the government has continued
to lead several development projects in the watershed to catch up with the economic development
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and growth of the neighboring countries of Indonesia. This development policy has resulted in rapid
population growth and large changes in land use and land cover in the watershed, which may impact
the water quality and dynamics of it [4].

Geographical information is needed regarding the lake area to support the conservation of water
resources and biodiversity. This is especially important for identifying the water-body dynamics,
because during the dry season, the volume of water is very small and found only in the main river,
soil basins, and oxbow lakes. During the rainy season, the water overflows inundated areas, lakes,
puddles, and river courses. This annual inundation increases the variety of habitats available to the
aquatic organisms [5]. In addition to local factors, the amount of lake water is strongly affected by
global climate variability and events. For example, the lake becomes extremely dry in the El Niño
years [6]. This means that the water-extent variability is controlled by both seasonal changes and the
far less predictable annual changes. Even though long-term, frequent, and detailed mapping of the
lake water extent is desirable and needed, few studies have attempted it.

Satellite remote sensing is suitable for such a purpose. In fact, many techniques for monitoring
wetlands have been proposed and developed [7]. In particular, microwave remote sensing is frequently
used because it has two advantages, a high sensitivity to surface water instead of liquid water on the
ground and observational capability, even under cloud cover or at night.

One of the main microwave remote sensing approaches involves the use of synthetic aperture
radar (SAR). The backscatter coefficient images derived from SAR can distinguish the surface water
from the other land cover because of the specular reflection from calm water surfaces. A popular
SAR mission is the Sentinel-1, which provides C-band SAR images observed by a constellation
of two satellites. Researchers have used backscatter coefficient images of vertical transmitting
and vertical receiving (VV) polarization, which is included in the primary observation mode of
Sentinel-1 (interferometric wide swath: IW) to map surface water [8–10]. In recent years, the relatively
high repeat frequency achieved by this constellation (after 2016) and its data availability to users
(i.e., they are provided for free by European Space Agency) have attracted attention for its use in
rapid water mapping [9]. However, previous researchers have reported that VV observation is
sensitive to the surface roughness of the water caused by wind or rain, which results in confusion
between inundated areas and other land-cover classes [9,11]. On the other hand, many studies have
reported the utility of horizontal transmitting and horizontal receiving (HH) polarization images of
L-band SAR in wetland studies [12,13]. These studies include the mapping of the water extent or
water depth in the Indonesian Mahakam lowlands [14], the Amazon River floodplain [15], and the
Congo River in Africa [16], all of which have utilized phased array type L-band SAR (PALSAR)
HH images. Manjusree et al. [11] concluded that HH has the greatest potential for accurate water
mapping. High-resolution (i.e., several-meter spatial resolution) SAR, such as TerraSAR-X [17],
RADARSAT-2 [18], or COSMO-SkyMed [19], are also useful for mapping flood water in densely
built-up urban areas [9], although they generally involve a high financial cost for users.

Another major approach involves the use of microwave radiometers, especially those using a
brightness temperature of 37 GHz [20]. Examples include a study of the Amazon River floodplain
using the Scanning Multi-Channel Microwave Radiometer (SMMR) 37 GHz [21] and a water-extent
pattern analysis in six wetlands in South America, using SMMR 37 GHz [22]. Other examples include
the use of the Advanced Microwave Scanning Radiometer, EOS (AMSR-E), 37 GHz for the flood
monitoring of the Mackenzie River in Canada [23] and the Huaihe River in China [24].

However, because of the necessary trade-off between the spatial resolution and observation
frequency arising from technical and budgetary constraints [25,26], it is still difficult to realize both the
high spatial and temporal resolution using only a single remote sensor. The SAR approach provides
higher spatial resolution images than the microwave radiometer, but its temporal resolution is low [27],
especially in the low-latitude area of the polar-orbit satellites. The microwave radiometer provides
near-daily observation, but its spatial resolution is low because of its long wavelength and lack of
synthetic aperture processing.
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A technique to mitigate this trade-off, spatiotemporal fusion (STF) [28], has recently been
developed. This technique combines the data with a lower spatial resolution but higher observation
frequency (hereinafter referred to as lower resolution images) with other data that contains a higher
spatial resolution but lower observation frequency (higher resolution images) to create a dataset with
the best available spatiotemporal resolution (i.e., a dataset having the spatial resolution of higher
resolution images and the observation frequency of lower resolution images). Examples of STF include
the spatial and temporal adaptive reflectance fusion model (STARFM) [29] and its modifications
(e.g., ESTARFM) [26]. Another approach is mixed pixel decomposition [30,31], which estimates the
composition of multiple land-cover categories in each pixel [32].

Mizuochi et al. [33,34] developed another type of STF called database unmixing (DBUX). One of
the drawbacks of other STFs is their inability to predict sudden changes in the land surface and the
necessity of having ancillary data, such as land-cover maps. The DBUX approach can overcome these
shortcomings by making use of a lookup table (LUT) for the relation between lower resolution and
higher resolution images based on historical data. Using this method, Mizuochi et al. monitored the
long-term changes of seasonal wetlands in a semi-arid region of northern Namibia by combining
AMSR-series microwave radiometer data (for lower resolution data) and Moderate-Resolution Imaging
Spectroradiometer (MODIS) optical data (for higher resolution data). They also applied DBUX to
Landsat to create a higher spatial resolution dataset.

This method could be effective for monitoring the extent of water bodies, but there is a problem
with the application of DBUX to this study region. Because it is a statistical approach, it requires a
sufficient amount of historical data to create the LUT, which is the essential aspect of a successful
DBUX. A limited amount of input data will cause gaps in the DBUX LUT and result in data fusion
failure. Unlike situations in arid or semi-arid regions, such as northern Namibia, the clear sky data
from optical sensors such as MODIS and Landsat are much less available in tropical climate zones, such
as Indonesia and other tropical regions worldwide [35,36]. Given its potential for use under cloudy
conditions, SAR is more applicable; however, SAR’s limited observation opportunities in low-latitude
regions remains an issue. Although freely available SAR constellation images (i.e., from Sentinel-1)
potentially provide a six-day repeat cycle, the actual temporal resolution depends on the latitude and
acquisition modes. In fact, when the availability of the primary conflict-free modes (interferometric
wide swath: IW) for the Sentinel-1 were checked, it was found that the temporal resolution of the
product was 24 or 48 days until 2016 (i.e., before the constellation) and 12 days since 2017 (i.e., after
constellation). As a result, on average, only 18 images per year (or one to two images per month) are
available from 2015 to 2017 in the study region for this work.

To address the issue, the DBUX was upgraded for this study by replacing the LUT with a
machine-learning algorithm (random forest [37]). As noted above, the shortcoming of DBUX is the
possibility of LUT gaps, which are especially likely when insufficient training data are available.
The new approach, random forest DBUX (RFDBUX), can overcome this shortcoming by creating
relations without setting bins through random forest regression. For the lower resolution images
in the STF, images from the Advanced Microwave Scanning Radiometer 2 (AMSR2) were used,
which is a successor to the AMSR-E microwave radiometer. Taking into consideration the utility of
the HH polarization band, budgetary efficiency, and its capability of penetrating through vegetation
canopy [18], the L-band SAR (PALSAR-2) was chosen for the higher resolution images in the STF.
Using the RFDBUX prediction of backscatter coefficient images of PALSAR-2, a long-term dataset with
100 m spatial resolution and several-day temporal resolution was created with the potential to track
the dynamics of the water extent in Lake Sentarum.

Using the PALSAR-2-like dataset predicted by RFDBUX, water extent maps of this region were
created that have the same spatiotemporal resolution as the dataset (i.e., 100 m, several days). The time
series of the water extent was evaluated by checking an independent data source (i.e., water gauge
and time-lapse camera data) obtained by ground observation.
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2. Materials and Methods

Figure 1 shows the flowchart of the analysis. It consisted of four parts, pre-processing (described
in Section 2.2 in detail), training (Section 2.3), cross-validation (Section 2.4), and long-term prediction
(Section 2.5).
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Figure 1. Schematic flowchart of the analysis procedure. HH— horizontal transmitting and horizontal
receiving; AMSR2—Advanced Microwave Scanning Radiometer 2; NDPI—normalized difference
polarization index; SAR—synthetic aperture radar; PALSAR—phased array type L-band SAR.

2.1. Study Site and Period

Lake Sentarum and its surrounding area are centered at 0◦48′ N and 112◦09′ E, stretch 78 km
(east–west) and 66 km (north–south), and were selected as the study area (Figure 2). The area
corresponds to x = 589,000 to 667,000 and y = 55,500 to 121,500 in the UTM49N projection, which is
the original projection of the PALSAR-2 images. The rainy season lasts from October to June and the
dry season lasts from July to September, with annual fluctuations [1]. To obtain ground references,
a water gauge sensor (CO-U20-001-03, Onset Computer Corporation, Bourne, Massachusetts, MA,
USA) and a time-lapse camera (GardenWatchCam, Brinno Inc., Walnut, CA, USA) were installed at the
site in March 2017. Considering the AMSR2 availability (since 3 July 2012) and comparability with the
ground references (only for a part of 2017), the target period from 3 July 2012 (the beginning of the dry
season) to 30 October 2017 (the beginning of the rainy season) was set.
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Figure 2. Map of study site. The water gauge and time-lapse camera were installed at this site at
0◦50′20.4” N, 112◦3′48.6” E, and 0◦50′14” N, 112◦3′57” E, respectively. Both of the ground observation
points were quite close and are indicated by the orange dot on the map.

2.2. Pre-Processing of Satellite Data

2.2.1. AMSR2

The AMSR2 is a microwave radiometer on the GCOM-W1 satellite of the Japan Aerospace
Exploration Agency (JAXA). It has similar characteristics to its predecessor (AMSR-E), along with
several improvements [38]. It provides brightness temperature data in both ascending and descending
orbits in two polarizations (H and V) and at seven frequencies (ranging from 6.925 GHz to 89.0 GHz).
The AMSR2 has been applied to the retrievals of precipitation [39], soil moisture [40], and tropospheric
water vapor [41]. The Level 3 brightness temperature images were utilized here (available at the
GCOM-W1 data providing system, https://gportal.jaxa.jp, last accessed on 18 July 2018) at 36.5 GHz
frequency for the entire study period, which totaled 3887 scenes. The images were projected on
a 0.1-degree (about 10 km) or 0.25-degree (about 25 km) lattice on a latitude–longitude projection.
A 0.1-degree product was chosen. To enhance the surface water on the images, the normalized
difference polarization index (NDPI) for each pixel on each scene was computed as follows [42]:

NDPI = (TB36.5V − TB36.5H)/(TB36.5V + TB36.5H) (1)

where TB36.5V and TB36.5H are the vertical and horizontal brightness temperatures at 36.5 GHz,
respectively. The NDPI is sensitive to the wetness of the ground surface; hence, it is useful as a
wetness index [43]. Three-day average NDPI maps were produced that included both ascending and
descending orbits within the three-day period. This averaging procedure prevented bias between the
ascending and descending orbits and gaps in the daily observation data, which can occur every three
to five days in this region. Finally, the average NDPI map was resampled with a 100 m interval on the
UTM49N projection by the nearest neighbor method to match it with the PALSAR-2 images described
in the next section.

2.2.2. PALSAR-2

The level 2.1 WBD HH data was used from PALSAR-2, a SAR on JAXA’s ALOS-2 satellite.
The level 2.1 data were orthorectified using Level 1.1 data with a digital elevation model. Nineteen
scenes were obtained during the target period (Table 1). The data were provided with a 25 m grid on
the UTM49N projection. To suppress speckle noise and the influence of positional error, averaging was

https://gportal.jaxa.jp
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applied to 5 × 5 windows and the results were resampled at 100 m intervals. The radar backscatter
coefficient (σ0) was then computed using Equation (2):

σ0 = 10 log10·DN2 + CF (2)

where DN is a digital number and CF is a calibration factor. Variable CF was set as −83.0 dB, based on
the calibration result of the ALOS-2/PALSAR-2 JAXA standard products [44].

Table 1. List of phased array type L-band synthetic aperture radar (PALSAR)-2 images.

No. Precipitation of the Day (mm/day) Day Month Year (DOY) Season

1 27.3 5 January 2015 (005) Rainy
2 38.8 30 March 2015 (089) Rainy
3 5.2 11 May 2015 (131) Rainy
4 1.4 4 January 2016 (004) Rainy
5 22.0 15 February 2016 (046) Rainy
6 4.9 28 March 2016 (088) Rainy

7 a 5.4 9 May 2016 (130) Rainy
8 0.4 20 June 2016 (172) Rainy
9 0.6 18 July 2016 (200) Dry

10 b 2.6 29 August 2016 (242) Dry
11 2.3 10 October 2016 (284) Rainy
12 10.3 21 November 2016 (326) Rainy
13 65.6 13 February 2017 (044) Rainy
14 4.2 27 March 2017 (086) Rainy
15 0.6 8 May 2017 (128) Rainy
16 28.9 19 June 2017 (170) Rainy
17 10.7 17 July 2017 (198) Dry
18 43.1 28 August 2017 (240) Dry
19 18.1 9 October 2017 (282) Rainy

a Largest water extent; b smallest water extent. Precipitation was derived from a satellite-based product
(GPM—global precipitation mission). DOY—day-of-year.

Figure 3 shows a PALSAR-2 image obtained close to the peak of the rainy season for use in
making a rough estimation of the possible extent of the seasonal wetlands. The base map (black and
white) is the image obtained during the rainy season. The blue area shows the seasonal wetlands,
which were delineated by highlighting the pixels on a dry season image (29 August 2016), having σ0

values >3 dB brighter than those in the rainy season image (9 May 2016). Among the PALSAR-2 images
studied, these images had the smallest (29 August 2016) and largest (9 May 2016) areas of lake water.
A threshold of 3 dB was selected based on a visual comparison of these two images.
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Figure 3. Seasonal wetlands pixels (blue). The base map image is from PALSAR-2 HH on 9 May 2016
(day-of-year [DOY] = 130), the date with the largest water-body area. The blue areas were delineated
using an image from 29 August 2016, the date with the smallest area.

2.3. Training of Random Forest Database Unmixing (RFDBUX)

The DBUX approach integrates (A) images a having higher spatial resolution but lower temporal
resolution with (B) the other images having a lower spatial resolution but higher temporal resolution.
For simplicity, dataset A will be referred to as the ‘spatial images’ and dataset B as the ‘temporal images’
in the algorithm. For example, in Mizuochi et al. [33], MODIS (500 m spatial resolution and more than
several-day temporal resolution due to the cloud cover) are the spatial images and AMSR-series (25 km
spatial resolution and one-day temporal resolution) are temporal images. In this study, the PALSAR-2
HH σ0 are spatial images and AMSR2 NDPI are the temporal images.

Before prediction, DBUX creates a LUT for the location of each spatial image pixel. Each LUT is a
mapping (i.e., a function) that converts the pixel value of a temporal image into the pixel value of a
spatial image. Here, this mapping was created empirically based on match-ups in the historical data,
where a match-up is a combination of a spatial image and a temporal image captured at a close timing
interval (mostly within one or several days). If there are enough match-ups in the historical archive,
and if the mapping from the pixel values of spatial images to the pixel values of temporal images is
unique, it should be possible to use this LUT to predict a spatial image from a temporal image when a
spatial image is not available (Figure 1).

Because the number of available match-ups is finite, there are gaps in the pixel values of the
temporal images in the match-ups. The creation of a LUT, therefore, requires an interpolation of
the gaps. In the original DBUX [33,34], a bin-average approach was used to fill the gaps. That is,
the match-ups were allocated to the bins with a regular interval of pixel values of the temporal images,
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and then the averages were obtained for each bin, which resulted in a step-like function, with a step at
each bin. However, this approach requires enough variety and volume of match-ups to cover all of
the bins. If there are not enough match-ups, there can be bins without any corresponding match-ups,
resulting in gaps in the LUT. In this study, this can occur because of the lesser availability of PALSAR-2
data than MODIS data in the case of Mizuochi et al. [33].

The DBUX was upgraded by replacing the bin-average approach with the more robust random
forest regression interpolation method [37]. Random forest is an algorithm that generates many
decision trees and uses the majority or average of the outputs from all of them. In the RFDBUX case,
the algorithm generates a regression function that converts the pixel value of a temporal image to the
pixel value of a spatial image, both of which come from the match-ups. After conducting feasibility
studies of the model’s performance, the optimal number of decision trees in a forest was set at 100
and the maximum number of decision tree levels was set at two. Both the DBUX and RFDBUX source
codes are available at https://github.com/hmizuochi.

2.4. Cross-Validation

The prediction accuracy was assessed by cross-validation. Because there were 19 match-ups,
one was excluded and the RFDBUX was trained using the remaining 18. Then, the spatial image
was predicted from the temporal image of the excluded match-up, and was compared with the real
spatial image in the match-up. This procedure was repeated for each match-up, resulting in 19 cases of
comparison between the predicted and real spatial images (i.e., ‘leave-one-out’ method).

To compare the images, the correlation coefficients and root mean square errors (RMSE) between
the predicted and real spatial images were checked for each case. The correlation coefficients for
the entire image and for the possible seasonal wetland area were evaluated (delineated in Figure 3),
which was the area of particular interest. Also, the correlation coefficient for two definitions of the
variables was calculated, namely the pixel value (HH σ0) and the anomaly of the pixel value, where the
anomaly is the pixel value of the image minus the average of the pixel values at the same position in
all 19 spatial images. The anomaly can exclude the contrast that depends on the topography and land
cover, and can indicate signals of seasonal or inter-annual changes.

The statistical significance of the correlation coefficients was evaluated by estimating their p-values
using the z-transformation. The p-value strongly depends on the degrees of freedom, but because there
is spatial autocorrelation in the images, one cannot assume the number of pixels to be the number of
degrees of freedom. The autocorrelation was estimated and it was found that it disappeared at about
10 km. This corresponds to about 42 (6 × 7) subregions of 10 km × 10 km in the target area. Thus,
the degrees of freedom were assumed to be 42.

2.5. Long-Term Prediction

The RFDBUX approach was used to predict the spatial images for the entire study period (3 July
2012 to 30 October 2017) and the extent of seasonal water was roughly estimated by setting three
thresholds, 2 dB, 2.5 dB, and 3 dB. Then, the area in which the spatial image obtained near the peak
of the dry season (29 August 2016) minus the predicted spatial image was larger than each threshold
was delineated. The water gauge and time-lapse camera data were obtained from March to August
2017, and were compared with the time series of the extent of seasonal water. The absolute pressure
measured by the water gauge sensor to the water level was converted by assuming a hydrostatic
condition in conjunction with the daily average surface air pressure from the ERA-Interim data [45].

2.6. Additional Experiments

To investigate the effect of the selection of spatial and temporal images on the prediction result,
the following three experiments were conducted. Sentinel-1 was used as supplementary spatial images
in addition to PALSAR-2. Then, the day-of-year (DOY) and global precipitation mission (GPM) data
were used as temporal images instead of AMSR2.

https://github.com/hmizuochi
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2.6.1. Integrated use of Sentinel-1

In the random forest regression of RFDBUX, increasing the number of spatial images in addition to
the original PALSAR-2 images may improve the accuracy. To investigate the feasibility of this approach,
Sentinel-1 data were used as the spatial images in RFDBUX along with the original PALSAR-2
images. The same pre-processing was applied (i.e., noise reduction, calculation of backscatter
coefficient, and resampling into 100 m resolution) as that used for the PALSAR-2 on all of the available
IW-mode Sentinel-1 data during the study period on the Google Earth Engine [46]. Unfortunately,
the primary observation mode (i.e., IW) did not include HH polarization, but only VV and VH.
Thus, VV polarization was chosen for the Sentinel-1 data because of its slightly better ability to map
the surface water than VH [8,9]. However, the difference between PALSAR-2 and Sentinel-1 in the
polarizations (i.e., HH and VV), the microwave bands used (i.e., L-band and C-band), and the other
sensor system or data processing performed were likely to affect the result. To mitigate this effect,
a linear regression analysis was conducted by comparing the corresponding pixels that were obtained
temporally within three days (randomly sampled, making N = 10000) and the Sentinel-1 images were
calibrated to resemble PALSAR-2 images (Figure 4). Then, the calibrated Sentinel-1 (49 scenes) and
original PALSAR-2 (19 scenes) images were applied to RFDBUX (vs. AMSR2) and the created dataset
was validated using the same cross-validation method described in the previous section (leave-one-out
for PALSAR-2 19 scenes and the same hereafter).
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Figure 4. Linear regression analysis for Sentinel-1 and PALSAR-2 (N = 10000). The regression line (i.e.,
conversion equation from Sentinel-1 to PALSAR-2) and the coefficient of determination are also shown.

2.6.2. Use of DOY

The selection of the temporal images (i.e., selection of an explanatory variable) is an essential
aspect of a successful RFDBUX. Although AMSR-2 NDPI was confirmed to have the ability to see the
surface water [24,34], exploring other candidate variables to explain the surface water extent, such as
DOY and precipitation, is worthwhile so as to improve the understanding of the STF applications
for water monitoring. Thus, images with 100 m pixel spacing were created that show the DOY of the
prediction day (i.e., spatially uniform images), and they were used as temporal images for RFDBUX
instead of AMSR2. The spatial images were the calibrated Sentinel-1 plus PALSAR-2 images.
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2.6.3. Use of precipitation

In addition to the DOY, the spatial pattern of precipitation also relates to the surface water extent.
Recent global precipitation mission (GPM) data were used with 0.1 deg × 0.1 deg spatial resolution
and one-day temporal resolution (GPM IMERG Final Precipitation L3 [47]) from National Aeronautics
and Space Administration (NASA) Goddard Earth Sciences Data and Information Service Center (GES
DISC). The GPM data were resampled into 100 m resolution and applied to RFDBUX as temporal
images. Again, the spatial images were the calibrated Sentinel-1 plus PALSAR-2 images.

3. Results

Table 2 shows the cross-validation results. The correlation coefficients were generally about 0.9 or
higher for both the entire area and the possible wetland area, with a high level of statistical significance
for all of the dates. The correlation coefficients decreased in the anomaly maps and were sometimes
close to 0 or even negative, making more than half of the scenes statistically insignificant. The RMSE
values ranged from approximately 1.0 to 2.0 (dB) in most scenes over the entire area. A lower accuracy
(i.e., a lower correlation coefficient and higher RMSE) was obtained when only the seasonal wetland
pixels were considered rather than the entire area, although this was not necessarily the case with
the anomaly maps. The averaged correlation coefficients and RMSEs of the entire area were 0.94 and
1.05 (dB), respectively.

Table 2. Cross-validation results of random forest database unmixing (RFDBUX) at Lake Sentarum.

Season Date r (AA) r (SW) r (AA;
Anom)

r (SW;
Anom)

RMSE (AA)
(dB)

RMSE (SW)
(dB)

Rainy 5 January 2015 0.95 ** 0.88 ** 0.31 * 0.2 1.03 1.65
Rainy 30 March 2015 0.94 ** 0.84 ** 0.12 0.13 1.12 2.00
Rainy 11 May 2015 0.95 ** 0.9 ** 0.036 0.096 0.93 1.59
Rainy 4 January 2016 0.95 ** 0.88 ** 0.15 0.16 0.99 1.86
Rainy 15 February 2016 0.93 ** 0.85 ** –0.28 –0.067 1.31 2.98
Rainy 28 March 2016 0.89 ** 0.67 ** 0.37 ** 0.11 1.83 4.51
Rainy 9 May 2016 0.93 ** 0.82 ** 0.43 ** 0.12 1.30 3.13
Rainy 20 June 2016 0.96 ** 0.92 ** 0.25 0.23 0.99 1.80
Dry 18 July 2016 0.94 ** 0.92 ** 0.45 ** 0.42 ** 0.93 1.73
Dry 29 August 2016 0.93 ** 0.83 ** 0.46 ** 0.1 1.06 1.96

Rainy 10 October 2016 0.95 ** 0.89 ** 0.53 ** 0.38 ** 0.88 1.60
Rainy 21 November 2016 0.96 ** 0.93 ** 0.48 ** 0.37 ** 0.81 1.37
Rainy 13 February 2017 0.93 ** 0.85 ** 0.15 0.14 1.07 2.45
Rainy 27 March 2017 0.95 ** 0.89 ** 0.038 0.12 0.93 1.66
Rainy 8 May 2017 0.95 ** 0.87 ** –0.04 –0.068 0.96 1.89
Rainy 19 June 2017 0.95 ** 0.91 ** 0.55 ** 0.43 ** 0.98 1.90
Dry 17 July 2017 0.94 ** 0.86 ** 0.35 * 0.23 0.96 1.96
Dry 28 August 2017 0.94 ** 0.88 ** 0.33 * 0.13 0.98 1.70

Rainy 9 October 2017 0.96 ** 0.92 ** 0.26 0.31 * 0.98 1.75
Avg. 0.94 0.87 0.31 0.22 1.05 2.08

r: correlation coefficient; AA—all area; SW—seasonal wetland; anom—anomaly; RMSE—root mean square error of
σ0 (in dB); * p < 0.05; ** p < 0.01 (df = 42); Avg.—average. Blue-highlighted dates are ‘good cases’ and red are ‘bad
cases’.

Based on the statistical results, four ‘good case’ images were selected (18 July 2016, 10 October 2016,
21 November 2016, and 19 June 2017) along with four ‘bad case’ images (30 March 2015, 15 February
2016, 13 February 2017, and 8 May 2017), as shown in Figures 5 and 6, respectively. Visually, the spatial
pattern of the lake was predicted in all of the cases. However, some biases were found between the
predicted and original maps, especially in the bad cases (e.g., 30 March 2015 and 15 February 2016).
The biases do not appear to be temporally systematic (i.e., not always positive or always negative for
each pixel), but rather somewhat temporally random in the scenes.
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Figure 5. Image validation: good cases. The day, month and year are indicated in the title of each figure.
‘Source’ is the AMSR-2 NDPI composite image, ‘predicted’ is a prediction result of RFDBUX with the
leave-one-out condition, ‘original’ is the PALSAR-2 HH σ0 image on that day, and ‘pred−orig’ is the
‘predicted’ minus the “original”.
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Figure 7 shows the time series of the changes in the area of the possible seasonal wetlands.
Obvious seasonal patterns are evident. A relatively sudden increase in the seasonal wetlands at the
beginning of the rainy season (middle of October to the beginning of November) is followed by a
gradual decrease until the beginning of the dry season (July). The predicted areas of the seasonal
wetlands were consistent with those calculated from the original PALSAR-2 image in most cases.
However, on the days when the relatively large areas of seasonal wetlands appeared (e.g., 15 February
2016, 28 March 2016 and 9 May 2016), the predicted areas tended to be underestimated, as shown by
colored symbols in Figure 7.

Figure 8 shows a comparison of the in situ water level and the possible seasonal wetland area,
in which the water level shows dynamic change. In the rainy season, it was relatively stable at about
3.0 m and then it rapidly dropped to near zero in June. It temporarily increased to as high as 1.5 m
in July, dropped again in August, and rose again in September. These changes probably reflect the
nonuniform patterns of the rain and surface inflow from the river. These water dynamics were also



Remote Sens. 2018, 10, 1235 13 of 19

confirmed by the time-lapse photos (Figure 8). The pattern was substantially well tracked by the
extracted possible wetland area, including the drop/recover pattern observed during the dry season
(middle of June to August) and the local minimum around the DOY 111 (April).
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Figure 7. Time series of changes in the area of possible seasonal wetlands, delineated by the difference
between a reference image for the smallest water extent (29 August 2016) and the predicted images of
PALSAR-2 HH σ0. Red: reference σ0 − predicted σ0 > 3 dB; green: reference σ0 − predicted σ0 > 2.5 dB;
blue: reference σ0 − predicted σ0 > 2 dB. The colored points are calculated from the original (i.e., not
the predicted) PALSAR-2 HH σ0.
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Figure 8. Upper row: Wetland photos taken by the time-lapse camera in 2017. Lower row: Comparison
of water gauge data and area of possible seasonal wetlands. The blue, green, and red lines were
calculated as described in Figure 7. The dashed line is the water level (m), which was available from
March to August 2017. The gray arrows indicate the date the wetland photos were taken.

Contrary to the expectations, the integrated use of the Sentinel-1 degraded all of the accuracy
criteria (Table 3). Only one day in the rainy season (8 May 2017) was found for which the correlation
coefficient and RMSE of the seasonal wetland improved (data not shown). In addition, Table 3 shows
that use of DOY or GPM (precipitation) instead of AMSR2 slightly improved the correlation coefficient
and RMSE, especially in the dry season, but substantially degraded the correlation coefficient of
the anomaly maps and RMSE of the seasonal wetland. The use of precipitation yielded an even
worse result than the use of DOY, except for the correlation coefficient of the seasonal wetland in the
dry season.

Table 3. Comparison of averaged cross-validation result (for all of the data, for the rainy season, and for
the dry season) among the original and experimental RFDBUX. (1) Original RFDBUX, (2) integrated
use of Sentinel-1, (3) use of DOY instead of Advanced Microwave Scanning Radiometer 2 (AMSR2),
and (4) use of GPM (precipitation) instead of AMSR2. The abbreviation of the accuracy criteria is the
same as in Table 2.

No. (1) (2) (3) (4)

Spatial PALSAR-2 PALSAR-2, Sentinel-1 PALSAR-2, Sentinel-1 PALSAR-2, Sentinel-1

Temporal AMSR2 AMSR2 DOY GPM (Precipitation)

r (AA) 0.94; 0.94; 0.94 0.91; 0.91; 0.90 0.91; 0.91; 0.91 0.90; 0.90; 0.90
r (SW) 0.87; 0.86; 0.89 0.82; 0.83; 0.81 0.84; 0.84; 0.85 0.83; 0.81; 0.87

r (AA; anom) 0.31; 0.26; 0.40 0.12; 0.05; 0.27 0.05; −0.06; 0.27 −0.03; −0.12; 0.14
r (SW; anom) 0.22; 0.19; 0.26 0.11; 0.05; 0.22 0.00; −0.09; 0.18 −0.04; −0.12; 0.10

RMSE (AA) (dB) 1.05; 1.09; 0.98 1.34; 1.35; 1.31 1.36; 1.42; 1.25 1.40; 1.46; 1.26
RMSE (SW) (dB) 2.08; 2.19; 1.84 2.28; 2.32; 2.20 2.49; 2.61; 2.22 2.70; 2.82; 2.43

Accuracy criteria shown as average of all data; the rainy season’s data; the dry season’s data.

4. Discussion

The RFDBUX approach predicted the spatial pattern of the wetlands with r = 0.94 and
RMSE = 1.05 dB on average (Table 2), and filled the large temporal gaps from the original PALSAR-2
data. The resultant temporal resolution (three days) probably could not be realized by the other
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STFs, such as STARFM, because they do not make use of passive microwave data (AMSR2 in this
case) integrated with spatially high-resolution data (PALSAR-2 in this case). The STARFM and other
semi-physical fusion models are limited to the STF of the physical values that can be derived from the
optical or thermal sensors, which are inevitably disturbed by clouds. In fact, Landsat-8 (as an example
of optical images) was searched over Lake Sentarum (path: 120, row: 059) using Google Earth Engine,
and it was found that there were 18 cloud-free images (determined as less than 50% cloud cover)
during the study period. Only three images were cloud-free when the half year (April–November)
was considered, which spanned the center of the rainy season. This makes it problematic to observe
the temporal change of the wetlands, especially in the rainy season, and supports the validity of
using microwave images. Thus, in the regions where cloud cover is an issue, such as tropical climate
zones [35], empirical or machine-learning-based fusion models that can utilize microwave data are a
promising option.

The RFDBUX approach is likely to provide better gap-filling than DBUX, because DBUX, as noted
in Section 2.3, uses the bin-average approach, which creates LUTs that may have gaps [34], especially
when there is an insufficient number of match-ups. These gaps can cause prediction failures and
degrade the temporal resolution of the resultant dataset. In addition, DBUX is somewhat arbitrary
in making bin interval decisions (i.e., how to slice the entire range of values of the temporal images)
when creating a LUT. The RFDBUX approach overcomes these problems through machine-learning,
which provides more robust gap-filling. A quantitative comparison of RFDBUX and DBUX (and other
STFs) is an important subject for future study.

It was also shown that there is still room for improving the RFDBUX accuracy. The correlation
coefficients between the image predicted by RFDBUX and the original image were a little lower when
the focus was on the seasonal wetland pixels, and dropped notably with respect to the anomaly maps.
Generally speaking, it is natural that a lower correlation coefficient was observed when the focus
was only on temporally variable pixels (i.e., seasonal wetlands), because making predictions for these
areas is much more difficult than it is for the temporally stable pixels. However, given that seasonal
wetland areas are the subject of interest, improving the algorithm for use in studying the wetlands
must be considered. The poor accuracy in the anomaly maps can be partly attributed to their low
spatial variation rather than being an error of RFDBUX or the satellites used. When the predicted or
the original map was similar to the average map of the 19 PALSAR-2 maps, the calculated anomaly
values approached zero at all points. Because of the nature of the correlation coefficient (r), these ‘no
contrast’ samples probably yield low r values. However, even taking this effect into account, there still
seems to be uncertainty associated with the approach discussed here. One of the potential error sources
is the effect of inundated vegetation [14], which may create double-bounce backscatter or volume
backscatter [18], thereby increasing the backscatter coefficient and resulting in the omission of water
under the vegetation. As this effect seems to relate to complex factors (e.g., microwave incident angle,
vegetation structure, density, and water levels), completely removing the effect is difficult when solely
using the backscatter intensity. A potential solution is to use polarimetry decomposition [18,48] to
distinguish the inundated vegetation, although it is not easy to obtain a substantial number of full
polarimetry data, which is necessary for accurate polarimetry decomposition [18].

Additional experiments showed that the combined use of Sentinel-1 and PALSAR-2 does not
contribute to any substantial improvement of the accuracy, but rather degrades it. This outcome was
attributed to the remaining discrepancy between them in the polarizations used (VV and HH) or bands
used (C-band and L-band) even after the calibration. The calibration through the linear regression
analysis somewhat mitigated the discrepancy between them. Also, the combined use of the calibrated
Sentinel-1 increased the input spatial images for RFDBUX and seemed to contribute to the accuracy
improvement in one day in the rainy season (8 May 2017); however, the effect of the discrepancy and
the reduced ability of VV to map water [9,11] could not be completely addressed. Dense clouds also
may affect the observation, especially for shorter wavelength sensors (i.e., Sentinel-1) [49]. Thus, it was
concluded that their combined use is an attractive avenue, but requires further research.
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An additional investigation on the effectiveness of the DOY and precipitation (GPM) instead
of AMSR2 showed that in the stable situation (i.e., dry season), the DOY or precipitation have the
potential to make an accurate map. However, in describing the temporal variation (i.e., rainy season
and anomaly), the performance of the AMSR2 NDPI was better. As the water extent of this region is
controlled by precipitation, it does not show a regular seasonality every year and is largely impacted
by the fluctuating inflow from nearby rivers in the rainy season [3]. Thus, the DOY and precipitation
should not be used as primary explanatory variables for the dynamic change of the water extent of
the lake. Rather, although AMSR2 has a relatively coarse resolution (10 km), it can directly provide
information about the surface wetness of each pixel, which is a better proxy of the surface water extent
than the DOY and precipitation for this region. Adding the DOY and precipitation (or other potential
candidates) to RFDBUX as a secondary explanatory variable in conjunction with AMSR2 NDPI may
be an interesting approach for future work.

The potential seasonal wetland areas calculated from the predicted and the original PALSAR-2
were consistent with each other (Figure 7, solid lines and colored symbols, respectively), except for
the days when relatively large areas of seasonal wetlands appeared (e.g., 15 February 2016, 28 March
2016, and 9 May 2016). For such days, the prediction underestimated the area, probably because of an
insufficient training dataset (i.e., match-ups between PALSAR-2 and AMSR2) for RFDBUX. To improve
the accuracy, increasing the amount of the dataset and training the RFDBUX separately between the
rainy season and the dry season will be beneficial [34].

According to the time-series comparison of the potential seasonal wetland area and the in-situ
water level data, RFDBUX appears to track the patterns of seasonal change successfully, which supports
the validity of the time-series data derived from PALSAR-2. The actual values of the areas of the
seasonal wetlands derived from this approach were not calibrated or validated in this study. In addition,
on the days when relatively large areas of seasonal wetlands appeared (e.g., 15 February 2016, 28 March
2016, and 9 May 2016), the predictions tended to underestimate the area of the seasonal wetlands.
This underestimation may be due to too much generalization in the random forest regression and may
result in uncertainty in the quantitative time-series analyses of wetland extent.

As RFDBUX is a machine-learning-based approach, it can potentially integrate multiple datasets
that have different observation mechanisms (e.g., microwave/optical or radiometer/radar) with more
flexibility than other major approaches [26,29]. Different combinations of broad-scale, long-term
data, other than AMSR2/PALSAR-2, should be tested over different landscapes, such as snowy
mountainous regions, forests, and agricultural fields. Increasing the number of available match-ups by
expanding the operation period will contribute to improving the accuracy. Also, improving algorithms
by including other machine-learning techniques (e.g., support vector machine or deep neural network)
and searching for other water indices would be reasonable in future work.

5. Conclusions

A data fusion approach was developed and tested using pixel-based random forest regression
(RFDBUX) to study the tropical wetlands in Indonesia. The RFDBUX approach integrated passive
microwave data (AMSR2) and active microwave data (PALSAR-2) to fill large temporal gaps in
the original PALSAR-2 data. The validation showed that the spatial patterns of the PALSAR-2
backscatter coefficient images predicted by RFDBUX are consistent with the original PALSAR-2
images (r = 0.94; RMSE = 1.05 dB in average). The accuracy degraded when the focus was
only on the temporally variable pixels (i.e., seasonal wetlands) or anomaly maps. The potential
seasonal wetland areas calculated from the predicted and the original PALSAR-2 were consistent with
each other, except for the days when relatively large areas of seasonal wetlands appeared. Potential
error sources were double-bounce or volume scatter from inundated vegetation and an insufficient
training dataset (i.e., match-ups between PALSAR-2 and AMSR2) for RFDBUX. The advanced SAR
analysis (e.g., polarimetry decomposition) and integration of other satellite or climatological data
sources may contribute to the accuracy improvement. Nonetheless, the integrated use of Sentinel-1
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with PALSAR-2, or the integrated use of DOY and precipitation with AMSR2, requires further
research. A comparison with the in situ water level data showed that the temporal pattern of the
predicted PALSAR-2 images can track the wetland dynamics. This attempt represents a first step in
creating high-spatiotemporal-resolution water maps for this site and should contribute to the further
investigation of hydrological/climatological features, the management of water resources, and the
conservation of biodiversity at the site. The RFDBUX approach is potentially applicable to other
combinations of datasets and other landscapes worldwide. The quantitative comparisons of RFDBUX
and DBUX, and with other fusion models such as STARFM, in addition to the application of RFDBUX
to other data combinations and other landscapes, are also important research directions.
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