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Abstract

In this thesis, we consider the nonstationary Navier-Stokes equations approximated by the pres-
sure stabilization method. We can obtain the local in time existence theorem for the approxi-
mated Navier-Stokes equations. Moreover we can obtain the error estimate between the solu-
tion to the usual Navier-Stokes equations and the Navier-Stokes equations approximated by the
pressure stabilization method. We prove these theorem by using maximal regularity theorem.
Furthermore, as the application of maximal regularity theorem, we can get the estimates for
weak solutions of approximate Navier-Stokes equations.
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1 Introduction

1.1 Back ground

The mathematical description of fluid flow is given by the following Navier-Stokes equations:

ou—Au+ (u-V)u+Vr = f V-u=0 t € (0,00),x € Q,
u(0,2) =a x €, (NS)
u(t,z) =0 x € 08,

where the fluid vector fields u = u(t,z) = (ui(t,z),...,un(t,x)) and the pressure m = 7(t,x)
are unknown function, the external force f = f(¢,x) is a given vector functions, the initial data
a is a given solenoidal function and ) is some bounded domain. It is well-known that analysis
of Navier-Stokes equations (NS) is very important in view of both mathematical analysis and
engineering, however the problem concerning existence and regularity of solution to (NS) is
unsolved for a long time. One of the difficulty of analysis for (NS) is the pressure term V7 and
incompressible condition V - u = 0.

In numerical analysis, some penalty methods (quasi-compressibility methods) are employed
as the method to overcome this difficulty. They are methods that eliminate the pressure by using
approximated incompressible condition. For example, setting a > 0 as a perturbation parameter,
we use V- u = —7/a in the penalty method, V- u = A7m/a in the pressure stabilization method
and V - u = —0ym/a in the pseudocompressible method. In this thesis, we consider the Navier-
Stokes equations with incompressible condition approximated by pressure stabilization method.
Namely we consider the following equations:

Opug — Aty + (ug - Vug + Vg = f t € (0,00),x €9,
V- uq = Amg/a t e (0,00),x € 1,
ua(0,2) = aq x €, (NSa)
uq(t,x) =0, Onma(t,x) =0 x € 09.

(NSa) may be considered as a singular perturbation of (NS). As aa — oo, (NSa) tends to (NS)
formally and we cancel the Neumann boundary condition for the pressure.

From the point of view of the maximal regularity theorem, the regularity of solution to the
first equation is different from the one of the second equations in (NSa). Therefore, in order
to adjust the regularity of the solution to their equations, we consider the following equations
instead of approximated incompressible conditions in (NSa):

(e, Vp)o = a~ L (Va, Vi) p e WhQ) (C)

for 1 < ¢ < co. We notice that (C) is a weak form of the approximated incompressible condition
V- uy = a 'Am,. We call (C) approximated weak incompressible condition in this thesis.
Therefore we consider

O — At + (U - V)ug + Vg = f t e (0,00),x €9,
uq(0,2) = aq x € Q, (NSa’)
uqa(t,z) =0 x € 00

under the approximated weak incompressible condition (C) in Li-framework (n/2 < ¢ < c0).

1.2 Known result

Pressure stabilization method was first introduced by Brezzi and Pitkéranta [2]. They considered
the approximated stationary Stokes equations which are linearlized Navier-Stokes equations with



the approximated incompressible condition V - u, = Am,/a. They obtained the following error
estimate by using the energy methods:

[ua = ullgr() + 17 — TllL2@@) < Cafl/szHm(Q)- (1.1)

Nazarov and Specovius-Neugebauer [16] considered the same approximate Stokes problem and
derived asymptotically precise estimates for solution to the approximated problem as o — oo
by using the parameter-dependent Sobolev norms. Their results are not available by the usually
applied energy methods. These results introduced above are concerning the stationary Stokes
equations and there are few results concerning the nonstationary Stokes equations and Navier-
Stokes equations. As far as the authors know, only the result due to Prohl [19] is known as
the results concerning the nonstationary problem. In [19], Prohl considered the sharp a priori
estimate for the pressure stabilization method under some assumptions and showed the following
error estimates:

[ta = wll Loe (10,77, L2(02)) + 17 (0 = 7T)HLOO([0,T],W;1(Q)) < Ca™!,

[ta — U”Lw([o,T},Wg(Q)) + H\ﬁ(ﬂa - TF)HLOO([O,T],LQ(Q)) < 0071/27

where 7 = 7(t) = min(¢,1). Since their results are proved based on energy method, all of these
estimates are in Ly framework for the space. In this thesis, we shall use the maximal regularity
theorem in order to prove the local in time existence theorem and the error estimate in the L,
in time and the L, in space framework with n/2 < ¢ < oo and max{1,n/q} < p < co. Moreover
letting P be the Helmholtz projection in §2, we consider the following equations :
T T
/ [ (ta; OrP)a — (ua, AP)a + (B(ua, ta), d)a + a(ua, d)aldt = (aq, $(0)) +/ (f, d)adt
0 0
(WS)

for all ¢ € C§°([0,T),C5°(Q2)), where B(u,v) defined by
B(u,v) = (Pou - V), (NLT)

since u, doesn’t satisfy incompressible condition. More precisely, in order to ensure the validity
for the pressure stabilization method, we use (NLT) as a modification of the original nonlinearity
in (NS) (see [19], [27]). By this setting, we can prove existence theorem of weak solution for
(NSa). Lelay introduces weak solution for partial differential equation ([15]) and Hopf constructs
weak solution the initial-boundary problem for 3-dimension bounded domain by using Lelay’s
method ([11]). Hopf’s proof is to construct approximate solution and to obtain subsequence in
Lo-space which converges weak solution for (NS) by using approximated solution and energy
inequality. Therefore, since he used the energy inequality, these estimates are in Ly framework
for the space. This method is developed by Masuda [12]. Masuda proved the existence theorem
for domain ©2 C R™ (and the uniqueness for only 2-dimension bounded domain) and the following
Lo framework estimate.

t t
a3 +2 [ [Vulfde <2 [ (Fu)adt +al} 0 <t <)
0 0

Since the weak solution for (NS) is a strong solution for it in 2-dimension domain, weak solution
is required in 3-dimension case. But the uniqueness in this case is not proved until this very day.
J. Saal considered existence and regularity of weak solutions for (NS) (with Robin boundary
conditions) in € = R’} by using the time L, and the space L, estimates for Stokes equations



linearized (NS) with Robin boundary conditions and the Duhamel principle. Saal showed the
Lo-Ly estimate :

T
||“”2Loo((o,T),L2(R1)) + IVully(0,1), 2R ) < ||<1||%2(1R1) +/o (f(t), u(t))rn dt
and the L,-L, estimate :

181t 0.1y, Lg &) + IV ull Ly (0.9, Lo (R )) + IV 7N Ly (0.7, Lo )
< Ollall g2a-1m + 1 fllzy(0,1),2q (7)) + HU||%OO((0,T),L2(R1)) + ||VUH%2((0,T),L2(R1)))

for n/q+2/p =n+ 1, where Bg,(plfl/p) is the real interpolation space :

B(i(plfl/]?) = (LQ(Ri% W(?(Ri))lfl/p‘p-

Since his proof is based on maximal regularity for Stokes equations, he obtained L,-L, regularity
of weak solution for (NS) with Robin boundary condition. In this thesis, using the way of Saal
[20], we shall prove the L,-L, regularity of weak solution for (NSa) in bounded domain @ C R"
and the uniqueness in case of n = 2.

1.3 Thesis organization

This thesis consists of the following five sections. In section 2, we present the main results on
local in time unique existence of solution to (NSa') and certain error estimate between the solu-
tions to (NSa’) and (NS) under the weak incompressible condition (Theorem 2.1 and Theorem
2.16). Following the argument due to Shibata and Kubo [24], we can prove the main results
by contraction mapping principle with the help of the maximal L,-L, regularity theorem. And
we state the result of weak solution for (NSa) (Theorem 2.5) by the method of Saal [20] with
Hille-Yosida operator. After stating the main results, we present the maximal L,-L, regularity
theorem for linearlized problem for (NSa’) (Theorem 2.6 and Theorem 2.14 ) and the theo-
rem concerning the existence of R-bounded solution operator for linearized problem (Theorem
2.11). As was seen in Shibata and Shimizu [26], the maximal L,-L, regularity theorem is direct
consequence of Theorem 2.11 concerning the generalized resolvent problem for the linearized
equations with the help of Weis’ operator valued Fourier multiplier theorem (Theorem 2.10), so
that the main part of this thesis is to show Theorem 2.11. Moreover another consequence of
Theorem 2.11 is the resolvent estimate (Corollary 2.12), which implies the construct of the semi-
group T, (t) for linealized problem for (NSa’). By real interpolation, we obtain some estimates
for To(t) (Theorem 2.13 and Theorem 2.15). In section 3, as preliminary, we shall introduce
some theorems and lemmas which play important role in this thesis. In section 4, we consider
the generalized resolvent problem for linearized problem in some bounded domain. For this
purpose, we first consider the problem in the whole space case and the half-space case. By using
the change of variable with their results, we shall prove the generalized bounded domain cases.
In section 5, the following the argument due to Shibata and Kubo [24], we show the local in
time existence theorem for (NSa’) and prove the error estimates (Theorem 2.1 and Theorem
2.16). Moreover, as the application of maximal regularity, we prove the existence and regularity
theorem of weak solution for (NSa) (Theorem 2.3 and Theorem 2.4), and, in case of n = 2, see
this solution is unique (Theorem 2.5).

2 Notation and Main Results

Before we describe main theorem, we shall introduce some functional spaces and notations
throughout this thesis. As usual C, M, ... denote constants that may change from line to line.



Sometimes we would like to express a special dependence on some parameter k. Then we use
the notation Cy, My, ... or we write it as an argument C'(k), M (k), ... . For m € {0,1,...,00}
we denote by C™(2) the space of all m-times continuously differentiable functions and the space
of cut of function

C3o(10,T),C5° () = {p € C([0,T),C5°(Q)) | ¢(t,z) =0 if t belongs to neighborhood of T'}.

For 1 < g < o0, let ¢ = ¢q/(¢g—1). If u € Ly(Q) and v € Ly(2), we use the notation
(u,v)q = fQ uvdz for the dual pairing. For any closed operator A in X, its domain and range
are denoted by D(A) and R(A), respectively. Furthermore, we call A a generator, if {e™*};>¢
satisfies the semigroup properties. For any two Banach spaces X and Y, £(X,Y") denotes the set
of all bounded linear operators from X into Y and we write £(X) = £(X, X) for short. Hol(U, X)
denotes the set of all X-valued holomorphic functions defined on a complex domain U. As the
complex domain where a resolvent parameter belongs, we use 3. = {\A € C\{0} | |arg A\| < m—¢}
and X, 5, = {A € X | [A| > Ao} for 0 < e <7/2 and A9 > 0. For 1 < ¢ < o0, Ly(2) denotes
the Lebesgue space, which consists of all g-integrable functions with its norm || - |40 and Lo (€2)
denotes the space of all functions u that satisfy [|ulc,o = ess.sup,eqlu(z)| < oco. WT(Q)
(1 < g < o0) denotes the Sobolev space of order m € N. Its norm is given by

1/q
m

HUHm7q79 = ijquQ )
q7

j=0

where V7 is the tensor of all possible j-th order differentials. In particular, for non-negative
integer m, we define H™ () as W3"(Q) and H[*(2) as closure of infinitely differentiable functions
compactly supported in H™(2). As the time-space Lebesgue space, we use L,((0,T"), Ly(2)) =
{u | lullz,(0,1),L4)) < oo}, where its norm is given by

1/p

T
el 0200 = ( / uu(ww;gdt)

If no confusion seems likely, we also write || - [|; = [| - [[g.0 and [| - [[p.0r = || - |2, (0,7),L4(2)-
and often use the same symbols for denoting the vector and scalar function spaces. For
1 < p,qg < oo, B(i(p}*l/p) (D) denotes the real interpolation space defined by Bg,(pl*l/p)(D) =
(Lg(D),W2(D))1-1/p, (more precisely see Sohr [25]). For a Banach space X, we set

q
Lpyo (R, X) = {f(t) € Lpjoc(R, X) | le™" fll 1, x) < 00, (v =0)},
Ly y0,(0) (R, X) = {f () € Lo (R, X) | f(2) = 0 (¢ <0)},
W, B X) = {f(t) € Lo 0) (R, X) | f'(t) € Ly (R, X)}.

p0,

In order to deal with the pressure term, we use the following functional spaces:

Lgioc(D) ={f | flk € Lg(K), K is any compact set in D},
WD) = {6 € Lyjoc(D) | V8 € Ly(D)"}.
Since our proof is based on Fourier analysis, we next introduce the Fourier transform and the

Laplace transform. We define the Fourier transform, its inverse Fourier transform, the Laplace
transform and its inverse Laplace transform by

F(€) = = e f(2)da U (z) = 1 el
fO = 7@ = [ e @an. FU@) = g [ e
LA = Bl O)(7), L1110 = ")



respectively, where x,£ € R”, A = v+ i7 € C and x - £ is usual inner product: z-£§ = Z?Zl zi&;.
Furthermore, we define the Fourier-Laplace transform by

LoFulo(t, 2)]| (N €) = Frale o(t, 2)](A, €) = / Z ( / ) eOtHw-@v(t,x)dx) dt.

By using Fourier transform and Laplace transform, we define H,
X. For A = v+ 7, we define the operator AJ as

o (R, X) for a Banach space

(A3N)(1) = L IAPLAANI) = @ F (72 +47) 2Rl FON](0)-

For 0 < s <1 and 7o > 0, we define the space H, . (R, X) as

H;’YO(R’ X)=A{fe Ly (R, X) | HeﬂtAif”Lp(R,X) < oo(Vy >70)}-

In this thesis, we assume next assumption for our domain §2.

Assumption 2.1. Let n/2 < ¢ < co and n < r < co. Let Q be a uniform WT2—1/1~ domain
introduced in [8] and L4(f2) has the Helmholtz decomposition.

Therefore, the domain 2 has direct sum decomposition. In fact, the space of solenoidal fields
in Q is defined by Ly, (©) = Cg6, ()", where Cg2 () = {v € C§%(Q) | V- v = 0}. Tt is well
known that L, ,(Q) = {v € Ly(Q) | V-v = 0,v|pq = 0} and that this space is complementary
in Ly(Q) for 1 < ¢ < co. More precisely we obtain the Helmholtz decomposition

Lq(Q) = Lq,U(Q) & Gq(Q)a

where G4(Q2) := {Vp | p € /qu(Q)} Therefore we can define projection operators P = Pq
and Q = Qq (called Helmholtz projection) on Ly (€2) to L, ,(€2) and G4(€2), respectively, which
satisfy

w=Pu+VQu, |Pulpa + IVQulge < Cugllullgo: (HP)

We remark that if ¢ = 2, L2(2) has the Helmholtz decomposition for any € (see Galdi [10]).
First main result is concerned with the local in time existence theorem for (NSa’) with
approximated weak incompressible condition (C).

Theorem 2.1. Letn > 2, n/2 < g < oo and max{l,n/q} <p < oo. Leta >0 and Ty € (0, 00).
For any M > 0, assume that a, € qu,(pl_l/p)(ﬂ) and f € L,y((0,Tp), Ly(2)™) satisfy

||aa||ng;fl/p>(Q) + 1, 0,10), Ly (@)m) < M. (2.1)

Then, there exists T* € (0,Ty) depending on only M such that (NSa’) under (C) has a unique
solution (uq,my) of the following class:

Ua € Wpl((oa T*)a LQ(Q)n) n Lp((oa T*)7 Wg(Q)n)v Ta € Lp((oa T*)v qu(Q))
Moreover the following estimate holds:

ttall Lo ((0.7), (@) + 1Octia, VU, VT |1 ((0.7), @) + VUl L, (0.7, Lq(02)) < Cripig, T
for1/p—1/r <1/2.

Next, we describe our second main result. To do this, we introduce weak solution for (NSa).



Definition 2.2. Let n > 2 and T € [0,00). We call u, a weak solution of system (NSa), if u,
belongs to the Lelay-Hopf class i.e. ug € Loo((0,T), L2(2))NL2((0,T), W4 (2)") and u,, satisfies

T n T
| = 00,000) = (0. 80) + 3Oyt 10) + 0N}t = (a0, 000) + [ (L)t (W)
j=1

for all ¢ € C5°([0,T), C5°(Q2)).

This theorem is based on Hille-Yosida operator and Relich theorem. Namely, we consider the
local in time existence theorem, proved by the fixed point theorem, of solution for the integral
equation with Hille-Yosida approximation.

Theorem 2.3. Letn > 2, T € (0,00]. And let
Y = Loo((0,7), L2(€2)) N La((0,T), W3 (2)").

Then, for all a, € La(2) and f € La((0,T), L2(2)"), there exists solution uq for (WS) such
that the following estimate holds.

luallZo 27 + 148/ ual

20 < laal3 + / (1), ua (1) dt. (2.2)
0

Next, we shall state L,-L, regularity for solution of (WS) depending on the dimension n.
This theorem is based on the maximal regularity of A, and dual problem.

Theorem 2.4. Let u, be one of solutions of (WS), which u, doesn’t have to satisfy energy
inequality. And let the index p, q satisfy 1 < p,q < o0 and n/q+2/p =n+1. Ifaq and f
satisfy aq € Bg,(,}_l/p) (Q) and f € Ly((0,T), Lq(?)), respectively, then there exists a constant C

such that the following inequality holds:

He_)\Ot(atuou Aauou Vﬂ—a)

pa < Clllaal gaa-vm + 1 fllpaiz + lialZo . + 142 uall 2 7).
(2.3)

This theorem is the existence and uniqueness for solution of (WS) if the dimension n equals
to 2.

Theorem 2.5. Let T € (0,00], aq € L2(Q)NW3 () and f € La((0,T), L2(S2)). Then, the weak
solution obtained by Theorem 2.4 below is unique and satisfies the reqularity

Vg € Loo((0,T), Lo (1)), Ottier, Ve, Vg € Lo((0,T), La(Q)).

In order to prove Theorem 2.1 and Theorem 2.5, we use maximal L,-L, regularity theorem
for the following linearized problems corresponding to (NSa'):

Ottt — Dug + Vg =f t>0,2 € Q,
ua(t,z) =0 x € 0Q, (Sa’)
ua(0,2) = aq z €N

under the approximated weak incompressible condition
(tas V) = o~ (Va, Vio)a + (9, Veo)o € WH(Q). (Ce)

These main result is based on the following theorem which is concerned with the maximal
L,-L, regularity for (Sa’) under (Cg) with a, = 0.



Theorem 2.6. Let 1 < p,q < co and o > 0. Then there exists a positive number ~yy such that
the following assertion holds : for any f,g € Ly 5, 0)(R, Ly(2)), (Sa’) under (Cg) with aq =0
has a unique solution :

U € Ly 0)(R,WZ(Q)) N W)

:70,(0) (R, LQ(Q))’ Ta € Lp,'yo,(o) (R, qu(Q))

Moreover, the following estimate holds :

1
”ei’yt(atuom YUeq, A% vuou A’l‘{fa(v : Ua), v2u047 Vﬂ—a) ||LP(R:LQ(Q)) < Cn,p,q

e " (f,a9)llL, ®,L, )

for any v > 0.
Remark 2.7. By the property of Helmholtz decomposition, we can solve (Cg) for uq, g € Lq(£2)

and we see T, = aQq(uq — g).

In order to prove Theorem 2.6, we use the operator valued Fourier multiplier theorem due
to Weis [29]. This theorem needs R-boundedness of solution operator. To this end, we first
introduce the definition of R-boundedness.

Definition 2.8. The family of the operators 7 C L(X,Y) is called R-bounded on £(X,Y),
if there exist constants C' > 0 and p € [1,00) such that for each N e N, T; € T, f; € X

(j = 1,...,N) and for all sequences {’yj(u)};\f:l of independent, symmetric, {—1, 1}-valued

random variables on [0,1], there holds the inequality:

1 N 1 N
/OHZ%(u)ijjH’;duSC/O 1D i (@) £ du.
J=1 J=1

The smallest such C' is called R-bound of 7 on £(X,Y’), which is denoted by R(T).

Remark 2.9. According to [5], the following properties concerning R-boundedness is known.
From Definition 2.8, R-boundedness of the family of operators implies uniform boundedness.

1Ty, = sup IT@)[5 < R(T).

|z x=1

Moreover it is well-known that R-bounds behave like norms. Namely, the following properties
hold.

(i) Let X,Y be Banach spaces and 7,8 C L(X,Y) be R-bounded. Then T +S ={T+ S| T €
T,S € 8} is R-bounded and R(T +S) < R(T) + R(S).

(ii) Let X,Y,Z be Banach spaces and 7 C L(X,Y) and S C L(Y,Z) be R-bounded. Then
ST ={ST|TeT,SeS8}is R-bounded and R(ST) < R(S)R(T).

The following theorem is the operator valued Fourier multiplier theorem proved by Weis [29]
for X =Y = Ly(Q).

Theorem 2.10. Let 1 < p,q < oo and M(7) € CY(R\{0}, L(X,Y)) be satisfy
RHEM(7) | 7€ R\{0}}) = ¢p < o0, R{|7|0-M (1) | T € R\{0}}) = 1 < 0.

Then, Ty defined by [T f](t) = fgl[M(T)fm[f](T)](t)(f € S(R, X)) is the bounded operator
from L,(R, X) to L,(R,Y"). Moreover, the following estimate holds :

ITa fll,ry) < Cleo + )l fllz, @ x) (f € Lp(R, X)),

where C' is a positive constant depending on p, X.



In order to prove the maximal L,-L, regularity theorem with the help of Theorem 2.10, we
need the R-boundedness for solution operator to the following generalized resolvent problem

{ Mg — Aug + Ve =f in Q,

Uq =0 on 0f) (RSa’)

under the approximated weak incompressible condition (Cg), where the resolvent parameter A
varies in X, 5, (0 < e <7/2, A9 > 0).
We can show the existence of the R-boundedness operator to (RSa’) under (Cg) as follows:

Theorem 2.11. Leta > 0,1 < ¢ < oo and 0 < e < w/2. Set X4(Q) = {(F1,F2) | Fi, F» €
L,()}, then there exist a Ao > 0 and operator families U(X) and P(X) with

UN) € Hol(Se g, L(Xg(Q),W(QM),  P(A) € Holl S ng, L(X(R), Wy (2)))

such that for any f,g € Ly(Q) and A € . 5y, (Ua,Ta) = UN)F,P(AN)F), where F = (f,ag), is
a unique solution to (RSa’) under (Cg) and (U(X), P(X)) satisfies the following estimates :

RL(Xq(QLLq(Q)N)({(TaT)Z(GA,aUO‘)) ’ Ae Es)\o}) <C (6 =0, 1)a

Re(x,(9), Lo ({(TO) (VP(N) [ A€ o5 }) £ C (£=0,1)
for Gy qu = (Mu, \V2Vu, V2u, (A + @) V2(V -u)) and N = 1+n+n? + n.
By Remark 2.9, we can prove the resolvent estimate for (RSa’) under (Cg).

Corollary 2.12. Let a >0, 1 < g< oo and 0 < e < w/2. Let \og > 0 be a number obtained in
Theorem 2.11. For f,g € Ly(R?) and X € 3¢ 5, there exists a unique solution (uq,Tq) to (RSa')
under (Cg) which satisfies the following inequality:

|A\ttas A2V, V2, (A + @) V2V - 1), V7a) | Ly < ClI(F @9) Ly (0)-

Let A, be the linear operator defined by Aju, = Aug — aVQque and D(A,) = {u €
WZ2(Q)" | ulag = 0}. By Corollary 2.12 with g = 0, we see that A, generates the semigroup
{Tw(t) }+>0 on Ly(2)". Moreover there exists a positive constant C' > 0 such that for any
Ao € Lg(2)", ua(t) = T (t)as satisfies

H(ua,tl/QVua,tV2ua,t8tua)HLq(Q) < Ce/\otHaaHLq(Q) (t>0). (2.4)
By the equations (Sa’), we have
IV7allz, @) < 10utiallr @) + || = Auallr, @ < Ct ' aal L, @) (2.5)

On the other hands, since 7, = aQqu, is the pressure associated with u, = T4(t)a, and
Vo = a(ug — Poug), (tua, 7o) enjoys (Sa’) under (Cg) and Vrr, satisfies the following estimate:

IVTallL, ) = allua — Potallr,) < 20ltallz, @) < Cae*|laallL, @)

which implies ||[V7a| 1. (0,7),2,0) < C’ae’\oTHaaHLq(Q). This is the effect of the pressure stabi-
lization method.

By real interpolation, we can see the following maximal L,-L, regularity theorem for (Sa’)
with f =¢g=0.



Theorem 2.13. Let o > 0 and 1 < p,q < co. Let Ao be a number obtained in Theorem 2.11.
For a, € Bgy(plfl/p)(Q), uq = To(t)aq satisfies

e Brtta, Vu0) |, (0.00) Lo(@) < Crpalltal gaa-17m g

(v = 20)Plle ™ uall 1, ((0.00),14(@) < Crpallaallr, (@)
(7 = X)) eV ual| 1, (0,000, Lq () < Cnpallaall g2a-1/m

for any v > Ag. Moreover mq, = aQau,, satisfies

eV Tl L, ((0,00),La(2) < Cripg dall g20-1/m) g5

HVTrOC”Loo(O,T),Lq(Q)) < Cn,p,qae)\OT”aaHLq(ﬂ)
for any T > 0.

Next we consider the error estimate between the solution (u,7) to (NS) under the weak
incompressible condition (u, Vy)q = 0 for ¢ € qu/(Q) and solution (uq, ) to (NSa’) under
(C). To this end, setting ug = v — uy and g = ™ — m,, we see that (ug, 7g) enjoys that

Oup — Aug + Vg + N(ug,uy) =0, t€(0,00),z € Q,
ug(0,2) = ag, x € Q, (NSE)
up(t,x) =0, x € 092,

where N(ug,uq) = (up-V)ug+ (ug-V)ua+(uq-V)ug and ap = a—a, under the approximated
weak incompressible condition

(ug, Vo)o = o (Vrg, Ve)a + o~ L(Vr, Vo) p e W) (Cr)

for 1 < ¢ < co. In a similar way to Theorem 2.1, we consider (Sa’) under (C;) for a, = ap. By
Theorem 2.6 with f =0, g = o~ !V7 and Theorem 2.13, we obtain the following theorems :

Theorem 2.14. Let 1 < p,q < oo and o > 0. Let vy be a positive number obtained in Theorem
2.11. If usual Stokes equations under the weak incompressible condition has a unique solution

(u, ) in (Lpp 0) (R, W(IQ(Q)") N W;,YE’(O)(R,L(](Q)”)) X Ly 0)(R, W(}(Q)), and (Sa’) under

(Cr) with ag = 0 has a unique solution :

(R, W(Q)") N Wy, ((0,00), Lg(Q)"), 75 € Ly 0) (R, W ().

up € L PIE

P,7E,(0)

Moreover, the following estimate holds.

1
le™" (Orup, aug, AiVug, Viug, Ai/faW CUE), VWE)\\L,,(R,Lq(Q)) < Cn,p,qHe_’YtVWHLp(]R,Lq(Q))

for any v > vp.

Theorem 2.15. Let 1 < p,q < oo and o > 0. Let Ay be a number obtained in Theorem 2.11.

For ag € Bi(pl_l/p)(Q), up = To(t)ag and 1 = aQqup — ™ satisfy

e (Opur, Vug, Ve 1, (0.00), L) < Cnpallas Hng—l/m )’

(v = M) P lle ™ up 1, (0,000, L4(2)) < Crpallael, @)

(v = 20)" e Vup| 1, (0,000 4 (@) < Crpa

ag HBS(;—l/P) (Q)

for any v > Xo. If m € Loo((0, oo),wa(Q)), g satisfies

eV gl 1o 0.1).0,0) < Collasllz, @) + IV Lo ((0,00),Lq ()

for any T > 0.



By above two theorems, we can obtain the following theorem concerned with the error
estimates.

Theorem 2.16. Let n > 2, n/2 < ¢ < oo, max{l,n/q} < p < oo and o > 0. Let T* be a
positive constant obtained in Theorem 2.1 and (uq,Ts) be a solution obtained in Theorem 2.1.

For any M > 0, assume that ap € Bg,(pl_l/p)(Q) satisfies

HaE||B§$*1/P)(Q) S Mail' (26)

Then there exists T° € (0,T*) such that (NSE) has a unique solution (ug,7g) which satisfies
Crpa
e

(2.7)

luelr. 010,10 + IVUEN L (0.10),14(0)) + 1 (V2uE, Qs VB 1 (09,1 (0)) <

for1/p—1/r <1/2.
Remark 2.17. (1) Theorem 2.14 and Theorem 2.15 with 7 = X¢g + 1 means that the error
estimate for the Stokes equations. Namely the error estimate is given by

_ c, _
le™ " (u — ua)ll L, ((0,1),,) < Eﬂe N7 L, 0m) Le) + CeN TV apllz, @)
for any T'> 0. If T' < oo and ||e_vtV'frHLoo((O’T)’Lq(Q)) < 00, We see
lle™ " (u — ua) | Lo ((0.7), Lq (@) = plgglo le™ (u = ua)ll L, ((0,1),L,4())

C, _
< Eﬂe VT o (0.0, 1 @) + CECOTI lag] 1, -

Under assumption (2.6) in Theorem 2.16, we see that there exists a positive constant C
depending on T',M and [|[V7|| (0,1),L,()) such that

v = vall Lo (0.1),L4(2) < Ca™, V(7 = Tl Loo((0,7),Le(2)) < C
for any 17" > 0.

(2) (2.7) means the following error estimates for the Navier-Stokes equations:

lu = wallz . 0.7),2,0) < Ca™
1(V?(u = ), e (w = ua), V(7 = 7))l 1, ((0.7), 140 < C s

In a similar way to (1), we obtain

H(VZ(U — Uq), O(u — uq), V(m — Wa))HLoo((O,Tb),Lq(Q)) <Ca™t

In comparison with the result due to Prohl [19], we can extend Lo framework to L, framework
with respect to the error estimate.

3 Preliminary

In this section, we shall introduce some lemmas and definitions, which plays important role
for our proof. Before we describe some propositions and lemmas, we introduce the notation of
symbols. Set

r=|¢, wyx = VA+r2 w=V\+a-+r2

—axn —bxn,

(& — €

(3.1)
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where & = (&,...,&,-1). Here £(w)) is the symbol corresponding to heat equation and
M(wy, 7, xy,) is the symbol corresponding to Stokes equations.

We next introduce some lemmas. In order to apply the operator-valued Fourier multiplier
theorem proved by Weis [29], we need the R-boundedness of solution operator to (Sa’). However
since it is difficult to prove R-boundedness directly from its definition, we first introduce the
following sufficient condition for showing R-boundedness of solution operator given in Theorem
3.3 in Enomoto and Shibata [7].

Theorem 3.1. Let 1 < g < 00 and 0 < ¢ < ©/2. Let m(\, &) be a function defined on
e x (R™M\{0}) such that for any multi-index 8 € Nij(Ng = NU {0}) there exists a constant Cg
depending on B and A such that

07m(), €)] < Cple| VP!

for any (X, &) € Tex(R™\{0}). Let Ky be an operator defined by [K ) f](x) = ]-"gl[m()\, ) F[f]1(&)](x).
Then the set {Ky | A € £.} is R-bounded on L(Ly(R™)) and

Re(ry®ny){EN | A € X)) < C\ﬂﬁiﬁz Cps

with some constant C that depends solely on q and n.

To prove the R-boundedness of the solution operator in R}, we use the following lemma
proved by Shibata and Shimizu [26] (see Lemma 5.4 in [26]).

Lemma 3.2. Let 0 < e < 7/2 and 1 < g < oco. Let m(\, &) be a function defined on 3. such
that for any multi-index &' € Ngil there exists a constant Cy depending on &', € and N such
that

0m(X, &) < Cyr 17,

Let Kj(A\,m) (j =1,...,5) be the operators defined by

KaOmglia) = [ 5 O n)€ )] @)

[K2(A,m)g](x) = /OOO ]:5_/1 [m(/\vfl)rZM(wka Ty Tn + yn)g(glayn)] (x/)dym

s m)gl(@) = | Fgt [mO0 )N Mor 2 + )5 yn) | (@)

o0

le [m()\,ﬁ')|>\|1/27“/\/l(w>\,w,mn +yﬂ)§(€/7yn)i| ($/)dyn

|
[K4(\ m)g)(z) = /0 Fot [0 € yorM(ws, 0, 2o + 1) (€ )] (),
K5 (A, m)g](z) = /0

Then, the sets {(170:)'K;(\,m) | A € .} (j = 1,...,5,£ = 0,1) are R-bounded families in
L(Ly(R")). Moreover, there exists a constant Cy, 4. such that

Re(L,@ey{(F0) Kij(Am) [ X €E}) < Cpge  (F=1,...,5£=0,1).

This lemma is proved in a similar way to Lemma 5.4 in [26] with the following lemma.

Lemma 3.3. For 0 <e < /2, let X\ € X..

11



(i) There exist positive constants C1, Co and C3 depending on & such that the following inequalities
hold:

wal > C1(IA2 +7),  Ca(@? + A2 +7) < Rew < C3(a? + A% +1). (3.2)

(ii) There ezist positive constants C' such that the following inequalities hold:

]Dg,,rsl < Cors 1

[D&ws] < CNYZ 47y,

IDEw| < CAM2 + a2 4 )19,

(D& (r +w)* < C(AM2 + 7)1,

|Dg: (r+w)*| < C(AY2 4 ot/ 4 r)sr=19]

D (w + wx)*| < C(IAM2 + a2 4 7)*(IA[V/2 4 )71 (3.3)
for any s € R and multi-index ¢§'.

(iii) There ezist positive constants C' such that the following inequalities hold:
’Dg/’{(TaT)éefran < Crf|5/‘ef(1/2)mcn7
DI{(ro) e Y| < C(AM? 4 )72
‘Dg/’{(TaT)Zefwan < C(a1/2 + ‘)\’1/2 + 74)7|§/|6751(011/2+|,\|1/2+r):1:n7
IDZA{(T0;) M(wy, 7, 0)}| < Clay or [N H2)emdronp =11
IDS{(70,) M(wx,w, 20)}| < Clan or a=V2)em WA 20an (|32 4y =19 (3.4)

for £ = 0,1 and any multi-index &' and (¢',x,) € (R"1\{0}) x (0,00), where d is a positive
constant independent of € and d'.

Proof.
(i) (3.2) are proved by elementary calculation.
(ii) Let f(t) = t*/2. By Bell formula, we see

9]

5
Dir® = Zf > T5,....5,(Dgr?) - (D),

51+--'+5e=57|5¢|21

where Fgl’m’ae is some constant and £ (t) = df(t)/dt’. Since |ngr2| < 2r2~1%l we can obtain
the first estimate. We can prove the other estimates in a similar way to the first estimate taking
the elementary estimate: |\ + |€[%| > (sine)(|A| + |€]?) (0 < & < 7/2, £ € R?) into account.

(iii) It is sufficient to prove the last estimate with £ = 0 in (3.4), since we can prove the other
estimates similarly
By M(wy,w,zy,) = —x, fo (A=O)wr+0w)zn 49 and Bell formula, we have

|Dg/’€—((1—9)wA+9w)xn‘
16"
< Cy Z .’IJK e—(cl(1—9)(|)\\1/2+T)+020(041/2+\)\|1/2+r)):cn
=1
(1= )N 4 1) 5 a2 4 A2 4 I
e (L= N2 4 ) @ A2 4 )1
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1—9)w>\+9w)xn| — e—((l—G)Rew,\—i-GRew)xn

where we used |e~(( . Setting ¢ = min(cq, c2), we see

’Dgl’ef((179)w)\+9w)xn| < 05,67(0/2)((1—9)“)\‘1/2+r)+9(a1/2+|)\‘1/2+r))xn(|A|1/2 + r)f\y"

which implies
1
|DYM(w, w, 2n)| < Caf/ e~ (/A=A 24r)+0(o 2+ 24z g (| N[1/2 4 ) =10
0

1
= Cy / e~ (/DN 2400 o =0(c/2)aM wn g (131/2 4 1) =10
0

By integrating this right hand side, we have
DY M(wn,w,2,)| < Car(e/2) " amV2e= (/DN 2nan (1312 1) =10, (3.5)
On the other hands, by e=0(c/2)at ey <1, we have
|DEM(wn,w,20)| < Cymge DTN (N2 4 =191, (3.6)
Therefore, we obtain the last estimate with ¢ = 0 in (3.4). O

By using maximal regularity theorem (Theorem 2.6), we shall prove the existence and unique-
ness theorem of strong solution for (NSa) in Section 5. To do this, we prepare some facts shown
by this theorem.

Let (w,7) = Mp(f) be the solution to

ow—Aw+Vr=f xze€Q,te(0,T),
w(0,2) =0 x € Q, (3.7)
w(t,z) =0 x € 00

under the approximated weak incompressible condition (C)

For f € L,((0,T),Lq(S2)), let fo(t) = f(t) (0 <t <T) and fo(t) =0 (t & (0,7)). Then,
letting (w,7) be the solution to Stokes equation for f = fy on t € (0,00), (w,7) can define
on t € R. Moreover, this solution satisfies w(t) = 7(¢) = 0 (¢t < 0) and (3.7) on t € (0,7).
Furthermore, by Theorem 2.6, the following estimate holds: for 0 < S < T,

10wz, ((0,8),24@)) < €7 lle” " 0wl| L, ((0.1),Lq2) < Crpa” N F L, (0.7),14(2))- (3.8)
Similarly we have
V20 (0.8 La@) + VT2, (08).La() < Crpa€ 1f 1L, 0.1),Ly(0)- (3.9)
Moreover taking into account the fact about Bessel potential space:
le " ullr, @ x) < Clle " ASull, & x) < CV_(B_Q)||€_WtAP,U||L,,(R,X) (3.10)
for Banach space X, 1 <p<g<oo,a=1/p—1/q, a < < oo and 7 > 0 and the estimate:
le™ " ull Lo r,x) < Clle™ " ASul| L, & x)
for0<a—1/p<landl<p< oo (see [3]), by Theorem 2.6 we obtain
IVl L, 0,9),24©) T 10l oo (0,9),L4(92))
< Ce|le AV 1, & Ly + CC e AL, R 1,
< CGVS||eﬂt/\}/vaHLP(R,Lq(Q)) + Ce™S e AMwl| 1, & L, )
< Ce|| fIlL,((0.7),14()): (3.11)
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where 1/p —1/r < 1/2.
Letting 5 = n/(2q) and ¢x(k = 1,2,3) are the positive constants satisfying

LS R S SR S G I
p  Bply — 2 p (1=B)ply — 2’ b Ly A3
and setting
v = 1/(¢sp), r1 = Bpls, ro = (1 — B)pla, (3.12)

by Sobolev embedding theorem and Holder’s inequality, we obtain
1-8 B
| (v - v)w||Lp((0,S),Lq(Q)) < Sv||UHLOO((075)7Lq(Q))||VUHLT1((0,5),Lq(Q))
1-5 2, 18
< IVellz, S0.s).Ly@) 1V NL, 0.8). 200 (3.13)

for any v,w € Wy ((0,T), Lg(€2)) N Ly((0,T), W2(2)) and 0 < S < T..

Moreover, by maximal regularity theorem, we can see the existence theorem (and uniqueness
theorem in case of n = 2) for weak solution. By using Helmholtz projection, the approximate
Stokes operator Ay = Aq 0,4 in Le(Q) (1 < ¢ < 00) is defined by

Aqu=Au—aVQu, u€ D(Ay)=DW;(Q)). (3.14)

Moreover, we shall introduce Hille-Yosida operator with A, and its properties, which play
an essential role in our proof for weak solution. To do this, we confirm the property of A,. For
the equation

O — Aqig + (Pua : v)ua = ua(o) = Qo

by maximal regularity theorem for A, : for some Ag > 0

le™ 2" (Brtiar, VPua) || 1, (0,000, L0 (02)) < Clllaall gza-1/m gy + e FII L, (0,000, Lq(2)))>
letting f(¢,2) =0 (¢t > T), we have

le™ " (Dptia, VU |z, ((0.7),1,(02)) < Clllaall gza-1/m gy + e Fll 2, (0.7, Ly (2)))-
Furthermore, we proved the inequality for semigroup {7 (¢)}+>0 : for t > 0 and u € Lq(12)

ITa(t)ull g+ 2V Ta(Eullg0 + IV Ta (Ol g < Mugllul e,

which implies L,-L, estimate for approximate Stokes semigroup by Sobolev imbedding theorem

ITa(®)ullpo < Crpgt ™2V ullg0, (IVTa(®)ullpa < Cppgt™ 272yl o,
(3.15)

where t > 0,1 < ¢ < p < oo and u € Ly(2). Then, letting {7, (t)}+>0 be approximate Stokes
semigroup in ) and J defined as Hille-Yosida operator :

Jp = (1—1}1;)“)_1 (k e N),

we see, by (3.15),
(¢ —n/2(1/q=1/p)
ally < € [t (1) el < O (8)

o [t —1/2—n/2(1/q—1/p)
[VJguall, < C ¢\ dt[|uallg < Co(k)|luallg, (3.16)

14



where n/q—n/p < 2. Note that if p = ¢, the constant C(k) is independent of k. And, if N € N
satisfies N > 1+ n/4, we also have

1Tktalloo < CRIIE  uallgy < -+ < CR) | Ttallay—, < C(R)Juallz, (3.17)

where 2 < gv_1 <gn_2 < < g < g1 < o0 and n/gip1 —n/q < 2.

Using these instrument, we shall prove weak solution meaning of Definition 2.2 in Section
6. In order to prove the existence theorem of solution satisfying this definition, we prepare a
technical lemma. From this lemma, we can estimate the non-linear term.

Lemma 3.4. Let a >0 and u € D(A,) = H?(Q) N HL ().

(i) The following relation holds:

IVull2 < [[AY>ulls. (3.18)
(ii) The following relation holds:
IV%ullz < C||Aqull2, (3.19)

where C' is a positive constant independent of u.

Proof. (i) Since we have
(Aau,u) = (Vu, Vu)o + a(VQu,u)e = [|Vull3 + o VQul|3 > 0

by the properties of the Helmholtz projection : u = Pu 4+ VQu and (Pu, VQu)q = 0, we see

that A, is a positive definite self-adjoint operator and that A, has the square root A(l)/ % which
satisfies

1A ?ull3 = [Vull3 + ol VQul3,

which implies (3.18).
(ii) In order to prove (3.19), we shall consider the following equations:

—Au+Vr=f, in Q (3.20)
under the weak divergence free condition:
(U, v1/))Q - a*l(vﬂ_’ V¢)Q = (97 w)ﬂa (321)

subject to ulgpg = 0 for f,g € La(2). Goal is to show that for f,g € Lo(Q2), the solution (u, )
to (3.20) under (3.21) satisfies

IV2ully + [[Vrlla < C ([ fll2 + allgll2) - (3.22)

If we obtain (3.22), since (3.20) under (3.21) with g = 0 is equivalent to A,u = f, we can obtain
(3.19).

Taking the fact that there exists F,G € Lo(2) with f =V - F,g = V - G into account, the
weak form of (3.20) under (3.21) is given by

(Vu, Vo)a + (Vm,0)a = (f,¢)a = (=F, V)a,
(Vm, Vi) — (u, Vi)q = (G, Vih)q.

1
o
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By Helmholtz decomposition, setting VQy = V1, we have

(Vu, Vo) + a(VQu,Vo)o = (VQf, VQp)a + a(G, ). (3.23)
We consider the only (3.23). For this purpose, set the bilinear form A(u, ) as follows:
A(u,¥) = (Vu, Vip)o + a(VQu, ¥)a (3.24)
for u, € H} (). By Schwartz inequality, (HP) and Poincaré, we see

[A(u, )| < [[Vull2[ V2 + [ VQull2[[¢ll2 < (1 + ) Jull g ll¢ll a1 (o), (3.25)
A(u,u) = [Vul3 + o[ VQuI3 > [Vullz > Cllullfn g, (3.26)
for u,¢p € H}(Q). By Lax-Milgram theorem, for any h € H~1(f2), there exists a u € HZ ()

uniquely which solves A(u,v) = (h,¥)q and |[ul|g1(q) < C|h||g-1(q)- Therefore (3.23) has the
solution u in the distribution sense, and u satisfies

Vulla < C (£l + allGllg-1) < C([Fl2 + l|Gll2) -

We consider the pressure term 7. To this end, let u € H}(Q) be a solution to (3.23) and
consider the functional G : ¢ — [G, ¢] defined by [G, ¢] = (Vu, V)a+(F, V)q for ¢ € C§°(Q).
Then we see that G € H~1(f2), which implies that there exists 7 € Ly(Q) with G = V7 in
distribution sense. ||7||z, is estimated as follows:

7l < [Vrllg-1 = [Au+ fllg-1 < C([[Vull2 + [|F]l2) < C([|F][2 + al|Gll2) -
Therefore we have
[Vullz + [zl < C([[Fll2 + al|Gll2) (3.27)

From now, in a similar way to Kubo and Matsui [13], we shall show that for f,g € L2(Q),
the solution (u,7) € H2(Q) x H'() to (3.20) under (3.21) satisfying

IV2ully + [[Vrlla < C ([ fll2 + allgll2) - (3.28)

For this purpose, we need three steps where we treat special cases. In the first step, we consider
the case for the whole-space and a half-space. In the second step, we consider the case for a
bent half-space. In this case, we reduce to the case for the half-space by a transformation of
coordinates. In the third step, we consider the cases for a uniformly Wf ~1"_domain (n<r<
00). In this case, by using localization method we reduce to the case for the whole space, the
half-space and bent half-space.

In the first step, we consider the case for 2 = R" and R’}. Namely, we consider

—Au+Vr=f

under (u, Vi))o — a1(Vr, Vip)g = —(G, Vi), subject to ulgo = 0 if @ = R%. In a similar
way to the method due to Kubo and Matsui [13], we see that

IV2ullzg + V72 < C (I fll2g + allGllzg) - (3.29)

In second step, we consider the case for a bent half-space. For this purpose we shall introduce
some notations. Let ® : R® — R™ be a bijection of C! class and let ®~! be its inverse map.
Denoting V& = A+B(z) and V&~ = A_;+B_1(z), we assume that A and A_; are orthogonal
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matrices with constant coefficients and B(z) and B_1(z) are matrices of functions in W,!(R"™)
with n < r < co such that

[Blloo,rn + [|1B=1loo,rn < M, [VB|ygn + [[VB-1lrrn < M.

We shall choose M7 small enough later, so that we may assume that 0 < M; <1 < Ms. Let Ry
be the boundary of the half-space defined by R = {x = (x1,...,2,) € R" | 2, = 0}. Set Q4 =
®(R7) and 094 = ®(Ry). In order to prove the case for the bent half-space, we transfer (3.20)
under (3.21) into a problem for the half-space by the change of variable z = ®~!(y) with y € Q.
and z € R’ and by the change of unknowns uy(z) = A_1(ua(®(2))), ma(z) = A_1(7a(P(x)))
and ¥ (x) = A_1(¢(®(x))). Since Oy; = > p—1(Arj + By jOr,), we have the following equations:

—AUg + V7q = f+ + F(Ua, Ta) z € RY,
Uy =0 x € OR

under

(U, V)R = 0 (VTa, V)re + (Gt V)R + (G(Uas Ta), )y

for ¢ € /V[7ql, (R7), where fy(z) = A_1(f(®(2))) and G4 (z) = A_1(G(®(x))) + M4G. Moreover
F(ua, 7o) and G(uq, mo) have the following forms:

F (U, Ta) = M1 V%Ug + MoVig + M3V,
G (U, Ta) = o H(Mytig + M5VT,)

with some matrices of functions My, (k =1,...,5) possessing the estimates
[Milloorn < CM, [Mollrrr + [[V My < CMs

for j =1,3,4,5 and n < r < co. By the results of the case for the half-space, we obtain
IV2uall2rn + | V7all2mn
< € (sl +olGolamy + IF @ F)llomy + allG(@a, 7oz

<C <Hf+\|2,R1 + |G llzrr + Mi(|VUall2rr + | V7Sl

27 + [[Uall2,rn )
Mol ooz V72 287 )
Taking M sufficient small, we see that

IV2ual

arn + | Vaallore < C <Hf+||2,R1 + allg+llzry + [Juallzre + IIVUNaHZRi) :

which implies
IV?uall2,0 + [Vaallzo < C ([ fllz0 + allgllzg + [uallzo + [[Vual20)

for the case where (2 is the bent half-space.

In the third step, we set 7—[]1 = <I>Jl- (R7Y), 87—[]1- = @;(ORZLF), and 7—[]2 = @?(R”) and set 5;“ as the
cut-off functions satisfying 0 < §§?’ <1, suppfjl-C C By (xf) ={reQ||xr— x§| <dF} for k=1,2
and 7 =1,2,....

Let f,g € La(Q2), we first consider the following equations:

k k k k
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under (u;?,vw) = a YVn k V@ZJ)Hk + (§kG V@ZJ)H;C for k = 1,2 and we also consider the

boundary Condltlon u =0 on 87—[1 for k=1. By the results of the first step and the second
step, we can obtain

|
For f,g € La(R2), we set

(o] [o¢]
u=) &uj+) &uj, Z Z
j=1 j=1

7j=1

(1Ek £l 50

Inserting (u,7) into (3.20) and (3.21), we see that

—Au+Vr=f+F, (u, Vip)o = é(Vw, Vi)a + (G, Vi) + (é, Vi)a,
where
2 o 2 oo
F=3"3" (Ve (Tuh) + (Aghul — (vehph ), G=a' Y S (Ve
k=1 j=1 k=1 j=1

By the results of the second step, we have

IV

czz(W Dl + 19675 20)

k=1 j=1
2

o0
< O3S (UEFT2ub g0 + €597 o 0t) + 20VER ool Vb 2 3
k=1 j=1

k k k
192 ool + 175 30

2 o
k k k k k
ZZ (”fj f||2,7-[§ + al|§; G||2’7_[§ + [|uj ||2,7-[§ + [|Vu; ”27{§ + ||7; ||27-L§) .
k=1 j=1

By Poincaré inequality, (3.27) and ||F'||2,0 < C|| f|2,o, we obtain
IV2ull2 + V7l < C (I £ll2 + allgll2)
which implies (3.19). O

4 Maximal Regularity

Goal of this section is to prove the R-boundedness of the solution operator to the following
resolvent problem (RSa’) in Q:
g — Aug + Ve =f  in Q, ,
{ Ug =0 on 01, (RSa')
where A € ¥, 5,(0 < e < m/2,Ag > 0) under the approximated weak incompressible condition
(Cg). Our method is based on cut-off technique. For this purpose, we shall first prove the whole
space case. Secondly we shall prove the half-space case by using the result for the whole space
case and some lemma introduced in section 3. Next we shall prove the bent half-space case by
reducing to the result for the half-space case with the change of variable. Finally we shall prove
the bounded domain case by using the result for the whole space and the bent half-space case
with cut-off technique.
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4.1 Problem in the whole space
In this subsection, we shall prove the following theorem:

Theorem 4.1. Let « > 0,1 < g < 00 and 0 < ¢ < /2. Set X((R") = {(F1,F») | Fr, F> €
Ly(R™)}. Then, there exist operator families U(X) and P(X) with

U € Hol(S., LOX,(RY), W2ER™Y),  P(A) € Hol(Se, £(X,([R"), W} (R™)))

such that for any f,g € Ly(R™)™ and X € ., (ta,Ta) = (UN)F,P(A\)F), where F = (f,ag),
is a unique solution to (RSa’) under (Cg) for the case Q@ = R™ and (U(N), P(N\)) satisfies the
following estimates:

RL(XQ(R"),Lq(]Rn)JV)({(TaT)E(G/\,Ocu()‘)) [AeX}) <C (€=0,1),

Re(x, ), L, &) ({(70)(VP(N) | A € B}) < C (£=0,1)
for Gy au = (Au, N2V, V2u, (A4 a)/2(V - u)) and N =1+n+n2+n.

Proof. In order to prove the R-boundedness of solution operator by using Theorem 3.1, we
shall obtain the solution formula to (RSa’) under (Cg) by using Fourier transform. By the
property of Helmholtz projection, we know Vr, = aVQgn (uq—g) and F[VQrnv] = [£]|72£(£-0).
Applying the Fourier transform to (RSa’), we obtain the following solution formula : uq j(z) =
uj(z)+ uan(a:) and 7, (z) = 7(z) + 7 (x), where (u, ) is the solution to Stokes equations given
by

0 =7 5 geh©) @ - X7 [ i@
__ZZF [ISI2 )} (@) (4.2)
for j =1,...,n and the error term (uE T, )glven by

1 [ &6 Uk (€) — agih) E_ N~ g1
ZF [|5|2 Ot at P >] @) m=i) 7 EP0+a + IEP)

&6+ 1) (f(6) — ag%(f))] @

(4.3)

for j = 1,...,n. Since in the whole space case, it is well-known that the solution operator to

Stokes equations is R-bounded ([26] for detail), we consider the only error term (uZ, 7). By

)’ (0%
Leibniz rule, for ¢ = 0, 1, we obtain

ems (At )&k i3] s A+ ) 26,858 iy
0 Pl | < O '(a)Dﬂst +lep| = ol
gmgnff — 65 A+ 52 _
(Taf)ngs'g'z(Haff‘ﬂQ) < P! (raf)fpgm‘;(:iaugp) < Ceslel Pl (4.9)

which implies from Theorem 3.1

R (5, @)1 2y 1) LT (Grad (V) | A € Be}) < O (£=0,1),
Re(x, &), 1,&n)m) ({(T0) (VP(N) | A € B}) < C (£=0,1).

This completes the proof of Theorem 4.1. O
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Remark 4.2. By Theorem 4.1, we see that the existence of the solution (uq, 74 ) to the resolvent
problem (RSa’). Moreover by Theorem 2.10 and Remark 2.9, (uq,7,) satisfies the following
resolvent estimate:

| (Atta, Al/zvum V2ua, (A+ O‘)l/z(v “Uq), v”cz)HLq(R") < Crgell(f, ag)”Lq(R")-

4.2 Problem in the half-space
In this section we shall prove the following theorem:

Theorem 4.3. Let a >0, 1 < g < oo and 0 < e < /2. Set X;(R") = {(F1,F2) | F1, F» €
L,(R%)}. Then, there exist operator families U(X) and P(X) with

U(N) € Hol(Se, L(Xo(R), WS (RT)™),  P(A) € Hol(S., L(X,(R'L), W, (R)),

such that for any f,g € Ly(R})™ and X € X¢, (uq, 7o) = UN)F, P(A\)F), where F = (f,ag), is
a unique solution to (RSa) under (Cg) and (U(N), P(N)) satisfies the following estimates:

RC(XQ(Rﬁ),Lq(Ri)N)({(Ta ) (G/\Oé ( ) ‘ A€ EE}) <C (£ =0, 1),

)
Re(xymn) Loy ({(70)(VP(N) [ A € 2}) < C (£=0,1)
for Gy au = Au, \Y2Vu, V2u, (A4 a)/2(V - u)) and N =1+n+n2+nd.

In order to prove Theorem 4.3 by Lemma 3.2, we shall obtain the solution formula to (RSa’)
under (Cg). By density argument, we may let f,g € C§°(R"). In this case, equation (RSa’)
under (Cg) is equivalent to the following equations:

{ Mg — Atg + Vg =f, Vtg—a 'Ar,=V-g in R,

4.5
u‘aRi = 07 anﬂ-a’[)Ri = O ( )

We shall obtain the solution formula to (4.5). For this purpose, we extend the external force f

and g to the whole space. For f = (fi,...,fn) and g = (g1,...,9n), let F = (ff,..., fS_1, f2)
and G = (¢f,...,95_1,9%), where

. i@, zn)  (xn>0) o (2 ) (xn, > 0)
i) = {fj@:', o) (e <0) TP { Fal@, —an) (0 <0)
where 2’ = (x1,...,2,-1). We consider the resolvent problem with F' and G:

\U, — AU, + VO, = F, V- -Uy=a'A0,+V- -G in R”. (4.6)
Here we remark that from the definition of our extension, (U,, ©4) enjoys the boundary condition
Uan(z',0) =0, OnOu(2',0) = 0. (4.7)

By the result for the whole space and the definition of our extension, the following estimates

hold:
|(AUa, A2V U, V2Usy (A + )2V - Ua), VO 1, ) < CII(F, aG) |1, o)
< Cl(f.a9)llny @ (48)
Setting uy = wa + Uy and 74 = po + ©4, we see that to solve (4.5) is equivalent to solve

{/\“’a—AmeVpa:O, V-we =Apa/a  inRY, (4.9)

(wa)j|a¢n:0 = hj|xn:07 anpa‘:fanO =0,
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where hj = —(Uy)j for j=1,...,n—1 and h, = 0. Applying div and (A 4+« — A)A to the first
equation in (4.9), we obtain

A+ a—A)Apy =0, A+ a—A)(A—A)Aw, = 0. (4.10)
By applying the partial Fourier transform defined by
§(§/7 iL'n) = / e—ix’{'g(x/’ xn)dwl
Rn—1
0 (4.9) and (4.10) , we have
AMwa)j + 7 (w )i — 32( a)j + (i§5)pa = 0,
r?(Wa

AMwa)n + r=(Wa)n — ( a)n + Oppa =0,
i€+ (i) = 1%+ 02 (4.11)
(wa);(£,0) = hy(¢',0),  (wa) ( 0)=0,  9pal¢,0)=0
and
A+ a+r* = D2)(r? —D2)pa—0
A+ a+r2 =D (A +72 = D2)(r? — D?)w, =0, (4.12)
where i€ - w, = Z;‘;ll(zfj)(wNa)J Since from (4.12), we see the solution (wg,ps) can be
expressed by
Pa = pe " 4 ge (Wa)j = aje” "™ +bje” A% 4 ¢je”“n (4.13)

for j = 1,...,n, we shall find the solution to (4.11) having the form (4.13). By substituting
(4.13) to (4.11), we see

Aaj+ (i€)p =0, —acj+ (i&)g =0,

Aay, —1p =0, —ac, —wq =0,
i€ -a' —ra, =0, &b —wyb, =0, i - —we,=aa+ g,
aj +bj+cj=hj, a,+b,+c,=0, —rp—wq=0
for j =1,...,n — 1. Setting A = AMwyw — r?) and B = aw(wy — ), we see
B alwi o
p= T(AJFB)& W, q=—_D
1€ ~ & §;r &§;r
aj:—%]m bjzhj-f-% +7], Cj:—%,
r r r r
ap = Xpa by, = _Xp - apa Cn = ap-
Therefore, we obtain the solution formula (wq); = w; + fu;f and Py = p + pa’, where
(@,Wa", ,pa’ ) is given
) = By + 5 M(wn, 20,
T
—5_ & A 5 § o o
Wer = Ay gt MM ) = R B M ey ),
Wy, = i€ - l;’/\/l(wA, T, Tp),
B ~ QWA o
= W - W
Way = A+Bzf M(wy, T, Tp) © er,\)(.AJrB)Zg M(w,wy, xy),
P w)\:- i€ Reron,
~F wr+r A / —rz ! T, —wT
— . h, n . h/ n
P r A+ B * A gls e
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Since the symbol M(a, b, x,,) defined by (3.1) has the following properties:

OpM(a, b, x,) = —e ¥ —bM(a,b, x,),
2 M(a,b,z,) = (a +b)e” " + b2 M(a, b, z,)

and by ¢(0) = — fo On9g(Yn)dyn, we have
B0 = [ e(@)a = DE )dun,
}Nl(g 70) (aa b, xn = / {8 a }NZ yn) + M(a7 b,z + yn))(b - Dn)ﬁ(£/7yn)}dyn7
0

where £(z) is defined by (3.1). Therefore, setting &; = &;/r, we obtain

Wi

/ T )(wx = Dn)lj (€, yn)) (2 dyn

+kzl/0 Fo [65En(E(wn)rhn (€ yn)

+ M(wr, 7, Tn 4 Yn) (1 — Dp)rhi (€, ya))) (@) dyn,

(wa)F (2)
n—1 ) L .A ~
=X [ 66 g e )
+ M(wx, 7,2 + yn) (1 = D)rhi (€, yn))] (@) dys,

n—1 R

*© . 1€ al —

DI e e NG
k=1

+ M(wr, W, T + Yn) (@ — Di)rhg(€', yn))) () dyn,
x)

—~

Wn,

n—1

= Z/ Fer'léw( E(wn)rhi(€ yn)

|_|

+ M(‘”)u T, Tn + yn)( - n)rhk(fla yn))](aj/)dym

/fsk

+ M(wx, 7y Tn + yn) (1 — Dn)rﬁ;(g’, yn))](x,)dyn

— [ s wi a\ —~
e3[R R e )
k=10

(E(wn)rhi(€ yn)

?er :m

wy+wA+B
+ M(w)ww’ L, + yn)(w - Dn)rﬁ;(glv yn))](x')dyn,
p(z)

not > wy+7r -~
- _ ZZ/O I AT E(r)(r — Dp)r&phi (€, yn)] () dyn,
k=1
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= z_:/ooo ]:5/1[£kw>\ +r A () (r — Dn)rﬁ;(fl,yn)](ﬂﬁ/)dyn

k=1 r A+B
n—1 0o CaN . -
+ k:1/0 Fer [ﬁch B i€(w)(w — Dp)rhi (&, yn)ldyn. (4.14)

We remark that (w,p) is the solution to the usual Stokes equations and (w, p¥) is the error
between the solution to Stokes equations and Stokes equations approximated by pressure stabi-
lization. Since Shibata and Shimizu [26] proved R-boundedness of solution operator to Stokes
equations, it is sufficient to consider (wZ, pZ) only. For this purpose, we prepare the following
lemma.

Lemma 4.4. Let 0 < ¢ < 7/2 and o > 0. For any multi-index 0’ and (\, &, x,) € X X
(R"=1\{0}) x (0,00), m(A, &) = r(wy+7)" L wlwy +w) L AA+B) L, B(A+B)~! and a (A +
B)~! enjoy

08 m(X, &) < Cr=lol, (4.15)
where C' is a positive constant which is dependent of € and §'.

Proof. We first show that m(\, &) = r(wy + )~ and w(wy + w)~! enjoy (4.15). By Leibniz
rule with (3.3), we see

1 |(5l 7'-7|6§‘ —|(5,|
¢ 3 R <o,

’ w,\—i-r

e A[Y/2 4
— 18]
D <C (IA[Y2 4+ /2 4 p)r=1o1l - < or 1,
P 5,;5," " T )

In order to prove m(\, &) = A(A + B)™1, B(A + B)~! and aA(A + B)~!, we shall consider
Dg,/ (A + B). Since

A+ a)w n AN+ a)r

A+B=A+awlwr—r)+irlw-—r)=—"—- w+T
A

we have

) 1/2 1/2 )
‘D?(/H—B)‘§C|)\(|)\|+a){w R r }7‘_5

A2+ Y2+ al/2 4 r
< CIAL(AY2 + a2 (A2 + o2 + ) (A2 + 7))L 10 (4.16)

Since |arg[w(w + 7)/r(wy +7)]| < 7 — ¢, we know wr™!(w + 7)(wy + )"t € X, which implies
that

w w+r

A+ B| = ])\+a|)\|‘

+1'
wHTrljwyx+r r

w W+
wx+T r
> C(NY? + o' 22N (A2 + 2 ) (N2 )7

By Bell’s formula with (4.16), we obtain

> (A2 + 2PN (A2 + a2 4 ) (

)

DI(A+B)7Y < CINTHIAM2 + o 2) T2 (N2 4+ o2 ) LAY 4 )

which implies (4.15) for m(\,¢") = A(A+ B)™ 1, B(A + B)~! and aA(A+ B)~L. O
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Proof of Theorem 4.3. We shall prove Theorem 4.3 by Lemma 3.2 with Lemma 4.4. Set (wa)jE’k’g(@(k =
1,...,n—1,0=1,...,6) as follows

walfiae) = [ 7 @sk““awm;(s,yn)] («")
(walfiale) = [ 7! |66 AﬁB (s 4 ) (€ )| )

(o fisle) = [ ot |66 M w4 )D€ )] (),

[ réi&n al —~
(o fate) = [ 7t | 29 08 e o€ )| @i,
r&i&e  al —~
wa 7 k 5 /0 wfj_fkr A + BM(C‘DU W, Tn + yn)wrhk(gla yn):| (x/)dyna

(wq) ]k6 / Fit c:f]fkr Aaj\BM(wA,w,xn —f-yn)TDnhk(ﬁ’,yn)] (2")dyp.
Setting Ko j(hi) = (wa)jEyu(:v) for £ = 1,2,4,5, by Lemma 3.2, Lemma 4.4 and (4.8),
we see that K,y ; is R-bounded. Since hy = —(Ua)r, Us = Urn(X)F, where Urn(A) is the
solution operator in R™ and F' = (f, ag), setting V; 1 ¢(AN)F = Kq jo(Urn(A)F)i), we see that
GraVikt(NF = Kq0;(GxoUrn((X)F) is R-bounded by Remark 2.9.
Since Lemma 3.2 and Lemma 4.4 and the relation:

A /
A(wa)j3(7) / Fe i gy Men e+ va)r N2 N2y,

we see there exists a R-bouned operator K, 3 ; such that
Ko3; (A2 Dnhi) = Mwa) Py 5(x).

Setting AV x3(\F = Ko 3 (|AY2D,(Ugn F)y1), we see AV x3(A\)F is R-bounded. In a similar
way, we can show that Gy oVji¢(A)F (£ = 3,6) is R-bounded. Summing up, setting (U(X)F); =
> ke Vikt(NF and UM EF = (UN)F)j)j=1,...n, We see U(N)F is the solution operator in R}
and G oU(X)F is R-bounded.

In the same way, we obtain the results for (wy)Z () from the results for (w a)f () and the

results for (pq)”(x) from the equations (RSa’) and the results for (wq )% (z) and (w)E ().

Vi n

O]

4.3 Problem in the bent half-space and the bounded domain

Before we describe the theorem for bent half-space, we shall introduce some notations. Let
® : R" — R" be a bijection of C! class and let ®~! be its inverse map. Writing V® = A + B(z)
and V®~! = A 1 + B_1(z), we assume that A and A_; are orthogonal matrices with constant
coefficients and B(x) and B_1 () are matrices of functions in W,}(R"™) with n < 7 < oo such that

1B, B-1)|| oo () < M, IV(B, B-1)l|L, @) < Ma. (4.17)

We shall choose M; small enough later, so that we may assume that 0 < M; <1 < M. Let
Rf be the boundary of the half-space defined by Rff = {z = (z1,...,2,) € R" | , = 0}. Set
Q4 = ®(R%) and 004 = ®(R]).
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Theorem 4.5. Let a > 0, 1 < g < o0 and 0 < e < w/2. Set Xy((Qy) = {(F1, F») | Fr, Fs €
Ly(Q4)}. Then there exist My € (0,1), Ao > 1 and solution operator families U(X) and P(N)
with

UN) € Hol(S: 5y, L(Xg(Q1), WF(24))), P(N) € Hol(Se pg, £(Xg(24), W, (24)))  (4.18)

such that for any (f,ag) € Xq(Qy) and X € 3.5, (ta,ma) = UN)F,P(N)F), where F =
(f,ag), is a unique solution to problem (RSa') under (Cg). Moreover (U(N), P(N)) satisfies the
following estimates:

R iy iarny ({70 Grall(N) [ A€ Sap ) €€ (€= 0,1),
Re(xy@) Loy {(TO) VPA) [ A € Sep ) <C (£=0,1)
for Gy au = Au, \Y2Vu, V2u, (A4 a)/2(V - u)) and N =1+n+n2+n.

Proof. In order to prove Theorem 4.5, we transfer (RSa’) and (Cg) into a problem in R”} by the
change of variable x = ®~!(y) with y € Q; and = € R and by the change of unknowns : v(z) =
A-1(ua(@(2)), p = A_1(ma(®(2))) and ¢p(z) = A_1(p(®(x))). Since 0y, = 3251 (Ar;+Be,;)0x;,

employing the same argument to Shibata [21], we have the following equations

{)\U—AU+Vp:f++]:(v,p) r € R, (4.19)

v=0 z € OR"
under
(0, V)rn = o~ (Vp, V)rn + (94, VO)Re + (G(v,0), V)Rn, o € WH(RT),  (4.20)

where fi(z) = A_1(f(®(z))) and g4+(z) = A—1(9(®(x))) + Mag. Moreover F(v, p) and G(v, p)
have the following forms:

.F('U, p) = M1V2U + MaVou + M3V;07 g(’U, p) = Oé_l(./\/l4’() + M5V:0) (421)
with some matrices of functions My, (k= 1,...,5) possessing the estimates
Ml @n) < CM, (M2, VM), mn) < CM> (4.22)

for j = 1,3,4,5 and n < r < oco. Setting F(\)F = F(Ugn (A\)F,Prr (\)F) and G(\)F =
G(Urn (N F, Prr (A)F)), where I = (fy,agy) and (Ugn (A), Prr (A)) is the solution operator in
R?, we can obtain, for £ =0, 1,

Ry 8, Lo(@) ({70 FN) | X € 323, }) < {C(o + My) + CoAg Yo,

Re(x,@n).Lo@) {(T97) aG(N) [ A € T 5 }) < {Clo + M) + Codg /Yo,

where kg is the R-bound of the half-space case and ¢ > 0, by the method due to Shibata [21]. We

choose o and M; so small that C(o + M1)ko < 1/8 and Ag > 1 so large that CU)\al/2l<&0 <1/8.
Thus. we have
RE(Xq(Ri),Lq(Q)N’)({(TaT)ZF()‘) [ AE TN }) <1/4 (¢ =0,1),

RL(Xq(Rj_),Lq(Q)J\N’)({(TaT)ZO[G(A) | A€ X }) <1/4 (£=0,1).
Since R-boundedness implies the usual boundedness (see Remark 2.9), we have

IFNE, aGAN)F) | Lyn) < 27 HIF L, @)
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where F' = (f, ag) for A € I'; ;. Therefore R(A\)F = (F(A)F,aG(A\)F) is a contraction map from
X,(R") into itself, so that for each A € I' y,, (I+R(\)) ! exists and H(I—l—R()\))*lHﬁ(Xq(Ri)) <
2. If we define v and p by v = Ury (A)(I + R(\)"LF and p = Pre (M) + R(\))"LF, where
F = (f,ag), then (v, p) is a unique solution to (4.19) under (4.20). Moreover we have

Re(xy@n).Le@) {(T07) (1 +R(A) T [ A € B p}) <2 (t=0,1),
which implies

,R’E(Xq(]RT_f_),Lq(Q))({(7_87')KGV/\,OAZ’[]RT}r ()‘)(I + R()‘»_l ’ A€ EE,)\O}) < 2k, (6 =0, 1)7

Re(xy@2).Le(@) {(T07) VPR (A (I + R(A) ™| A € Bene}) < 2r0, (t=0,1).

By the change of variable y = ®(z) transfer (RSa’) under (Cg) in the half-sapce case into
the bent half-sapce case, we see that uy(y) = T A_1(v(®7(y))) and 7, = TA_1(p(®"1(y))) is

a unique solution to (RSa’) under (Cg) in the bent half-space and we construct an R-bounded
solution operator. This completes the proof of Theorem 4.5. ]

By using the cut-off technique with Theorem 4.5, we shall prove Theorem 2.11.

Proof of Theorem 2.11. We set ’H]1 = <I>]1- (R%), 87—[]1- = @}(8]1%1) and ’HJ2 = R" and set fj- as
the cut-off function enjoys 0 < f;- <1 and suppfji. C By (a;;) ={xeQ|lzr—- a:;| < d'}. Let
f,9 € Ly(2). We consider the two equations

1 1 1_ ¢l 1
Auj — Au; + Vs =6 f v €Hj, (4.23)
U; = 0 S 87—[11
under
(4, Vo) = o~ (Vrh, Vil + (€9, Viohoa peWi)  (120)
and
Auf — Auj + Vs =& f z € Hj (4.25)
under
(5, Vp)yz = o~ (V7] Viplyz + (€59, Vi) peW (H}).  (426)
By Theorem 4.1 and Theorem 4.5, there exist operator families
UF(N), PE(N) (k =1,2) with
UF(A) € Hol(Teng, L(Xq(HF), Wi (H5))),
PF(N) € Hol(T'e g, £(Xg(H]), Wy (H))))
such that (ué“,ﬂf) = (Uf()x)(ﬁff, aEfg),Pf()\)(ﬁj’?f, af}“g)) uniquely solves the problem (4.23)
under (4.24) and the problem (4.25) under (4.26), respectively. Moreover we see
RE(Xq(H?),Lq(’H;?))({(TaT)ZG)\yOéujk()‘) | A €T ) < ko,
RL(Xq(H;?),Lq(H;?))({(Taf)zvpf(/\) | A€l ) < ko (4.27)

with some constant xo independent of j € N. By (4.27), we obtain

1O, A2, V25, (A + a) V2V -, V) ey < w2ll(€5F, 065 9) 1, 0t)-
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For f,g € Ly(€), we set

N (f.ag) = Zf;u +Z§f u?, N(f,ag) = Z@lﬂ +Z€? ot

Inserting (v, 7) = (U\)(f, ag), P(A)(f,ag)) into (RSa’) and (Cg), we have

M —Av+Vr=f—-VI\)(fag9), z€Q,
v=20 x € 00

under

(v, Voo = o (Vm, Vo)a + (9. Ve)a + (V2(N)(f. 9), Vo)
with
A (f. ag) = 2{2 V) - + (A} — (V&)
+2(VE) - (Vul) + (AG)uF — (VEH 2},
V2 (frag) = 'Y {(VE) )+ (VE) T}

j=1
Since by Poincare inequality we obtain
I(VENTF I y0) < CIVAS Iz, ) < Callullz,o
and 7 = aQqu, we have VI (A)(f, ag), V2(N)(f, ag) € Ly(2) and
[V (- a9), aV M) a9)) [z, 0) < CXg (142072 + adg ) (£, 00)l| 2, 0)-
Choosing A9 > 1 so large that C>\_1/2(1 + /\_1/2 + )\_1/2) < 1/2 and setting V(A\)F
(VYA F,V2(\)F), where F = (f, ag), we see that (I -V ()t e L(X,(Q)) exists and (u,T)

(UM =V N)"LF, PO\ (I — V(A)7LF) is a unique solution to problem (RSa’) under (Cg).
Finally we shall show the R-boundedness of solution operator. Let

> eu F+Z€u2
j=1

=2 &P F+Zf Pix
j=1

and
Z{z VED) - (VU AF) + (AU (N F — (VE)P N F

+2(VED) - (VURNE) + (AENURNF — (VEPHN)F},
VEA)(f, 0g) = o 12{ (VENPHANF + (VE)PF (N F},
7=1
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where F' = (f,ag). We see that U(\) € Hol(T'¢ 5, £(X4(Q), W2(2))) and P()\) € Hol(T: »,, £(X,(9),

and (v, m) = (UA)F,P(A\)F), where F = (f, ag) satisfies !

A —Av+Vr=f-VI\)(f,ag) xecQ,
v=20 x € 05}

under

(v, Vo) = a1V, Vo) + (9. Ve)a + (VEA)(f, 9), Ve)a.
Since
Ry (@), Lo(@m) LTV ) | A € Teng}) < OO (1 4+ 05 + arg ),

Re(xy (). Lo(@m) ({(T0)aV?(A) | A € Tang ) < O 2 (1 + A0 2 4+ adg P)ro,

Choosing Ay > 1 so large that C\, /2(1 + )\_1/2 + Oz)\alﬂ)@ <1/2, we have

Re(x, @), Ly@){(T0) (T =V(N)) T [ A eTey}) <2

Therefore we obtain

R p(x, ()15 L (707 ) GraU(N) [ A €Tep}) <
R (x,@).Lq ()7 (1 (707 Y'VP(A) [ A €T p}) <

We see that U(X)(I —V(\))~!is a required R-bounded solution operator to (RSa’) under (Cg).
This completes the proof of Theorem 2.11. O

5 Application of Maximal Regularity

In this section, using the maximal regularity theorem, we shall prove the local in time existence
theorem of strong sokution for (NSa) and (NSE) (Theorem 2.1 and Theorem 2.16) by the method
due to Shibata-Kubo [24]. Moreover, we shall prove the L,-L, regularity in bounded domain
2 C R™ and the uniqueness of solution for (WS) in case of n = 2.

5.1 Proof of Theorem 2.1

Setting u* = Ty (t)aq and 7 = aQquq, by Theorem 2.13 and (2.5), (u*,7*) is the solution to
(Sa’) under (Cg) and satisfies

e~ ot (Dyu*, V2u*7VW*)HLP((O,oo),Lq(Q)) < Cn,p7q||aa‘|B§fp1*1/P)(Q) < CM, (5-1)

where 1 < p,q < oo and Ag is a positive number obtained in Theorem 2.11. Setting v, = uq —u*,
and p, = T, — 7*, we see that what (u,, 7, ) is the solution to (NSa’) under (Cg) is equivalent
to what (vq, po) is the solution to

Opvg — Ava—i—Vpa:f—Nl(va)—Ng(u*) te (0, 7)),z €9,
Vo (0, ) = x € Q, (NSv)
va(t,x) = € (0,7), = € 00

under the approximated weak incompressible condition (C), where

Ni(va,u*) = (va - V)vg + (U - V)vg + (vg - V)u™, No(u*) = (u* - V)u*.
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In order to prove Theorem 2.1, we consider (NSv) under (C). For this purpose, we set

(w, ")) = 10wl| 1, ((0.7),Lq)) + IV Wl 1, (07,10 + VTN 1,07, 20 ()
F Wl Lo (0.7), L () T VWL, ((0.1),L42)) + IV L, (0,7, L4(02)) (5.2)

with 1, ro is defined by (3.12). By (2.1), (3.8), (3.9) and (3.11), we have
(Mr-(F))7+ < Copae™" 1,070 L4(00) < Crpae™™ M. (5:3)

Set L = Cmp’qe/\oT*M . To prove Theorem 2.1 by contraction mapping principle, we shall define
the underlying space Xt 1, as follows:

Xr = {(w,7) € Wy((0.T), Lg()") N Ly((0,T), W(2)")
x Ly((0,7), Wy () | wh—o = 0, {(w,7))r < 2L}. (5.4)

Here the constant T is determined later as the sufficiently small constant. We define the
map P as

®(w,0) = My(f) — Mr(Ni(va,u*)) — Mr(Na(u®)),

where M7 is the solution operator to (3.7) under (C). We shall prove that ® is the contraction
mapping on X7 . By (3.13) and (5.1) we have

IN2 (W) 1, ((0.9), La () < 1" V)WL, (0.9), 14 () < CSTe*07M?
for 1 <p < oo and n/2 < ¢ < co. By (3.8) the following inequality holds:
(M (N (u)))7e < Crp g€ [IN2(w) 1, ((0.7%).Lg(2)) < Crpg(T7)€*°M? - (5.5)
for 0 < T* < Tj. In a similar way, for (va, pa) € X7+ 1, we obtain
N1 (Ve W) 1, (0,8, L)) < CeMT STML,
which implies
(Mp+ (N1 (va, u*))) 1+ < Crpgl N1 (Ve W) |2, ((0,7%),Lq () < C(T*) e ML, (5.6)
Therefore there exists a constant C' = Cy, , 4 15, such that
<(I)(Uaapa)>T* <L+ C(T*)'y <62>\0T*M2 + e/\oT*ML)
for (va, pa) € X7+. Taking the time T*(< Tp) sufficiently small such that
C(T*)"e?T" M < 1/2 and C(T*)"e**T" M? < L/2, we have (®(w, 7))+ < 2L. Therefore, ® is
the mapping on X7+« 1. Moreover taking into account the facts:
O (wy,11) — P(we, 72) = Mp« (N1 (wa, u*) — Ny(wy,u"))
and
Ni(wa,u*) — Ni(wy,u*) = (wa —wy) - V)u* + (u* - V) (w2 — wy)

for (w;, ) € X« (i = 1,2), by (3.13), (5.1) and (5.4), we can show the following inequality
holds:

N1 (w2) — N1 (wi) |z, (0.7%),24) < Crpra.1o (T)7€XT M (w2, 72) — (w1, 71)) 7+,
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which implies
(@(wi,71) = ®(wa, 12)) 7+ < Cpgyr (T7)7 T M (w2, 72) — (wi, 7))
Taking T* sufficiently small such that C(7*)Ye*™" M < 1/2 if necessary, we obtain
((w1,m1) = @(w2, 72)) 7+ < (1/2){(wr, 1) — (w2, 2)) 7=

Therefore, we see that ® is the contraction mapping on Xp«. By the contraction mapping
principle, we see that ® has fixed point (vq, pa). Satisfying ®(va, pa) = (Va, pa), by (5.5), we
see that (uq, o) = (u* 4 va, ™ + po) is the unique solution for (NSa’) under (C). Therefore we
obtain Theorem 2.1.

5.2 Proof of Theorem 2.16

Let (u*,7*) be a solution to (Sa’) with f = ¢ = 0 and a, = ag. By Theorem 2.13, the following
estimates hold.

He_’\ot(@tu*,V2u*,Vﬁ*)HLP((O,oo),Lq(Q)) < Cn,p,q||aE‘|B§f;}*1/P)(Q) < CMa™!, (5.7)

where 1 < p,q < oo. In order to look for the solution (v, ps) of (NSE) as vq, = ug — u* and
po = g — w*, we shall obtain the solution to

Ove — Avg + Vpa = —Ni(va, u*) — No(u*, uy) t e (0,00),x €9,
vo(0,2) =0 x €, (NSVE)
’Ua(tal‘) — 0; xr € 89,

under the approximated weak incompressible condition (Cy ), where

Ni1(Va, u*) = (Vo - V)vo + (0" + uq) - V)vg + (vo - V) (0" + uq),
No(u*,uq) = (u* - V)(u* + uq) + (uq - V)u".

In a similar way to Theorem 2.1, we shall define underlying space Xt 1, as follows:
Xrpp = {(w,7) € (W;((0,T), Lg()") N Lp((0,T), W5 ()"))
X Lp((0.T), Wg () | wli=o = 0, a{(w,7))7 < L}, (5.8)
where ((w, 7))r is defined in (5.2). Setting the map ® defined by
O (w,0) = —Mp=(Ny(va,u”)) — Mp«(No(u*, uq)),

where My (f) is a solution operator to (3.7) under (C; ), we shall estimate Nj(vq,u*) and
No(u*,uy) in a similar way to Theorem 2.1. Setting f,p(k = 1,2,3),7v,r;(i = 1,2) as the
same positive constant in proof of Theorem 2.1, we see

X csS? /1 1 .
[N (Ve W) 1, ((0,5),L4(02)) < — <aL2E + ae’\OT MLg + LLE>

and

S

[N2(u”, ua)l 1, ((0,5), Ly (92)) SCU

<]‘62)\0T’k M2 + 6)\0T* ML>

«

for 1 < p < oo, by (2.6), (3.8) for 0 < T” < T*, the following inequality holds:
(M (N1 (Ve u*) + No(u*, ua))) s < Crpgra, 1 (T°)7

In a similar way to Theorem 2.1, taking 77 sufficiently small if necessary, we can prove that ®
is the contraction mapping on Xp» . Therefore we obtain Theorem 2.16.
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5.3 Proof of Theorem 2.3

In this subsection, we shall prove Theorem 2.3 by using the method due to Saal [20]. Before
proving main results, we shall prepare a key lemma. For each k& € N, we consider the following
approximate system :

v+ Agv + (JNPv - Vv = Jif i= fr, 0(0) = Jpaq := Ao k- (5.9)

By using the fact that A, is generator of semigroup {7, (t)}¢>0 on Ly(€2) (see Kubo and Matsui
[13]), we shall show there exists a fixed point for the following integral equation :

Qu(t) = To(t)aar — /0 To(t — s)(JY Pu(s) - V)v(s)ds + /0 To(t — ) fr(s)ds. (5.10)

Hence, we shall prove the following lemma.

Lemma 5.1. Letn > 2, k € N, T € (0,00) and Xy = D(AY?) = HX(Q). And let aq € Lo(9)
and f € La((0,T), L2(R2)). If N satisfies N > 1+ n/4, then (5.10) has a unique solution

v € O([0,T], X2) N L2((0,T), D(Aa)) N H'((0,T), L2(2))
enjoying (5.9).
Proof. We fix k € N. By the definition, we see
Aok € Xo, fr € La((0,T), La(£2)) N L2((0,T), X2).
In fact, by (3.16), we obtain

|AY a0 k|3 = [IVaail3 + | VQaa k|3 < Cr(l + a)llaall3,
I fellz = 176 fll2 < C|lfll2, IAY2 flla < Crllf]l2- (5.11)

In order to get the fixed point for integral equation, choosing M > 0 as suitable, we define a
function space and its norm as follows:

By = {U € C([OvT]7X2) | U(O) = Qq,k, ||UHT < M},
lvll7 = ts[up](Hv(t)!h + (1A 20(1)]12)-

)

By (3.17) and (3.18), we have
I(T" Pu(s) - V)u(s)l2 < 15 Po(s)lleol Vo (s)]l2
< Cil| Po(s) 12114 0 (s)ll2
< CypM?. (5.12)

Therefore we obtain

|@vllr < G (llaawllz + £ la20 T2 + MA(T + TH2) (5.13)

for v € Bys. In fact, by (5.11) we get for 0 < ¢ < T

2+cAruﬁmw»vw@mw+OAnn@mw

< |laakll2 + CxM*T + CT?| fll2,2.7- (5.14)

[@v(®)]l2 < llaa.k
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Similarly, by (5.11) and the L,-L, estimate of the gradient of approximate Stokes semigroup
proved by Kubo and Matsui[13]:

IVTa(t)ally < Cppgt™ /221412 q],

for 1 < g <p<oo,t>0anda e Ly), we can prove the estimate of HA%/QCI)v(t)HQ and we
obtain (5.13).
Moreover, because of the inequality

I(Ji Po(s) - V)o(s) — (Ji Pw(s) - V)w(s)|l2

< Ci([lo(s) —w(s)ll2lIVols)ll2 + [V (v(s) — w(s))ll2llw(s)]]2)

< CpM|v —w|p
for v,w € By, we obtain

|®v — dwl|p < CEM(T + TY?)||v — wl|z.

Therefore letting M satisfy C}||aqxll2 < M/2 and T satisfy two inequalities

CRT'?| fllo2m + CRM*(T +T?) < M/2,
CEM(T +TY?) < 1/2,
we see that @ is a contraction map on Bjs. In other words, for sufficiently small T', there exists

fixed point u, of the map ® on Bj;. Since

T T
/ 1IN Po(s) - V)u(s)|3ds < Cr / ()3l Vo(s)|3ds < CMT < oo,
0 0

we see (JNPv-V)v € Ly((0,T), Lo(f2)). Therefore by L,-L, maximal regularity of A,, we see
U € L2((0,T), D(As)) N HY((0,T), L2(€)), which implies Lemma 5.1 for sufficiently small 7.

Next, we shall prove that there exists a global unique solution. For this purpose, we consider
the boundedness of ||v||7. Since by divJ,Pv = 0 we see

((JgPv - V)v,v)q = —(v, (divJyPv)v)q — (v, (JxPv - V)v)q
= —(v, (JxPv - V)v)q,

((JgPv - V)v,v) = 0 holds. Multiplying v to (5.9) and integrating on §2, we obtain

5 0@+ 1AY20(0) 1 = (fel®) v (2o (515)
Integrating from 0 to ¢, we see
1 o 1 2 L2 2 !
IO = 5leasld+ [ 14Y2 0 Ias = [ (). v(s))ads. (5.16)

Then, we shall estimate the right hand side of (5.16). Using Poincaré inequality and Holder
inequality, then we can estimate

< | () el w(s) s

< Ol fllz2rllvll227
< C|lfll22rlAY*v]22r

C €
< Z_Hf“%z,T + §||Aiy/2v‘|§,2,T-

/ (fu(s), v(s))ads
0
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Therefore, letting € = 1, we can obtain the estimate

lo(®)1I3

(laall3 + 11 £113.2,7):

Multiplying A,v to (5.9) and integrating on 2, we get
(Opu(t), Aqu(t))a + (Aqu(t), Aqv(t))a
= (f&(t), Aav(t))a — ((Ji) Po(t) - V)o(t), Aav(t))g-

By integration by parts, we can also obtain

AV @)+ 4w (D)3
= (i), Aav(t)e ~ (S Po(t) - 9)o(t), Aav(t))o

Since the inequality:

(T Po(t) - V)u(t), Aav(t))al < [I(JR Po(t) - V)o(t)l|]| Aav(t) 2
< Do) BIAY 00 + 3 I A DI,
we obtain

1d
2 dt

< 5 (Cullo®IBIAYo @B + 1501B) + 4w O,

1AKZ0()13 + [ Aav(#)I13

which implies

d
%IIAi/Qv(t)II% < Cillo@) 3142003 + CILF ()13

Inserting (5.17) into (5.18), we have

d
AL O3 < CIFDIE + Crllaalli + [1F132,2) 14 >0 (1)]13.

Integrating this expression from 0 to ¢, we get
1A >o(®)113

< (|lAY? 320) + Cill

By Gronwall’s inequality, we conclude

1420 ®)[13 < Cr(laall3 + 113 2.2)exp [Crlllaall3 + [ fllz27)T] -

t
) / |AY20(s) 3ds.
0

(5.17)

Po(t)]2.

which implies the boundedness of ||v(¢)||3. Finally, we shall prove the boundedness of HAé

(5.18)

(5.19)

Therefore, v exists uniquely on arbitrary interval [0, 7] and that it admits the claimed regularity

properties.

O]

From here, we shall prove our main results about the existence and regularity theorem for

(?7).
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Proof of Theorem 2.3. Let {ur} be a solution of (5.9). By Lemma 5.1 u is the bounded in
Lelay-Hopf’s class: Loo((0,T), Lo(Q)) N La((0,T), H*(2)). Therefore, there exists a weak limit
Uo €Y := Loo((0,T), L2(2))NLa((0,T), HY(2)). Moreover, since uy, satisfies (5.16), u,, satisfies
also (5.19). Consequently, we shall prove u,, is a solution to (WS). For this purpose, let v; be
unique solution of the equation :

O + Aqui = fr, t€(0,T7), v,(0) = aqr. (5.20)
Then, v converges strongly in Y. In fact, letting v be a solution of
v+ Aqv = f, v(0) = aq,
we see that v — v, satisfies
O(v—v) +Aa(v—vg) = f — fr, ©v(0) —ve(0) =aq — aak

and

le™ (v = ve) | g (0.1, L) + 1€ (0 = V) | L0y, 200

< Clle™(f — f)

221 + [[aa — aa il g2a-1/m)
q,p

by L,-L, maximal regularity of A,. By La((0,T), H*(2)) N H((0,T), L2(Q)) c C°([0,T], H')
(see [?]) and the fact that the continuous map from H((0,T), L2(Q2)) N La2((0,T), H*(Q)) to
Ly((0,T), HY(Q)) is compact (see [28]), we see |[e= 2! (v — v})||y — 0 as k — oo. Now, letting
wg = U — Vg, wg converges weakly in Y and satisfies the equation

Orwy, + Aqwi, = —(J,iVPuk, Vur t€(0,T), wg(0)=0. (5.21)

Since the right hand side of first equation of (5.21) is bounded in Ly ((0,7), Ly(S2)) for ¢ =
(n+2)/(n+1) by Lemma ?? and L,-L, maximal regularity of A,, we see

Wk € qu((O,T), LQ(Q)) N Lq((O,T), D(Aa))

for T > 0. Here, set ¢ € C5°([0,T),C5°(Q2)) as a test function in the equation (WS) and let
suppy = K as a compact set. In particular, considering

wyy € Wg((0,T), Lg(K)) N Lg((0, T), H*(K)),

by Rellich’s theorem, H*(K) embed L,(K) in the compact and therefore if N > 4, we can apply
Theorem 2.1 in [28]. Namely, the operator from Y to L,((0,T), H*(K)) is compact. Therefore
wy, converges strongly in L,((0,T), HY(K)). Therefore since uy = wy + vy, converges strongly u,
in L,((0,T), H'(K)), by using integration by parts, we obtain

T
/0 [(B(tar 1a), &) — (Y Pug - Vyug, D)o} dt'

T T
< [ 190 = wo) ol (Pun) ot + [ ol IV ((Pto = I Pur)) e
0 0

< TV w2710 0,00,7 |V (i — 1) [lg.2.7
+ TV ugloo 2.7 (IV(Pua — Pug)llgzr + |V (Pug — T Pug)|lg.2.7) [6lloc,c0.r
+ TV uallso2,r (I1Pua — Pukllgzr + [|1Pur — J& Pugllgzr) IV élloc,c0.r-

By Remark 2.1, the last term of this inequality converges to 0 if & — co. Therefore, we see u,
satisfies (WS). O
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Proof of Theorem 2.4. If u, is one of weak solutions to (?7), by Lemma 7?7, we get
1(Ptte - Vtallpgir < Clluallenr + 14Y 200 352) < o0
for 2/p+mn/q=n+ 1. Here, letting F' = f — (Puq - V)uq, we consider the system
v+ Av=F, (xe€Q, te(0,7)), vloa=0, v|=0= aa. (5.22)
By L,-L, maximal regularity of A,, the solution to (5.22) is unique and satisfies

e _AotatUHp qT T He_)\OtAaUHp q,T

< Clllaal g-1m g + 1 gt + el o + 11412

2 )

Therefore we shall prove v = u,. Since v satisfies (5.22), we have

T
/ {=(v(t), 0ee(t))02 (’U(t),Aaqﬁ(t))Q}dt—(aa,¢(0))9+/0 (F(t), o(t))adt (5.23)

for any ¢ € C5°([0,7),C5°(2)). On the other hand, since u, is the weak solution to (??), we
have

T T
/0 {=(ua(t), 0:0(t))a — (ua(t), Aad(t))a} di] = (aa, $(0))o +/0 (F(t), o(t))dt

for any ¢ € C5°([0,T),C5°(2)). Then, for all ¢ € C3°(]0,T),C5°(£2)), we obtain

T
[;<ua@>—»mw,—awxw-—Au¢u»9dt:cx (5.24)
Let
By g = {6 € WH((0,T), Ly (2)) 1 Ly (0, T), W3() | Sler = 0}.

Since C3°(Q2) is dense in Ly (Q2), C5°([0,T),C5°(12)) is dense in E,y o 7. In (5.24), by letting
¢ € Ly ((0,T),Ly(Q)), ¢; € C3°([0,T),C5° (22 )) and ¢; — ¢, (5.24) is hold for any ¢ € Epy o 7.
On the other hand, for any ¢ € C§°([0,T"), C§°(£2)), dual problem :

—0ip — A =1, (2€Q,t€(0,T)), ¢loa=0, @li=r =0 (5.25)

has a unique solution ¢ and we see ¢ € W,1((0,T), Ls(Q)) N L-((0,T), W2(Q)") for r, s € (1,00).
Especially, letting r» = p’ and s = ¢/, by (5.24), for all p € C§°(]0,T), C§°(2)), we have

T T
/ (ta(t) — v(t), V)odt = / (Ua(t) — v(t), —046 + Au)odt = 0.
0 0
Therefore, getting

T
/ (ua —v,9P)dt =0
0
for all ¢ € C3°((0,T),C5°(£2)) which is dense in L, ((0,T"), Ly (€2)), we obtain
T
/ (ua —v,Y)adt =0
0
for all ¢ € L,y ((0,T'), Ly (€2)). Then, we see uq —v € Ly((0,T), Ly(2))and uq = v. With regard

to the pressure term Vm,, by the relation Vr, = aVQuy, = Agua + Au, (see [13]), we can
prove the pressure term V7, satisfies (2.3). O
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5.4 Proof of Theorem 2.5

Here we prove the weak solution u,, constructed in Theorem 2.4 is unique if n = 2.

Proof. (Proof of Theorem 2.5). Let T' € (0, oo] and uy, be the approximate sequence constructed
in Lemma 5.1. First, we shall prove Vu, € Loo((0,7T), L2(€2)). For this purpose, we show the

constant C}, is independent of k in the inequality (5.19). By the fact that the basic inequality

[vlls < C||Vv]|52|[v]|2/? holds for v € W (Q) and Young’s inequality, (3.16), (3.18) and (3.19),

we can estimate the nonlinear term
(T2 Pur(t) - V)un(t), Aaur(t))al < [T Puk(t)l]4l Ver (t) |4 Aaun (2) |2
< Ollug () |4l Ver @) || al| Agvar (8) |2
< Cllur(®) |4 2ur(®) ol Aarun (1) 3
< Sl A 1S+ AaueDF. (526)
Hence in the same way as (5.18), we deduce
Ld
2dt
IR+ I Aats ()13 + 5 s B1AY a3+ 2 ) A3 (5.27)

1A 2ur ()13 + | Aawr (1)]3

for ¢t € (0,7). Integrating (5.27) and using (5.17) and (3.16), we get
1/2 2 /2 12 2 c [ 201 A1/2. |14
1A ur (3 < 145 aall3 + 2] f13 2.0 + 2/0 g 131148 2 | 3kt

Setting (1) = [[u(t) 13| A& uk ()3, by (5.17), we have

t
2
/O oe(3)ds < C (laall? + 1 f1320)°.

Therefore we see by the Gronwall inequality

1A 2ur(@)113 < (1148 %aall3 +211f

C
3ar)exp{ Sl + 11182 |

which implies that Ay %u; — Ax *u weakly in Lo ((0,T"), L2(£2)).
On the other hands, by the inequality 2ab < (a?/e) + (b?) for arbitrary € > 0, we see

1
|(f, Aqur)al < 2 f]13 + gl\AaukH%-

Therefore (5.27) is rewrited
1d
2dt

1 C 3
<20/ flI3 + gl Aau]l3 + 7 lulBIAL 2 ur3 + 7 | Aaue |3,

1A Zur ()13 + | Aawel3

which implies that

1
HAcl)/2uk”go,2,T + EHAauk %,2,7’

C
< (14 0all + 1111 air)exp { ool + 111307}
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Therefore we see Aguq € La((0,7), L2(£2)). Furthermore, having (Puqa-V)uq € L2((0,T), L2(2))
by the estimate

[(Pua - V)ua| 1/2

227 < ([[tialloc 27| VUal 2 2.7l Aatiall2,2,r)'/? < o0,

we obtain Oy, Ve, Ve € La((0,T), L2(£2)) by the L,-L, maximal regularity of A,.
Next, we shall prove the uniqueness property. Let v be any other weak solution of (?7).
According to Theorem 2.4 and Lemma 7?7 the difference w := u, — v satisfies

Ow + Agw + ((Pw - V)ug) + ((Pv-V)w) =0 (t € (0,7)),w(0) =0. (5.28)

in Ly/3((0,7T),Lyy3(22)). On the other hand, by [|w(sa7 < C’HwHiszHVwH;/QQT we see w

belongs to L4((0,T), L4(€2)) which is the dual space of Ly,3((0,7'), L4/3(€2)). Thus considering
the dual pairing of w and the first term in (5.28), we obtain

(Grw(t), w(t))a + (Aaw(t), w(t))o
+ (Pw(t) - V)ua(t), w(t))a + ((Pu(t) - V)w(t), w(t))o = 0.

It is known that the dual operator P* of P satisfies P* = P in Lo. Hence having the property
((Pv - V)w,w) = 0, we have

2

5 w3 + 1A w(@)lIF = Y (9jua(t), Pwj(tyw(t))a
j=1

< COlIAY  ua(®) 2llw(®)]]

< O A ua(®)ll2w(t) 2| A& *w(?)]|2

1
< O A Pua(®)|3]w(®)]3 + §HAi/2w(t)H§
and therefore that
d
%HUJ(L‘)H% < C[| A Pua(®)|3]w(®)]3.
By Gronwall inequality and w(0) = 0, we get w = 0 that is u = v. O
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