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Abstract

In this thesis, we consider the nonstationary Navier-Stokes equations approximated by the pres-
sure stabilization method. We can obtain the local in time existence theorem for the approxi-
mated Navier-Stokes equations. Moreover we can obtain the error estimate between the solu-
tion to the usual Navier-Stokes equations and the Navier-Stokes equations approximated by the
pressure stabilization method. We prove these theorem by using maximal regularity theorem.
Furthermore, as the application of maximal regularity theorem, we can get the estimates for
weak solutions of approximate Navier-Stokes equations.
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1 Introduction

1.1 Back ground

The mathematical description of fluid flow is given by the following Navier-Stokes equations:
∂tu−∆u+ (u · ∇)u+∇π = f ∇ · u = 0 t ∈ (0,∞), x ∈ Ω,

u(0, x) = a x ∈ Ω,
u(t, x) = 0 x ∈ ∂Ω,

(NS)

where the fluid vector fields u = u(t, x) = (u1(t, x), . . . , un(t, x)) and the pressure π = π(t, x)
are unknown function, the external force f = f(t, x) is a given vector functions, the initial data
a is a given solenoidal function and Ω is some bounded domain. It is well-known that analysis
of Navier-Stokes equations (NS) is very important in view of both mathematical analysis and
engineering, however the problem concerning existence and regularity of solution to (NS) is
unsolved for a long time. One of the difficulty of analysis for (NS) is the pressure term ∇π and
incompressible condition ∇ · u = 0.

In numerical analysis, some penalty methods (quasi-compressibility methods) are employed
as the method to overcome this difficulty. They are methods that eliminate the pressure by using
approximated incompressible condition. For example, setting α > 0 as a perturbation parameter,
we use ∇ · u = −π/α in the penalty method, ∇ · u = ∆π/α in the pressure stabilization method
and ∇ · u = −∂tπ/α in the pseudocompressible method. In this thesis, we consider the Navier-
Stokes equations with incompressible condition approximated by pressure stabilization method.
Namely we consider the following equations:

∂tuα −∆uα + (uα · ∇)uα +∇πα = f t ∈ (0,∞), x ∈ Ω,
∇ · uα = ∆πα/α t ∈ (0,∞), x ∈ Ω,
uα(0, x) = aα x ∈ Ω,

uα(t, x) = 0, ∂nπα(t, x) = 0 x ∈ ∂Ω.

(NSa)

(NSa) may be considered as a singular perturbation of (NS). As α → ∞, (NSa) tends to (NS)
formally and we cancel the Neumann boundary condition for the pressure.

From the point of view of the maximal regularity theorem, the regularity of solution to the
first equation is different from the one of the second equations in (NSa). Therefore, in order
to adjust the regularity of the solution to their equations, we consider the following equations
instead of approximated incompressible conditions in (NSa):

(uα,∇φ)Ω = α−1(∇πα,∇φ)Ω φ ∈ Ŵ 1
q′(Ω) (C)

for 1 < q <∞. We notice that (C) is a weak form of the approximated incompressible condition
∇ · uα = α−1∆πα. We call (C) approximated weak incompressible condition in this thesis.
Therefore we consider

∂tuα −∆uα + (uα · ∇)uα +∇πα = f t ∈ (0,∞), x ∈ Ω,
uα(0, x) = aα x ∈ Ω,
uα(t, x) = 0 x ∈ ∂Ω

(NSa′)

under the approximated weak incompressible condition (C) in Lq-framework (n/2 < q <∞).

1.2 Known result

Pressure stabilization method was first introduced by Brezzi and Pitkäranta [2]. They considered
the approximated stationary Stokes equations which are linearlized Navier-Stokes equations with
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the approximated incompressible condition ∇ · uα = ∆πα/α. They obtained the following error
estimate by using the energy methods:

∥uα − u∥H1(Ω) + ∥πα − π∥L2(Ω) ≤ Cα−1/2∥f∥L2(Ω). (1.1)

Nazarov and Specovius-Neugebauer [16] considered the same approximate Stokes problem and
derived asymptotically precise estimates for solution to the approximated problem as α → ∞
by using the parameter-dependent Sobolev norms. Their results are not available by the usually
applied energy methods. These results introduced above are concerning the stationary Stokes
equations and there are few results concerning the nonstationary Stokes equations and Navier-
Stokes equations. As far as the authors know, only the result due to Prohl [19] is known as
the results concerning the nonstationary problem. In [19], Prohl considered the sharp a priori
estimate for the pressure stabilization method under some assumptions and showed the following
error estimates:

∥uα − u∥L∞([0,T ],L2(Ω)) + ∥τ(πα − π)∥L∞([0,T ],W−1
2 (Ω)) ≤ Cα−1,

∥uα − u∥L∞([0,T ],W 1
2 (Ω)) + ∥

√
τ(πα − π)∥L∞([0,T ],L2(Ω)) ≤ Cα−1/2,

where τ = τ(t) = min(t, 1). Since their results are proved based on energy method, all of these
estimates are in L2 framework for the space. In this thesis, we shall use the maximal regularity
theorem in order to prove the local in time existence theorem and the error estimate in the Lp

in time and the Lq in space framework with n/2 < q <∞ and max{1, n/q} < p <∞. Moreover
letting PΩ be the Helmholtz projection in Ω, we consider the following equations :∫ T

0
[−(uα, ∂tϕ)Ω − (uα,∆ϕ)Ω + (B(uα, uα), ϕ)Ω + α(uα, ϕ)Ω]dt = (aα, ϕ(0))Ω +

∫ T

0
(f, ϕ)Ωdt

(WS)

for all ϕ ∈ C∞
0 ([0, T ), C∞

0 (Ω)), where B(u, v) defined by

B(u, v) = (PΩu · ∇)v, (NLT)

since uα doesn’t satisfy incompressible condition. More precisely, in order to ensure the validity
for the pressure stabilization method, we use (NLT) as a modification of the original nonlinearity
in (NS) (see [19], [27]). By this setting, we can prove existence theorem of weak solution for
(NSa). Lelay introduces weak solution for partial differential equation ([15]) and Hopf constructs
weak solution the initial-boundary problem for 3-dimension bounded domain by using Lelay’s
method ([11]). Hopf’s proof is to construct approximate solution and to obtain subsequence in
L2-space which converges weak solution for (NS) by using approximated solution and energy
inequality. Therefore, since he used the energy inequality, these estimates are in L2 framework
for the space. This method is developed by Masuda [12]. Masuda proved the existence theorem
for domain Ω ⊂ Rn (and the uniqueness for only 2-dimension bounded domain) and the following
L2 framework estimate.

∥u(t)∥22 + 2

∫ t

0
∥∇u∥22dt ≤ 2

∫ t

0
(f, u)Ωdt+ ∥a∥22 (0 ≤ t < T ).

Since the weak solution for (NS) is a strong solution for it in 2-dimension domain, weak solution
is required in 3-dimension case. But the uniqueness in this case is not proved until this very day.
J. Saal considered existence and regularity of weak solutions for (NS) (with Robin boundary
conditions) in Ω = Rn

+ by using the time Lp and the space Lq estimates for Stokes equations
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linearized (NS) with Robin boundary conditions and the Duhamel principle. Saal showed the
L2-L2 estimate :

∥u∥2L∞((0,T ),L2(Rn
+)) + ∥∇u∥L2((0,T ),L2(Rn

+)) ≤ ∥a∥2L2(Rn
+) +

∫ T

0
(f(t), u(t))Rn

+
dt

and the Lp-Lq estimate :

∥∂tu∥Lp((0,T ),Lq(Rn
+)) + ∥∇2u∥Lp((0,T ),Lq(Rn

+)) + ∥∇π∥Lp((0,T ),Lq(Rn
+))

≤ C(∥a∥
B

2(1−1/p)
q,p

+ ∥f∥Lp((0,T ),Lq(Rn
+)) + ∥u∥2L∞((0,T ),L2(Rn

+)) + ∥∇u∥2L2((0,T ),L2(Rn
+)))

for n/q + 2/p = n+ 1, where B
2(1−1/p)
q,p is the real interpolation space :

B2(1−1/p)
q,p = (Lq(Rn

+),W
2
q (Rn

+))1−1/p.p.

Since his proof is based on maximal regularity for Stokes equations, he obtained Lp-Lq regularity
of weak solution for (NS) with Robin boundary condition. In this thesis, using the way of Saal
[20], we shall prove the Lp-Lq regularity of weak solution for (NSa) in bounded domain Ω ⊂ Rn

and the uniqueness in case of n = 2.

1.3 Thesis organization

This thesis consists of the following five sections. In section 2, we present the main results on
local in time unique existence of solution to (NSa′) and certain error estimate between the solu-
tions to (NSa′) and (NS) under the weak incompressible condition (Theorem 2.1 and Theorem
2.16). Following the argument due to Shibata and Kubo [24], we can prove the main results
by contraction mapping principle with the help of the maximal Lp-Lq regularity theorem. And
we state the result of weak solution for (NSa) (Theorem 2.5) by the method of Saal [20] with
Hille-Yosida operator. After stating the main results, we present the maximal Lp-Lq regularity
theorem for linearlized problem for (NSa′) (Theorem 2.6 and Theorem 2.14 ) and the theo-
rem concerning the existence of R-bounded solution operator for linearized problem (Theorem
2.11). As was seen in Shibata and Shimizu [26], the maximal Lp-Lq regularity theorem is direct
consequence of Theorem 2.11 concerning the generalized resolvent problem for the linearized
equations with the help of Weis’ operator valued Fourier multiplier theorem (Theorem 2.10), so
that the main part of this thesis is to show Theorem 2.11. Moreover another consequence of
Theorem 2.11 is the resolvent estimate (Corollary 2.12), which implies the construct of the semi-
group Tα(t) for linealized problem for (NSa′). By real interpolation, we obtain some estimates
for Tα(t) (Theorem 2.13 and Theorem 2.15). In section 3, as preliminary, we shall introduce
some theorems and lemmas which play important role in this thesis. In section 4, we consider
the generalized resolvent problem for linearized problem in some bounded domain. For this
purpose, we first consider the problem in the whole space case and the half-space case. By using
the change of variable with their results, we shall prove the generalized bounded domain cases.
In section 5, the following the argument due to Shibata and Kubo [24], we show the local in
time existence theorem for (NSa′) and prove the error estimates (Theorem 2.1 and Theorem
2.16). Moreover, as the application of maximal regularity, we prove the existence and regularity
theorem of weak solution for (NSa) (Theorem 2.3 and Theorem 2.4), and, in case of n = 2, see
this solution is unique (Theorem 2.5).

2 Notation and Main Results

Before we describe main theorem, we shall introduce some functional spaces and notations
throughout this thesis. As usual C,M, . . . denote constants that may change from line to line.
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Sometimes we would like to express a special dependence on some parameter k. Then we use
the notation Ck,Mk, ... or we write it as an argument C(k),M(k), ... . For m ∈ {0, 1, . . . ,∞}
we denote by Cm(Ω) the space of all m-times continuously differentiable functions and the space
of cut of function

C∞
0 ([0, T ), C∞

0 (Ω)) = {ϕ ∈ C∞([0, T ), C∞
0 (Ω)) | ϕ(t, x) = 0 if t belongs to neighborhood of T}.

For 1 < q < ∞, let q′ = q/(q − 1). If u ∈ Lq(Ω) and v ∈ Lq′(Ω), we use the notation
(u, v)Ω =

∫
Ω uvdx for the dual pairing. For any closed operator A in X, its domain and range

are denoted by D(A) and R(A), respectively. Furthermore, we call A a generator, if {e−tA}t≥0

satisfies the semigroup properties. For any two Banach spaces X and Y , L(X,Y ) denotes the set
of all bounded linear operators fromX into Y and we write L(X) = L(X,X) for short. Hol(U,X)
denotes the set of all X-valued holomorphic functions defined on a complex domain U . As the
complex domain where a resolvent parameter belongs, we use Σε = {λ ∈ C\{0} | | arg λ| < π−ε}
and Σε,λ0 = {λ ∈ Σε | |λ| ≥ λ0} for 0 < ε < π/2 and λ0 > 0. For 1 ≤ q < ∞, Lq(Ω) denotes
the Lebesgue space, which consists of all q-integrable functions with its norm ∥ · ∥q,Ω and L∞(Ω)
denotes the space of all functions u that satisfy ∥u∥∞,Ω = ess.supx∈Ω|u(x)| < ∞. Wm

q (Ω)
(1 ≤ q ≤ ∞) denotes the Sobolev space of order m ∈ N. Its norm is given by

∥u∥m,q,Ω :=

 m∑
j=0

∥∇ju∥qq,Ω

1/q

,

where ∇j is the tensor of all possible j-th order differentials. In particular, for non-negative
integerm, we defineHm(Ω) asWm

2 (Ω) andHm
0 (Ω) as closure of infinitely differentiable functions

compactly supported in Hm(Ω). As the time-space Lebesgue space, we use Lp((0, T ), Lq(Ω)) =
{u | ∥u∥Lp((0,T ),Lq(Ω)) <∞}, where its norm is given by

∥u∥Lp((0,T ),Lq(Ω)) =

(∫ T

0
∥u(t)∥pq,Ωdt

)1/p

If no confusion seems likely, we also write ∥ · ∥q = ∥ · ∥q,Ω and ∥ · ∥p,q,T = ∥ · ∥Lp((0,T ),Lq(Ω)).
and often use the same symbols for denoting the vector and scalar function spaces. For

1 ≤ p, q ≤ ∞, B
2(1−1/p)
q,p (D) denotes the real interpolation space defined by B

2(1−1/p)
q,p (D) =

(Lq(D),W 2
q (D))1−1/p,p (more precisely see Sohr [25]). For a Banach space X, we set

Lp,γ0(R, X) = {f(t) ∈ Lp,loc(R, X) | ∥e−γtf∥Lp(R,X) <∞, (γ ≥ γ0)},
Lp,γ0,(0)(R, X) = {f(t) ∈ Lp,γ0(R, X) | f(t) = 0 (t < 0)},
W 1

p,γ0,(0)
(R, X) = {f(t) ∈ Lp,γ0,(0)(R, X) | f ′(t) ∈ Lp,γ0(R, X)}.

In order to deal with the pressure term, we use the following functional spaces:

Lq,loc(D) = {f | f |K ∈ Lq(K), K is any compact set in D},

Ŵ 1
q (D) = {θ ∈ Lq,loc(D) | ∇θ ∈ Lq(D)n}.

Since our proof is based on Fourier analysis, we next introduce the Fourier transform and the
Laplace transform. We define the Fourier transform, its inverse Fourier transform, the Laplace
transform and its inverse Laplace transform by

f̂(ξ) = Fx[f ](ξ) =

∫
Rn

e−ix·ξf(x)dx, F−1
ξ [f ](x) =

1

(2π)n

∫
Rn

eiξ·xf(ξ)dξ,

Lt[f ](λ) = Ft[e
−γtf(t)](τ), L−1

τ [f ](t) = eγtF−1
τ [f ](t),
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respectively, where x, ξ ∈ Rn, λ = γ+ iτ ∈ C and x · ξ is usual inner product: x · ξ =
∑n

j=1 xjξj .
Furthermore, we define the Fourier-Laplace transform by

Lt[Fx[v(t, x)]](λ, ξ) = Ft,x[e
−γtv(t, x)](λ, ξ) =

∫ ∞

−∞

(∫
Rn

e−(λt+ix·ξ)v(t, x)dx

)
dt.

By using Fourier transform and Laplace transform, we define Hs
p,γ0(R, X) for a Banach space

X. For λ = γ + iτ , we define the operator Λs
γ as

(Λs
γf)(t) = L−1

τ [|λ|sLt[f ](λ)](t) = eγtF−1
τ [(τ2 + γ2)s/2Ft[e

−γtf(t)](τ)](t).

For 0 < s < 1 and γ0 > 0, we define the space Hs
p,γ0(R, X) as

Hs
p,γ0(R, X) = {f ∈ Lp,γ0(R, X) | ∥e−γtΛs

γf∥Lp(R,X) <∞(∀γ ≥ γ0)}.

In this thesis, we assume next assumption for our domain Ω.

Assumption 2.1. Let n/2 < q < ∞ and n < r < ∞. Let Ω be a uniform W
2−1/r
r domain

introduced in [8] and Lq(Ω) has the Helmholtz decomposition.

Therefore, the domain Ω has direct sum decomposition. In fact, the space of solenoidal fields

in Ω is defined by Lq,σ(Ω) = C∞
0,σ(Ω)

∥·∥q
, where C∞

0,σ(Ω) = {v ∈ C∞
0 (Ω) | ∇ · v = 0}. It is well

known that Lq,σ(Ω) = {v ∈ Lq(Ω) | ∇ · v = 0, v|∂Ω = 0} and that this space is complementary
in Lq(Ω) for 1 < q <∞. More precisely we obtain the Helmholtz decomposition

Lq(Ω) = Lq,σ(Ω)⊕Gq(Ω),

where Gq(Ω) := {∇p | p ∈ Ŵ 1
q (Ω)}. Therefore we can define projection operators P = PΩ

and Q = QΩ (called Helmholtz projection) on Lq(Ω) to Lq,σ(Ω) and Gq(Ω), respectively, which
satisfy

u = Pu+∇Qu, ∥Pu∥q,Ω + ∥∇Qu∥q,Ω ≤ Cn,q∥u∥q,Ω. (HP)

We remark that if q = 2, L2(Ω) has the Helmholtz decomposition for any Ω (see Galdi [10]).
First main result is concerned with the local in time existence theorem for (NSa′) with

approximated weak incompressible condition (C).

Theorem 2.1. Let n ≥ 2, n/2 < q <∞ and max{1, n/q} < p <∞. Let α > 0 and T0 ∈ (0,∞).

For any M > 0, assume that aα ∈ B
2(1−1/p)
q,p (Ω) and f ∈ Lp((0, T0), Lq(Ω)

n) satisfy

∥aα∥B2(1−1/p)
q,p (Ω)

+ ∥f∥Lp((0,T0),Lq(Ω)n) ≤M. (2.1)

Then, there exists T ∗ ∈ (0, T0) depending on only M such that (NSa′) under (C) has a unique
solution (uα, πα) of the following class:

uα ∈W 1
p ((0, T

∗), Lq(Ω)
n) ∩ Lp((0, T

∗),W 2
q (Ω)

n), πα ∈ Lp((0, T
∗), Ŵ 1

q (Ω)).

Moreover the following estimate holds:

∥uα∥L∞((0,T ∗),Lq(Ω)) + ∥(∂tuα,∇2uα,∇πα)∥Lp((0,T ∗),Lq(Ω)) + ∥∇uα∥Lr((0,T ∗),Lq(Ω)) ≤ Cn,p,q,T ∗

for 1/p− 1/r ≤ 1/2.

Next, we describe our second main result. To do this, we introduce weak solution for (NSa).
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Definition 2.2. Let n ≥ 2 and T ∈ [0,∞). We call uα a weak solution of system (NSa), if uα
belongs to the Lelay-Hopf class i.e. uα ∈ L∞((0, T ), L2(Ω))∩L2((0, T ),W

1
2 (Ω)

n) and uα satisfies∫ T

0
[−(uα, ∂tϕ)− (uα,∆ϕ) +

n∑
j=1

(∂juα, u
j
αϕ) + α(uα, ϕ)]dt = (aα, ϕ(0)) +

∫ T

0
(f, ϕ)dt (WS)

for all ϕ ∈ C∞
0 ([0, T ), C∞

0 (Ω)).

This theorem is based on Hille-Yosida operator and Relich theorem. Namely, we consider the
local in time existence theorem, proved by the fixed point theorem, of solution for the integral
equation with Hille-Yosida approximation.

Theorem 2.3. Let n ≥ 2, T ∈ (0,∞]. And let

Y = L∞((0, T ), L2(Ω)) ∩ L2((0, T ),W
1
2 (Ω)

n).

Then, for all aα ∈ L2(Ω) and f ∈ L2((0, T ), L2(Ω)
n), there exists solution uα for (WS) such

that the following estimate holds.

∥uα∥2∞,2,T + ∥A1/2
α uα∥22,2,T ≤ ∥aα∥22 +

∫ t

0
(f(t), uα(t))dt. (2.2)

Next, we shall state Lp-Lq regularity for solution of (WS) depending on the dimension n.
This theorem is based on the maximal regularity of Aα and dual problem.

Theorem 2.4. Let uα be one of solutions of (WS), which uα doesn’t have to satisfy energy
inequality. And let the index p, q satisfy 1 < p, q < ∞ and n/q + 2/p = n + 1. If aα and f

satisfy aα ∈ B
2(1−1/p)
q,p (Ω) and f ∈ Lp((0, T ), Lq(Ω)), respectively, then there exists a constant C

such that the following inequality holds:

∥e−λ0t(∂tuα, Aαuα,∇πα)∥p,q,T ≤ C(∥aα∥B2(1−1/p)
q,p

+ ∥f∥p,q,T + ∥uα∥2∞,2,T + ∥A1/2
α uα∥22,2,T ).

(2.3)

This theorem is the existence and uniqueness for solution of (WS) if the dimension n equals
to 2.

Theorem 2.5. Let T ∈ (0,∞], aα ∈ L2(Ω)∩W 1
2 (Ω) and f ∈ L2((0, T ), L2(Ω)). Then, the weak

solution obtained by Theorem 2.4 below is unique and satisfies the regularity

∇uα ∈ L∞((0, T ), L2(Ω)), ∂tuα,∇2uα,∇πα ∈ L2((0, T ), L2(Ω)).

In order to prove Theorem 2.1 and Theorem 2.5, we use maximal Lp-Lq regularity theorem
for the following linearized problems corresponding to (NSa′):

∂tuα −∆uα +∇πα = f t > 0, x ∈ Ω,
uα(t, x) = 0 x ∈ ∂Ω,
uα(0, x) = aα x ∈ Ω

(Sa′)

under the approximated weak incompressible condition

(uα,∇φ)Ω = α−1(∇πα,∇φ)Ω + (g,∇φ)Ω φ ∈ Ŵ 1
q′(Ω). (Cg)

These main result is based on the following theorem which is concerned with the maximal
Lp-Lq regularity for (Sa′) under (Cg) with aα = 0.
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Theorem 2.6. Let 1 < p, q < ∞ and α > 0. Then there exists a positive number γ0 such that
the following assertion holds : for any f, g ∈ Lp,γ0,(0)(R, Lq(Ω)), (Sa

′) under (Cg) with aα = 0
has a unique solution :

uα ∈ Lp,γ0,(0)(R,W
2
q (Ω)) ∩W 1

p,γ0,(0)
(R, Lq(Ω)), πα ∈ Lp,γ0,(0)(R, Ŵ

1
q (Ω)).

Moreover, the following estimate holds :

∥e−γt(∂tuα, γuα,Λ
1
2
γ∇uα,Λ1/2

γ+α(∇ · uα),∇2uα,∇πα)∥Lp(R,Lq(Ω)) ≤ Cn,p,q∥e−γt(f, αg)∥Lp(R,Lq(Ω))

for any γ ≥ γ0.

Remark 2.7. By the property of Helmholtz decomposition, we can solve (Cg) for uα, g ∈ Lq(Ω)
and we see πα = αQΩ(uα − g).

In order to prove Theorem 2.6, we use the operator valued Fourier multiplier theorem due
to Weis [29]. This theorem needs R-boundedness of solution operator. To this end, we first
introduce the definition of R-boundedness.

Definition 2.8. The family of the operators T ⊂ L(X,Y ) is called R-bounded on L(X,Y ),
if there exist constants C > 0 and p ∈ [1,∞) such that for each N ∈ N, Tj ∈ T , fj ∈ X
(j = 1, . . . , N) and for all sequences {γj(u)}Nj=1 of independent, symmetric, {−1, 1}-valued
random variables on [0,1], there holds the inequality:∫ 1

0
∥

N∑
j=1

γj(u)Tjfj∥pY du ≤ C

∫ 1

0
∥

N∑
j=1

γj(u)fj∥pXdu.

The smallest such C is called R-bound of T on L(X,Y ), which is denoted by R(T ).

Remark 2.9. According to [5], the following properties concerning R-boundedness is known.
From Definition 2.8, R-boundedness of the family of operators implies uniform boundedness.

∥T∥pL(X,Y ) = sup
∥x∥X=1

∥T (x)∥pY ≤ R(T ).

Moreover it is well-known that R-bounds behave like norms. Namely, the following properties
hold.

(i) Let X,Y be Banach spaces and T ,S ⊂ L(X,Y ) be R-bounded. Then T + S = {T + S | T ∈
T , S ∈ S} is R-bounded and R(T + S) ≤ R(T ) +R(S).

(ii) Let X,Y, Z be Banach spaces and T ⊂ L(X,Y ) and S ⊂ L(Y, Z) be R-bounded. Then
ST = {ST | T ∈ T , S ∈ S} is R-bounded and R(ST ) ≤ R(S)R(T ).

The following theorem is the operator valued Fourier multiplier theorem proved by Weis [29]
for X = Y = Lq(Ω).

Theorem 2.10. Let 1 < p, q <∞ and M(τ) ∈ C1(R\{0},L(X,Y )) be satisfy

R({M(τ) | τ ∈ R\{0}}) = c0 <∞, R({|τ |∂τM(τ) | τ ∈ R\{0}}) = c1 <∞.

Then, TM defined by [TMf ](t) = F−1
ξ [M(τ)Fx[f ](τ)](t)(f ∈ S(R, X)) is the bounded operator

from Lp(R, X) to Lp(R, Y ). Moreover, the following estimate holds :

∥TMf∥Lp(R,Y ) ≤ C(c0 + c1)∥f∥Lp(R,X) (f ∈ Lp(R, X)),

where C is a positive constant depending on p, X.

7



In order to prove the maximal Lp-Lq regularity theorem with the help of Theorem 2.10, we
need the R-boundedness for solution operator to the following generalized resolvent problem{

λuα −∆uα +∇πα = f in Ω,
uα = 0 on ∂Ω

(RSa′)

under the approximated weak incompressible condition (Cg), where the resolvent parameter λ
varies in Σε,λ0 (0 < ε < π/2, λ0 > 0).

We can show the existence of the R-boundedness operator to (RSa′) under (Cg) as follows:

Theorem 2.11. Let α > 0, 1 < q < ∞ and 0 < ε < π/2. Set Xq(Ω) = {(F1, F2) | F1, F2 ∈
Lq(Ω)}, then there exist a λ0 > 0 and operator families U(λ) and P(λ) with

U(λ) ∈ Hol(Σε,λ0 ,L(Xq(Ω),W
2
q (Ω)

n)), P(λ) ∈ Hol(Σε,λ0 ,L(Xq(Ω), Ŵ
1
q (Ω)))

such that for any f, g ∈ Lq(Ω) and λ ∈ Σε,λ0, (uα, πα) = (U(λ)F,P(λ)F ), where F = (f, αg), is
a unique solution to (RSa′) under (Cg) and (U(λ),P(λ)) satisfies the following estimates :

RL(Xq(Ω),Lq(Ω)Ñ )
({(τ∂τ )ℓ(Gλ,αU(λ)) | λ ∈ Σε,λ0}) ≤ C (ℓ = 0, 1),

RL(Xq(Ω),Lq(Ω)n)({(τ∂τ )ℓ(∇P(λ)) | λ ∈ Σε,λ0}) ≤ C (ℓ = 0, 1)

for Gλ,αu = (λu, λ1/2∇u,∇2u, (λ+ α)1/2(∇ · u)) and Ñ = 1 + n+ n2 + n3.

By Remark 2.9, we can prove the resolvent estimate for (RSa′) under (Cg).

Corollary 2.12. Let α > 0, 1 < q < ∞ and 0 < ε < π/2. Let λ0 > 0 be a number obtained in
Theorem 2.11. For f, g ∈ Lq(Ω) and λ ∈ Σε,λ0, there exists a unique solution (uα, πα) to (RSa′)
under (Cg) which satisfies the following inequality:

∥(λuα, λ1/2∇uα,∇2uα, (λ+ α)1/2(∇ · uα),∇πα)∥Lq(Ω) ≤ C∥(f, αg)∥Lq(Ω).

Let Aα be the linear operator defined by Aαuα = ∆uα − α∇QΩuα and D(Aα) = {u ∈
W 2

q (Ω)
n | u|∂Ω = 0}. By Corollary 2.12 with g = 0, we see that Aα generates the semigroup

{Tα(t)}t≥0 on Lq(Ω)
n. Moreover there exists a positive constant C > 0 such that for any

aα ∈ Lq(Ω)
n, uα(t) = Tα(t)aα satisfies

∥(uα, t1/2∇uα, t∇2uα, t∂tuα)∥Lq(Ω) ≤ Ceλ0t∥aα∥Lq(Ω) (t ≥ 0). (2.4)

By the equations (Sa′), we have

∥∇πα∥Lq(Ω) ≤ ∥∂tuα∥Lq(Ω) + ∥ −∆uα∥Lq(Ω) ≤ Ct−1eλ0t∥aα∥Lq(Ω). (2.5)

On the other hands, since πα = αQΩuα is the pressure associated with uα = Tα(t)aα and
∇πα = α(uα−PΩuα), (uα, πα) enjoys (Sa

′) under (Cg) and ∇πα satisfies the following estimate:

∥∇πα∥Lq(Ω) = α∥uα − PΩuα∥Lq(Ω) ≤ 2α∥uα∥Lq(Ω) ≤ Cαeλ0t∥aα∥Lq(Ω),

which implies ∥∇πα∥L∞((0,T ),Lq(Ω)) ≤ Cαeλ0T ∥aα∥Lq(Ω). This is the effect of the pressure stabi-
lization method.

By real interpolation, we can see the following maximal Lp-Lq regularity theorem for (Sa′)
with f = g = 0.
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Theorem 2.13. Let α > 0 and 1 < p, q < ∞. Let λ0 be a number obtained in Theorem 2.11.

For aα ∈ B
2(1−1/p)
q,p (Ω), uα = Tα(t)aα satisfies

∥e−λ0t(∂tuα,∇2uα)∥Lp((0,∞),Lq(Ω)) ≤ Cn,p,q∥aα∥B2(1−1/p)
q,p (Ω)

,

(γ − λ0)
1/p∥e−γtuα∥Lp((0,∞),Lq(Ω)) ≤ Cn,p,q∥aα∥Lq(Ω),

(γ − λ0)
1/(2p)∥e−γt∇uα∥Lp((0,∞),Lq(Ω)) ≤ Cn,p,q∥aα∥B2(1−1/p)

q,p (Ω)

for any γ > λ0. Moreover πα = αQαuα satisfies

∥e−λ0t∇πα∥Lp((0,∞),Lq(Ω)) ≤ Cn,p,q∥aα∥B2(1−1/p)
q,p (Ω)

,

∥∇πα∥L∞(0,T ),Lq(Ω)) ≤ Cn,p,qαe
λ0T ∥aα∥Lq(Ω)

for any T > 0.

Next we consider the error estimate between the solution (u, π) to (NS) under the weak

incompressible condition (u,∇φ)Ω = 0 for φ ∈ Ŵ 1
q′(Ω) and solution (uα, πα) to (NSa′) under

(C). To this end, setting uE = u− uα and πE = π − πα, we see that (uE , πE) enjoys that


∂tuE −∆uE +∇πE +N(uE , uα) = 0, t ∈ (0,∞), x ∈ Ω,

uE(0, x) = aE , x ∈ Ω,
uE(t, x) = 0, x ∈ ∂Ω,

(NSE)

where N(uE , uα) = (uE ·∇)uE+(uE ·∇)uα+(uα ·∇)uE and aE = a−aα under the approximated
weak incompressible condition

(uE ,∇φ)Ω = α−1(∇πE ,∇φ)Ω + α−1(∇π,∇φ)Ω φ ∈ Ŵ 1
q′(Ω) (Cπ)

for 1 < q <∞. In a similar way to Theorem 2.1, we consider (Sa′) under (Cπ) for aα = aE . By
Theorem 2.6 with f = 0, g = α−1∇π and Theorem 2.13, we obtain the following theorems :

Theorem 2.14. Let 1 < p, q <∞ and α > 0. Let γ0 be a positive number obtained in Theorem
2.11. If usual Stokes equations under the weak incompressible condition has a unique solution
(u, π) in (Lp,γE ,(0)(R,W 2

q (Ω)
n) ∩W 1

p,γE ,(0)(R, Lq(Ω)
n)) × Lp,γE ,(0)(R, Ŵ 1

q (Ω)), and (Sa′) under

(Cπ) with aE = 0 has a unique solution :

uE ∈ Lp,γE ,(0)(R,W 2
q (Ω)

n) ∩W 1
p,γE

((0,∞), Lq(Ω)
n), πE ∈ Lp,γE ,(0)(R, Ŵ 1

q (Ω)).

Moreover, the following estimate holds.

∥e−γt(∂tuE , αuE ,Λ
1
2
γ∇uE ,∇2uE ,Λ

1/2
γ+α(∇ · uE),∇πE)∥Lp(R,Lq(Ω)) ≤ Cn,p,q∥e−γt∇π∥Lp(R,Lq(Ω))

for any γ ≥ γE.

Theorem 2.15. Let 1 < p, q < ∞ and α > 0. Let λ0 be a number obtained in Theorem 2.11.

For aE ∈ B
2(1−1/p)
q,p (Ω), uE = Tα(t)aE and πE = αQΩuE − π satisfy

∥e−λ0t(∂tuE ,∇2uE ,∇πE)∥Lp((0,∞),Lq(Ω)) ≤ Cn,p,q∥aE∥B2(1−1/p)
q,p (Ω)

,

(γ − λ0)
1/p∥e−γtuE∥Lp((0,∞),Lq(Ω)) ≤ Cn,p,q∥aE∥Lq(Ω),

(γ − λ0)
1/(2p)∥e−γt∇uE∥Lp((0,∞),Lq(Ω)) ≤ Cn,p,q∥aE∥B2(1−1/p)

q,p (Ω)

for any γ > λ0. If π ∈ L∞((0,∞), Ŵ 1
q (Ω)), πE satisfies

∥e−λ0t∇πE∥L∞((0,T ),Lq(Ω)) ≤ Cα∥aE∥Lq(Ω) + ∥∇π∥L∞((0,∞),Lq(Ω))

for any T > 0.

9



By above two theorems, we can obtain the following theorem concerned with the error
estimates.

Theorem 2.16. Let n ≥ 2, n/2 < q < ∞, max{1, n/q} < p < ∞ and α > 0. Let T ∗ be a
positive constant obtained in Theorem 2.1 and (uα, πα) be a solution obtained in Theorem 2.1.

For any M > 0, assume that aE ∈ B
2(1−1/p)
q,p (Ω) satisfies

∥aE∥B2(1−1/p)
q,p (Ω)

≤Mα−1. (2.6)

Then there exists T ♭ ∈ (0, T ∗) such that (NSE) has a unique solution (uE , πE) which satisfies

∥uE∥L∞((0,T ♭),Lq(Ω)) + ∥∇uE∥Lr((0,T ♭),Lq(Ω)) + ∥(∇2uE , ∂tuE ,∇πE)∥Lp((0,T ♭),Lq(Ω)) ≤
Cn,p,q,T ♭

α
(2.7)

for 1/p− 1/r ≤ 1/2.

Remark 2.17. (1) Theorem 2.14 and Theorem 2.15 with γ = λ0 + 1 means that the error
estimate for the Stokes equations. Namely the error estimate is given by

∥e−γt(u− uα)∥Lp((0,T ),Lq(Ω)) ≤
C

α
∥e−γt∇π∥Lp((0,T ),Lq(Ω)) + Ce(λ0+1)T ∥aE∥Lq(Ω)

for any T > 0. If T <∞ and ∥e−γt∇π∥L∞((0,T ),Lq(Ω)) <∞, we see

∥e−γt(u− uα)∥L∞((0,T ),Lq(Ω)) = lim
p→∞

∥e−γt(u− uα)∥Lp((0,T ),Lq(Ω))

≤ C

α
∥e−γt∇π∥L∞((0,T ),Lq(Ω)) + Ce(λ0+1)T ∥aE∥Lq(Ω).

Under assumption (2.6) in Theorem 2.16, we see that there exists a positive constant C
depending on T ,M and ∥∇π∥L∞((0,T ),Lq(Ω)) such that

∥u− uα∥L∞((0,T ),Lq(Ω)) ≤ Cα−1, ∥∇(π − πα)∥L∞((0,T ),Lq(Ω)) ≤ C

for any T > 0.

(2) (2.7) means the following error estimates for the Navier-Stokes equations:

∥u− uα∥L∞((0,T ♭),Lq(Ω)) ≤ Cα−1,

∥(∇2(u− uα), ∂t(u− uα),∇(π − πα))∥Lp((0,T ♭),Lq(Ω)) ≤ Cα−1,

In a similar way to (1), we obtain

∥(∇2(u− uα), ∂t(u− uα),∇(π − πα))∥L∞((0,T ♭),Lq(Ω)) ≤ Cα−1.

In comparison with the result due to Prohl [19], we can extend L2 framework to Lq framework
with respect to the error estimate.

3 Preliminary

In this section, we shall introduce some lemmas and definitions, which plays important role
for our proof. Before we describe some propositions and lemmas, we introduce the notation of
symbols. Set

r = |ξ′|, ωλ =
√
λ+ r2, ω =

√
λ+ α+ r2,

E(z) = e−z(xn+yn), M(a, b, xn) =
e−axn − e−bxn

a− b
, (3.1)
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where ξ′ = (ξ1, . . . , ξn−1). Here E(ωλ) is the symbol corresponding to heat equation and
M(ωλ, r, xn) is the symbol corresponding to Stokes equations.

We next introduce some lemmas. In order to apply the operator-valued Fourier multiplier
theorem proved by Weis [29], we need the R-boundedness of solution operator to (Sa′). However
since it is difficult to prove R-boundedness directly from its definition, we first introduce the
following sufficient condition for showing R-boundedness of solution operator given in Theorem
3.3 in Enomoto and Shibata [7].

Theorem 3.1. Let 1 < q < ∞ and 0 < ε < π/2. Let m(λ, ξ) be a function defined on
Σε × (Rn\{0}) such that for any multi-index β ∈ Nn

0 (N0 = N ∪ {0}) there exists a constant Cβ

depending on β and λ such that

|∂βξm(λ, ξ)| ≤ Cβ|ξ|−|β|

for any (λ, ξ) ∈ Σε×(Rn\{0}). LetKλ be an operator defined by [Kλf ](x) = F−1
ξ [m(λ, ξ)Fx[f ](ξ)](x).

Then the set {Kλ | λ ∈ Σε} is R-bounded on L(Lq(Rn)) and

RL(Lq(Rn))({Kλ | λ ∈ Σε}) ≤ C max
|β|≤n+2

Cβ

with some constant C that depends solely on q and n.

To prove the R-boundedness of the solution operator in Rn
+, we use the following lemma

proved by Shibata and Shimizu [26] (see Lemma 5.4 in [26]).

Lemma 3.2. Let 0 < ε < π/2 and 1 < q < ∞. Let m(λ, ξ′) be a function defined on Σε such
that for any multi-index δ′ ∈ Nn−1

0 there exists a constant Cδ′ depending on δ′, ε and N such
that

|∂δ′ξ′m(λ, ξ′)| ≤ Cδ′r
−|δ′|.

Let Kj(λ,m) (j = 1, . . . , 5) be the operators defined by

[K1(λ,m)g](x) =

∫ ∞

0
F−1
ξ′

[
m(λ, ξ′)rE(ωλ)g̃(ξ

′, yn)
]
(x′)dyn,

[K2(λ,m)g](x) =

∫ ∞

0
F−1
ξ′

[
m(λ, ξ′)r2M(ωλ, r, xn + yn)g̃(ξ

′, yn)
]
(x′)dyn,

[K3(λ,m)g](x) =

∫ ∞

0
F−1
ξ′

[
m(λ, ξ′)|λ|1/2rM(ωλ, r, xn + yn)g̃(ξ

′, yn)
]
(x′)dyn,

[K4(λ,m)g](x) =

∫ ∞

0
F−1
ξ′

[
m(λ, ξ′)ωrM(ωλ, ω, xn + yn)g̃(ξ

′, yn)
]
(x′)dyn,

[K5(λ,m)g](x) =

∫ ∞

0
F−1
ξ′

[
m(λ, ξ′)|λ|1/2rM(ωλ, ω, xn + yn)g̃(ξ

′, yn)
]
(x′)dyn.

Then, the sets {(τ∂τ )ℓKj(λ,m) | λ ∈ Σε} (j = 1, . . . , 5, ℓ = 0, 1) are R-bounded families in
L(Lq(Rn

+)). Moreover, there exists a constant Cn,q,ε such that

RL(Lq(Rn
+))({(τ∂τ )ℓKj(λ,m) | λ ∈ Σε}) ≤ Cn,q,ε (j = 1, . . . , 5, ℓ = 0, 1).

This lemma is proved in a similar way to Lemma 5.4 in [26] with the following lemma.

Lemma 3.3. For 0 < ε < π/2, let λ ∈ Σε.
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(i) There exist positive constants C1, C2 and C3 depending on ε such that the following inequalities
hold:

|ωλ| ≥ C1(|λ|1/2 + r), C2(α
1/2 + |λ|1/2 + r) ≤ Re ω ≤ C3(α

1/2 + |λ|1/2 + r). (3.2)

(ii) There exist positive constants C such that the following inequalities hold:

|Dδ′
ξ′r

s| ≤ Crs−|δ′|,

|Dδ′
ξ′ω

s
λ| ≤ C(|λ|1/2 + r)s−|δ′|,

|Dδ′
ξ′ω

s| ≤ C(|λ|1/2 + α1/2 + r)s−|δ′|,

|Dδ′
ξ′ (r + ωλ)

s| ≤ C(|λ|1/2 + r)sr−|δ′|,

|Dδ′
ξ′ (r + ω)s| ≤ C(|λ|1/2 + α1/2 + r)sr−|δ′|,

|Dδ′
ξ′ (ω + ωλ)

s| ≤ C(|λ|1/2 + α1/2 + r)s(|λ|1/2 + r)−|δ′| (3.3)

for any s ∈ R and multi-index δ′.

(iii) There exist positive constants C such that the following inequalities hold:

|Dδ′
ξ′{(τ∂τ )ℓe−rxn}| ≤ Cr−|δ′|e−(1/2)rxn ,

|Dδ′
ξ′{(τ∂τ )ℓe−ωλxn}| ≤ C(|λ|1/2 + r)−|δ′|e−d(|λ|1/2+r)xn ,

|Dδ′
ξ′{(τ∂τ )ℓe−ωxn}| ≤ C(α1/2 + |λ|1/2 + r)−|δ′|e−d(α1/2+|λ|1/2+r)xn ,

|Dδ′
ξ′{(τ∂τ )ℓM(ωλ, r, xn)}| ≤ C(xn or |λ|−1/2)e−drxnr−|δ′|,

|Dδ′
ξ′{(τ∂τ )ℓM(ωλ, ω, xn)}| ≤ C(xn or α−1/2)e−d(|λ|1/2+r)xn(|λ|1/2 + r)−|δ′| (3.4)

for ℓ = 0, 1 and any multi-index δ′ and (ξ′, xn) ∈ (Rn−1\{0}) × (0,∞), where d is a positive
constant independent of ε and δ′.

Proof.

(i) (3.2) are proved by elementary calculation.

(ii) Let f(t) = ts/2. By Bell formula, we see

Dδ
ξr

s =

|δ|∑
ℓ=1

f (ℓ)(r2)
∑

δ1+···+δℓ=δ,|δi|≥1

Γℓ
δ1,...,δℓ

(Dδ1
ξ r

2) · · · (Dδℓ
ξ r

2),

where Γℓ
α1,...,αℓ

is some constant and f (ℓ)(t) = dℓf(t)/dtℓ. Since |Dδj
ξ r

2| ≤ 2r2−|δj |, we can obtain
the first estimate. We can prove the other estimates in a similar way to the first estimate taking
the elementary estimate: |λ+ |ξ|2| ≥ (sin ε)(|λ|+ |ξ|2) (0 < ε < π/2, ξ ∈ Rn) into account.

(iii) It is sufficient to prove the last estimate with ℓ = 0 in (3.4), since we can prove the other
estimates similarly.
By M(ωλ, ω, xn) = −xn

∫ 1
0 e

−((1−θ)ωλ+θω)xndθ and Bell formula, we have

|Dδ′
ξ′e

−((1−θ)ωλ+θω)xn |

≤ Cδ′

|δ′|∑
ℓ=1

xℓne
−(c1(1−θ)(|λ|1/2+r)+c2θ(α1/2+|λ|1/2+r))xn

× ((1− θ)(|λ|1/2 + r)1−|δ′1| + θ(α1/2 + |λ|1/2 + r)1−|δ′1|)

× · · · × ((1− θ)(|λ|1/2 + r)1−|δ′ℓ| + θ(α1/2 + |λ|1/2 + r)1−|δ′ℓ|),
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where we used |e−((1−θ)ωλ+θω)xn | = e−((1−θ)Reωλ+θReω)xn . Setting c = min(c1, c2), we see

|Dδ′
ξ′e

−((1−θ)ωλ+θω)xn | ≤ Cδ′e
−(c/2)((1−θ)(|λ|1/2+r)+θ(α1/2+|λ|1/2+r))xn(|λ|1/2 + r)−|δ′|,

which implies

|Dδ′
ξ′M(ωλ, ω, xn)| ≤ Cδ′

∫ 1

0
e−(c/2)((1−θ)(|λ|1/2+r)+θ(α1/2+|λ|1/2+r))xndθxn(|λ|1/2 + r)−|δ′|

= Cδ′

∫ 1

0
e−(c/2)(|λ|1/2+r)xne−θ(c/2)α1/2xndθxn(|λ|1/2 + r)−|δ′|.

By integrating this right hand side, we have

|Dδ′
ξ′M(ωλ, ω, xn)| ≤ Cδ′(c/2)

−1α−1/2e−(c/2)(|λ|1/2+r)xn(|λ|1/2 + r)−|δ′|. (3.5)

On the other hands, by e−θ(c/2)α1/2xn ≤ 1, we have

|Dδ′
ξ′M(ωλ, ω, xn)| ≤ Cδ′xne

−(c/2)(|λ|1/2+r)xn(|λ|1/2 + r)−|δ′|. (3.6)

Therefore, we obtain the last estimate with ℓ = 0 in (3.4).

By using maximal regularity theorem (Theorem 2.6), we shall prove the existence and unique-
ness theorem of strong solution for (NSa) in Section 5. To do this, we prepare some facts shown
by this theorem.

Let (w, τ) =MT (f) be the solution to
∂tw −∆w +∇τ = f x ∈ Ω, t ∈ (0, T ),

w(0, x) = 0 x ∈ Ω,
w(t, x) = 0 x ∈ ∂Ω

(3.7)

under the approximated weak incompressible condition (C)
For f ∈ Lp((0, T ), Lq(Ω)), let f0(t) = f(t) (0 < t < T ) and f0(t) = 0 (t ̸∈ (0, T )). Then,

letting (w, τ) be the solution to Stokes equation for f = f0 on t ∈ (0,∞), (w, τ) can define
on t ∈ R. Moreover, this solution satisfies w(t) = τ(t) = 0 (t ≤ 0) and (3.7) on t ∈ (0, T ).
Furthermore, by Theorem 2.6, the following estimate holds: for 0 < S ≤ T ,

∥∂tw∥Lp((0,S),Lq(Ω)) ≤ eγS∥e−γt∂tw∥Lp((0,T ),Lq(Ω)) ≤ Cn,p,qe
γS∥f∥Lp((0,T ),Lq(Ω)). (3.8)

Similarly we have

∥∇2w∥Lp((0,S),Lq(Ω)) + ∥∇τ∥Lp((0,S),Lq(Ω)) ≤ Cn,p,qe
γS∥f∥Lp((0,T ),Lq(Ω)). (3.9)

Moreover taking into account the fact about Bessel potential space:

∥e−γtu∥Lq(R,X) ≤ C∥e−γtΛα
γu∥Lp(R,X) ≤ Cγ−(β−α)∥e−γtΛβ

γu∥Lp(R,X) (3.10)

for Banach space X, 1 < p < q <∞, α = 1/p− 1/q, α < β <∞ and γ ≥ 0 and the estimate:

∥e−γtu∥L∞(R,X) ≤ C∥e−γtΛα
γu∥Lp(R,X)

for 0 < α− 1/p < 1 and 1 < p <∞ (see [3]), by Theorem 2.6 we obtain

∥∇w∥Lr((0,S),Lq(Ω)) + ∥w∥L∞((0,S),Lq(Ω))

≤ CeγS∥e−γtΛα
1∇w∥Lq(R,Lq(Ω)) + CeγS∥e−γtΛ1

1w∥Lp(R,Lq(Ω))

≤ CeγS∥e−γtΛ
1/2
1 ∇w∥Lp(R,Lq(Ω)) + CeγS∥e−γtΛ1

1w∥Lp(R,Lq(Ω))

≤ CeγS∥f∥Lp((0,T ),Lq(Ω)), (3.11)
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where 1/p− 1/r ≤ 1/2.
Letting β = n/(2q) and ℓk(k = 1, 2, 3) are the positive constants satisfying

0 <
1

p
− 1

βpℓ1
≤ 1

2
, 0 <

1

p
− 1

(1− β)pℓ2
≤ 1

2
, β +

1

ℓ1
+

1

ℓ2
+

1

ℓ3
= 1

and setting

γ = 1/(ℓ3p), r1 = βpℓ1, r2 = (1− β)pℓ2, (3.12)

by Sobolev embedding theorem and Holder’s inequality, we obtain

∥(v · ∇)w∥Lp((0,S),Lq(Ω)) ≤ Sγ∥v∥1−β
L∞((0,S),Lq(Ω))∥∇v∥

β
Lr1 ((0,S),Lq(Ω))

× ∥∇w∥1−β
Lr2 ((0,S),Lq(Ω))∥∇

2w∥βLp((0,S),Lq(Ω)) (3.13)

for any v, w ∈W 1
p ((0, T ), Lq(Ω)) ∩ Lp((0, T ),W

2
q (Ω)) and 0 < S ≤ T .

Moreover, by maximal regularity theorem, we can see the existence theorem (and uniqueness
theorem in case of n = 2) for weak solution. By using Helmholtz projection, the approximate
Stokes operator Aα = Aα,Ω,q in Lq(Ω) (1 < q <∞) is defined by

Aαu = ∆u− α∇Qu, u ∈ D(Aα) = D(W 2
q (Ω)). (3.14)

Moreover, we shall introduce Hille-Yosida operator with Aα and its properties, which play
an essential role in our proof for weak solution. To do this, we confirm the property of Aα. For
the equation

∂tuα −Aαuα + (Puα · ∇)uα = f, uα(0) = aα,

by maximal regularity theorem for Aα : for some λ0 > 0

∥e−λ0t(∂tuα,∇2uα)∥Lp((0,∞),Lq(Ω)) ≤ C(∥aα∥B2(1−1/p)
q,p (Ω)

+ ∥e−λ0tf∥Lp((0,∞),Lq(Ω))),

letting f(t, x) = 0 (t > T ), we have

∥e−λ0t(∂tuα,∇2uα)∥Lp((0,T ),Lq(Ω)) ≤ C(∥aα∥B2(1−1/p)
q,p (Ω)

+ ∥e−λ0tf∥Lp((0,T ),Lq(Ω))).

Furthermore, we proved the inequality for semigroup {Tα(t)}t≥0 : for t > 0 and u ∈ Lq(Ω)

∥Tα(t)u∥q,Ω + t1/2∥∇Tα(t)u∥q,Ω + t∥∇2Tα(t)u∥q,Ω ≤Mn,q∥u∥q,Ω,

which implies Lp-Lq estimate for approximate Stokes semigroup by Sobolev imbedding theorem

∥Tα(t)u∥p,Ω ≤ Cn,p,qt
−n/2(1/q−1/p)∥u∥q,Ω, ∥∇Tα(t)u∥p,Ω ≤ Cn,p,qt

−1/2−n/2(1/q−1/p)∥u∥q,Ω,
(3.15)

where t > 0, 1 < q ≤ p ≤ ∞ and u ∈ Lq(Ω). Then, letting {Tα(t)}t≥0 be approximate Stokes
semigroup in Ω and Jk defined as Hille-Yosida operator :

Jk =

(
1− Aα

k

)−1

(k ∈ N),

we see, by (3.15),

∥Jkuα∥p ≤ C

∫ ∞

0
e−t

(
t

k

)−n/2(1/q−1/p)

dt∥uα∥q ≤ C1(k)∥uα∥q,

∥∇Jkuα∥p ≤ C

∫ ∞

0
e−t

(
t

k

)−1/2−n/2(1/q−1/p)

dt∥uα∥q ≤ C2(k)∥uα∥q, (3.16)
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where n/q−n/p < 2. Note that if p = q, the constant C1(k) is independent of k. And, if N ∈ N
satisfies N > 1 + n/4, we also have

∥Jkuα∥∞ ≤ C(k)∥JN−1
k uα∥q1 ≤ · · · ≤ C(k)∥Jkuα∥qN−1 ≤ C(k)∥uα∥2, (3.17)

where 2 ≤ qN−1 ≤ qN−2 ≤ · · · ≤ q2 ≤ q1 ≤ ∞ and n/qi+1 − n/qi < 2.
Using these instrument, we shall prove weak solution meaning of Definition 2.2 in Section

6. In order to prove the existence theorem of solution satisfying this definition, we prepare a
technical lemma. From this lemma, we can estimate the non-linear term.

Lemma 3.4. Let α > 0 and u ∈ D(Aα) = H2(Ω) ∩H1
0 (Ω).

(i) The following relation holds:

∥∇u∥2 ≤ ∥A1/2
α u∥2. (3.18)

(ii) The following relation holds:

∥∇2u∥2 ≤ C∥Aαu∥2, (3.19)

where C is a positive constant independent of u.

Proof. (i) Since we have

(Aαu, u)Ω = (∇u,∇u)Ω + α(∇Qu, u)Ω = ∥∇u∥22 + α∥∇Qu∥22 ≥ 0

by the properties of the Helmholtz projection : u = Pu + ∇Qu and (Pu,∇Qu)Ω = 0, we see

that Aα is a positive definite self-adjoint operator and that Aα has the square root A
1/2
α which

satisfies

∥A1/2
α u∥22 = ∥∇u∥22 + α∥∇Qu∥22,

which implies (3.18).
(ii) In order to prove (3.19), we shall consider the following equations:

−∆u+∇π = f, in Ω (3.20)

under the weak divergence free condition:

(u,∇ψ)Ω − α−1(∇π,∇ψ)Ω = (g, ψ)Ω, (3.21)

subject to u|∂Ω = 0 for f, g ∈ L2(Ω). Goal is to show that for f, g ∈ L2(Ω), the solution (u, π)
to (3.20) under (3.21) satisfies

∥∇2u∥2 + ∥∇π∥2 ≤ C (∥f∥2 + α∥g∥2) . (3.22)

If we obtain (3.22), since (3.20) under (3.21) with g = 0 is equivalent to Aαu = f , we can obtain
(3.19).

Taking the fact that there exists F,G ∈ L2(Ω) with f = ∇ · F, g = ∇ · G into account, the
weak form of (3.20) under (3.21) is given by

(∇u,∇φ)Ω + (∇π, φ)Ω = (f, φ)Ω = (−F,∇φ)Ω,
1

α
(∇π,∇ψ)Ω − (u,∇ψ)Ω = (G,∇ψ)Ω.

15



By Helmholtz decomposition, setting ∇Qφ = ∇ψ, we have

(∇u,∇φ)Ω + α(∇Qu,∇φ)Ω = (∇Qf,∇Qφ)Ω + α(G,φ)Ω. (3.23)

We consider the only (3.23). For this purpose, set the bilinear form A(u, ψ) as follows:

A(u, ψ) = (∇u,∇ψ)Ω + α(∇Qu,ψ)Ω (3.24)

for u, ψ ∈ H1
0 (Ω). By Schwartz inequality, (HP) and Poincaré, we see

|A(u, ψ)| ≤ ∥∇u∥2∥∇ψ∥2 + α∥∇Qu∥2∥ψ∥2 ≤ (1 + α)∥u∥H1(Ω)∥ψ∥H1(Ω), (3.25)

A(u, u) = ∥∇u∥22 + α∥∇Qu∥22 ≥ ∥∇u∥22 ≥ C∥u∥2H1(Ω) (3.26)

for u, ϕ ∈ H1
0 (Ω). By Lax-Milgram theorem, for any h ∈ H−1(Ω), there exists a u ∈ H1

0 (Ω)
uniquely which solves A(u, ψ) = (h, ψ)Ω and ∥u∥H1(Ω) ≤ C∥h∥H−1(Ω). Therefore (3.23) has the
solution u in the distribution sense, and u satisfies

∥∇u∥2 ≤ C (∥f∥H−1 + α∥G∥H−1) ≤ C (∥F∥2 + α∥G∥2) .

We consider the pressure term π. To this end, let u ∈ H1
0 (Ω) be a solution to (3.23) and

consider the functional G : φ 7→ [G,φ] defined by [G,φ] = (∇u,∇φ)Ω+(F,∇φ)Ω for φ ∈ C∞
0 (Ω).

Then we see that G ∈ H−1(Ω), which implies that there exists π ∈ L2(Ω) with G = ∇π in
distribution sense. ∥π∥L2 is estimated as follows:

∥π∥2 ≤ ∥∇π∥H−1 = ∥∆u+ f∥H−1 ≤ C (∥∇u∥2 + ∥F∥2) ≤ C (∥F∥2 + α∥G∥2) .

Therefore we have

∥∇u∥2 + ∥π∥2 ≤ C (∥F∥2 + α∥G∥2) (3.27)

From now, in a similar way to Kubo and Matsui [13], we shall show that for f, g ∈ L2(Ω),
the solution (u, π) ∈ H2(Ω)×H1(Ω) to (3.20) under (3.21) satisfying

∥∇2u∥2 + ∥∇π∥2 ≤ C (∥f∥2 + α∥g∥2) . (3.28)

For this purpose, we need three steps where we treat special cases. In the first step, we consider
the case for the whole-space and a half-space. In the second step, we consider the case for a
bent half-space. In this case, we reduce to the case for the half-space by a transformation of

coordinates. In the third step, we consider the cases for a uniformly W
2−1/r
r -domain (n < r <

∞). In this case, by using localization method we reduce to the case for the whole space, the
half-space and bent half-space.

In the first step, we consider the case for Ω = Rn and Rn
+. Namely, we consider

−∆u+∇π = f

under (u,∇ψ)Ω − α−1(∇π,∇ψ)Ω = −(G,∇ψ)Ω, subject to u|∂Ω = 0 if Ω = Rn
+. In a similar

way to the method due to Kubo and Matsui [13], we see that

∥∇2u∥2,Ω + ∥∇π∥2,Ω ≤ C (∥f∥2,Ω + α∥G∥2,Ω) . (3.29)

In second step, we consider the case for a bent half-space. For this purpose we shall introduce
some notations. Let Φ : Rn → Rn be a bijection of C1 class and let Φ−1 be its inverse map.
Denoting ∇Φ = A+B(x) and ∇Φ−1 = A−1+B−1(x), we assume that A and A−1 are orthogonal
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matrices with constant coefficients and B(x) and B−1(x) are matrices of functions in W 1
r (Rn)

with n < r <∞ such that

∥B∥∞,Rn + ∥B−1∥∞,Rn ≤M1, ∥∇B∥r,Rn + ∥∇B−1∥r,Rn ≤M2.

We shall choose M1 small enough later, so that we may assume that 0 < M1 ≤ 1 ≤M2. Let Rn
0

be the boundary of the half-space defined by Rn
0 = {x = (x1, . . . , xn) ∈ Rn | xn = 0}. Set Ω+ =

Φ(Rn
+) and ∂Ω+ = Φ(Rn

0 ). In order to prove the case for the bent half-space, we transfer (3.20)
under (3.21) into a problem for the half-space by the change of variable x = Φ−1(y) with y ∈ Ω+

and x ∈ Rn
+ and by the change of unknowns ũα(x) = A−1(uα(Φ(x))), π̃α(x) = A−1(πα(Φ(x)))

and ψ̃(x) = A−1(ψ(Φ(x))). Since ∂yj =
∑n

ℓ=1(Aℓ,j + Bℓ,j∂xj ), we have the following equations:{
−∆ũα +∇π̃α = f+ + F(ũα, π̃α) x ∈ Rn

+,

ũα = 0 x ∈ ∂Rn
+

under

(ũα,∇ψ̃)Rn
+
= α−1(∇π̃α,∇ψ̃)Rn

+
+ (G+,∇ψ̃)Rn

+
+ (G(ũα, π̃α), ψ̃)Rn

+

for ψ̃ ∈ Ŵ 1
q′(R

n
+), where f+(x) = A−1(f(Φ(x))) and G+(x) = A−1(G(Φ(x))) +M4G. Moreover

F(ũα, π̃α) and G(ũα, π̃α) have the following forms:

F(ũα, π̃α) = M1∇2ũα +M2∇ũα +M3∇π̃α,
G(ũα, π̃α) = α−1(M4ũα +M5∇π̃α)

with some matrices of functions Mk (k = 1, . . . , 5) possessing the estimates

∥Mj∥∞,Rn
+
≤ CM1, ∥M2∥r,Rn

+
+ ∥∇Mj∥r,Rn

+
≤ CM2

for j = 1, 3, 4, 5 and n < r <∞. By the results of the case for the half-space, we obtain

∥∇2ũα∥2,Rn
+
+ ∥∇π̃α∥2,Rn

+

≤ C
(
∥f+∥2,Rn

+
+ α∥G+∥2,Rn

+
+ ∥F(ũα, π̃α)∥2,Rn

+
+ α∥G(ũα, π̃α)∥2,Rn

+

)
≤ C

(
∥f+∥2,Rn

+
+ α∥G+∥2,Rn

+
+M1(∥∇2ũα∥2,Rn

+
+ ∥∇π̃α∥2,Rn

+
+ ∥ũα∥2,Rn

+
)

+∥M2∥∞,Rn
+
∥∇ũα∥2,Rn

+

)
.

Taking M1 sufficient small, we see that

∥∇2ũα∥2,Rn
+
+ ∥∇π̃α∥2,Rn

+
≤ C

(
∥f+∥2,Rn

+
+ α∥g+∥2,Rn

+
+ ∥ũα∥2,Rn

+
+ ∥∇ũα∥2,Rn

+

)
,

which implies

∥∇2uα∥2,Ω + ∥∇πα∥2,Ω ≤ C (∥f∥2,Ω + α∥g∥2,Ω + ∥uα∥2,Ω + ∥∇uα∥2,Ω)

for the case where Ω is the bent half-space.
In the third step, we set H1

j = Φ1
j (Rn

+), ∂H1
j = Φ1

j (∂Rn
+), and H2

j = Φ2
j (Rn) and set ξkj as the

cut-off functions satisfying 0 ≤ ξkj ≤ 1, suppξkj ⊂ Bdk(x
k
j ) = {x ∈ Ω | |x− xkj | < dk} for k = 1, 2

and j = 1, 2, . . . .
Let f, g ∈ L2(Ω), we first consider the following equations:

−∆ukj +∇πkj = ξkj f x ∈ Hk
j
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under (ukj ,∇ψ)Hk
j
= α−1(∇πkj ,∇ψ)Hk

j
+ (ξkjG,∇ψ)Hk

j
for k = 1, 2 and we also consider the

boundary condition: u1j = 0 on ∂H1
j for k = 1. By the results of the first step and the second

step, we can obtain

∥∇2ukj ∥2,Hk
j
+ ∥∇πkj ∥2,Hk

j
≤ C

(
∥ξkj f∥2,Hk

j
+ ∥ξkj g∥2,Hk

j
+ ∥ukj ∥2,Hk

j
+ ∥∇ukj ∥2,Hk

j

)
For f, g ∈ L2(Ω), we set

u =

∞∑
j=1

ξ1ju
1
j +

∞∑
j=1

ξ2ju
2
j , π =

∞∑
j=1

ξ1jπ
1
j +

∞∑
j=1

ξ2jπ
2
j .

Inserting (u, π) into (3.20) and (3.21), we see that

−∆u+∇π = f + F̃ , (u,∇ψ)Ω =
1

α
(∇π,∇ψ)Ω + (G,∇ψ)Ω + (G̃,∇ψ)Ω,

where

F̃ =

2∑
k=1

∞∑
j=1

(
2(∇ξkj ) : (∇ukj ) + (∆ξkj )u

k
j − (∇ξkj )pkj

)
, G̃ = α−1

2∑
k=1

∞∑
j=1

(∇ξkj )πkj .

By the results of the second step, we have

∥∇2u∥2,Ω + ∥∇π∥2,Ω

≤ C
2∑

k=1

∞∑
j=1

(
∥∇2(ξkj u

k
j )∥2,Ω + ∥∇(ξkj π

k
j )∥2,Ω

)

≤ C

2∑
k=1

∞∑
j=1

(
(∥ξkj∇2ukj ∥2,Hk

j
+ ∥ξkj∇πkj ∥2,Hk

j
) + 2∥∇ξkj ∥∞∥∇ukj ∥2,Hk

j

+∥∇2ξkj ∥∞(∥ukj ∥2,Hk
j
+ ∥πkj ∥2,Hk

j
)
)

≤ C

2∑
k=1

∞∑
j=1

(
∥ξkj f∥2,Hk

j
+ α∥ξkjG∥2,Hk

j
+ ∥ukj ∥2,Hk

j
+ ∥∇ukj ∥2,Hk

j
+ ∥πkj ∥2,Hk

j

)
.

By Poincaré inequality, (3.27) and ∥F∥2,Ω ≤ C∥f∥2,Ω, we obtain

∥∇2u∥2 + ∥∇π∥2 ≤ C (∥f∥2 + α∥g∥2) ,

which implies (3.19).

4 Maximal Regularity

Goal of this section is to prove the R-boundedness of the solution operator to the following
resolvent problem (RSa′) in Ω:{

λuα −∆uα +∇πα = f in Ω,
uα = 0 on ∂Ω,

(RSa′)

where λ ∈ Σε,λ0(0 < ε < π/2, λ0 > 0) under the approximated weak incompressible condition
(Cg). Our method is based on cut-off technique. For this purpose, we shall first prove the whole
space case. Secondly we shall prove the half-space case by using the result for the whole space
case and some lemma introduced in section 3. Next we shall prove the bent half-space case by
reducing to the result for the half-space case with the change of variable. Finally we shall prove
the bounded domain case by using the result for the whole space and the bent half-space case
with cut-off technique.
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4.1 Problem in the whole space

In this subsection, we shall prove the following theorem:

Theorem 4.1. Let α > 0, 1 < q < ∞ and 0 < ε < π/2. Set Xq(Rn) = {(F1, F2) | F1, F2 ∈
Lq(Rn)}. Then, there exist operator families U(λ) and P(λ) with

U(λ) ∈ Hol(Σε,L(Xq(Rn),W 2
q (Rn)n)), P(λ) ∈ Hol(Σε,L(Xq(Rn), Ŵ 1

q (Rn)))

such that for any f, g ∈ Lq(Rn)n and λ ∈ Σε, (uα, πα) = (U(λ)F,P(λ)F ), where F = (f, αg),
is a unique solution to (RSa′) under (Cg) for the case Ω = Rn and (U(λ),P(λ)) satisfies the
following estimates:

RL(Xq(Rn),Lq(Rn)Ñ )
({(τ∂τ )ℓ(Gλ,αU(λ)) | λ ∈ Σε}) ≤ C (ℓ = 0, 1),

RL(Xq(Rn),Lq(Rn)n)({(τ∂τ )ℓ(∇P(λ)) | λ ∈ Σε}) ≤ C (ℓ = 0, 1)

for Gλ,αu = (λu, λ1/2∇u,∇2u, (λ+ α)1/2(∇ · u)) and Ñ = 1 + n+ n2 + n3.

Proof. In order to prove the R-boundedness of solution operator by using Theorem 3.1, we
shall obtain the solution formula to (RSa′) under (Cg) by using Fourier transform. By the
property of Helmholtz projection, we know ∇πα = α∇QRn(uα−g) and F [∇QRnv] = |ξ|−2ξ(ξ ·v̂).
Applying the Fourier transform to (RSa′), we obtain the following solution formula : uα,j(x) =
uj(x)+u

E
α,j(x) and πα(x) = π(x)+πEα (x), where (u, π) is the solution to Stokes equations given

by

uj(x) = F−1
ξ

[
1

λ+ |ξ|2
f̂j(ξ)

]
(x)−

n∑
k=1

F−1
ξ

[
ξjξk

(λ+ |ξ|2)|ξ|2
f̂k(ξ)

]
(x), (4.1)

π(x) = −i
n∑

k=1

F−1
ξ

[
ξk
|ξ|2

f̂k(ξ)

]
(x) (4.2)

for j = 1, . . . , n and the error term (uEα , π
E
α ) given by

uEα,j =

n∑
k=1

F−1
ξ

[
ξjξk(f̂k(ξ)− αĝk)

|ξ|2(λ+ α+ |ξ|2)

]
(x), πEα = i

n∑
k=1

F−1
ξ

[
ξk(λ+ |ξ|2)(f̂k(ξ)− αĝk(ξ))

|ξ|2(λ+ α+ |ξ|2)

]
(x)

(4.3)

for j = 1, . . . , n. Since in the whole space case, it is well-known that the solution operator to
Stokes equations is R-bounded ([26] for detail), we consider the only error term (uEα , π

E
α ). By

Leibniz rule, for ℓ = 0, 1, we obtain∣∣∣∣(τ∂τ )ℓDδ
ξ

(λ+ α)ξjξk
|ξ|2(λ+ α+ |ξ|2)

∣∣∣∣ ≤ Cε,δ|ξ|−|δ|,

∣∣∣∣∣(τ∂τ )ℓDδ
ξ

(λ+ α)1/2ξmξjξk
|ξ|2(λ+ α+ |ξ|2)

∣∣∣∣∣ ≤ Cε,δ|ξ|−|δ|,∣∣∣∣(τ∂τ )ℓDδ
ξ

ξmξnξjξk
|ξ|2(λ+ α+ |ξ|2)

∣∣∣∣ ≤ Cε,δ|ξ|−|δ|,

∣∣∣∣(τ∂τ )ℓDδ
ξ

ξjξk(λ+ |ξ|2)
|ξ|2(λ+ α+ |ξ|2)

∣∣∣∣ ≤ Cε,δ|ξ|−|δ|, (4.4)

which implies from Theorem 3.1

RL(Xq(Rn),Lq(Rn)Ñ )
({(τ∂τ )ℓ(Gλ,αU(λ)) | λ ∈ Σε}) ≤ C (ℓ = 0, 1),

RL(Xq(Rn),Lq(Rn)n)({(τ∂τ )ℓ(∇P(λ)) | λ ∈ Σε}) ≤ C (ℓ = 0, 1).

This completes the proof of Theorem 4.1.
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Remark 4.2. By Theorem 4.1, we see that the existence of the solution (uα, πα) to the resolvent
problem (RSa′). Moreover by Theorem 2.10 and Remark 2.9, (uα, πα) satisfies the following
resolvent estimate:

∥(λuα, λ1/2∇uα,∇2uα, (λ+ α)1/2(∇ · uα),∇πα)∥Lq(Rn) ≤ Cn,q,ε∥(f, αg)∥Lq(Rn).

4.2 Problem in the half-space

In this section we shall prove the following theorem:

Theorem 4.3. Let α > 0, 1 < q < ∞ and 0 < ε < π/2. Set Xq(Rn
+) = {(F1, F2) | F1, F2 ∈

Lq(Rn
+)}. Then, there exist operator families U(λ) and P(λ) with

U(λ) ∈ Hol(Σε,L(Xq(Rn
+),W

2
q (Rn

+)
n), P(λ) ∈ Hol(Σε,L(Xq(Rn

+), Ŵ
1
q (Rn

+)),

such that for any f, g ∈ Lq(Rn
+)

n and λ ∈ Σε, (uα, πα) = (U(λ)F,P(λ)F ), where F = (f, αg), is
a unique solution to (RSa′) under (Cg) and (U(λ),P(λ)) satisfies the following estimates:

RL(Xq(Rn
+),Lq(Rn

+)Ñ )
({(τ∂τ )ℓ(Gλ,αU(λ)) | λ ∈ Σε}) ≤ C (ℓ = 0, 1),

RL(Xq(Rn
+),Lq(Rn

+)n)({(τ∂τ )ℓ(∇P(λ)) | λ ∈ Σε}) ≤ C (ℓ = 0, 1)

for Gλ,αu = (λu, λ1/2∇u,∇2u, (λ+ α)1/2(∇ · u)) and Ñ = 1 + n+ n2 + n3.

In order to prove Theorem 4.3 by Lemma 3.2, we shall obtain the solution formula to (RSa′)
under (Cg). By density argument, we may let f, g ∈ C∞

0 (Rn
+). In this case, equation (RSa′)

under (Cg) is equivalent to the following equations:{
λuα −∆uα +∇πα = f, ∇ · uα − α−1∆πα = ∇ · g in Rn

+,
u|∂Rn

+
= 0, ∂nπα|∂Rn

+
= 0.

(4.5)

We shall obtain the solution formula to (4.5). For this purpose, we extend the external force f
and g to the whole space. For f = (f1, . . . , fn) and g = (g1, . . . , gn), let F = (f e1 , . . . , f

e
n−1, f

o
n)

and G = (ge1, . . . , g
e
n−1, g

o
n), where

fej (x) =

{
fj(x

′, xn) (xn > 0)

fj(x
′,−xn) (xn < 0)

, fon(x) =

{
fn(x

′, xn) (xn > 0)

−fn(x′,−xn) (xn < 0)
,

where x′ = (x1, . . . , xn−1). We consider the resolvent problem with F and G:

λUα −∆Uα +∇Θα = F, ∇ · Uα = α−1∆Θα +∇ ·G in Rn. (4.6)

Here we remark that from the definition of our extension, (Uα,Θα) enjoys the boundary condition

Uα,n(x
′, 0) = 0, ∂nΘα(x

′, 0) = 0. (4.7)

By the result for the whole space and the definition of our extension, the following estimates
hold:

∥(λUα, λ
1/2∇Uα,∇2Uα, (λ+ α)1/2(∇ · Uα),∇Θα)∥Lq(Rn) ≤ C∥(F, αG)∥Lq(Rn)

≤ C∥(f, αg)∥Lq(Rn
+). (4.8)

Setting uα = wα + Uα and πα = ρα +Θα, we see that to solve (4.5) is equivalent to solve{
λwα −∆wα +∇ρα = 0, ∇ · wα = ∆ρα/α in Rn

+,
(wα)j |xn=0 = hj |xn=0, ∂nρα|xn=0 = 0,

(4.9)
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where hj = −(Uα)j for j = 1, . . . , n− 1 and hn = 0. Applying div and (λ+α−∆)∆ to the first
equation in (4.9), we obtain

(λ+ α−∆)∆ρα = 0, (λ+ α−∆)(λ−∆)∆wα = 0. (4.10)

By applying the partial Fourier transform defined by

g̃(ξ′, xn) =

∫
Rn−1

e−ix′·ξ′g(x′, xn)dx
′

to (4.9) and (4.10) , we have

λ(w̃α)j + r2(w̃α)j − ∂2n(w̃α)j + (iξj)ρ̃α = 0,
λ(w̃α)n + r2(w̃α)n − ∂2n(w̃α)n + ∂nρ̃α = 0,
iξ′ · w̃α

′ + ∂n(w̃α)n = α−1(−r2ρ̃α + ∂2nρ̃α),

(w̃α)j(ξ
′, 0) = h̃j(ξ

′, 0), (w̃α)n(ξ
′, 0) = 0, ∂nρ̃α(ξ

′, 0) = 0

(4.11)

and

(λ+ α+ r2 −D2
n)(r

2 −D2
n)ρ̃α = 0,

(λ+ α+ r2 −D2
n)(λ+ r2 −D2

n)(r
2 −D2

n)w̃α = 0, (4.12)

where iξ′ · w̃α
′ =

∑n−1
j=1 (iξj)(w̃α)j . Since from (4.12), we see the solution (w̃α, ρ̃α) can be

expressed by

ρ̃α = pe−rxn + qe−ωxn , (w̃α)j = aje
−rxn + bje

−ωλxn + cje
−ωxn (4.13)

for j = 1, . . . , n, we shall find the solution to (4.11) having the form (4.13). By substituting
(4.13) to (4.11), we see

λaj + (iξj)p = 0, −αcj + (iξj)q = 0,
λan − rp = 0, −αcn − ωq = 0,

iξ′ · a′ − ran = 0, iξ′ · b′ − ωλbn = 0, iξ′ · c′ − ωcn = α−1(α+ λ)q,

aj + bj + cj = h̃j , an + bn + cn = 0, −rp− ωq = 0

for j = 1, . . . , n− 1. Setting A = λ(ωλω − r2) and B = αω(ωλ − r), we see

p = − αλωi

r(A+ B)
ξ′ · h̃′, q = − r

ω
p,

aj = − iξj
λ
p, bj = h̃j +

iξj
λ
p+

iξjr

αω
p, cj = − iξjr

αω
p,

an =
r

λ
p, bn = − r

λ
p− r

α
p, cn =

r

α
p.

Therefore, we obtain the solution formula (w̃α)j = w̃j + w̃α
E
j and ρ̃α = ρ̃ + ρ̃α

E , where

(w̃, w̃α
E , ρ̃, ρ̃α

E) is given

w̃j = h̃je
−ωλxn +

ξj
r
ξ′ · h̃′M(ωλ, r, xn),

w̃α
E
j = −ξj

r

A
A+ B

ξ′ · h̃′M(ωλ, r, xn)−
ξj

ωλ + r

αλ

A+ B
ξ′ · h̃′M(ω, ωλ, xn),

w̃n = iξ′ · h̃′M(ωλ, r, xn),

w̃α
E
n =

B
A+ B

iξ′ · h̃′M(ωλ, r, xn)−
αωλ

(ω + ωλ)(A+ B)
iξ′ · h̃′M(ω, ωλ, xn),

ρ̃ = −ωλ + r

r
iξ′ · h̃′e−rxn ,

ρ̃E =
ωλ + r

r

A
A+ B

iξ′ · h̃′e−rxn +
αλ

A+ B
iξ′ · h̃′e−ωxn .
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Since the symbol M(a, b, xn) defined by (3.1) has the following properties:

∂nM(a, b, xn) = −e−axn − bM(a, b, xn),

∂2nM(a, b, xn) = (a+ b)e−axn + b2M(a, b, xn)

and by g(0) = −
∫∞
0 ∂ng(yn)dyn, we have

h̃(ξ′, 0)e−axn =

∫ ∞

0
E(a)(a−Dn)h̃(ξ

′, yn)dyn,

h̃(ξ′, 0)M(a, b, xn) =

∫ ∞

0
{E(a)h̃(yn) +M(a, b, xn + yn))(b−Dn)h̃(ξ

′, yn)}dyn,

where E(z) is defined by (3.1). Therefore, setting ξ̄j = ξj/r, we obtain

wj(x)

=

∫ ∞

0
F−1
ξ′ [E(ωλ)(ωλ −Dn)h̃j(ξ

′, yn)](x
′)dyn

+
n−1∑
k=1

∫ ∞

0
F−1
ξ′ [ξ̄j ξ̄k(E(ωλ)rh̃k(ξ

′, yn)

+M(ωλ, r, xn + yn)(r −Dn)rh̃k(ξ
′, yn))](x

′)dyn,

(wα)
E
j (x)

= −
n−1∑
k=1

∫ ∞

0
F−1
ξ′ [ξ̄j ξ̄k

A
A+ B

(E(ωλ)rh̃k(ξ
′, yn)

+M(ωλ, r, xn + yn)(r −Dn)rh̃k(ξ
′, yn))](x

′)dyn

+
n−1∑
k=1

∫ ∞

0
F−1
ξ′ [

rξ̄j ξ̄k
ωλ + r

αλ

A+ B
(E(ωλ)rh̃k(ξ

′, yn)

+M(ωλ, ω, xn + yn)(ω −Dn)rh̃k(ξ
′, yn))](x

′)dyn,

wn(x)

=
n−1∑
k=1

i

∫ ∞

0
F−1
ξ′ [ξ̄k(E(ωλ)rh̃k(ξ

′, yn)

+M(ωλ, r, xn + yn)(r −Dn)rh̃k(ξ
′, yn))](x

′)dyn,

(wα)
E
n (x)

=

n−1∑
k=1

∫ ∞

0
F−1
ξ′ [ξ̄k

iB
A+ B

(E(ωλ)rh̃k(ξ
′, yn)

+M(ωλ, r, xn + yn)(r −Dn)rh̃k(ξ
′, yn))](x

′)dyn

+

n−1∑
k=1

∫ ∞

0
F−1
ξ′ [ξ̄k

ωi

ωλ + ω

αλ

A+ B
(E(ωλ)rh̃k(ξ

′, yn)

+M(ωλ, ω, xn + yn)(ω −Dn)rh̃k(ξ
′, yn))](x

′)dyn,

ρ(x)

= −
n−1∑
k=1

i

∫ ∞

0
F−1
ξ′ [

ωλ + r

r
E(r)(r −Dn)rξ̄kh̃k(ξ

′, yn)](x
′)dyn,
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(ρα)
E(x)

=
n−1∑
k=1

∫ ∞

0
F−1
ξ′ [ξ̄k

ωλ + r

r

A
A+ B

iE(r)(r −Dn)rh̃k(ξ
′, yn)](x

′)dyn

+
n−1∑
k=1

∫ ∞

0
F−1
ξ′ [ξ̄k

αλ

A+ B
iE(ω)(ω −Dn)rh̃k(ξ

′, yn)]dyn. (4.14)

We remark that (w, ρ) is the solution to the usual Stokes equations and (wE , ρE) is the error
between the solution to Stokes equations and Stokes equations approximated by pressure stabi-
lization. Since Shibata and Shimizu [26] proved R-boundedness of solution operator to Stokes
equations, it is sufficient to consider (wE

α , ρ
E
α ) only. For this purpose, we prepare the following

lemma.

Lemma 4.4. Let 0 < ε < π/2 and α > 0. For any multi-index δ′ and (λ, ξ′, xn) ∈ Σε ×
(Rn−1\{0})× (0,∞), m(λ, ξ′) = r(ωλ+ r)

−1, ω(ωλ+ω)
−1,A(A+B)−1,B(A+B)−1 and αλ(A+

B)−1 enjoy

|∂δ′ξ′m(λ, ξ′)| ≤ Cr−|δ′|, (4.15)

where C is a positive constant which is dependent of ε and δ′.

Proof. We first show that m(λ, ξ′) = r(ωλ + r)−1 and ω(ωλ + ω)−1 enjoy (4.15). By Leibniz
rule with (3.3), we see∣∣∣∣Dδ′

ξ′
r

ωλ + r

∣∣∣∣ ≤ C
∑

δ′=δ′1+δ′2

r1−|δ′1| r−|δ′2|

|λ|1/2 + r
≤ Cr−|δ′|,

∣∣∣∣Dδ′
ξ′

ω

ωλ + ω

∣∣∣∣ ≤ C
∑

δ′=δ′1+δ′2

(|λ|1/2 + α1/2 + r)r−|δ′1| r−|δ′2|

(|λ|1/2 + α1/2 + r)
≤ Cr−|δ′|.

In order to prove m(λ, ξ′) = A(A + B)−1,B(A + B)−1 and αλ(A + B)−1, we shall consider
Dδ′

ξ′ (A+ B). Since

A+ B = (λ+ α)ω(ωλ − r) + λr(ω − r) =
λ(λ+ α)ω

ωλ + r
+
λ(λ+ α)r

ω + r
,

we have ∣∣∣Dδ′
ξ′ (A+ B)

∣∣∣ ≤ C|λ|(|λ|+ α)

{
|λ|1/2 + α1/2 + r

|λ|1/2 + r
+

r

|λ|1/2 + α1/2 + r

}
r−|δ′|

≤ C|λ|(|λ|1/2 + α1/2)2(|λ|1/2 + α1/2 + r)(|λ|1/2 + r)−1r−|δ′|. (4.16)

Since | arg[ω(ω + r)/r(ωλ + r)]| < π − ε , we know ωr−1(ω + r)(ωλ + r)−1 ∈ Σε, which implies
that

|A+ B| = |λ+ α||λ|
∣∣∣∣ r

ω + r

∣∣∣∣ ∣∣∣∣ ω

ωλ + r
· ω + r

r
+ 1

∣∣∣∣
≥ C(|λ|1/2 + α1/2)2|λ|r(|λ|1/2 + α1/2 + r)−1

(∣∣∣∣ ω

ωλ + r
· ω + r

r

∣∣∣∣+ 1

)
≥ C(|λ|1/2 + α1/2)2|λ|(|λ|1/2 + α1/2 + r)(|λ|1/2 + r)−1.

By Bell’s formula with (4.16), we obtain∣∣∣Dδ′
ξ′ (A+ B)−1

∣∣∣ ≤ C|λ|−1(|λ|1/2 + α1/2)−2(|λ|1/2 + α1/2 + r)−1(|λ|1/2 + r)r−|δ′|,

which implies (4.15) for m(λ, ξ′) = A(A+ B)−1,B(A+ B)−1 and αλ(A+ B)−1.
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Proof of Theorem 4.3. We shall prove Theorem 4.3 by Lemma 3.2 with Lemma 4.4. Set (wα)
E
j,k,ℓ(x)(k =

1, . . . , n− 1, ℓ = 1, . . . , 6) as follows

(wα)
E
j,k,1(x) =

∫ ∞

0
F−1
ξ′

[
ξ̄j ξ̄k

A
A+ B

E(ωλ)rh̃k(ξ
′, yn)

]
(x′)dyn,

(wα)
E
j,k,2(x) =

∫ ∞

0
F−1
ξ′

[
ξ̄j ξ̄k

A
A+ B

M(ωλ, r, xn + yn)r
2h̃k(ξ

′, yn)

]
(x′)dyn,

(wα)
E
j,k,3(x) =

∫ ∞

0
F−1
ξ′

[
ξ̄j ξ̄k

A
A+ B

M(ωλ, r, xn + yn)rDnh̃k(ξ
′, yn)

]
(x′)dyn,

(wα)
E
j,k,4(x) =

∫ ∞

0
F−1
ξ′

[
rξ̄j ξ̄k
ωλ + r

αλ

A+ B
E(ωλ)rh̃k(ξ

′, yn)

]
(x′)dyn,

(wα)
E
j,k,5(x) =

∫ ∞

0
F−1
ξ′

[
rξ̄j ξ̄k
ωλ + r

αλ

A+ B
M(ωλ, ω, xn + yn)ωrh̃k(ξ

′, yn)

]
(x′)dyn,

(wα)
E
j,k,6(x) =

∫ ∞

0
F−1
ξ′

[
rξ̄j ξ̄k
ωλ + r

αλ

A+ B
M(ωλ, ω, xn + yn)rDnh̃k(ξ

′, yn)

]
(x′)dyn.

Setting Kα,ℓ,j(hk) = (wα)
E
j,k,ℓ(x) for ℓ = 1, 2, 4, 5, by Lemma 3.2, Lemma 4.4 and (4.8),

we see that Kα,ℓ,j is R-bounded. Since hk = −(Uα)k, Uα = URn(λ)F , where URn(λ) is the
solution operator in Rn and F = (f, αg), setting Vj,k,ℓ(λ)F = Kα,j,ℓ((URn(λ)F )k), we see that
Gλ,αVj,k,ℓ(λ)F = Kα,ℓ,j(Gλ,α(URn((λ)F ) is R-bounded by Remark 2.9.

Since Lemma 3.2 and Lemma 4.4 and the relation:

λ(wα)
E
j,k,3(x) =

∫ ∞

0
F−1
ξ′ [ξ̄j ξ̄k

A
(A+ B)

M(ωλ, r, xn + yn)r|λ|1/2
λ

|λ|
(|λ|1/2Dnh̃k(ξ

′, yn))](x
′)dyn,

we see there exists a R-bouned operator Kα,3,j such that

Kα,3,j(|λ|1/2Dnhk) = λ(wα)
E
j,k,3(x).

Setting λVj,k,3(λ)F = Kα,3,j(|λ|1/2Dn(URnF )k), we see λVj,k,3(λ)F is R-bounded. In a similar
way, we can show that Gλ,αVj,k,ℓ(λ)F (ℓ = 3, 6) is R-bounded. Summing up, setting (U(λ)F )j =∑

k,ℓ Vj,k,ℓ(λ)F and U(λ)F = ((U(λ)F )j)j=1,...,n, we see U(λ)F is the solution operator in Rn
+

and Gλ,αU(λ)F is R-bounded.
In the same way, we obtain the results for (wα)

E
n (x) from the results for (wα)

E
j (x) and the

results for (ρα)
E(x) from the equations (RSa′) and the results for (wα)

E
j (x) and (wα)

E
n (x).

4.3 Problem in the bent half-space and the bounded domain

Before we describe the theorem for bent half-space, we shall introduce some notations. Let
Φ : Rn → Rn be a bijection of C1 class and let Φ−1 be its inverse map. Writing ∇Φ = A+B(x)
and ∇Φ−1 = A−1 + B−1(x), we assume that A and A−1 are orthogonal matrices with constant
coefficients and B(x) and B−1(x) are matrices of functions inW 1

r (Rn) with n < r <∞ such that

∥(B,B−1)∥L∞(Rn) ≤M1, ∥∇(B,B−1)∥Lr(Rn) ≤M2. (4.17)

We shall choose M1 small enough later, so that we may assume that 0 < M1 ≤ 1 ≤ M2. Let
Rn
0 be the boundary of the half-space defined by Rn

0 = {x = (x1, . . . , xn) ∈ Rn | xn = 0}. Set
Ω+ = Φ(Rn

+) and ∂Ω+ = Φ(Rn
0 ).
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Theorem 4.5. Let α > 0, 1 < q < ∞ and 0 < ε < π/2. Set Xq(Ω+) = {(F1, F2) | F1, F2 ∈
Lq(Ω+)}. Then there exist M1 ∈ (0, 1), λ0 ≥ 1 and solution operator families U(λ) and P(λ)
with

U(λ) ∈ Hol(Σε,λ0 ,L(Xq(Ω+),W
2
q (Ω+))), P(λ) ∈ Hol(Σε,λ0 ,L(Xq(Ω+), Ŵ

1
q (Ω+))) (4.18)

such that for any (f, αg) ∈ Xq(Ω+) and λ ∈ Σε,λ0, (uα, πα) = (U(λ)F,P(λ)F ), where F =
(f, αg), is a unique solution to problem (RSa′) under (Cg). Moreover (U(λ),P(λ)) satisfies the
following estimates:

RL(Xq(Ω+),Lq(Ω+)Ñ )
({(τ∂τ )ℓGλ,αU(λ) | λ ∈ Σε,λ0}) ≤ C (ℓ = 0, 1),

RL(Xq(Ω+),Lq(Ω+)n)({(τ∂τ )ℓ∇P(λ) | λ ∈ Σε,λ0}) ≤ C (ℓ = 0, 1)

for Gλ,αu = (λu, λ1/2∇u,∇2u, (λ+ α)1/2(∇ · u)) and Ñ = 1 + n+ n2 + n3.

Proof. In order to prove Theorem 4.5, we transfer (RSa′) and (Cg) into a problem in Rn
+ by the

change of variable x = Φ−1(y) with y ∈ Ω+ and x ∈ Rn
+ and by the change of unknowns : v(x) =

A−1(uα(Φ(x)), ρ = A−1(πα(Φ(x))) and ψ(x) = A−1(φ(Φ(x))). Since ∂yj =
∑n

ℓ=1(Aℓ,j+Bℓ,j)∂xj ,
employing the same argument to Shibata [21], we have the following equations{

λv −∆v +∇ρ = f+ + F(v, ρ) x ∈ Rn
+,

v = 0 x ∈ ∂Rn
+

(4.19)

under

(v,∇ψ)Rn
+
= α−1(∇ρ,∇ψ)Rn

+
+ (g+,∇ψ)Rn

+
+ (G(v, ρ),∇ψ)Rn

+
, ψ ∈ Ŵ 1

q′(R
n
+), (4.20)

where f+(x) = A−1(f(Φ(x))) and g+(x) = A−1(g(Φ(x))) +M4g. Moreover F(v, ρ) and G(v, ρ)
have the following forms:

F(v, ρ) = M1∇2v +M2∇v +M3∇ρ, G(v, ρ) = α−1(M4v +M5∇ρ) (4.21)

with some matrices of functions Mk (k = 1, . . . , 5) possessing the estimates

∥Mj∥L∞(Rn
+) ≤ CM1, ∥(M2,∇Mj)∥Lr(Rn

+) ≤ CM2 (4.22)

for j = 1, 3, 4, 5 and n < r < ∞. Setting F(λ)F = F(URn
+
(λ)F,PRn

+
(λ)F ) and G(λ)F =

G(URn
+
(λ)F,PRn

+
(λ)F )), where F = (f+, αg+) and (URn

+
(λ),PRn

+
(λ)) is the solution operator in

Rn
+, we can obtain, for ℓ = 0, 1,

RL(Xq(Rn
+),Lq(Ω))({(τ∂τ )ℓF(λ) | λ ∈ Σε,λ0}) ≤ {C(σ +M1) + Cσλ

−1/2
0 }κ0,

RL(Xq(Rn
+),Lq(Ω))({(τ∂τ )ℓαG(λ) | λ ∈ Σε,λ0}) ≤ {C(σ +M1) + Cσλ

−1/2
0 }κ0,

where κ0 is theR-bound of the half-space case and σ > 0, by the method due to Shibata [21]. We

choose σ and M1 so small that C(σ +M1)κ0 ≤ 1/8 and λ0 ≥ 1 so large that Cσλ
−1/2
0 κ0 ≤ 1/8.

Thus. we have

RL(Xq(Rn
+),Lq(Ω)Ñ )

({(τ∂τ )ℓF(λ) | λ ∈ Σε,λ0}) ≤ 1/4 (ℓ = 0, 1),

RL(Xq(Rn
+),Lq(Ω)Ñ )

({(τ∂τ )ℓαG(λ) | λ ∈ Σε,λ0}) ≤ 1/4 (ℓ = 0, 1).

Since R-boundedness implies the usual boundedness (see Remark 2.9), we have

∥(F(λ)F, αG(λ)F )∥Lq(Rn
+) ≤ 2−1∥F∥Lq(Rn

+),
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where F = (f, αg) for λ ∈ Γε,λ0 . ThereforeR(λ)F = (F(λ)F, αG(λ)F ) is a contraction map from
Xq(Rn

+) into itself, so that for each λ ∈ Γε,λ0 , (I+R(λ))−1 exists and ∥(I+R(λ))−1∥L(Xq(Rn
+)) ≤

2. If we define v and ρ by v = URn
+
(λ)(I + R(λ))−1F and ρ = PRn

+
(λ)(I + R(λ))−1F , where

F = (f, αg), then (v, ρ) is a unique solution to (4.19) under (4.20). Moreover we have

RL(Xq(Rn
+),Lq(Ω))({(τ∂τ )ℓ(1 +R(λ))−1 | λ ∈ Σε,λ0}) ≤ 2 (ℓ = 0, 1),

which implies

RL(Xq(Rn
+),Lq(Ω))({(τ∂τ )ℓGλ,αURn

+
(λ)(I +R(λ))−1 | λ ∈ Σε,λ0}) ≤ 2κ0, (ℓ = 0, 1),

RL(Xq(Rn
+),Lq(Ω))({(τ∂τ )ℓ∇PRn

+
(λ)(I +R(λ))−1 | λ ∈ Σε,λ0}) ≤ 2κ0, (ℓ = 0, 1).

By the change of variable y = Φ(x) transfer (RSa′) under (Cg) in the half-sapce case into
the bent half-sapce case, we see that uα(y) =

TA−1(v(Φ
−1(y))) and πα = TA−1(ρ(Φ

−1(y))) is
a unique solution to (RSa′) under (Cg) in the bent half-space and we construct an R-bounded
solution operator. This completes the proof of Theorem 4.5.

By using the cut-off technique with Theorem 4.5, we shall prove Theorem 2.11.

Proof of Theorem 2.11. We set H1
j = Φ1

j (Rn
+), ∂H1

j = Φ1
j (∂Rn

+) and H2
j = Rn and set ξij as

the cut-off function enjoys 0 ≤ ξij ≤ 1 and suppξij ⊂ Bdi(x
i
j) = {x ∈ Ω | |x − xij | < di}. Let

f, g ∈ Lq(Ω). We consider the two equations{
λu1j −∆u1j +∇π1j = ξ1j f x ∈ H1

j ,

uj = 0 x ∈ ∂H1
j

(4.23)

under

(u1j ,∇φ)H1
j
= α−1(∇π1j ,∇φ)H1

j
+ (ξ1j g,∇φ)H1

j
φ ∈ Ŵ 1

q (H1
j ) (4.24)

and

λu2j −∆u2j +∇π2j = ξ2j f x ∈ H2
j (4.25)

under

(u2j ,∇φ)H2
j
= α−1(∇π2j ,∇φ)H2

j
+ (ξ2j g,∇φ)H2

j
φ ∈ Ŵ 1

q (H2
j ). (4.26)

By Theorem 4.1 and Theorem 4.5, there exist operator families
(Uk

j (λ),Pk
j (λ)) (k = 1, 2) with

Uk
j (λ) ∈ Hol(Γε,λ0 ,L(Xq(Hk

j ),W
2
q (Hk

j ))),

Pk
j (λ) ∈ Hol(Γε,λ0 ,L(Xq(Hk

j ), Ŵ
1
q (Hk

j )))

such that (ukj , π
k
j ) = (Uk

j (λ)(ξ
k
j f, αξ

k
j g),Pk

i (λ)(ξ
k
j f, αξ

k
j g)) uniquely solves the problem (4.23)

under (4.24) and the problem (4.25) under (4.26), respectively. Moreover we see

RL(Xq(Hk
j ),Lq(Hk

j ))
({(τ∂τ )ℓGλ,αUk

j (λ) | λ ∈ Γε,λ0) ≤ κ2,

RL(Xq(Hk
j ),Lq(Hk

j ))
({(τ∂τ )ℓ∇Pk

j (λ) | λ ∈ Γε,λ0) ≤ κ2 (4.27)

with some constant κ2 independent of j ∈ N. By (4.27), we obtain

∥(λukj , λ1/2∇ukj ,∇2ukj , (λ+ α)1/2∇ · ukj ,∇πkj )∥Lq(Hk
j )

≤ κ2∥(ξkj f, αξkj g)∥Lq(Hk
j )
.
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For f, g ∈ Lq(Ω), we set

U(λ)(f, αg) =

∞∑
j=1

ξ1ju
1
j +

∞∑
j=1

ξ2ju
2
j , P (λ)(f, αg) =

∞∑
j=1

ξ1jπ
1
j +

∞∑
j=1

ξ2jπ
2
j .

Inserting (v, π) = (U(λ)(f, αg), P (λ)(f, αg)) into (RSa′) and (Cg), we have{
λv −∆v +∇π = f − V1(λ)(f, αg), x ∈ Ω,

v = 0 x ∈ ∂Ω

under

(v,∇φ)Ω = α−1(∇π,∇φ)Ω + (g,∇φ)Ω + (V2(λ)(f, g),∇φ)Ω

with

V1(λ)(f, αg) =

∞∑
j=1

{
2(∇ξ1j ) · (∇u1j ) + (∆ξ1j )u

1
j − (∇ξ1j )π1j

+2(∇ξ2j ) · (∇u2j ) + (∆ξ2j )u
2
j − (∇ξ2j )π2j

}
,

V2(λ)(f, αg) = α−1
∞∑
j=1

{
(∇ξ1j )π1j + (∇ξ2j )π2j

}
.

Since by Poincare inequality we obtain

∥(∇ξkj )πkj ∥Lq(Ω) ≤ C∥∇πkj ∥Lq(Ω) ≤ Cα∥u∥Lq(Ω)

and π = αQΩu, we have V1(λ)(f, αg),V2(λ)(f, αg) ∈ Lq(Ω) and

∥(V1(λ)(f, αg), αV2(λ)(f, αg))∥Lq(Ω) ≤ Cλ
−1/2
0 (1 + λ

−1/2
0 + αλ

−1/2
0 )∥(f, αg)∥Lq(Ω).

Choosing λ0 ≥ 1 so large that Cλ
−1/2
0 (1 + λ

−1/2
0 + αλ

−1/2
0 ) ≤ 1/2 and setting V (λ)F =

(V1(λ)F,V2(λ)F ), where F = (f, αg), we see that (I − V (λ))−1 ∈ L(Xq(Ω)) exists and (u, π) =
(U(λ)(I − V (λ))−1F, P (λ)(I − V (λ))−1F ) is a unique solution to problem (RSa′) under (Cg).

Finally we shall show the R-boundedness of solution operator. Let

U(λ)F =
∞∑
j=1

ξ1jU1
j (λ)F +

∞∑
j=1

ξ2jU2
j (λ)F,

P(λ)F =
∞∑
j=1

ξ1jP1
j (λ)F +

∞∑
j=1

ξ2jP2
j (λ)F

and

V1(λ)F =

∞∑
j=1

{
2(∇ξ1j ) · (∇U1

j (λ)F ) + (∆ξ1j )U1
j (λ)F − (∇ξ1j )P1

j (λ)F

+2(∇ξ2j ) · (∇U2
j (λ)F ) + (∆ξ2j )U2

j (λ)F − (∇ξ2j )P2
j (λ)F

}
,

V2(λ)(f, αg) = α−1
∞∑
j=1

{
(∇ξ1j )P1

j (λ)F + (∇ξ2j )P2
j (λ)F

}
,
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where F = (f, αg). We see that U(λ) ∈ Hol(Γε,λ0 ,L(Xq(Ω),W
2
q (Ω))) and P(λ) ∈ Hol(Γε,λ0 ,L(Xq(Ω), Ŵ

1
q (Ω)))

and (v, π) = (U(λ)F,P(λ)F ), where F = (f, αg) satisfies{
λv −∆v +∇π = f − V1(λ)(f, αg) x ∈ Ω,

v = 0 x ∈ ∂Ω

under

(v,∇φ)Ω = α−1(∇π,∇φ)Ω + (g,∇φ)Ω + (V2(λ)(f, g),∇φ)Ω.

Since

RL(Xq(Ω),Lq(Ω)n)({(τ∂τ )ℓV1(λ) | λ ∈ Γε,λ0}) ≤ Cλ
−1/2
0 (1 + λ

−1/2
0 + αλ

−1/2
0 )κ2,

RL(Xq(Ω),Lq(Ω)n)({(τ∂τ )ℓαV2(λ) | λ ∈ Γε,λ0}) ≤ Cλ
−1/2
0 (1 + λ

−1/2
0 + αλ

−1/2
0 )κ2,

Choosing λ0 ≥ 1 so large that Cλ
−/2
0 (1 + λ

−1/2
0 + αλ

−1/2
0 )κ2 ≤ 1/2, we have

RL(Xq(Ω),Lq(Ω))({(τ∂τ )ℓ(I − V (λ))−1 | λ ∈ Γε,λ0}) ≤ 2.

Therefore we obtain

RL(Xq(Ω),Lq(Ω)Ñ )
({(τ∂τ )ℓGλ,αU(λ) | λ ∈ Γε,λ0}) ≤ C,

RL(Xq(Ω),Lq(Ω)Ñ )
({(τ∂τ )ℓ∇P(λ) | λ ∈ Γε,λ0}) ≤ C.

We see that U(λ)(I −V (λ))−1 is a required R-bounded solution operator to (RSa′) under (Cg).
This completes the proof of Theorem 2.11.

5 Application of Maximal Regularity

In this section, using the maximal regularity theorem, we shall prove the local in time existence
theorem of strong sokution for (NSa) and (NSE) (Theorem 2.1 and Theorem 2.16) by the method
due to Shibata-Kubo [24]. Moreover, we shall prove the Lp-Lq regularity in bounded domain
Ω ⊂ Rn and the uniqueness of solution for (WS) in case of n = 2.

5.1 Proof of Theorem 2.1

Setting u∗ = Tα(t)aα and π∗ = αQΩuα, by Theorem 2.13 and (2.5), (u∗, π∗) is the solution to
(Sa′) under (Cg) and satisfies

∥e−λ0t(∂tu
∗,∇2u∗,∇π∗)∥Lp((0,∞),Lq(Ω)) ≤ Cn,p,q∥aα∥B2(1−1/p)

q,p (Ω)
≤ CM, (5.1)

where 1 < p, q <∞ and λ0 is a positive number obtained in Theorem 2.11. Setting vα = uα−u∗,
and ρα = πα − π∗, we see that what (uα, πα) is the solution to (NSa′) under (Cg) is equivalent
to what (vα, ρα) is the solution to

∂tvα −∆vα +∇ρα = f −N1(vα)−N2(u
∗) t ∈ (0, T ), x ∈ Ω,

vα(0, x) = 0 x ∈ Ω,
vα(t, x) = 0 t ∈ (0, T ), x ∈ ∂Ω

(NSv)

under the approximated weak incompressible condition (C), where

N1(vα, u
∗) = (vα · ∇)vα + (u∗ · ∇)vα + (vα · ∇)u∗, N2(u

∗) = (u∗ · ∇)u∗.
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In order to prove Theorem 2.1, we consider (NSv) under (C). For this purpose, we set

⟨(w, τ)⟩T = ∥∂tw∥Lp((0,T ),Lq(Ω)) + ∥∇2w∥Lp((0,T ),Lq(Ω)) + ∥∇τ∥Lp((0,T ),Lq(Ω))

+ ∥w∥L∞((0,T ),Lq(Ω)) + ∥∇w∥Lr1 ((0,T ),Lq(Ω)) + ∥∇w∥Lr2 ((0,T ),Lq(Ω)) (5.2)

with r1, r2 is defined by (3.12). By (2.1), (3.8), (3.9) and (3.11), we have

⟨MT ∗(f))⟩T ∗ ≤ Cn,p,qe
λ0T ∗∥f∥Lp((0,T ∗),Lq(Ω)) ≤ Cn,p,qe

λ0T ∗
M. (5.3)

Set L = Cn,p,qe
λ0T ∗

M . To prove Theorem 2.1 by contraction mapping principle, we shall define
the underlying space XT,L as follows:

XT,L = {(w, τ) ∈W 1
p ((0, T ), Lq(Ω)

n) ∩ Lp((0, T ),W
2
q (Ω)

n))

× Lp((0, T ), Ŵ
1
q (Ω)) | w|t=0 = 0, ⟨(w, τ)⟩T ≤ 2L}. (5.4)

Here the constant T is determined later as the sufficiently small constant. We define the
map Φ as

Φ(w, θ) =MT (f)−MT (N1(vα, u
∗))−MT (N2(u

∗)),

where MT is the solution operator to (3.7) under (C). We shall prove that Φ is the contraction
mapping on XT,L. By (3.13) and (5.1) we have

∥N2(u
∗)∥Lp((0,S),Lq(Ω)) ≤ ∥(u∗ · ∇)u∗∥Lp((0,S),Lq(Ω)) ≤ CSγe2λ0SM2

for 1 < p ≤ ∞ and n/2 < q <∞. By (3.8) the following inequality holds:

⟨MT ∗(N2(u
∗))⟩T ∗ ≤ Cn,p,qe

2λ0T ∗∥N2(u
∗)∥Lp((0,T ∗),Lq(Ω)) ≤ Cn,p,q(T

∗)γe2λ0T ∗
M2 (5.5)

for 0 < T ∗ ≤ T0. In a similar way, for (vα, ρα) ∈ XT ∗,L we obtain

∥N1(vα, u
∗)∥Lp((0,S),Lq(Ω)) ≤ Ceλ0T ∗

SγML,

which implies

⟨MT ∗(N1(vα, u
∗))⟩T ∗ ≤ Cn,p,q∥N1(vα, u

∗)∥Lp((0,T ∗),Lq(Ω)) ≤ C(T ∗)γeλ0T ∗
ML. (5.6)

Therefore there exists a constant C = Cn,p,q,T0 such that

⟨Φ(vα, ρα)⟩T ∗ ≤ L+ C(T ∗)γ
(
e2λ0T ∗

M2 + eλ0T ∗
ML

)
for (vα, ρα) ∈ XT ∗ . Taking the time T ∗(≤ T0) sufficiently small such that
C(T ∗)γeλ0T ∗

M ≤ 1/2 and C(T ∗)γe2λ0T ∗
M2 ≤ L/2, we have ⟨Φ(w, τ)⟩T ∗ ≤ 2L. Therefore, Φ is

the mapping on XT ∗,L. Moreover taking into account the facts:

Φ(w1, τ1)− Φ(w2, τ2) =MT ∗(N1(w2, u
∗)−N1(w1, u

∗))

and

N1(w2, u
∗)−N1(w1, u

∗) = ((w2 − w1) · ∇)u∗ + (u∗ · ∇)(w2 − w1)

for (wi, τi) ∈ XT ∗,L (i = 1, 2), by (3.13), (5.1) and (5.4), we can show the following inequality
holds:

∥N1(w2)−N1(w1)∥Lp((0,T ∗),Lq) ≤ Cn,p,q,T0(T
∗)γeλ0T ∗

M⟨(w2, τ2)− (w1, τ1)⟩T ∗ ,
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which implies

⟨Φ(w1, τ1)− Φ(w2, τ2)⟩T ∗ ≤ Cn,p,q,T0(T
∗)γeλ0T ∗

M⟨(w2, τ2)− (w1, τ1)⟩T ∗ .

Taking T ∗ sufficiently small such that C(T ∗)γeλ0T ∗
M ≤ 1/2 if necessary, we obtain

⟨Φ(w1, τ1)− Φ(w2, τ2)⟩T ∗ ≤ (1/2)⟨(w1, τ1)− (w2, τ2)⟩T ∗ .

Therefore, we see that Φ is the contraction mapping on XT ∗ . By the contraction mapping
principle, we see that Φ has fixed point (vα, ρα). Satisfying Φ(vα, ρα) = (vα, ρα), by (5.5), we
see that (uα, πα) = (u∗ + vα, π

∗ + ρα) is the unique solution for (NSa′) under (C). Therefore we
obtain Theorem 2.1.

5.2 Proof of Theorem 2.16

Let (u∗, π∗) be a solution to (Sa′) with f = g = 0 and aα = aE . By Theorem 2.13, the following
estimates hold.

∥e−λ0t(∂tu
∗,∇2u∗,∇π∗)∥Lp((0,∞),Lq(Ω)) ≤ Cn,p,q∥aE∥B2(1−1/p)

q,p (Ω)
≤ CMα−1, (5.7)

where 1 < p, q < ∞. In order to look for the solution (vα, ρα) of (NSE) as vα = uE − u∗ and
ρα = πE − π∗, we shall obtain the solution to

∂tvα −∆vα +∇ρα = −N1(vα, u
∗)−N2(u

∗, uα) t ∈ (0,∞), x ∈ Ω,
vα(0, x) = 0 x ∈ Ω,
vα(t, x) = 0, x ∈ ∂Ω,

(NSvE)

under the approximated weak incompressible condition (Cπ), where

N1(vα, u
∗) = (vα · ∇)vα + ((u∗ + uα) · ∇)vα + (vα · ∇)(u∗ + uα),

N2(u
∗, uα) = (u∗ · ∇)(u∗ + uα) + (uα · ∇)u∗.

In a similar way to Theorem 2.1, we shall define underlying space XT,LE
as follows:

XT,LE
= {(w, τ) ∈ (W 1

p ((0, T ), Lq(Ω)
n) ∩ Lp((0, T ),W

2
q (Ω)

n))

× Lp((0, T ), Ŵ
1
q (Ω)) | w|t=0 = 0, α⟨(w, τ)⟩T ≤ LE}, (5.8)

where ⟨(w, τ)⟩T is defined in (5.2). Setting the map Φ defined by

Φ(w, θ) = −MT ∗(N1(vα, u
∗))−MT ∗(N2(u

∗, uα)),

where MT (f) is a solution operator to (3.7) under (Cπ), we shall estimate N1(vα, u
∗) and

N2(u
∗, uα) in a similar way to Theorem 2.1. Setting β, ℓk(k = 1, 2, 3), γ, ri(i = 1, 2) as the

same positive constant in proof of Theorem 2.1, we see

∥N1(vα, u
∗)∥Lp((0,S),Lq(Ω)) ≤

CSγ

α

(
1

α
L2
E +

1

α
eλ0T ∗

MLE + LLE

)
and

∥N2(u
∗, uα)∥Lp((0,S),Lq(Ω)) ≤C

Sγ

α

(
1

α
e2λ0T ∗

M2 + eλ0T ∗
ML

)
for 1 < p <∞, by (2.6), (3.8) for 0 < T ♭ ≤ T ∗, the following inequality holds:

α⟨MT ♭(N1(vα, u
∗) +N2(u

∗, uα))⟩T ♭ ≤ Cn,p,q,M,L,LE
(T ♭)γ .

In a similar way to Theorem 2.1, taking T ♭ sufficiently small if necessary, we can prove that Φ
is the contraction mapping on XT ♭,LE

. Therefore we obtain Theorem 2.16.
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5.3 Proof of Theorem 2.3

In this subsection, we shall prove Theorem 2.3 by using the method due to Saal [20]. Before
proving main results, we shall prepare a key lemma. For each k ∈ N, we consider the following
approximate system :

∂tv +Aαv + (JN
k Pv · ∇)v = Jkf := fk, v(0) = Jkaα := aα,k. (5.9)

By using the fact that Aα is generator of semigroup {Tα(t)}t≥0 on Lq(Ω) (see Kubo and Matsui
[13]), we shall show there exists a fixed point for the following integral equation :

Φv(t) = Tα(t)aα,k −
∫ t

0
Tα(t− s)(JN

k Pv(s) · ∇)v(s)ds+

∫ t

0
Tα(t− s)fk(s)ds. (5.10)

Hence, we shall prove the following lemma.

Lemma 5.1. Let n ≥ 2, k ∈ N, T ∈ (0,∞) and X2 = D(A
1/2
α ) = H1

0 (Ω). And let aα ∈ L2(Ω)
and f ∈ L2((0, T ), L2(Ω)). If N satisfies N > 1 + n/4, then (5.10) has a unique solution

v ∈ C([0, T ], X2) ∩ L2((0, T ), D(Aα)) ∩H1((0, T ), L2(Ω))

enjoying (5.9).

Proof. We fix k ∈ N. By the definition, we see

aα,k ∈ X2, fk ∈ L2((0, T ), L2(Ω)) ∩ L2((0, T ), X2).

In fact, by (3.16), we obtain

∥A1/2
α aα,k∥22 = ∥∇aα,k∥22 + α∥∇Qaα,k∥22 ≤ Ck(1 + α)∥aα∥22,

∥fk∥2 = ∥Jkf∥2 ≤ C∥f∥2, ∥A1/2
α fk∥2 ≤ Ck∥f∥2. (5.11)

In order to get the fixed point for integral equation, choosing M > 0 as suitable, we define a
function space and its norm as follows:

BM := {v ∈ C([0, T ], X2) | v(0) = aα,k, ∥v∥T ≤M},
∥v∥T := sup

t∈[0,T ]
(∥v(t)∥2 + ∥A1/2

α v(t)∥2).

By (3.17) and (3.18), we have

∥(JN
k Pv(s) · ∇)v(s)∥2 ≤ ∥JN

k Pv(s)∥∞∥∇v(s)∥2
≤ Ck∥Pv(s)∥2∥A1/2

α v(s)∥2
≤ CkM

2. (5.12)

Therefore we obtain

∥Φv∥T ≤ C3
k

(
∥aα,k∥2 + ∥f∥2,2,TT 1/2 +M2(T + T 1/2)

)
(5.13)

for v ∈ BM . In fact, by (5.11) we get for 0 < t < T

∥Φv(t)∥2 ≤ ∥aα,k∥2 + C

∫ t

0
∥(JN

k Pv(s) · ∇)v(s)∥2ds+ C

∫ t

0
∥fk(s)∥2ds

≤ ∥aα,k∥2 + CkM
2T + CT 1/2∥f∥2,2,T . (5.14)
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Similarly, by (5.11) and the Lp-Lq estimate of the gradient of approximate Stokes semigroup
proved by Kubo and Matsui[13]:

∥∇Tα(t)a∥p ≤ Cn,p,qt
−1/2−n/2(1/q−1/p)∥a∥q

for 1 < q ≤ p < ∞, t > 0 and a ∈ Lq(Ω), we can prove the estimate of ∥A1/2
α Φv(t)∥2 and we

obtain (5.13).
Moreover, because of the inequality

∥(JN
k Pv(s) · ∇)v(s)− (JN

k Pw(s) · ∇)w(s)∥2
≤ Ck(∥v(s)− w(s)∥2∥∇v(s)∥2 + ∥∇(v(s)− w(s))∥2∥w(s)∥2)
≤ CkM∥v − w∥T

for v, w ∈ BM , we obtain

∥Φv − Φw∥T ≤ C4
kM(T + T 1/2)∥v − w∥T .

Therefore letting M satisfy C3
k∥aα,k∥2 ≤M/2 and T satisfy two inequalities

C3
kT

1/2∥f∥2,2,T + C3
kM

2(T + T 1/2) ≤M/2,

C4
kM(T + T 1/2) ≤ 1/2,

we see that Φ is a contraction map on BM . In other words, for sufficiently small T , there exists
fixed point uα of the map Φ on BM . Since∫ T

0
∥(JN

k Pv(s) · ∇)v(s)∥22ds ≤ Ck

∫ T

0
∥v(s)∥22∥∇v(s)∥22ds ≤ CkM

4T <∞,

we see (JN
k Pv · ∇)v ∈ L2((0, T ), L2(Ω)). Therefore by Lp-Lq maximal regularity of Aα, we see

uα ∈ L2((0, T ), D(Aα)) ∩H1((0, T ), L2(Ω)), which implies Lemma 5.1 for sufficiently small T .
Next, we shall prove that there exists a global unique solution. For this purpose, we consider

the boundedness of ∥v∥T . Since by divJkPv = 0 we see

((JkPv · ∇)v, v)Ω = −(v, (divJkPv)v)Ω − (v, (JkPv · ∇)v)Ω

= −(v, (JkPv · ∇)v)Ω,

((JkPv · ∇)v, v) = 0 holds. Multiplying v to (5.9) and integrating on Ω, we obtain

1

2

d

dt
∥v(t)∥22 + ∥A1/2

α v(t)∥22 = (fk(t), v(t))Ω. (5.15)

Integrating from 0 to t, we see

1

2
∥v(t)∥22 −

1

2
∥aα,k∥22 +

∫ t

0
∥A1/2

α v(s)∥22ds =
∫ t

0
(fk(s), v(s))Ωds. (5.16)

Then, we shall estimate the right hand side of (5.16). Using Poincaré inequality and Hölder
inequality, then we can estimate∣∣∣∣∫ t

0
(fk(s), v(s))Ωds

∣∣∣∣ ≤ ∫ t

0
∥fk(s)∥2∥v(s)∥2ds

≤ C∥f∥2,2,T ∥v∥2,2,T
≤ C∥f∥2,2,T ∥A1/2

α v∥2,2,T

≤ C

2ε
∥f∥22,2,T +

ε

2
∥A1/2

α v∥22,2,T .
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Therefore, letting ε = 1, we can obtain the estimate

∥v(t)∥22 + ∥A1/2
α v∥22,2,T ≤ ∥aα,k∥22 + C∥f∥22,2,T ≤ C(∥aα∥22 + ∥f∥22,2,T ), (5.17)

which implies the boundedness of ∥v(t)∥22. Finally, we shall prove the boundedness of ∥A
1/2
α v(t)∥2.

Multiplying Aαv to (5.9) and integrating on Ω, we get

(∂tv(t), Aαv(t))Ω + (Aαv(t), Aαv(t))Ω

= (fk(t), Aαv(t))Ω − ((JN
k Pv(t) · ∇)v(t), Aαv(t))Ω.

By integration by parts, we can also obtain

1

2

d

dt
∥A1/2

α v(t)∥22 + ∥Aαv(t)∥22

= (fk(t), Aαv(t))Ω − ((JN
k Pv(t) · ∇)v(t), Aαv(t))Ω.

Since the inequality:

|((JN
k Pv(t) · ∇)v(t), Aαv(t))Ω| ≤ ∥(JN

k Pv(t) · ∇)v(t)∥2∥Aαv(t)∥2

≤ Ck

2
∥v(t)∥22∥A1/2

α v(t)∥22 +
1

2
∥Aαv(t)∥22,

we obtain

1

2

d

dt
∥A1/2

α v(t)∥22 + ∥Aαv(t)∥22

≤ 1

2

(
Ck∥v(t)∥22∥A1/2

α v(t)∥22 + ∥fk(t)∥22
)
+ ∥Aαv(t)∥22,

which implies

d

dt
∥A1/2

α v(t)∥22 ≤ Ck∥v(t)∥22∥A1/2
α v(t)∥22 + C∥f(t)∥22. (5.18)

Inserting (5.17) into (5.18), we have

d

dt
∥A1/2

α v(t)∥22 ≤ C∥f(t)∥22 + Ck(∥aα∥22 + ∥f∥22,2,T )∥A1/2
α v(t)∥22.

Integrating this expression from 0 to t, we get

∥A1/2
α v(t)∥22

≤ (∥A1/2
α aα∥22 + C∥f∥22,2,T ) + Ck(∥aα,k∥22 + ∥f∥22,2,T )

∫ t

0
∥A1/2

α v(s)∥22ds.

By Gronwall’s inequality, we conclude

∥A1/2
α v(t)∥22 ≤ Ck(∥aα∥22 + ∥f∥22,2,T )exp

[
Ck(∥aα∥22 + ∥f∥2,2,T )T

]
. (5.19)

Therefore, v exists uniquely on arbitrary interval [0, T ] and that it admits the claimed regularity
properties.

From here, we shall prove our main results about the existence and regularity theorem for
(??).
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Proof of Theorem 2.3. Let {uk} be a solution of (5.9). By Lemma 5.1 uk is the bounded in
Lelay-Hopf’s class: L∞((0, T ), L2(Ω)) ∩ L2((0, T ),H

1(Ω)). Therefore, there exists a weak limit
uα ∈ Y := L∞((0, T ), L2(Ω))∩L2((0, T ), H

1(Ω)). Moreover, since uk satisfies (5.16), uα satisfies
also (5.19). Consequently, we shall prove uα is a solution to (WS). For this purpose, let vk be
unique solution of the equation :

∂tvk +Aαvk = fk t ∈ (0, T ), vk(0) = aα,k. (5.20)

Then, vk converges strongly in Y . In fact, letting v be a solution of

∂tv +Aαv = f, v(0) = aα,

we see that v − vk satisfies

∂t(v − vk) +Aα(v − vk) = f − fk, v(0)− vk(0) = aα − aα,k

and

∥e−λ0t(v − vk)∥H1((0,T ),L2(Ω)) + ∥e−λ0t(v − vk)∥L2((0,T ),H2(Ω))

≤ C∥e−λ0t(f − fk)∥2,2,T + ∥aα − aα,k∥B2(1−1/p)
q,p

by Lp-Lq maximal regularity of Aα. By L2((0, T ),H
2(Ω)) ∩H1((0, T ), L2(Ω)) ⊂ C0([0, T ],H1)

(see [?]) and the fact that the continuous map from H1((0, T ), L2(Ω)) ∩ L2((0, T ),H
2(Ω)) to

L2((0, T ),H
1(Ω)) is compact (see [28]), we see ∥e−λ0t(v − vk)∥Y → 0 as k → ∞. Now, letting

wk = uk − vk, wk converges weakly in Y and satisfies the equation

∂twk +Aαwk = −(JN
k Puk · ∇)uk t ∈ (0, T ), wk(0) = 0. (5.21)

Since the right hand side of first equation of (5.21) is bounded in Lq((0, T ), Lq(Ω)) for q =
(n+ 2)/(n+ 1) by Lemma ?? and Lp-Lq maximal regularity of Aα, we see

wk ∈W 1
q ((0, T ), Lq(Ω)) ∩ Lq((0, T ), D(Aα))

for T > 0. Here, set φ ∈ C∞
0 ([0, T ), C∞

0 (Ω)) as a test function in the equation (WS) and let
suppφ = K as a compact set. In particular, considering

wk ∈W 1
q ((0, T ), Lq(K)) ∩ Lq((0, T ),H

2(K)),

by Rellich’s theorem, H1(K) embed Lq(K) in the compact and therefore if N > 4, we can apply
Theorem 2.1 in [28]. Namely, the operator from Y to Lq((0, T ),H

1(K)) is compact. Therefore
wk converges strongly in Lq((0, T ),H

1(K)). Therefore since uk = wk+vk converges strongly uα
in Lq((0, T ),H

1(K)), by using integration by parts, we obtain∣∣∣∣∫ T

0

{
(B(uα, uα), ϕ)Ω − ((JN

k Puk · ∇)uk, ϕ)Ω
}
dt

∣∣∣∣
≤

∫ T

0
∥∇(uk − uα)∥2,K∥(Puk)ϕ∥2,Kdt+

∫ T

0
∥uα∥2,K∥∇((Puα − JN

k Puk)ϕ)∥2,Kdt

≤ T 1/q′∥uk∥∞,2,T ∥ϕ∥∞,∞,T ∥∇(uk − uα)∥q,2,T
+ T 1/q′∥uα∥∞,2,T

(
∥∇(Puα − Puk)∥q,2,T + ∥∇(Puk − JN

k Puk)∥q,2,T
)
∥ϕ∥∞,∞,T

+ T 1/q′∥uα∥∞,2,T

(
∥Puα − Puk∥q,2,T + ∥Puk − JN

k Puk∥q,2,T
)
∥∇ϕ∥∞,∞,T .

By Remark 2.1, the last term of this inequality converges to 0 if k → ∞. Therefore, we see uα
satisfies (WS).
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Proof of Theorem 2.4. If uα is one of weak solutions to (??), by Lemma ??, we get

∥(Puα · ∇)uα∥p,q,T ≤ C(∥uα∥2∞,2,T + ∥A1/2
α uα∥22,2,T ) <∞

for 2/p+ n/q = n+ 1. Here, letting F = f − (Puα · ∇)uα, we consider the system

∂tv +Aαv = F, (x ∈ Ω, t ∈ (0, T )), v|∂Ω = 0, v|t=0 = aα. (5.22)

By Lp-Lq maximal regularity of Aα, the solution to (5.22) is unique and satisfies

∥e−λ0t∂tv∥p,q,T + ∥e−λ0tAαv∥p,q,T
≤ C(∥aα∥B2(1−1/p)

q,p (Ω)
+ ∥f∥p,q,T + ∥uα∥2∞,2,T + ∥A1/2

α uα∥22,2,T ).

Therefore we shall prove v = uα. Since v satisfies (5.22), we have∫ T

0
{−(v(t), ∂tϕ(t))Ω − (v(t), Aαϕ(t))Ω} dt = (aα, ϕ(0))Ω +

∫ T

0
(F (t), ϕ(t))Ωdt (5.23)

for any ϕ ∈ C∞
0 ([0, T ), C∞

0 (Ω)). On the other hand, since uα is the weak solution to (??), we
have ∫ T

0
{−(uα(t), ∂tϕ(t))Ω − (uα(t), Aαϕ(t))Ω} dt] = (aα, ϕ(0))Ω +

∫ T

0
(F (t), ϕ(t))Ωdt

for any ϕ ∈ C∞
0 ([0, T ), C∞

0 (Ω)). Then, for all ϕ ∈ C∞
0 ([0, T ), C∞

0 (Ω)), we obtain∫ T

0
(uα(t)− v(t),−∂tϕ(t)−Aαϕ(t))Ωdt = 0. (5.24)

Let

Ep′,q′,T = {ϕ ∈W 1
p′((0, T ), Lq′(Ω)) ∩ Lp′((0, T ),W

2
q′(Ω)) | ϕ|t=T = 0}.

Since C∞
0 (Ω) is dense in Lq′(Ω), C

∞
0 ([0, T ), C∞

0 (Ω)) is dense in Ep′,q′,T . In (5.24), by letting
ϕ ∈ Lp′((0, T ), Lq′(Ω)), ϕj ∈ C∞

0 ([0, T ), C∞
0 (Ω)) and ϕj → ϕ, (5.24) is hold for any ϕ ∈ Ep′,q′,T .

On the other hand, for any ψ ∈ C∞
0 ([0, T ), C∞

0 (Ω)), dual problem :

−∂tϕ−Aαϕ = ψ, (x ∈ Ω, t ∈ (0, T )), ϕ|∂Ω = 0, ϕ|t=T = 0 (5.25)

has a unique solution ϕ and we see ϕ ∈W 1
r ((0, T ), Ls(Ω))∩Lr((0, T ),W

2
s (Ω)

n) for r, s ∈ (1,∞).
Especially, letting r = p′ and s = q′, by (5.24), for all ψ ∈ C∞

0 ([0, T ), C∞
0 (Ω)), we have∫ T

0
(uα(t)− v(t), ψ)Ωdt =

∫ T

0
(uα(t)− v(t),−∂tϕ+Aαϕ)Ωdt = 0.

Therefore, getting ∫ T

0
(uα − v, ψ)Ωdt = 0

for all ψ ∈ C∞
0 ((0, T ), C∞

0 (Ω)) which is dense in Lp′((0, T ), Lq′(Ω)), we obtain∫ T

0
(uα − v, ψ)Ωdt = 0

for all ψ ∈ Lp′((0, T ), Lq′(Ω)). Then, we see uα− v ∈ Lp((0, T ), Lq(Ω))and uα = v. With regard
to the pressure term ∇πα, by the relation ∇πα = α∇Quα = Aαuα + ∆uα (see [13]), we can
prove the pressure term ∇πα satisfies (2.3).
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5.4 Proof of Theorem 2.5

Here we prove the weak solution uα constructed in Theorem 2.4 is unique if n = 2.

Proof. (Proof of Theorem 2.5). Let T ∈ (0,∞] and uk be the approximate sequence constructed
in Lemma 5.1. First, we shall prove ∇uα ∈ L∞((0, T ), L2(Ω)). For this purpose, we show the
constant Ck is independent of k in the inequality (5.19). By the fact that the basic inequality

∥v∥4 ≤ C∥∇v∥1/22 ∥v∥1/22 holds for v ∈ W 1
2 (Ω) and Young’s inequality, (3.16), (3.18) and (3.19),

we can estimate the nonlinear term

|((JN
k Puk(t) · ∇)uk(t), Aαuk(t))Ω| ≤ ∥JN

k Puk(t)∥4∥∇uk(t)∥4∥Aαuk(t)∥2
≤ C∥uk(t)∥4∥∇uk(t)∥4∥Aαuk(t)∥2
≤ C∥uk(t)∥

1/2
2 ∥A1/2

α uk(t)∥2∥Aαuk(t)∥
3/2
2

≤ C

4
∥uk(t)∥22∥A1/2

α uk(t)∥42 +
3

4
∥Aαuk(t)∥22. (5.26)

Hence in the same way as (5.18), we deduce

1

2

d

dt
∥A1/2

α uk(t)∥22 + ∥Aαuk(t)∥22

≤ ∥f∥22 +
1

4
∥Aαuk(t)∥22 +

C

4
∥uk∥22∥A1/2

α uk∥42 +
3

4
∥Aαuk∥22 (5.27)

for t ∈ (0, T ). Integrating (5.27) and using (5.17) and (3.16), we get

∥A1/2
α uk(t)∥22 ≤ ∥A1/2

α aα∥22 + 2∥f∥22,2,T +
C

2

∫ t

0
∥uk∥22∥A1/2

α uk∥42dt.

Setting φk(t) = ∥uk(t)∥22∥A
1/2
α uk(t)∥22, by (5.17), we have∫ t

0
φk(s)ds ≤ C

(
∥aα∥22 + ∥f∥22,2,T

)2
.

Therefore we see by the Gronwall inequality

∥A1/2
α uk(t)∥22 ≤ (∥A1/2

α aα∥22 + 2∥f∥22,2,T ) exp
{
C

2
(∥aα∥22 + ∥f∥22,2,T )2

}
,

which implies that A
1/2
α uk → A

1/2
α u weakly in L∞((0, T ), L2(Ω)).

On the other hands, by the inequality 2ab ≤ (a2/ε) + (εb2) for arbitrary ε > 0, we see

|(f,Aαuk)Ω| ≤ 2∥f∥22 +
1

8
∥Aαuk∥22.

Therefore (5.27) is rewrited

1

2

d

dt
∥A1/2

α uk(t)∥22 + ∥Aαuk∥22

≤ 2∥f∥22 +
1

8
∥Aαuk∥22 +

C

4
∥uk∥22∥A1/2

α uk∥22 +
3

4
∥Aαuk∥22,

which implies that

∥A1/2
α uk∥2∞,2,T +

1

4
∥Aαuk∥22,2,T

≤ (∥A1/2
α aα∥22 + 4∥f∥22,2,T ) exp

{
C

2
(∥aα∥22 + ∥f∥22,2,T )2

}
.
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Therefore we seeAαuα ∈ L2((0, T ), L2(Ω)). Furthermore, having (Puα·∇)uα ∈ L2((0, T ), L2(Ω))
by the estimate

∥(Puα · ∇)uα∥2,2,T ≤ (∥uα∥∞,2,T ∥∇uα∥2∞,2,T ∥Aαuα∥2,2,T )1/2 <∞,

we obtain ∂tuα,∇2uα,∇πα ∈ L2((0, T ), L2(Ω)) by the Lp-Lq maximal regularity of Aα.
Next, we shall prove the uniqueness property. Let v be any other weak solution of (??).

According to Theorem 2.4 and Lemma ?? the difference w := uα − v satisfies

∂tw +Aαw + ((Pw · ∇)uα) + ((Pv · ∇)w) = 0 (t ∈ (0, T )), w(0) = 0. (5.28)

in L4/3((0, T ), L4/3(Ω)). On the other hand, by ∥w∥4,4,T ≤ C∥w∥1/2∞,2,T ∥∇w∥
1/2
2,2,T we see w

belongs to L4((0, T ), L4(Ω)) which is the dual space of L4/3((0, T ), L4/3(Ω)). Thus considering
the dual pairing of w and the first term in (5.28), we obtain

(∂tw(t), w(t))Ω + (Aαw(t), w(t))Ω

+ ((Pw(t) · ∇)uα(t), w(t))Ω + ((Pv(t) · ∇)w(t), w(t))Ω = 0.

It is known that the dual operator P ∗ of P satisfies P ∗ = P in L2. Hence having the property
((Pv · ∇)w,w) = 0, we have

1

2

d

dt
∥w(t)∥22 + ∥A1/2

α w(t)∥22 =
2∑

j=1

(∂juα(t), Pwj(t)w(t))Ω

≤ C∥A1/2
α uα(t)∥2∥w(t)∥24

≤ C∥A1/2
α uα(t)∥2∥w(t)∥2∥A1/2

α w(t)∥2

≤ C∥A1/2
α uα(t)∥22∥w(t)∥22 +

1

2
∥A1/2

α w(t)∥22

and therefore that

d

dt
∥w(t)∥22 ≤ C∥A1/2

α uα(t)∥22∥w(t)∥22.

By Gronwall inequality and w(0) = 0, we get w ≡ 0 that is u = v.
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