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Abstract

This study examined the effect of changes in body temperature during exercise on signal

transduction-related glucose uptake in the skeletal muscle of type 2 diabetic rats. Otsuka

Long-Evans Tokushima Fatty rats (25 weeks of age), which have type 2 diabetes, were

divided into the following four weight-matched groups; control (CON, n = 6), exercised

under warm temperature (WEx, n = 8), exercised under cold temperature (CEx, n = 8), and

heat treatment (HT, n = 6). WEx and CEx animals were subjected to running on a treadmill

at 20 m/min for 30 min under warm (25˚C) or cold (4˚C) temperature. HT animals were

exposed to single heat treatment (40–41˚C for 30 min) in a heat chamber. Rectal and mus-

cle temperatures were measured immediately after exercise and heat treatment, and the

gastrocnemius muscle was sampled under anesthesia. Rectal and muscle temperatures

increased significantly in rats in the WEx and HT, but not the CEx, groups. The phosphoryla-

tion levels of Akt, AS160, and TBC1D1 (Thr590) were significantly higher in the WEx and

HT groups than the CON group (p < 0.05). In contrast, the phosphorylation levels of AMP-

activated protein kinase, ACC, and TBC1D1 (Ser660) were significantly higher in rats in the

WEx and CEx groups than the CON group (p < 0.05) but did not differ significantly between

rats in the WEx and CEx groups. Body temperature elevation by heat treatment did not acti-

vate the AMPK signaling. Our data suggest that body temperature elevation during exercise

is essential for activating the Akt signaling pathway in the skeletal muscle of rats with type 2

diabetic rats.

Introduction

Insulin resistance plays a key role in the development of lifestyle diseases, including obesity

and type 2 diabetes. Skeletal muscle is the largest tissue in the body by mass and is the major
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site of glucose disposal [1]; it also plays a central role in regulating whole-body insulin resis-

tance [2]. Because skeletal muscle insulin resistance is a predictor of type 2 diabetes, and main-

tenance of adequate muscle glucose disposal may help to prevent the disease [3], a therapeutic

strategy for improving insulin resistance in the skeletal muscle of patients with obesity and

type 2 diabetes is needed.

Regular exercise improves whole-body and peripheral tissue (i.e., skeletal muscle, liver, and

adipose tissue) insulin resistance, however the factors that influence the beneficial effects of

exercise are not fully understood. We reported previously that exercise training without body

temperature elevation blunts the improvement in insulin resistance in type 2 diabetic rats [4],

suggesting that body temperature elevation during exercise may be important for improving

insulin resistance in type 2 diabetes. Although the mechanisms underlying this phenomenon

are still unclear, it is likely that molecular factors affected by temperature alteration are

involved.

The potential mechanisms by which exercise prevents obesity-induced insulin resistance

include the transport of glucose into skeletal muscles [5]. Previous studies have reported that

two distinct mechanisms—insulin signaling and exercise-induced mechanisms—are responsi-

ble for the stimulation of GLUT4 translocation to the plasma membrane and T-tube and

glucose uptake [6]. A single bout of exercise activates multiple factors in skeletal muscle impli-

cated in exercise-induced glucose transport, including AMP-activated protein kinase (AMPK),

calcium/calmodulin-dependent protein kinase (CaMK), and atypical protein kinase C (aPKC)

isoforms [6–8]. Akt is a key factor in insulin signaling [9, 10]; however, whether exercise

induces Akt activity in the muscle has been controversial [11–14].

Previous studies have shown that the phosphorylation status of Akt at Ser473 is highly

temperature-sensitive in vitro [15] and increases in a temperature-dependent manner in rat skeletal

muscle [16]. Given these results, body temperature elevation would stimulate Akt phosphorylation

in skeletal muscle. Body temperature is elevated during exercise under thermo-neutral conditions;

however, the effects of body temperature elevation during exercise on Akt signaling in the skeletal

muscle of type 2 diabetic rats are unclear. In addition, tre-2/USP6, BUB2, cdc16 domain family

member 1 (TBC1D1), and Akt substrate of 160 kDa (AS160; also known as TBC1D4) are down-

stream proteins of Akt and AMPK [17, 18], and AS160 and TBC1D1 may serve as a point of con-

vergence of insulin- and exercise-dependent signaling in the regulation of glucose uptake [6].

Therefore, it is possible that body temperature elevation during exercise enhances both the Akt and

AMPK signaling pathways, which may be an effective strategy for glucose maintenance in type 2

diabetic individuals.

Herein, we examined whether the changes in body temperature during exercise affect signal

transduction related glucose metabolism in the skeletal muscle of obese/type 2 diabetic rats.

Based on our previous study [4], we hypothesize that suppression of body temperature eleva-

tion during exercise attenuates activation of Akt in the muscle, blunting the improvement in

whole-body insulin resistance induced by exercise training in type 2 diabetic rats.

Materials and methods

Animals

All procedures were approved by the Juntendo University Animal Care and Use Committee

and conducted according to the guiding principles for the Care and Use of Laboratory Ani-

mals set forth by the Physiological Society of Japan. Male Otsuka Long-Evans Tokushima

Fatty (OLETF) rats were obtained from Japan SLC (Shizuoka, Japan). OLETF rats are a well-

characterized animal model of human type 2 diabetes. OLETF rats exhibit hyperphagia and

obesity beginning during early childhood and go on to develop insulin resistance and type 2
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diabetes [19]. All animals were housed with 12:12-h light-dark cycle in an environment-con-

trolled room (23 ± 1˚C, 55 ± 5% relative humidity) and given standard rat chow and water ad
libitum. At 25 weeks of age, OLETF rats (612.6 ± 30.7 g) were divided into four body weight-

matched groups: control (CON; n = 6), exercised under warm temperature (WEx; n = 8), exer-

cised under cold temperature (CEx; n = 8), and heat treatment (HT; n = 6).

A single bout of exercise

WEx and CEx animals were familiarized with running on a motor-driven animal treadmill

(KN-73; Natsume, Tokyo, Japan) for approximately 10–20 m/min for 5 min per day beginning

1 week before the experiment. After 5 h of fasting, they were subjected to run on the treadmill

at 20 m/min without grade for 30 minutes in a climate-controlled room at 25˚C or 4˚C, respec-

tively. Electric shocks were rarely used to motivate animals to run. To verify an elevation in

body temperature, rectal temperature was measured using a calibrated thermistor probe (LT-

8; Gram Corporation, Saitama, Japan) inserted approximately 6–7 cm past the anal sphincter

into the colon before and immediately after exercise. Muscle temperature was also measured

immediately after exercise using a needle thermistor probe inserted into one gastrocnemius

muscle. After measuring rectal temperature, the animals were anesthetized using isoflurane,

and blood glucose and lactate concentrations were measured from the tail vein using the Glut-

est Neo Super device (Sanwa Kagaku Kenkyusho, Aichi, Japan) and the Lactate Pro device

(Arkray, Kyoto, Japan), respectively. Next, blood and gastrocnemius muscles were removed,

rapidly frozen in liquid nitrogen, and stored at −80˚C until analysis. In this study, the needle-

inserted leg was not used in the analyses.

Heat treatment

To evaluate the effects of body temperature elevation per se on signal transduction, HT animals

were exposed to single heat treatment (40–41˚C for 30 min) in a heat chamber (TVG321AA,

Advantec, Tokyo, Japan) without anesthesia, followed by 5 h fasting. Our previous study sug-

gested that this treatment increases rectal temperature from 37–38˚C to ~40–41˚C within 30

min of initiation [20]. The rectal and muscle temperatures were measured and the animals

were sacrificed by the same means described above immediately following heat treatment.

Measurement of serum insulin concentration

Blood samples were centrifuged at 3,000 rpm for 10 min to obtain serum. Insulin concentra-

tion was measured using a commercially available enzyme-linked immunosorbent assay kit

(Morinaga Institute of Biological Science, Inc., Kanagawa, Japan) according to the manufac-

turer’s instructions.

Sample preparation and immunoblot analysis

Gastrocnemius muscles were powdered under liquid nitrogen and homogenized in ice-cold

homogenization buffer (20 mM HEPES, pH 7.4, 0.1 mM EDTA, 4 mM EGTA, 10 mM MgCl2,

and 0.1% Triton X-100) containing HaltTM Protease inhibitor cocktail (Thermo Scientific,

Wilmington, CA, USA) and PhosSTOP (Roche, Penzberg, Germany). The homogenates were

centrifuged at 900 × g for 5 min at 4˚C. The supernatant were then centrifuged at 12,000 × g

for 15 min at 4˚C. Protein concentrations in the supernatants were determined using a BCA

protein assay kit (Thermo, Rockford, IL, USA). Protein extracts were solubilized in sample

buffer (30% glycerol, 5% 2-beta-mercaptethanol, 2.3% SDS, 62.5 mM Tris-HCl pH 6.8, and

0.05% bromophenol blue) at 1.0 mg/ml and incubated at 95˚C for 5 min.
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Proteins were loaded onto 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE) gels and run at 150 V for 50–60 minutes. Proteins were then transferred to poly-

vinylidene difluoride (PVDF) membranes at 100 V for 1 h. After transfer, membranes were

blocked for 1 h at room temperature in PVDF blocking reagent (Toyobo Co. Ltd., Osaka,

Japan). After three washes with Tween-Tris-buffered saline (T-TBS; 40 mM Tris-HCl, 300

mM NaCl, and 0.1% Tween 20, pH 7.5), membranes were incubated with the following pri-

mary antibodies: phosphorylated Ser473-Akt (1: 2000; Cell Signaling Technology, #9271, Dan-

vers, MA, USA), Thr308-Akt (1: 2000; Cell Signaling Technology, #2965), Akt (1: 2000; Cell

Signaling Technology, #4691), phosphorylated Thr642-AS160 (1: 2000; Cell Signaling Tech-

nology, #4288), AS160 (1: 2000; Cell Signaling Technology, #2670), phosphorylated Thr172-

AMPKα (1: 2000; Cell Signaling Technology, #2535), AMPK (1: 2000; Cell Signaling Technol-

ogy, #2532), phosphorylated Ser660-TBC1D1 (1: 2000; Cell Signaling Technology, #6928),

phosphorylated Thr590-TBC1D1 (1: 2000; Cell Signaling Technology, #6927), TBC1D1 (1:

2000; Cell Signaling Technology, #5929), phosphorylated Ser79-ACC (1: 2000; Cell Signaling

Technology, #3661), or ACC (1: 2000; Cell Signaling Technology, #3662) in dilution buffer

overnight at 4˚C. After several washes in T-TBS, membranes were incubated with anti-rabbit

horseradish peroxidase-conjugated secondary antibodies (1: 10,000; Cell Signaling Technol-

ogy, #7074) in dilution buffer for 1 h at room temperature. After several washes, bands were

visualized using ECL Prime reagents (GE Healthcare, Piscataway, NJ, USA) and the signal was

recorded with a ChemiDocTM Touch Imaging System (Bio-Rad Laboratories, Hercules, CA,

USA). Analyses were performed using Image Lab ver. 5.2.1 software (Bio-Rad). Protein phos-

phorylation was calculated as the ratio of phosphorylated to total protein expression and is

expressed using arbitrary units.

Statistical analysis

Values are expressed as the mean ± standard error. Statistical significance was determined

using one-way or two-way analysis of variance (ANOVA). When the ANOVA was significant,

group differences were determined using Bonferroni’s post hoc test. P values < 0.05 were con-

sidered statistically significant. All statistical analyses were performed using PRISM v.6.0 soft-

ware (GraphPad Software, San Diego, CA, USA).

Results

Rectal and muscle temperatures

The rectal temperature of rats in the WEx group was significantly elevated from 38.68 ±
0.19˚C to 40.67 ± 0.47˚C immediately after exercise (p< 0.05, Fig 1A). In contrast, the eleva-

tion of rectal temperature by exercise was completely suppressed in rats in the CEx group

(basal: 38.49 ± 0.19˚C, after exercise: 38.62 ± 0.61˚C). In addition, heat treatment significantly

elevated the rectal temperature to similar levels observed in the WEx group (basal: 38.16 ±
0.63˚C, after heat treatment: 40.37 ± 0.25˚C). The muscle temperatures of rats in the WEx and

HT groups were also significantly higher than those of rats in the CEx group (p< 0.05, Fig

1B).

Glucose, insulin and lactate concentration

The glucose and insulin concentrations immediately after exercise and heat treatment did not

differ significantly among the groups (Fig 2A and 2B). The lactate acid concentrations in rats

in the WEx and CEx groups immediately after exercise were significantly increased compared

with those of rats in the CON group (p< 0.05, Fig 2C). However, the lactate concentration did
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not differ significantly between rats in the WEx and CEx groups. Heat treatment did not

increase lactate concentration.

Phosphorylation of Akt and its downstream signaling molecules

Phosphorylation of Akt at Thr308 and Ser473 was significantly increased in the muscle of rats

in the WEx and HT groups compared to the CON and CEx groups (p< 0.05, Fig 3A–3C).

However, the phosphorylation of Akt in the muscle of rats in the CON and CEx groups did

not differ significantly.

Phosphorylation of AS160 at Thr642 was significantly increased in rats in the WEx and HT

groups compared with those in the CON group (p< 0.05, Fig 3A and 3D). In addition, the

Fig 1. Changes in rectal and muscle temperatures after a single bout of exercise and heat treatment. WEx, n = 8 (black bar); CEx, n = 8

(gray bar); HT, n = 6 (dark gray bar). Values are shown as the means ± standard error (SE). †p< 0.05 vs. CEx, §p< 0.05 vs. basal values in

each group.

https://doi.org/10.1371/journal.pone.0205456.g001

Fig 2. Serum concentration levels of glucose (A), insulin (B), and lactate (C) after a single bout of exercise and heat treatment. CON, n = 6 (white bar); WEx,

n = 7 (black bar); CEx, n = 7 (gray bar); HT, n = 6 (dark gray bar). Values are shown as the means ± SE. �p< 0.05 vs. CON, #p< 0.05 vs. HT.

https://doi.org/10.1371/journal.pone.0205456.g002
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phosphorylation of TBC1D1 at Thr590, an Akt-dependent phosphorylation site, was signifi-

cantly increased in rats in the WEx and HT groups but not those in the CEx group, compared

with the CON group (p< 0.05, Fig 3A and 3E).

Phosphorylation of AMPK and its downstream signaling molecules

Phosphorylation of AMPK at Thr172 after exercise was significantly increased in the muscle of

rats in the WEx and CEx groups compared with the CON and HT groups (p< 0.05, Fig 4A

and 4B). In addition, phosphorylation of TBC1D1 at Ser660, an AMPK-dependent phosphory-

lation site, was increased significantly in the muscle of rats in the WEx and CEx groups com-

pared with the CON and HT groups (p< 0.05, Fig 4A and 4C). Phosphorylation of ACC at

Ser79 was also increased significantly in the muscle of rats in the WEx and CEx groups com-

pared with the CON group (p< 0.05, Fig 4A and 4D). There were no significant differences in

the AMPK, TBC1D1, and ACC phosphorylation levels between rats in the WEx and CEx

groups.

Discussion

We reported previously that exercise training without body temperature elevation blunts

improvements in insulin resistance in type 2 diabetic rats [4]; however, the underlying mecha-

nisms were unknown. Here, we show that the activation of Akt signaling in skeletal muscle

was inhibited by suppression of body temperature elevation during exercise in type 2 diabetic

rats. In addition, a single bout of exercise activated AMPK signaling, irrespective of body

Fig 3. Representative western blots (A) and the phosphorylation ratio of Akt at Ser473 and Thr308 (B and C), AS160 at Thr642 (D), and TBC1D1 at Thr590

(E) in the gastrocnemius muscle after a single bout of exercise and heat treatment. CON, n = 6 (white bar); WEx, n = 7 (black bar); CEx, n = 7 (gray bar); HT,

n = 6 (dark gray bar). Values are shown as the means ± SE. �p< 0.05 vs. CON, †p< 0.05 vs. CEx.

https://doi.org/10.1371/journal.pone.0205456.g003
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temperature. To our knowledge, this is the first report that suppression of body temperature

elevation during exercise does not activate Akt signaling in the skeletal muscle of type 2 dia-

betic rats. Moreover, body temperature elevation with and without exercise can activate Akt

signaling. Thus, body temperature elevation during exercise may be important for improving

insulin resistance due to temperature-dependent Akt activation in skeletal muscle.

Akt is a key player in the metabolic actions of insulin, including glucose transport and syn-

thesis of glycogen and protein; it is impaired in rodent models of, and patients with, type 2 dia-

betes [21]. To date, two mechanisms of physical exercise-induced Akt activation have been

postulated. First, it was suggested that the exercise-induced increase in Akt phosphorylation is

due to an increased insulin concentration [22], because IRS-1 [23] and PI3 kinase activity [24]

is not increased by exercise or contractile activity. However, Akt phosphorylation was

Fig 4. Representative western blots (A) and the phosphorylation ratio of AMPK at Thr172 (B), TBC1D1 at Ser660 (C), and ACC at Ser79 (D) in the

gastrocnemius muscle after a single bout of exercise and heat treatment. CON, n = 6 (white bar); WEx, n = 7 (black bar); CEx, n = 7 (gray bar); HT, n = 6 (dark
gray bar). Values are shown as the means ± SE. �p< 0.05 vs. CON, #p< 0.05 vs. HT.

https://doi.org/10.1371/journal.pone.0205456.g004
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increased after exercise under warm temperature, irrespective of the non-significant differ-

ences in serum insulin concentration among the groups examined in this study. Second, exer-

cise and/or muscle contraction per se may activate Akt in the skeletal muscle [12] by some as-

yet-unknown mechanism. These studies, however, did not consider body temperature eleva-

tion during exercise. The Akt phosphorylation status is highly temperature-sensitive and so

temperature alterations during exercise may be important factors for activation of Akt and its

downstream targets [15, 16]. Here, we used the same protocol as in our previous study to

examine the effects of changes in body temperature during exercise on Akt signaling in skeletal

muscle [4]. The rectal and muscle temperatures of rats exercised under warm temperature

were elevated to approximately 40.5˚C, and phosphorylation of Akt and its downstream tar-

gets, AS160 and TBC1D1 at Thr590 was increased in skeletal muscle. This temperature eleva-

tion was sufficient to increase phosphorylation of Akt and its downstream targets, AS160 and

TBC1D1 at Thr590. Importantly, body temperature elevation by heat treatment (without exer-

cise) increased the phosphorylation levels in Akt signaling to similar levels as exercise under

warm temperature. Moreover, the additive and/or synergistic effects of body temperature ele-

vation and other factors related to exercise (i.e., muscle contraction and energy expenditure)

on Akt phosphorylation were not observed. In contrast, the exercise-induced increase in body

temperature was absent under cold temperature, as reported previously [4], and this prevented

the increase in Akt phosphorylation. Therefore, an increase in body temperature is essential

for activating Akt signaling in the skeletal muscle of type 2 diabetic rats.

A single bout of exercise increased the phosphorylation levels of AMPK and its downstream

target, TBC1D1 Ser660 and ACC, irrespective of changes in body temperature. AMPK is an

energy-sensing enzyme and its role in muscle glucose transport in response to changes in cel-

lular energy status has been investigated [6]. The AMP/ATP ratio increases rapidly during

exercise, causing robust activation of AMPK by Thr172 phosphorylation via upstream kinases

and allosteric modification. Activation of AMPK is positively correlated with an increase in

muscle glucose uptake in an insulin-independent manner [25]. The active form of AMPK

phosphorylates TBC1D1, which may be critical for GLUT4 translocation [26]. In addition,

AMPK directly phosphorylates ACC, stimulating fatty-acid oxidation in response to energy

demand [27]. ACC was one of the first substrates of AMPK to be identified and is commonly

used as a marker of in vivo AMPK activity [28]. AMPK activation and ACC inactivation dur-

ing short-term exercise is dependent on exercise intensity [27]. In the present study, the lactate

concentrations in rats exercised under warm or cold temperature were similar. AMPK phos-

phorylation levels were also similar between the exercise conditions. Thus, the similar levels of

lactate concentration and AMPK phosphorylation under both exercise conditions may partly

explain why the exercise intensity in both exercise conditions was comparable. Moreover,

body temperature elevation by heat treatment did not increase the AMPK phosphorylation.

Therefore, these results suggest that body temperature elevation is not associated with AMPK

activation during exercise. In contrast, previous studies have reported that the level of AMPK

phosphorylation was increased following acute exposure to heat stress [29, 30], suggesting that

elevation of body temperature per se activates AMPK in skeletal muscle. Indeed, previous stud-

ies have shown that ATP and phosphocreatine levels were decreased by heat stimulation and

may have contributed to the activation of AMPK [29]. However, it is believed that physical

exercise consumes more ATP than heat stimulation. Thus, it is hypothesized that energetic

changes induced by exercise (e.g., muscle contraction) strongly affect the AMPK activation

compared with those induced by body temperature elevation.

This study has one major limitation. We were unable to measure the rate of glucose uptake

into skeletal muscle. We speculate that exercise under cold conditions may partly attenuate the

increased glucose uptake into muscle due to the lack of Akt activation by suppressing body
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temperature elevation, because previous study revealed that the rate of glucose uptake through

the two different mechanisms, insulin signaling and exercise-induced signaling, is additive

[31]. Therefore, further studies are required to address this issue.

Conclusions

In conclusion, we suggest that the differences in body temperature during exercise affect the

activation of Akt signaling, but not AMPK signaling, in the skeletal muscle of obese/type 2 dia-

betic rats. It is possible that body temperature elevation during exercise contributes to

improved insulin resistance by activating Akt signaling in skeletal muscle. We propose that the

combination of body temperature elevation and exercise may be an effective strategy for glu-

cose maintenance in type 2 diabetic individuals by concurrently stimulating the Akt and

AMPK pathways.
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