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1.1 Background 

In recent years, the increase in age and diet related diseases, such as obesity, diabetes, 

hypertension, hyperglycemia, cardiovascular diseases and cancers, has become a 

prominent problem in many countries. It is widely accepted that the dairy intake of 

bioactive components are supposed to decrease risks of aforementioned illness and 

improve life conditions. In this regard, people pay more attention on food products 

containing functional components, which satisfy hunger but also offer additional health 

benefits, such as anti-cancer, and anti-oxidant abilities. This trend encourage food 

scientists and manufacturers to focus on the production of foods that meet consumers’ 

criteria for healthier lives (Bigliardi and Galati 2013).  

However, many bioactive components, (e.g., curcumin, carotenoids, vitamins, 

quercetin, and polyunsaturated oils etc.) are hydrophobic and prone to degradation against 

harsh conditions (e.g., high temperature, light, and oxygen), which strongly limit their 

potential application in fortifying aqueous-based beverages and foods. Furthermore, low 

water-solubility also means low absorption by the human body and limited bioavailability. 

To overcome these challenges, an edible delivery system is urgently needed to effectively 

encapsulate, protect and release the bioactive components when developing functional 

foods. Currently, nanotechnology plays an important role in food manufacturing, 

including nano-delivery systems for bioactives, health-promoting products and so on. The 

value of food products produced by nanotechnology is expected to be more than US$ 20.4 

billion in a few years (Chau et al., 2007). A number of evidences have shown that 

nanoemulsions are excellent candidates for effectively delivering those functional 

lipophilic components due to their important role in increasing water-solubility and 

bioaccessibility (Salvia-Trujillo et al., 2015, Zhang et al., 2016, Ahmed et al., 2012, Yang 
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et al., 2017). The bioaccessibility of lipophilic bioactives encapsulated in nanoemulsions 

is commonly greater than conventional emulsions, which may be attributed to a number 

of reasons (McClements 2011, McClements 2013, Acosta 2009), such as: (1) Smaller 

droplets size means larger surface area, which leads to a faster lipid digestion to form 

mixed micelles for solubilizing bioactives; (2) Smaller particles can also penetrate into 

the mucus layer in small intestine, which increase the time for lipid digestion and 

absorption; (3) Some of small droplets can be directly absorbed by epithelium cells. 

Vitamin D are essential bioactives that play a very important role in increasing 

intestinal absorption of calcium, and maintaining the heath of bone, teeth and muscle 

(Holick 2004b, Gueli et al., 2012). On the other hand, vitamin D deficiency is prevalent 

in some populations with insufficient exposure of sunlight or poor dietary intake (Nair 

and Maseeh 2012, Lee et al., 2008). The application of vitamin D in aqueous-based 

products is problematic due to their poor water-solubility and chemical instability. 

Therefore, appropriate nanoemulsion/nanodispersion-based delivery systems need to be 

developed to improve the application of vitamin D in food industries. 

 

1.2 Vitamin D 

1.2.1 Historical background of vitamin D  

Vitamin D refers to a group of a family of fat-soluble vitamins that commonly exists as 

two major chemical forms: vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol) 

(Fig. 1.1). In fact, it takes long time for scientists and researchers to discover these 

functional compounds. Rickets, a bone disease related to vitamin D and calcium 

deficiency, has suffered many peoples worldwide in the past (Weick 1967). The studies 

of this disease has resulted in the discovery of vitamin D. Daniel Whistler and Francis 
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Glisson provided scientific descriptions of the disease of rickets in 1645 and 1650, 

respectively (Glisson et al., 1951). During that time, the risk of rickets occurs quite often 

for the populations in the United Kingdom, which was known as ‘the English Disease’ 

(DeLuca 2014). Edward Mellanby, a famous British doctor, firstly noticed that dogs fed 

with cod liver oil could be free from the risks of rickets in 1919 (Wolf 2004, Mellanby 

1976), although he incorrectly concluded that the ‘vitamin A’ present in the oil is the main 

factor responsible for preventing this disease. In 1922, McCollum and his co-workers 

found that cod liver oil in the absence of vitamin A still has the ability to cure rickets 

(McCollum et al., 1922). They therefore concluded that another new substance, which 

was later named as vitamin D, is the true factor that cured rickets. In the meantime, Hess 

and his group found that and some scientists have noted that the rickets could be cured 

via sunlight or UV light (Hess et al., 1922). In the early 1920’s, Harry Steenbock, a 

professor at the University of Wisconsin, developed a way to increase vitamin D level in 

foods via irradiation and then patented it (Weiner 1987). Hess et al., (1925) found that 

phytosterol or cholesterol became active against rickets after they were irradiated by UV 

light. They therefore proposed the hypothesis of cholesterol in the skin converted into 

active vitamin D by sunlight or artificial irradiation. Later, Heilbron et al., (1927) 

demonstrated that some impurities in the cholesterol (we now know that it is 7-

dehydrocholesterol) might be the of vitamin D, rather that cholesterol itself. Windaus and 

Hess (1926) found that ergocalciferol is the precursor of vitamin D, which is also 

confirmed by (Rosenheim and Webster 1927). Windaus was award the Nobel Prize in 

Chemisty in 1928 because of his eccellent work on sterol and their relation to vitamin D. 

The correct structure of vitmin D2 was estabilished by Windaus and Thiele (1936). But 

the question still remained that how human can produce vitamin D via sunlight exposure 
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because of ergosterol does not exist in human. This mystery remained unsolved untill 

1937, when Windans and Bock (1936) isolated and identified a substance from the skin, 

7-dehydrocholesterol, which was also present in analmal-based foods (e.g., milk and 

liver), convertible to an antirachitic substance by irradiation. The irradation product of 7-

dehydrocholesterol is vitamin D3. The estalishment of its strcucture was done by Windaus 

et al., (1936). The complicate chemical step of converting ergosterol to ergocalciferol was 

elucidated by Velluz et al., (1955). In 1980, Holick and his team reported the exact 

sequence of steps required to produce vitamin D3 via photosynthesis in the skin (Holick 

et al., 1980). Based on considerable amount of previsous studied, peoples get familiar 

with vitamin D, as well as the photosynthesis of vitamin D2 and vitamin D3, which was 

shown in Fig. 1.2.  

 

1.2.2 Sources of vitamin D 

The most easy and efficient way to obtain vitamin D is exposing the human skin to the 

sunlight (Holick 2004a). Ultraviolet of B radiation (UVB, wavelength of 290-315 nm) 

from the sunlight is responsible of converting 7-dehydrocholesterol (pro-vitamin D3) to 

previtamin D3, which quickly converts to vitamin D3 thermally (Norman and Powell 

2005). However, it should be noticed that excessive sunlight exposure could destroy pre-

vitamin D3 and vitamin D3 by converting them into inactive photoproducts (Holick 2007). 

In addition, the efficiency of vitamin D3 production in human skin can be affected by a 

number of factors, such as time and season, latitude, age or skin color (Holick 2011). For 

example, people with dark skin need much longer time of sunlight exposure to synthesize 

the same level of vitamin D3 than those with white skin, because the dark skin acts as a 

natural sunscreen to reduce its ability of vitamin D3 synthesis (Holick 2011). Aging is 
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also a main factor that decrease the ability of human skin to make vitamin D3 

(MacLaughlin and Holick 1985). Human also can obtained vitamin D from food intakes, 

however, the sources of vitamin D-contained food is very few. The major dietary sources 

for vitamin D3 is fish oil and oily fish such as salmon and mackerel. Beef liver and egg 

yolk also naturally contain small amount of vitamin D3. Some fortified foods such as milk, 

yogurt and cheese also contain the required amount of vitamin D3. In the case of vitamin 

D2, mushrooms are the main dietary sources (Holick 2007). The level of vitamin D2 in 

mushrooms is relatively low, but can be largely increased via sun exposure or artificial 

irradiation. For industrially production, vitamin D2 is synthesized by UV irradiating the 

ergosterol from yeast, and Vitamin D3 obtained by UV irradiating 7-dehydrocholesterol 

from lanolin (Holick 2007). Table 1.1 listed some sources of vitamin D2 and vitamin D3. 

 

1.2.3 Metabolism of vitamin D 

Vitamin D from the skin or foods has no biological activity without the metabolic 

activation occurred in human body. Vitamin D can be stored in and then released from fat 

cells. Once vitamin D enter to the blood circulation, it would be bound to vitamin D 

binding protein (DBP), which plays an very important role on transporting vitamin D to 

liver or kidney for metabolic activation (Holick 2006a). In the liver, vitamin D can be 

converted into 25-hydroxyvitamin D (25 (OH) D) by the enzymes of 25-hydroxylases 

(Andersson and Jörnvall 1986, Wikvall 2001, Lund and DeLuca 1966, Holick 2011). 25-

hydroxyvitamin D is considered as the circulating form of vitamin D, which is also 

commonly used for vitamin D status measurement (Seamans and Cashman 2009). 25-

hydroxyvitamin D was then transported into kidney, where it is converted into its active 

form, which is 1,25-dihydroxyvitamin D (1,25 (OH) D), metabolized by the enzyme 25-
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hydroxyvitamin D-1α-hydroxylase (CYP27B1) (Fraser and Kodicek 1970, Holick 2007). 

25-hydroxyvitamin D goes to the intestine and then interacts with vitamin D receptor 

(VDR), thereby increasing the calcium absorption. The production of 25-hydroxyvitamin 

D in the kidney was tightly regulated by the level of plasma parathyroid hormone and 

serum calcium and phosphorus (Holick 2006b, Bouillon et al., 2001, DeLuca 2004). Fig. 

1.3 shows the pathway of vitamin D synthesis and metabolism. 

 

1.2.4 Dietary reference intakes of vitamin D  

The required vitamin D intake for individuals depends on a number of factors, including 

age, race, latitude, and so on. Institute of Medicine (IOM) recommend that 400-800 IU 

(10-20 μg) of vitamin D daily intake is adequate for 97.5% of the populations (Ross et 

al., 2011, Heaney et al., 2003). However, daily intake of should be increased for the 

populations without being exposed to the sun or suffering from vitamin D deficiency. 

Previous study also suggested that overweight or obese individuals, and postmenopausal 

women need higher amount of vitamin D intake to reach the desired serum 25 (OH) D 

concentration, which is around 20-30 ng/ml (Gallagher et al., 2012, Talwar et al., 2007, 

Ekwaru et al., 2014, Zittermann et al., 2014). Table 1.2 shows the vitamin D dietary 

reference intakes by life stage. 

 

1.2.5 Toxicity of vitamin D 

The toxicity of vitamin D is relatively rare, however, it may occur when huge amount of 

vitamin D is take from foods or supplements (Pettifor et al., 1995, Blank et al., 1995). 

Although, the reason for vitamin D toxicity is still in the debate, there are three major 

hypotheses (Jones 2008): (i) excessive vitamin D intake increase 1,25 (OH) D 
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concentration, thereby leading to an increase in 1,24 (OH) D concentrations, (ii) excessive 

vitamin D intake raise the 25(OH) D levels that exceed DBP binding capacity and then 

directly enter the target cells to bind with VDR, thereby affecting gene expression, (iii) 

excessive vitamin D intake results in high level of vitamin D metabolites. 

Previous studies have pointed out chronic consumption of a high dose of vitamin D 

(40000 IU per day) could lead to potential risks, such as hypercalcemia and 

hyperphosphatemia (Vieth 1999, Alshahrani and Aljohani 2013). Hypercalcemia is a 

result of high level of calcium in the blood serum and the stimulation of bone resorption 

(Bouillon et al., 2003). The typical symptoms of vitamin D toxicity include lethargy, 

dehydration, mild nausea, and so on (Blank et al., 1995, Koutkia et al., 2001). IOM 

suggests that the safe level of serum 25 (OH) D in children and adults is lower than 125-

150 nmol/L and 250 nmol/L, respectively. Serum 25 (OH) D concentration of > 375 

nmol/L has the potential risk of hypercalcaemia. 

 

1.2.6 Deficiency of vitamin D 

IOM defines serum 25 (OH) D concentration of < 20ng/mL (50 nmol/L) as vitamin D 

deficiency, and serum 25 (OH) D concentration of 21-29 ng/mL (52-73 nmol/L) as 

vitamin D insufficiency (Holick et al., 2011). As mentioned earlier, rickets and 

osteomalacia are the major diseases associated with the deficiency of vitamin D. Previous 

studies suggested vitamin D deficiency also increase the risks of other diseases, including 

cardiovascular diseases, cancers, immune and inflammatory diseases (Holick 2007). 

Although, vitamin D3 can be synthesized in the skin via sunlight exposure, there are still 

many people who have or at the risk of diseases associated with vitamin D deficiency or 

insufficiency. Previous work demonstrated that around one billion people worldwide have 
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vitamin D deficient or insufficient in their blood (Holick 2007). There are many factors 

resulting in vitamin D deficiency or insufficiency, including environment conditions, 

lifestyle, and physical characteristics. Fig. 1.4 shows the main reasons contributing to 

vitamin D deficiency. 

 

1.2.7 Health benefits of vitamin D 

As mentioned earlier, the major essential function of vitamin D is to prevent bone-related 

diseases, such as osteomalacia, which is also know rickets in in children. During the past 

decades, there are increasing evidences showing that vitamin D plays an important role 

in a wide range of health, such as improving immune systems, as well as preventing 

cardiovascular disease and certain types of cancer and a number of other diseases 

(DeLuca 2004, Holick 2006a, Kulie et al., 2009). The health benefits of vitamin D are 

summarized in Fig. 1.5. 

 

1.3 Nanoemulsions 

1.3.1 Definition 

There is an increasing trend of using nanotechnology to produce a wide range of new 

products in food application due to their special role in modifying the texture, tastes and 

stability of formed beverages and foods. Nanoemulsions is a system produced from 

nanotechnology, which commonly have two immiscible liquid phases, with one liquid 

phase (oil or water phase) dispersed as small droplets within the other (water or oil). 

Nanoemulsions commonly classified as two forms: oil-in-water (O/W) and water-in-oil 

(W/O) nanoemulsions, depending on the whether the dispersed droplets is formed from 

the oil or water phase (Singh et al., 2017). The droplets present in the nanoemulsion 
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system are typically in the range of 20-200 nm (Aboofazeli 2010), although to some 

researchers, droplets not exceeding 1 µm (1000 nm) should still be considered to be in 

the nano-size range (Jaiswal et al., 2015). Nanoemulsions play a very important role in 

food, pharmaceutical, and chemical applications. 

 

1.3.2 Nanoemulsion formulation 

The nanoemulsions can be successfully fabricated by many different methods, but these 

can usually be divided into high-energy or low-energy approaches depending on the 

underlying principle (Tadros et al., 2004, McClements and Rao 2011). The formulation 

of nanoemulsion via high-energy methods requires some mechanical devices, such as 

high-pressure valve homogenizer, microfluidizers, and ultrasonic generator (Tang et al., 

2012, Lee and Norton 2013). All of these devices can generate intense disruptive forces, 

thereby breaking down larger droplets into smaller ones, until leading to the formulation 

of nano-sized emulsions (McClements and Rao 2011). The formulation methods, 

operating setting and system components are the major factors affecting the droplet size 

formed via high-energy approach (McClements 2011). A recent review article 

summarized the average droplet size of food-grade nanoemulsions obtained by high-

energy methods (Table 1.3) (Acevedo-Fani et al., 2017).  

In contrast, the formulation of nanoemulsion by using low-energy methods depends on 

the changes in physicochemical properties of phases, which leads to the spontaneously 

formation of nano-sized droplets (McClements and Rao 2011). The most available low-

energy methods for producing nanoemulsions are emulsion phase inversion (EPI), 

spontaneous emulsification (SE), and phase inversion temperature (PIT) (Anton and 

Vandamme 2009, Ostertag et al., 2012, Gulotta et al., 2014, Hategekimana et al., 2015, 
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Komaiko and McClements 2016). The detailed mechanisms and factors affecting the 

droplet formulation via these low-energy methods was clearly explained in recent review 

papers (Komaiko and McClements 2016, Solans and Solé 2012, McClements and Rao 

2011). Both high-energy and low-energy methods have their advantages and 

disadvantages. For example, low-energy methods are more cost-effective and simple way 

to produce nanoemeulsions when compared with high-energy methods. However, the 

low-energy methods commonly require higher surfactant concentrations to reach small 

droplet size, which could result in toxicity problems in food applications (Öztürk 2017). 

 

1.3.3 Stability of nanoemulsions 

Nanoemulsions are thermodynamically unstable due to the relatively lower free energy 

of separated oil and water phases compared with the emulsified systems (Tadros et al., 

2004, McClements 2011). However, the extremely small size of droplet provide 

nanoemulsions with a highly kinetic stability against (Anton et al., 2008). There are main 

two mechanisms accounting for the much higher stability of nanoemulsions against 

gravitational separation, flocculation, and coalescence when compared with conventional 

emulsions: (i) the velocity of creaming or sedimentation is proportional to the square of 

the droplet size; (ii) Brownian motion of nano-sized droplets dominates gravitational 

forces (Tadros et al., 2004). However, the stability of nanoemulsions also depends on the 

emulsifier type, oil type, environmental conditions, and so one (Wooster et al., 2008, Teo 

et al., 2016). Ostwald ripening of a nanoemulsion decreases its stability by diffusing the 

oil phase from small droplets to larger ones (Öztürk 2017). Selection of an appropriate oil 

phase and the addition of ripening inhibitors can largely slow down the Ostwald ripening 

to enhance the stability of nanoemeulsions (Wooster et al., 2008, Chang et al., 2012).            
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1.3.4 Emulsifiers 

An emulsifier consists of a hydrophobic tail attached with a hydrophilic head, which plays 

a crucial important role on formulation and stabilization of nanoemulsion. During 

homogenization, emulsifiers can quickly absorb onto the new-formed droplets and reduce 

the interfacial tension between oil-water interfaces to facilitate the formulation of small 

droplets (Schubert and Engel 2004, Kralova and Sjöblom 2009). Emulsifiers also can act 

as a barrier to prevent from emulsified droplets from aggregation to provide a long-

storage stable emulsion via steric and electrostatic repulsion (Kralova and Sjöblom 2009, 

Tan et al., 2016c). A variety of emulsifiers that are available for emulsion-based products 

production, but they may differ in term of physicochemical properties, cost, legal status 

and the reliability of supply (Hasenhuettl and Hartel 2008, Yang et al., 2013). Each 

category of emulsifier has its own advantages and disadvantages. In this regard, the 

selection of emulsifier is an important factor to be considered during the formulation of 

emulsions. Recently, consumers prefer to choose foods made from natural ingredients. 

Consequently, there is an increasing trend of using natural emulsifies for producing 

emulsion-based products. Natural emulsifiers typically contain proteins, polysaccharides, 

phospholipids, saponins and glycolipids (McClements et al., 2017). In the case of 

polysaccharides (e.g., gum arabic and pectin), they are difficult to produce small droplets 

because of their relatively low surface activity, thereby leading to a relatively low physical 

stability (Ozturk et al., 2015a, Charoen et al., 2011). Some proteins (e.g., gum arabic and 

pectin) are effective at producing small droplets, however, they were sensitive to be 

unstable at pH close to their isoelectric point, at high salt concentration, or at high 

temperature (McClements 2004). Lecithin commonly need to be modified to promote its 

emulsifying ability via physical, chemical, or enzymatic methods (Weete et al., 1994). 



 

 

13 

 

The nanoemulsions prepared by rhamnolipids, which is a typical type of glycolipids, are 

highly unstable to oil off at low pH and high ionic strength, which strongly limits their 

application in producing emulsion-based products (Bai and McClements 2016). Recently, 

a number of previous studies showed saponins (such as quillaja saponin, ginseng saponin, 

argan saponin, yucca saponin, and so on) are effective in term of preparing nanoemeulsion, 

however, their stability to salt and acidic pH are problematic (Ralla et al., 2018, Shu et 

al., 2018, Taarji et al., 2018, Yang et al., 2013). Among of saponin-based emulsifiers, 

quillaja saponin appears to be the best one due to its relatively higher pH and salt stability 

than the others. More information regarding the characteristics of natural emulsifiers can 

be obtained from two perfect review publications (McClements et al., 2017, Ozturk and 

McClements 2016).  

 

1.4 Objectives and structure of the thesis 

Considering the aforementioned a large number of populations worldwide whom are or 

at risks of vitamin D insufficiency, it is necessary to develop foods and beverages 

incorporating this vitamin. However, the utilization of vitamin D has big challenges due 

to its low water-solubility, poor chemical stability against light, oxygen, or elevated 

temperatures, as well as the low bioavailability. One strategy is in using 

nanoemulsion/nanodispersion-based delivery systems to overcome these limitations. 

The work presented herein mainly focus on the development and characterization of 

ergocalciferol-loaded nanoemulsion/nanodispersions stabilized by different emulsifiers. 

The objectives of the study in this dissertation are listed as follow: 

I. To prepare nano-sized nanoemulsion/nanodispersions loaded with ergocalciferol 

using different emulsifiers via high-energy or low-energy methods. 
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II. To study the factors affecting the formulation, stability, and bioaccessibility of 

nanoemulsion/nanodispersions encapsulating ergocalciferol. 

III. To elucidate the mechanisms of formulation, stability, and bioaccessibility of 

nanoemulsion/nanodispersions encapsulating ergocalciferol.  

The structure of the thesis was showed in Fig. 1.6. In chapter 1, a general introduction 

of vitamin D and nanoemulsion/nanodispersion was reviewed. In the chapter 2, we focus 

on the formulation of nanoemulsions loaded with ergocalciferol via high-pressure 

homogenization method, in which some important factors (such as emulsifier type and 

concentration, oil type and concentration, and homogenization pressure) affecting the 

droplet size and size distribution were investigated. In the chapter 3, the effect of 

emulsifier type on the stability of nanoemulsions loaded with ergocalciferol was 

investigated. In chapter 4, the effect of emulsifier type on the droplet characteristics, lipid 

digestion, and ergocalciferol bioaccessibility of nanoemulsions investigated via an in 

vitro digestion model. In chapter 5, ergocalciferol nanodispersions were prepared by low-

energy method. The effect of emulsifier type on the formulation, stability and 

bioaccessibility was studied. In chapter 6, a general conclusion from the present work 

was summarized.  
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Fig. 1. 1: Chemical structures of vitamin D. (a) Vitamin D2 and (b) Vitamin D3. 
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Fig. 1. 2: Photochemical reaction steps from pro-vitamin D (7-dehydrocholesterol or 

ergocalciferol) to vitamin D (cholecalciferol or ergocalciferol). 
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Fig. 1. 3: Vitamin D metabolism and classical actions on mineral metabolism. Modified 

from (Holick 2007) and (El fakhri 2016).  DBP: vitamin D binding protein; PTH: 

parathyroid hormone; FGF-23: fibroblast growth factor-23; GH: growth hormone; IGF-

1: insulin-like growth factor-1. 
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Fig. 1. 4: Causes of vitamin D deficiency. Source: (Hossein-nezhad and Holick 2012). 
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Fig. 1. 5: Health benefits of vitamin D, adapted from (Holick 2006a) 
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Fig. 1. 6: General structure of this thesis. 
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Table 1. 1: Sources of Vitamin D2 and Vitamin D3. Source: (Holick 2007) and (Holick 

2011). 

Sources Vitamin D content (IU = 25 ng) 

Natural sources 

 

Cod liver oil ~400-1000 IU/tsp vitamin D3 

Salmon, fresh wild caught ~600-1000 IU/3.5 oz vitamin D3 

Salmon, fresh farmed ~100-250 IU/3.5 oz vitamin D3, vitamin D2 

Salmon, canned ~300-600 IU/3.5 oz vitamin D3 

Sardines, canned ~300 IU/3.5 oz vitamin D3 

Mackerel, canned ~250 IU/3.5 oz vitamin D3 

Tuna, canned 236 IU/3.5 oz vitamin D3 

Shiitake mushrooms, fresh ~100 IU/3.5 oz vitamin D2 

Shiitake mushrooms, sun dried ~1,600 IU/3.5 oz vitamin D2 

Egg yolk ~20 IU/yolk vitamin D3 or D2 

Sunlight/UVB radiation ~20,000 IU equivalent to exposure to 1 minimal 

erythemal dose (MED) in a bathing suit. Thus, 

exposure of arms and legs to 0.5 MED is equivalent 

to ingesting ~ 3,000 IU vitamin D3. 

Fortified foods  

Fortified milk ~100 IU/8 oz usually vitamin D3 

Fortified orange juice ~100 IU/8 oz vitamin D3 

Infant formulas ~100 IU/8 oz vitamin D3 

Fortified yogurts ~100 IU/8 oz usually vitamin D3 

Fortified butter ~56 IU/3.5 oz usually vitamin D3 

Fortified margarine ~429IU/3.5 oz usually vitamin D3 

Fortified cheeses ~100 IU/3 oz usually vitamin D3 

Fortified breakfast cereals ~100 IU/serving usually vitamin D3 

Supplements  

Multivitamin 400, 500, 1000 IU vitamin D3 or vitamin D2 

Vitamin D3 400, 800, 1000, 2000, 5,000, 10,000, and 50,000 IU 
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Table 1. 2: Vitamin D dietary reference intakes by life stage (amount/day). AI: adequate 

intake; EAR: estimated average requirement; RDA: recommended dietary allowance; 

UL: tolerable upper intake level; IU = 25ng. Source: (Del Valle et al., 2011).  

Life Stage Group AI EAR RDA UL 

Infants     

0-6 months 400 IU   1000 IU 

6-12 months 400 IU   1500 IU 

Children     

1-3 years  400 IU 600 IU 2500 IU 

4-8 years  400 IU 600 IU 3000 IU 

Males     

9-13 years  400 IU 600 IU 4000 IU 

14-18 years  400 IU 600 IU 4000 IU 

19-30 years  400 IU 600 IU 4000 IU 

31-50 years  400 IU 600 IU 4000 IU 

50-70 years  400 IU 600 IU 4000 IU 

>70 years  400 IU 800 IU 4000 IU 

Females     

9-13 years  400 IU 600 IU 4000 IU 

14-18 years  400 IU 600 IU 4000 IU 

19-30 years  400 IU 600 IU 4000 IU 

31-50 years  400 IU 600 IU 4000 IU 

51-70 years  400 IU 600 IU 4000 IU 

>70 years  400 IU 800 IU 4000 IU 

Pregnancy     

14-18 years  400 IU 600 IU 4000 IU 

19-30 years  400 IU 600 IU 4000 IU 

31-50 years  400 IU 600 IU 4000 IU 

Lactation     

14-18 years  400 IU 600 IU 4000 IU 

19-30 years  400 IU 600 IU 4000 IU 

31-50 years  400 IU 600 IU 4000 IU 
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Table 1. 3: Recent studies in active edible coatings containing naturally origin food 

substances. Source: (Acevedo-Fani et al., 2017).  

Methods Conditions Composition Droplet 

size 

(nm) 

High pressure 

homogenization 

Pressure: 50, 100, and 

150 MPa 

Number of passes: 1–20 

Clove oil in canola oil, 

succinylated waxy maize 

starch solutions 

150–400 

 Pressure: 20 000 psi 

Number of cycles: 6 

Canola oil, sodium 

caseinate, pea protein 

concentrate solutions 

≈160 

Microfluidization Pressure: 34.5–206.8 

MPa 

Number of passes: 1–5 

Mesquite gum solutions 

and fish oil 
155–300 

 Pressure: 150 MPa 

Number of passes: 5 

High methoxyl pectin 

solutions, Tween 80 and 

essential oils 

12–40 

 Pressure: 150 MPa 

Number of cycles: 5 

Sodium alginate, Tween 

20 and corn oil 
≈260 

Sonication Amplitude 80 μm, cycle 

0.7 and 20 min 

Whey protein isolate 

solutions and fish oil 
66–703 

 20.5 kHz for 15 min Sage oil, Tween 80, Span 

80 and water 
222 

 24 kHz for 1–20 min Flaxseed oil, algae oil, 

Tween 40, lecithin and 

water 

182–192 
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2.1 Introduction 

Vitamin D deficiency or insufficiency is prevalent in some populations, which lead to 

adverse health effects, such as rickets. Ergocalciferol, one major form of vitamin D, plays 

an important role in enhancing intestinal calcium absorption, and reducing the risks of 

rickets and bone-related diseases (Holick 2004b, Gueli et al., 2012). Thus, the foods and 

beverages containing vitamin D are preferred by consumers. However, there are a number 

of challenges for using vitamin D as micronutrients in food industries, which is due to its 

poor water-solubility and chemical stability, as well as low bioaccessibility (Luo et al., 

2012, Ozturk et al., 2015b).  

Oil-in-water (O/W) nanoemulsions are excellent candidates for effectively delivering 

those functional lipophilic components due to their important role in increasing water-

solubility and bioaccessibility (Salvia-Trujillo et al., 2015, Zhang et al., 2016, Ahmed et 

al., 2012, Yang et al., 2017). In the current studies, we aimed to formulate ergocalciferol-

loaded nanoemulsion by using high-pressure homogenization method. A various factors 

affecting on the formulation of nanoemulsions were investigated, including emulsifier 

type and concentration, oil content and type, and homogenization pressure.  

 

2.2 Materials and methods 

2.2.1 Materials 

Ergocalciferol, soybean oil, D-limonene, and sodium caseinate (SC) were purchased from 

Wako Pure Chemical Industries (Osaka, Japan). Medium chain triglycerides (MCT-7) 

were purchased from Taiyo Kagaku Co., Ltd. (Mie, Japan). Perilla oil was purchased from 

a local supermarket in Japan. Decaglycerol monooleate (MO7S) was provided by 

Sakamoto Yakuhin Kogyo Co., Ltd. (Osaka, Japan). SC used in our study has a maximum 
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loss of 10% after drying and its total nitrogen (N) is 12.6-15.8 %.MO7S (polymerization 

degree 10), which has a hydrophilic-lypophilic balance (HLB) value of 12.9. The 

modified lecithin (ML; SLP WhiteLyso), containing phosphatidic acid (0-5%), 

phosphatidylethanolamine (1-7%), phosphatidylcholine (2-8%), phosphatidylinositol 

(10-20%) and lysophosphatidylcholine (18-30%), was purchased from Tsuji Oil Mills Co., 

Ltd. (Tokyo, Japan). ML has a HLB value around 12. Milli-Q water (18 MΩ cm) was 

used to prepare all of the solutions and samples. All other chemicals used were of 

analytical grade.  

 

2.2.2 Formulation of ergocalciferol-loaded nanoemulsions 

O/W nanoemulsion loaded with ergocalciferol were produced using a two-step 

homogenization method. A series of different oil (either soybean oil, MCT, perilla oil, or 

D-limonene) containing 0.1 wt% of ergocalciferol were used as oil phases. Phosphate 

buffer (5 mM, pH7) containing an emulsifier (0.1-3 wt% of ML, MO7S, or SC) was used 

as aqueous phases. In the first step, premixed emulsions were prepared by homogenizing 

oil phases with aqueous phases at an appropriate ratio via a conventional homogenizer 

(Polytron PT-3100, Kinematica Co., Ltd., Luzern, Switzerland) at 5000 rpm for 5 min. In 

the second step, the premixed emulsions were treated using a high-pressure homogenizer 

(NanoVater200, Yoshida Kikai Co., Ltd., Nagoya, Japan) at various pressures (20-140 

Mpa) for 4 passes to obtain fine emulsions. 

 

2.2.3 Measurements of droplet size and size distribution 

The droplet size and size distribution of the resulting emulsion samples were measured 

using a laser diffraction particle size analyzer (LS 13 320, Beckman Coulter, Brea, USA). 
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The refractive indexes of water, perilla oil, soybean oil and MCT and D-limonene were 

set at 1.333, 1.476, 1.471, 1.450 and 1.471, respectively. The average droplet diameter of 

each sample was reported as volume mean diameter (d4,3): d4,3 =∑nidi
4/∑nidi

3. Where ni 

is the number of droplet i; di is the diameter of the droplet i. All measurements were 

conducted in triplicate. 

 

2.2.4 Statistical analysis 

All experiments were repeated at least in duplicate and standard deviations were 

calculated from these measurements. Analysis of variance (ANOVA) tests were used to 

analyze the characterization and stability data at a confidence level of 95%. Least 

significant difference (LSD) was used to compare the stability data with different 

emulsifiers. The LSD was calculated using Statistix 8.1 software (Tallahassee, USA) and 

according to the method described by Steel and Torrie (2007). 

 

2.3 Results and discussion 

2.3.1 Effect of emulsifier concentration on the formulation of nanoemulsions 

We initially investigated the influence of emulsifier concentration on the formulation of 

ergocalciferol-loaded nanoemulsions. A series of nanoemulsions were prepared by 

homogenizing 10 wt% of soybean oil containing ergocalciferol with 90 wt% of aqueous 

phases containing 0.1-3 wt% of ML at a constant homogenization condition (100 MPa, 4 

passes). In general, the average droplet size (d4,3) of ML-stabilized nanoemulsions 

decreased with increasing emulsifier concentration (Fig. 2.1a). For example, 

nanoemulsions stabilized by 0.1 wt% of ML had d4,3 of around 340 nm, which was much 

bigger than that stabilized by 2 wt% of ML, which was around 160 nm. Evident broader 
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droplet size distribution with large droplets in nanoemulsions stabilized by higher ML 

concertation, which was indicated in Fig. 2.1b. The decreased d4,3 of emulsions with 

increasing ML concentration was relate to the fact that high level of emulsifier molecules 

present could quickly and effectively adsorb onto the newly-formed droplets, thereby 

promoting the formulation of small droplets during homogenization (Jafari et al., 2008). 

 

2.3.2 Effect of homogenization pressure on the formulation of nanoemulsions 

The impact of homogenization pressure on the formulation of ergocalciferol-loaded 

nanoemulsions was showed in Fig. 2.2. In this part, the nanoemulsions were prepared by 

homogenizing 10 wt% of soybean oil containing ergocalciferol with 90 wt% of aqueous 

phases containing 2 wt% of ML at homogenization pressure of 20-140 MPa. The d4,3 of 

ML-stabilized nanoemulsions decreased from around 470 nm to 145 nm when the 

operating pressure was increased from 20 to 140 MPa (Fig. 2.2a). Results of droplet size 

distribution also indicated that the droplets are bigger and broader at the lower 

homogenization pressure applied (Fig. 2.2b). This effect was due to an increase in 

disruptive energy generated at high homogenization pressure, thereby resulting in 

formulation of smaller droplets (Schultz et al., 2004).  

 

2.3.3 Effect of oil content on the formulation of nanoemulsions  

The impact of oil mass fraction on the formulation of ergocalciferol-loaded 

nanoemulsions was showed in Fig. 2.3. In this section, the nanoemulsions were prepared 

by homogenizing 10-30 wt% of soybean oil containing ergocalciferol with 90-70 wt% of 

aqueous phases containing 2 wt% of ML at homogenization pressure of 100 MPa. The 

droplet size and size distribution measurements indicated that nanoemulsions with higher 
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oil mass fraction had bigger d4,3 compared with those with lower oil mass fraction (Figs. 

2.3a and 2.3b). The bigger size of high-lipid emulsion could be attributed to that the 

emulsifier molecules present might be insufficient to cover all newly-formed droplets 

because of the larger surface area, which was similar to that described in Section 2.3.1.   

   

2.3.4 Effect of oil type on the formulation of nanoemulsions 

The impact of oil type on the formulation of ergocalciferol-loaded nanoemulsions was 

showed in Fig. 2.4. In this section, the nanoemulsions were prepared by homogenizing 

10 wt% of different oil (either soybean oil, MCT, perilla oil or D-limonene) containing 

ergocalciferol with 90 wt% of aqueous phases containing 2 wt% of ML at homogenization 

pressure of 100 MPa. The droplet size and size distribution measurements indicated that 

nanoemulsions prepared from D-limonene had much bigger d4,3 compared with the other 

three emulsions (Figs. 2.4a and 2.4b). The observed larger droplets in D-limonene 

emulsions could be relate to its relatively higher water-solubility, which make them more 

susceptible to Ostwald ripening (Rao and McClements 2012) 

 

2.3.5 Effect of emulsifier type on the formulation of nanoemulsions 

The impact of emulsifier type on the formulation of ergocalciferol-loaded nanoemulsions 

was showed in Fig. 2.5. In this section, the nanoemulsions were prepared by 

homogenizing 10 wt% of soybean oil containing ergocalciferol with 90 wt% of aqueous 

phases containing 2 wt% of different emulsifier (either ML, MO7S or SC) at 

homogenization pressure of 100 MPa. The three nanoemulsions showed similar mean 

droplet size and size distribution, regardless of emulsifier type (Figs. 2.5a and 2.5b). As 

previous study reported (Mao et al., 2009b), small-molecule surfactants can absorb onto 
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the droplet surface more rapidly than emulsifier with large molecule such as protein, 

hence leading to form smaller droplet size. Interesting, bigger d4,3 of SC-stablized 

nanoemulsions comparing those stabilized by ML and MO7S was not observed in our 

study. This phenomenon can be explained by relatively high concentration of SC used in 

our study can provide sufficient emulsifier molecular to cover the newly formed droplets 

to prevent them from re-aggregation with each other during high pressure 

homogenization process, hence be capable of producing droplets with small size 

(Kanafusa et al., 2007). 

 

2.4 Conclusions 

The results in this study demonstrated that nanoemulsions loaded with ergocalciferol 

could be successfully formulated via high-pressure homogenization method, but highly 

depend on the emulsifier concentration, oil type and concentration, as well as 

homogenization pressure. The droplet size of the resulting nanoemulsions decreased with 

increasing operating pressure and emulsifier concentration. The nanoemulsions prepared 

from soybean oil, MCT or perilla oil had similar droplet size, and much smaller than that 

from D-limonene. It was also found that ML, MO7S and SC led to similar and small 

droplets of nanoemulsions prepared at the same condition.  
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(a) 

 

(b) 

 

Fig. 2. 1: Effect of ML concentration on (a) mean droplet size (d4,3) and (b) size 

distribution of ergocalciferol-loaded nanoemulsions prepared at a constant emulsification 

condition (10 wt% soybean oil; 100 MPa, 4 passes). 
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(a) 

 

(b) 

 

Fig. 2. 2: Effect of homogenization pressure on (a) mean droplet size (d4,3) and (b) size 

distribution of ergocalciferol-loaded nanoemulsions (2 wt% ML ; 10 wt% soybean oil). 
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(a) 

 

(b) 

 

Fig. 2. 3: Effect of soybean oil mass fraction on (a) mean droplet size (d4,3) and (b) size 

distribution of ergocalciferol-loaded nanoemulsions stabilized by 2 wt% ML (100 MPa, 

4 passes). 
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(a) 

 

(b) 

 

Fig. 2. 4: Effect of oil type (10 wt%) on (a) mean droplet size (d4,3) and (b) size 

distribution of ergocalciferol-loaded nanoemulsions stabilized by 2 wt% ML (100 MPa, 

4 passes). 
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(a) 

 

(b) 

 

Fig. 2. 5: Effect of emulsifier type (2 wt%) on (a) mean droplet size (d4,3) and (b) size 

distribution of ergocalciferol-loaded nanoemulsions (soybean oil; 100 MPa, 4 passes). 

 

 



 

 

36 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Stability of Oil-in-Water Nanoemulsions Loaded 

 with Ergocalciferol 
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3.1 Introduction 

Recently, food and beverage products consisting of functional ingredients with additional 

health benefits attract an increasing attention in food industries (Piorkowski and 

McClements 2014). Vitamin D is one of the most important nutraceutical compound 

gaining attention from researchers and food manufacturers due to its special role in 

maintaining the bone, teeth and cartilage development (Cranney et al., 2008, Hark and 

Deen 2005). In addition, vitamin D provides prevention against heart diseases, cancer and 

immune diseases (Haham et al., 2012, Holick 2004c). Vitamin D is a seco-steroid 

hormone that can be classified into two main different forms, namely vitamin D2 

(ergocalciferol) and vitamin D3 (cholecalciferol). Vitamin D2 is naturally present in 

mushrooms with low amount and commercially produced by UV irradiation of yeast, 

while vitamin D3 is naturally synthesized in the skin of human and animal bodies via the 

exposure to sunlight (Khalid et al., 2015). However, an estimated one billion people 

worldwide have either vitamin D deficiency or insufficiency (Holick 2007).  The 

deficiency of vitamin D can be ascribed to the lack of exposure to sunlight, extensive use 

of UV protecting sun cream, or poor intake of  food containing vitamin D (Haham et al., 

2012, Holick 2004c, Tsiaras and Weinstock 2011). Consequently, food and beverage 

incorporated this vitamin have raised considerable interest in practical applications. The 

utilization of vitamin D as nutraceutical ingredient in processed foods or beverages still 

represents a big challenge for several reasons: vitamin D is a highly hydrophobic 

compound that cannot be directly dispersed in aqueous phase; chemical degradation of 

vitamin D occurs when exposed to light, oxygen, or elevated temperatures, thus leading 

to the reduction of functionality and bioavailability (Guttoff et al., 2015, Tsiaras and 

Weinstock 2011).  
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In the past few decades, nanotechnology has received an increasing attention in foods, 

cosmetics and pharmaceutical applications, and it plays a very important role in 

encapsulating poor water-soluble bioactive compounds, i.e. polyunsaturated fatty acids, 

carotenoids, phytosterols, and many other ingredients. Several attempts were also carried 

out to improve the water solubility, stability and bioavailability of vitamin D using 

different nano-delivery systems including nanoparticles, solid lipid nanoparticles (SLN), 

nanoliposomes and so on (Abbasi et al., 2014, Patel et al., 2012, Guttoff et al., 2015, 

Ozturk et al., 2015c, Mohammadi et al., 2014). O/W nanoemulsions is one of the most 

important nano-delivery systems for encapsulating lipophilic compounds. The 

nanoemulsions are the colloidal dispersions containing small lipid droplets (typically 

around 20-200 nm) dispersed with in aqueous phase (Mohammadi et al., 2014, 

McClements 2015, McClements 2010). Nanoemulsions have high optical clarity, 

increased oral bioavailability and great stability against gravitational separation and 

droplet coalescence (McClements 2010, Guttoff et al., 2015, Zhao et al., 2013, Tadros et 

al., 2004). Keeping these advantages in mind, the nanoemulsions are expected to be useful 

for encapsulating lipophilic compounds, such as oil-soluble vitamins and nutraceuticals, 

for application in food and beverage products. 

Emulsion-based foods need to be stable against harsh condition (i.e., pH, ionic strength 

and temperature) during their processing, storage and transportation. It is well known that 

an emulsifier is one of the most important materials required to determine the stability of 

an emulsion-based food against the destabilization process. The selection of appropriate 

emulsifier is critical for producing emulsion-based products with high stability (Schubert 

and Engel 2004). In the current study, three food-grade emulsifiers from different group, 

namely, modified lecithin (ML), sodium caseinate (SC) and decaglycerol monooleate 
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(MO7S) were used for evaluating their effect on the physicochemical stability of vitamin 

D-loaded nanoemulsions. The three emulsifiers were selected due to fact that they provide 

different stabilizing mechanisms to protect emulsion droplets from aggression. Limited 

systematic study was available on the comparison of influence of emulsifier with different 

stabilizing mechanisms on the stability of nanoemulsions loaded with vitamin D.  ML 

used in our work is an enzymatically modified phospholipid derived from hydrolysis of 

soy lecithin. ML is a mixture of different phospholipids, in which 

lysophosphatidylcholine is the major compound and phosphatidylinositol, 

phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid are the secondary 

compounds (Sono 2005). ML is a zwitter-ionic surfactant with small molecular weight, 

which stabilizes nanoemulsions by electrostatic repulsion. SC is a large molecular weight 

emulsifier derived from bovine milk, and it can provide a thick coating layer around the 

oil droplet to prevent droplet from growth mostly due to electrostatic repulsion. In 

addition, the long tail of disordered casein molecules adsorbed around the oil droplet 

provides partly steric stabilization effect (Raikos 2010). MO7S, a type of polyglycerol 

esters of fatty acids (PGEs), is synthetic non-ionic surfactant with small molecular size, 

which rapidly adsorbs onto oil droplet during homogenization and stabilizes the 

nanoemulsions by steric hindrance. The objective of this work was to provide a better 

understanding of the role of emulsifiers with different stabilizing mechanisms on the 

stability of oil-in-water nanoemulsions encapsulated ergocalciferol. The results obtained 

from this study provide useful information for the utilization of emulsifiers in the 

development of nanoemulsion-based delivery system for lipophilic bioactive compounds. 
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3.2 Materials and methods 

3.2.1 Materials 

Ergocalciferol, refined soybean oil, sodium caseinate, hydrochloric acid, sodium azide, 

ethanol (99.8%), sodium hydroxide, D (+)-Glucose, sodium dihydrogen phosphate, 

disodium hydrogen phosphate, sodium chloride, methanol (HPLC grade) and acetonitrile 

(HPLC grade) were purchased from Wako Pure Chemical Industries (Osaka, Japan). 

Modified lecithin (ML, SLP White Lyso) was procured from Tsuji Oil Mills Co. Ltd. 

(Tokyo, Japan). Decaglycerol monooleate (MO7S) was kindly donated by Sakamoto 

Yakuhin Kogyo Co. (Osaka, Japan). Milli-Q water with a resistivity of 18 MΩ cm was 

used for preparing all the solution in the current study. All other chemicals used in this 

study were of analytical grade and used as such during experimentation. 

 

3.2.2 Preparation of ergocalciferol-loaded O/W nanoemulsions  

Ergocalciferol nanoemulsions containing 90 wt% of aqueous phase (buffer solution with 

2 wt% ML, SC or MO7S) and 10 wt% of oil phase (soybean oil with 0.1 wt% 

ergocalciferol) were formulated by high-pressure homogenization method (100 MPa, 4 

Passes), which was described in Section 2.2.2 (Chapter 2).  

 

3.2.3 Emulsion stability testing 

3.2.3.1 Effect of pH on the stability of nanoemulsions 

The pH of ergocalciferol loaded nanoemulsions was adjusted within the range between 2 

and 8 using 1 M HCl or 1 M NaOH. Samples were kept at room temperature for 24 h 

prior to droplet size and ζ-potential measurements. 
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3.2.3.2 Effect of ionic strength on the stability of nanoemulsions 

5 mL of ergocalciferol loaded nanoemulsions were diluted by adding 5 mL NaCl solution 

(in phosphate buffer, pH 7) to adjust the NaCl concentration in samples (0-500 mM). The 

samples were stored at room temperature (25 ± 2 ᵒC) for 24 h prior to analysis.  

 

3.2.3.3 Effect of freeze-thawing on the stability of nanoemulsions 

In this section, the influence of freeze-thaw cycles on the stability of ergocalciferol loaded 

nanoemulsions was evaluated in the absence and presence of glucose as cryoprotectant. 

Nanoemulsions with additives (emulsions: 10% glucose in phosphate buffer solution (pH 

7) =1:1 (v/v)) and without additive (emulsions and phosphate buffer =1:1) were 

transferred to separate plastic test tubes. The test samples were placed at -20 ᵒC for 22 h, 

and then left to thaw in a water bath at 30 ᵒC for 2 h prior to droplet size measurement.  

 

3.2.3.4 Effect of high temperature treatment on the stability of nanoemulsions 

10 mL nanoemulsions encapsulating ergocalciferol were shifted to a 15 mL glass test tube 

and well-sealed by a metallic cap. The samples were placed in oil bath or autoclaving 

device (KTS-2346, ALP Co., Ltd, Tokyo, Japan) at fixed temperature (80, 100 or 120 ᵒC). 

After heating for 1h, the samples were cooled at room temperature for 1 day prior to 

analysis. 

 

3.2.3.5 Storage stability of nanoemulsions  

The ergocalciferol loaded nanoemulsions with the addition of sodium azide (0.02 wt%) 

as antibacterial agent were incubated at 25 ± 2 ᵒC and 55 ± 2 ᵒC for 30 days under dark 

condition. The droplet size and ergocalciferol content retained in emulsion were measured 



 

 

42 

 

under different storage intervals for a period of 30 days. Ergocalciferol encapsulation 

efficiency (EE) in samples was calculated with the following equation: 

EE =  
Ct

C0
 ×100            (3.1) 

where Ct is the concentration of ergocalciferol at a specific time, while C0 is the initial 

concentration of ergocalciferol loaded in the nanoemulsions. 

   

3.2.4 Droplet size analysis 

The measurement of droplet size was conducted according to the presented method in 

Section 2.2.3 (Chapter 2) 

 

3.2.5 ζ-potential measurement 

Determination of the ζ-potential of nanoemulsions droplet was performed by using a ζ-

potential analyzer (Zetasizer Nano ZS, Malvern Instruments Ltd., Worcestershire, UK). 

Before analysis, the emulsions at different pH were diluted (1: 200) with Milli-Q water 

at the same pH as the initial samples being tested. The emulsions at different salt 

concentrations were diluted (1: 100) with phosphate buffer (5 mM, pH 7). The diluted 

samples were then placed in a folded capillary cell and loaded in the instrument. The ζ-

potential of samples were automatically measured using 10-100 runs per analysis after 

they were equilibrated for 120 s inside the instrument at 25 ᵒC. The refractive indexes of 

the dispersed and continuous phases for calculation were set at 1.471 and 1.333, 

respectively, each measurement was conducted in triplicate. 

 

3.2.6 Ergocalciferol quantification  

The concentration of ergocalciferol in the O/W nanoemulsions was measured using High-
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performance liquid chromatography (HPLC). Ergocalciferol was extracted from the O/W 

emulsions prior to HPLC analysis using method previously described by Khalid et al., 

(2015). 0.2 mL of nanoemulsion was mixed with 3.8 mL ethanol and vortexed for 2 min, 

followed by ultra-sonicating for 20 min. The samples were placed at room temperature 

for 30 min and filtered by passing through nylon membrane with a pore size of 0.45 µm 

before analysis. For the samples with the measurement below the limit of detection, 2 mL 

of filtered ethanolic extract was transferred into amber vial and dried by asperging 

nitrogen. After concentrating the samples and re-dissolving in 0.2 mL of ethanol by 

vortexing and mixing for 2 min, they were filtered using nylon filter. The concentration 

of ergocalciferol in the emulsions was evaluated by using the HPLC system (JASCO 

International Co., Tokyo, Japan) equipped with a UV-970 UV–Vis spectrophotometric 

detector, a PU-980 pump system, and an AS-2055 autosampler. C-18 reversed phase 

column (4.6×250 mm; Shimpack VP-ODS, Japan) was used as stationary phase and the 

column temperature was set at 35 ᵒC. The mobile phase was composed of acetonitrile and 

methanol with the isocratic mixture ratio at 75:25 (v/v) and the flow rate was set at 1 mL 

min -1. The injection volume was 20 μL and the detection wavelength was set at 265 nm. 

The concentration of ergocalciferol in samples was calculated by the standard curve and 

all the measurements were repeated in duplicate. 

 

3.2.7 Statistical analysis 

The statistical analysis was conducted according to the presented method in Section 2.2.4 

(Chapter 2). 

3.3 Results and discussion 

3.3.1 Effect of pH on the stability of nanoemulsions  
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Food products and beverage typically exhibit broad range of pH, hence it is important to 

understand the influence of pH on the stability of ergocalciferol loaded nanoemulsions 

for future commercial applications. Fig 3.1a shows the change in d4,3 of ML, SC and 

MO7S-stablized nanoemulsions as a function of pH. The obtained results showed d4,3 of 

nanoemulsions stabilized by ML and MO7S remained constant over a wide range of pH. 

On the other hand, the d4,3 of emulsions stabilized by SC increased sharply at pH 4 and 5 

and these samples became highly unstable with an observed serum layer at the bottom 

and a creamed layer on the top of the tested tube (date not shown). We also examined the 

effect of pH on electrical characteristics (ζ-potential) of oil droplets (Fig. 3.1b). As 

reported previously, emulsions with ζ-potential greater than 30 mV (absolute value) were 

considered to be stable to oil droplet aggregation (Jacobs et al., 2000). For SC-stabilized 

emulsions, the absolute values of ζ-potential were less than 30 mV at pH 4 and 5. These 

pH values were closed to the isoelectric point (pI) of SC, which was reported between pH 

4.1 and 4.6 (Ching et al., 2015, Zhang et al., 2015c). Thus, the electrosteric repulsion of 

SC-coated droplets is not strong enough to keep the emulsion stable, at pH near to pI, 

since the attractive force between particles dominates electrosteric repulsion, thereby 

causing droplet aggregation. The high stability of SC-stabilized emulsions at other pH 

values were related to highly positive or negative charge of droplet at pH below or above 

the pI, respectively. Theoretically, MO7S as a non-ionic emulsifier was expected to have 

no charge. Nevertheless, we observed a negative charge on the MO7S-stabilized oil 

droplet at higher pH, and a considerable increase in ζ-potential as the pH was reduced to 

2. The charge on the droplet was attributed to the presence of ionized impurities in MO7S, 

such as free fatty acids (Wang et al., 2012b). Although, less charge (absolute value < 30 

mV) was observed on the droplet and there was no increase in droplet size when MO7S 
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emulsions were adjusted to low pH. Unlike SC, the MO7S provides steric hindrance 

between droplets to stabilize the emulsions, and this steric repulsion is fairly insensitive 

to pH and ionic strength (McClements 2015). In the case of ML-stabilized emulsions, the 

high stability can be explained by the negative charge on the droplets across the entire pH 

range, which prevents emulsion droplets from aggregating. 

 

3.3.2 Effect of ionic strength on the stability of nanoemulsions 

It is imperative to see the stability of emulsified foods and beverages against ionic 

strength, as the emulsion-based products may be added with different amounts of mineral 

ions during product development. We therefore, investigated the influence of ionic 

strength on the physical stability of ergocalciferol loaded nanoemulsions. The addition of 

NaCl from 0 to 500 mM, resulted in no apparent changes in d4,3 of nanoemulsions 

stabilized by MO7S and SC (Fig. 3.2a). MO7S stabilized nanoemulsions exhibited good 

stability in the presence of NaCl and was attributed to the non-ionic nature that forms 

steric repulsion between oil droplets and was fairly insensitive to the change in ionic 

strength as previously described in section 3.3.1 The addition of salt to SC-coated 

nanoemulsions resulted in destabilization of emulsions and was attributed to electrostatic 

screening effects (Israelachvili 2011). However, little increase in d4,3 of SC-stabilized 

nanoemulsions was observed at highest concentration of NaCl (500 mM) in our study. 

This effect was probably due to the shielding effect of the salt on the electrostatic 

repulsion between SC-coated oil droplets was not strong enough (Fig. 3.2b). On the other 

hand, the casein molecules formed partial steric interaction between the droplets, which 

may be sufficiently large enough to prevent the droplet from growth. In contrast, a thin 

cream layer was occurred on the top of the ML-stabilized emulsions at ≥ 400 mM NaCl 
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(data not shown), and there was moderate increase in d4,3 of the samples when NaCl 

concentration exceeded 300 mM. Similar, results have been reported by other researchers 

(McClements et al., 2014). Previous studies indicated that the electrostatic screening 

effect of electrolytes might cause a significant reduction in electrostatic repulsion between 

droplets coated by ionic emulsifier at high salt concentration, which leads to the emulsion 

instability (Ozturk et al., 2014, Tan et al., 2016c). However, no apparent reduction in the 

magnitude of the ζ-potential was observed in ML-stabilized emulsions with increasing 

NaCl concentration. Therefore, the shielding effect due salt ions on the electrostatic 

repulsion between droplets could not explain the instability of ML-stabilized emulsions 

in our study. We predict that the electrolytes might change the hydrophilic−lipophilic 

balance and hydration conditions of the emulsifiers by depletion of the hydration shell 

around the polar head groups of emulsifier molecule (McClements et al., 2014), which 

induces to the instability of ML-stabilized emulsions when exposed to high 

concentrations of NaCl.  

 

3.3.3 Effect of freeze-thaw treatment on the stability of nanoemulsions 

Many emulsion based food products like ice creams are exposed to fully or partially 

frozen state during their formulation, storage and utilization. The stability of these 

products during freeze-thawing is still a major challenge to food scientists and food 

industries (McClements 2015). Hence, in this section, we investigated the influence of 

freeze-thaw cycles on the stability of ergocalciferol-loaded nanoemulsions produced 

using different types of emulsifier was in the presence or absence of glucose. 

Fig. 3.3a presented the formulation results without glucose in the continuous phase of 

O/W nanoemulsions. The results indicated that the ML-stabilized nanoemulsions showed 
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an appreciable increase in d4,3 from 150 to 1000 nm after three cycles of freeze-thaw 

treatment. For the SC-coated nanoemulsions, the droplet size presented a slight increase 

in d4,3 from 165 nm (initial) to 170 nm (3 cycles). However, the d4,3 increased drastically 

to 14.47 μm even after one cycle of freeze-thawing for MO7S-stabilized nanoemulsions. 

Further freeze-thawing of MO7S-stabilized nanoemulsions showed extensive 

coalescence, leading to phase separation and oiling off (data not shown). These findings 

demonstrated that the stability of ergocalciferol loaded nanoemulsions towards freeze-

thawing depends on the emulsifier type and follows the order of SC > ML > MO7S.  

Crystallization of water takes place during freeze-thawing, as a result the emulsion 

droplets were forced to come closer to each other in the remaining non-frozen aqueous 

phase (Ghosh and Coupland 2008, Ogawa et al., 2003). Thus, the emulsifier used should 

have the capability of protecting the emulsion droplet from coming closer and to stop the 

aggregation process. It is proven that the protein-stabilized emulsion had better freeze-

thawing stability in comparison to those stabilized by the surfactants with smaller 

molecular weight. The proteins formed a thicker interfacial film around the droplets and 

inhibit the droplets from coalescence towards the freeze-thawing conditions (Cramp et 

al., 2004, Palanuwech and Coupland 2003, McClements 2015). In our study protein based 

emulsifier (SC) protects the nanoemulsions better against freeze-thawing, in comparison 

to synthetic emulsifier (MO7S), which agrees well with the previous literatures. 

Tangsuphoom and Coupland (2009) found that SDS-stabilized coconut milk emulsion 

provides better freeze-thaw stability than those with Tween 20-coated samples. They 

reported that the association with SDS provided substantial electrostatic repulsion around 

lipid droplet and prevented the particles from coalescence, in comparison to Tween 20 

during freeze-thawing.  
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In our study, ML was used as a small zwitter-ionic emulsifier to formulate the O/W 

nanoemulsions, similarly to SDS, it provides an electrostatic repulsion between lipid 

particles and prevents the droplet coalescence to some extent. Comparing to the nonionic 

surfactant (MO7S), this repulsion provided by ML is relatively stronger to slow down 

particle size growth when exposed to freeze-thaw treatment. In contrast, steric repulsion 

formed by MO7S is not strong enough to inhibit lipid droplet coalescence after freeze–

thawing, ultimately resulting in creaming and oil phase separation as the freeze-thawing 

process progressed. On the other hand, no increase in d4,3 or phase separation was 

observed in any of the samples, when glucose was added to the continuous phase (Fig. 

3.3b). The preceding results indicated that nanoemulsions containing glucose had good 

freeze-thawing stability after 3 cycles, regardless of type of emulsifier used for stabilizing 

nanoemulsions. It is well known that the addition of sugars in O/W emulsions can 

effectively improve their freeze-thawing stability by reducing the amount of formed ice 

and prevent the droplets from coalescence (Ghosh et al., 2006).  

    

3.3.4 Effect of high temperature treatment on the stability of nanoemulsions 

Thermal stability of emulsion-based delivery systems is important during processing and 

storage, since temperature always fluctuate specially during hot filling, pasteurization and 

autoclaving. We examined the effect of high temperature (80-120 ᵒC) on the stability of 

ergocalciferol-loaded O/W nanoemulsions for a period of 1 h at specific temperature. For 

MO7S stabilized nanoemulsions (Fig. 3.4), the d4,3 remains stable only at 80 ᵒC, with 

further increase in temperature to 100 or 120 ᵒC, a clear layer of oil phase was observed 

at the top of sample bottles (data not shown), which suggested that higher temperature 

induced the emulsions to droplet coalescence. As previously reported, dehydration of 
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surfactant hydrophilic head group occurred when heating the nonionic emulsifier-

stabilized O/W emulsion close to or above the phase inversion temperature (PIT), which 

led to the change in the optimum curvature of the protective monolayer (Israelachvili 

2011, McClements 2015). This progressive dehydration of emulsifier at the oil-water 

interface would lead to an ultralow interfacial tension, therefore facilitate the droplet 

coalescence and phase separation (Kabalnov and Wennerström 1996, McClements 2015). 

Presumably, this destabilization of MO7S-coated oil droplet due to the higher temperature 

(100 and 120 ᵒC) used in this study is far above the PIT, which might have caused phase 

separation in emulsion system.  

SC has been reported as a good protein emulsifier against high temperature due to its 

disordered structure. The emulsions stabilized by SC remained stable during 30 min of 

heating at 90 ᵒC or 15 min of heating at 121 ᵒC (Hunt and DALGLEISH 1995, Srinivasan 

et al., 2002). As indicated in Fig. 3.4, an appreciably increase in mean droplet diameter 

was observed in our study only when SC-stabilized emulsion was heated at 120 ᵒC for 1 

h, which suggested that particle aggregation occurred due to heating. Our results 

somewhat agreed with a previous study reported by Chu et al., (2008), in which 1 wt% 

SC-stabilized β-carotene nanodispersions showed an appreciably increase in particle size 

after heating them at 60 ᵒC for 1h, and a rapid increase in size after heating for 4 h. The 

difference in results might be due to the longer heating time of 1 h in our study, rather 

than 15 min in the previous studies. The release of phosphorus from caseinate would take 

place when placing them at high temperature and dephosphorization lead to the reduction 

of negative charge on the caseinate and further promotes caseinate-caseinate interactions 

that is dependent on heating time and temperature (Chu et al., 2008, Guo et al., 1989, 

Howat and Wright 1934). The oil droplets growth was not observed in ML-stabilized 



 

 

50 

 

emulsions during the entire temperature range, which suggested that the electrostatic 

repulsion between ML-coated droplets was stronger enough to overcome the attractive 

interactions and prevent droplets aggregation at elevated temperatures.   

 

3.3.5 Long-term storage stability on the stability of nanoemulsions    

Long-term storage stability of ergocalciferol loaded nanoemulsions was investigated with 

different emulsifiers (ML, SC or MO7S) during storage at two different temperatures (25 

or 55 ᵒC) for a period of 30 days. This experiment was performed at neutral pH without 

salt addition. 

 

3.3.5.1 Physical stability of nanoemulsions 

Fig. 3.5 depicts the change in d4,3 of ergocalciferol loaded nanoemulsions during 30 days 

of storage at 25 ᵒC and 55 ᵒC, respectively. All nanoemulsions stored at 25 ᵒC exhibited 

good physical stability against oil droplet growth and phase separation and no change in 

their visible appearance and d4,3 was observed during 30 days of storage (Fig. 3.5a). It is 

well accepted that nanoemulsions containing small droplet size are fairly stable due to the 

fact that Brownian motion of the nano-sized droplets can resist gravitational separation, 

flocculation and coalescence (Tadros et al., 2004). On the other hand, soybean oil was 

used as dispersed phase in present study, due to long chain triglyceride structure, soybean 

oil is quite water-insoluble, hence limiting the effect of the Ostwald ripening 

(McClements and Rao 2011). The three different emulsifiers used in our study provided 

strong coated layer around the oil droplets and refrained from their growth during storage 

period of 30 days. 

An accelerated test was performed to investigate the long-term physical stability of 



 

 

51 

 

nanoemulsions loaded with ergocalciferol by placing them at an elevated temperature (55 

ᵒC) for 30 days (Fig. 3.5b). In general, there is no distinct change in d4,3 of nanoemulsions 

formed with ML and MO7S, suggesting that the emulsions stabilized by ML and MO7S 

were physically stable during 30 days of storage at 55 ᵒC. In contrast, SC-stabilized 

nanoemulsions showed a slight increase in mean droplet size at the end of storage time, 

indicating that these nanoemulsions were slightly destabilized due to the long-term 

storage at an elevated temperature. The nanoemulsions prepared by SC were unstable to 

long-term storage at 55 ᵒC, presumably attributed to caseinate-caseinate interactions, 

which were discussed in section 3.3.4.         

 

3.3.5.2 Chemical stability of ergocalciferol 

The long-term chemical stability of nanoemulsions stored at room temperature (25 ᵒC) 

and at elevated temperature (55 ᵒC) was evaluated by determining the change in retention 

of ergocalciferol during 30 days of storage. The fresh O/W nanoemulsions stabilized by 

ML, SC and MO7S contained 89.5 ± 3.1, 88.3 ± 3.2 and 91.7 ± 2.6 mg/L ergocalciferol, 

respectively. The resulting retention of ergocalciferol was regarded as 100% at day 0. In 

terms of ergocalciferol retention (Fig. 3.6), all the samples showed high chemical stability 

after storage at 25 ᵒC for 30 days, with a slightly loss of 4.3%, 1.4% and 4.0% in ML, SC 

and MO7S-stabilized nanoemulsions, respectively. Oxidation of vitamin D in emulsion-

based products would occur easier when they are exposed to light, in which light acts as 

catalyst (Banville et al., 2000), as well as vitamin D is highly sensitive to high temperature. 

Thus, the high chemical stability of ergocalciferol in our study can be ascribed to the dark 

storage with mild storage temperature (25 ᵒC).   

Although, all nanoemulsions stored at 25 ᵒC showed high chemical stability with 
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almost no loss of ergocalciferol during storage period, the effect of emulsifier on the 

degradation of ergocalciferol at elevated temperature (55 ᵒC) was rather significant. Fig. 

3.6b illustrates the influence of emulsifier type on ergocalciferol stability in 

nanoemulsions stored at 55 ᵒC. After 30 days of storage, 54.4%, 4.5% and 49.0% of 

ergocalciferol retained in the nanoemulsions stabilized by ML, SC and MO7S, 

respectively. The data obtained from our study suggested that emulsifier type plays a vital 

role in maintaining the retention of ergocalciferol in nanoemulsions, and the loss of 

ergocalciferol decreased in the following order: SC >>MO7S> ML. In the literature, it 

was reported that protein emulsifiers, such as whey protein isolate (WPI) and SC, provide 

better chemical stability for encapsulated compounds, compared to emulsifiers with low 

molecular weight, due to the thick protective layers and anti-oxidative properties (Tan et 

al., 2016c). Also it was reported that WPI exhibited better β-carotene chemical stability 

in nanoemulsions stored at 55 ᵒC, comparing to those stabilized by small molecule 

surfactants such as Tween 20 and decaglycerol monolaurate (Mao et al., 2009b). The 

obtained results in our study disagreed with those reported by Mao et al., (2009a). The 

reasons for these opposite results are still unclear. However, it was thought to be related 

to the difference in protein emulsifier tested. The adsorbed SC molecules on the surface 

of oil droplet are less close to each other than WPI molecule, due to the higher flexibility 

of casein than globular whey protein isolates (M. Boland 2014). Thus, the most severe 

loss of vitamin D in SC-stabilized nanoemulsions, comparing to those coated with 

compacted emulsifier layer (small emulsifier or WPI) presumably attributed to huger gap 

between SC molecules induced ergocalciferol to be exposed to oxidation and degradation 

more quickly at an elevated temperature. Another reason that could explain SC-stabilized 

nanoemulsions exhibit lowest chemical stability in our study is that SC might undergo 
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thermal degradation (M. Boland 2014), resulting in weakening the membrane layer on 

the surface of oil droplet. Ergocalciferol in ML-stabilized nanoemulsions was least 

sensitive to thermal degradation among the samples and was attributed to phospholipids 

that play a role as anti-oxidizing agent, and play a vital role in encapsulation by reducing 

permeation of free radicals across the emulsion interface (Pan et al., 2013). 

 

3.4 Conclusions 

The current study showed that ergocalciferol loaded nanoemulsions was successfully 

formulated via the high pressure homogenization using three different emulsifiers (ML, 

SC or MO7S). In addition, some of the major factors affecting the stability of resulting 

nanoemulsions were systematically evaluated. The stability of nanoemulsions to different 

environmental stresses were highly dependent on the emulsifier type, whereas no 

particular emulsifier tested was found to provide absolute stability to the nanoemulsions 

when exposed to pH, ionic strength, freeze-thaw cycles and high temperature treatment. 

Independent of emulsifier type, the nanoemulsions exhibited good physical and chemical 

stability during storage at 25 ᵒC up to 30 days. In contrast, the long-term stability of 

nanoemulsions was highly dependent on the type of emulsifier tested at elevated 

temperature. The results of our study could provide useful information on the selection of 

appropriate emulsifier for producing stable nanoemulsions encapsulating functional 

bioactive compounds for commercial usage. 
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(a) 

 

(b) 

 

Fig. 3. 1: Effect of pH on the stability of O/W nanoemulsions. (a) d4,3 and (b) ζ-potential 

of ergocalciferol loaded nanoemulsions stabilized by different emulsifiers. 
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Fig. 3. 2: Effect of NaCl concentration on the stability of O/W nanoemulsions. (a) d4,3 

and (b) ζ-potential of ergocalciferol loaded nanoemulsions stabilized by different 

emulsifiers. 
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 (a) 

  

(b) 

 

Fig. 3. 3: Effect of freeze-thawing on the stability of nanoemulsions loaded with 

ergocalciferol stabilized with different emulsifier types. (a) The change in d4,3 of 

nanoemulsions without glucose, and (b) the change in d4,3 of nanoemulsions with glucose. 

ND means not determination, because of oiling off. 
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Fig. 3. 4: Effect of temperature on the stability of ergocalciferol-loaded nanoemulsions. 

ND means not determination, because of oiling off. 
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(a) 

 

(b) 

 

Fig. 3. 5: Effect of storage temperature on physical stability of ergocalciferol-loaded 

nanoemulsions stabilized by different emulsifiers: (a) 25 ᵒC and (b) 55 ᵒC.  
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(a) 

 

(b) 

 

Fig. 3. 6: Effect of storage temperature on chemical stability of ergocalciferol-loaded 

nanoemulsions stabilized by different emulsifiers: (a) 25 ᵒC and (b) 55 ᵒC.  
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Chapter 4 

In Vitro Digestion of Oil-in-Water Nanoemulsions Loaded 

with Ergocalciferol 
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4.1 Introduction 

Vitamin D is widely known as a lipid-soluble compound that is essential to humans 

because this substance plays a crucial role in the absorption of calcium and maintenance 

of skeletal health (Holick 2004c, Khalid et al., 2015). This bioactive compound may also 

provide a number of other health benefits, such as reducing the risk of certain cancers, 

inhibiting cardiovascular diseases, and improving immunity (Guttoff et al., 2015). 

Vitamin D exists in two major chemical forms: vitamin D2 (ergocalciferol) and vitamin 

D3 (cholecalciferol). In order to exert the functional effects, both these forms should be 

converted into their biologically active form, which is 25-dihydroxyvitamin D, via 

hydroxylation in the liver and kidneys (Christakos et al., 2012). Cholecalciferol can be 

produced simply by exposing the human skin to sunlight, whereas ergocalciferol cannot 

be synthesized by the human body. In other words, ergocalciferol has to be supplied 

through food, such as mushroom, which is one of the major natural sources of 

ergocalciferol (Eitenmiller et al., 2016). There are huge populations worldwide which are 

found to be vitamin D deficient due to a number of reasons: (i) insufficient sunlight 

exposure, (ii) extensive use of UV-protective cream, and (iii) poor intake of vitamin D-

rich food (Guttoff et al., 2015).  In view of this problem, there has been an increasing 

interest in incorporating this lipid-soluble vitamin in food and beverage products. 

However, vitamin D incorporation poses certain problems related to its limited solubility 

in water and chemical instability against light, oxygen and high temperature (Luo et al., 

2012). Additionally, the relatively low absorption of vitamin D from food intake due to 

its poor water-solubility gives rise to another challenge in terms of designing functional 

foods with increased bioaccessibility.  
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Emulsion-based delivery system, especially nanoemulsions, is one of the more 

promising solutions to overcome these challenges, and has duly received a considerable 

amount of attention within the food industry. Oil-in-water (O/W) nanoemulsions are 

thermodynamically unstable systems that contain small oil droplets (d < 200 nm) 

dispersed in aqueous phase (Walker et al., 2017). Nanoemulsions have better physical 

stability than conventional emulsions (d > 200 nm), which is due to Brownian movement 

can keep the oil droplets from creaming and eventually coalescing (Tadros et al., 2004). 

In addition, small oil droplets are more effective at promoting the bioaccessibility of 

encapsulated lipophilic compounds than large emulsified droplets or non-emulsified oil 

(Liang et al., 2013, Salvia-Trujillo et al., 2013).  Vitamin D-enriched nanoemulsions can 

be produced simply by dissolving this lipophilic substance in a carrier oil, and then 

homogenizing it with the aqueous phase containing a water-soluble emulsifier.  As 

reported previously, there are various factors that influence the formation and stability of 

O/W emulsions loaded with vitamin D, including homogenization technique, carrier oil, 

emulsifier type and so on (Guttoff et al., 2015, Khalid et al., 2017, Khalid et al., 2015).    

Besides affecting the formation and stability, some researchers have found that the initial 

carrier oil type and droplet size have significant impacts on the bioaccessibility of this 

functional ingredient delivered via nanoemulsion-based system (Ozturk et al., 2015c, 

Salvia-Trujillo et al., 2017). The bioaccessibility of encapsulated bioactive lipophilic 

component in a nanoemulsion is defined as the released fraction that is solubilized within 

the mixed micelles formed by phospholipids, bile salts and lipid digestion products (such 

as monoacylglycerols and free fatty acids) (Carbonell‐Capella et al., 2014).   

Emulsifier is one of the most crucial parameters to consider when producing a stable 

nanoemulsion. Emulsifier is able to adsorb onto the surface of droplets and act as a barrier 
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to protect the droplets from aggregation and coalescence during emulsification and 

storage (Shariffa et al., 2016). In general, there are four different mechanisms that are 

responsible for the way an emulsifier stabilizes nanoemulsions: steric, electrostatic, 

electrosteric and electrostatic-steric mechanisms (Tan et al., 2016c). Each category of 

emulsifier has its own advantages and disadvantages. In recent years, extensive studies 

on the effects of emulsifiers on the preparation, characteristics and stability of 

nanoemulsions have been widely reported. Since these aspects have been well-established, 

the next logical step would be the understanding of the biological fate of these 

nanoemulsions. However, to the best of our knowledge, there is still limited fundamental 

information on the bioaccessibility of vitamin D delivered via a nanoemulsion-based 

system, especially in the context of nanoemulsions fabricated using emulsifiers with 

different stabilizing mechanisms. Therefore, it would be interesting to investigate the 

influence of these emulsifiers on the release profile of encapsulated compounds, as well 

as to understand the changes in the gastrointestinal fate of the nanoemulsions during the 

digestion process.  

Thus, in our study, ergocalciferol-loaded O/W nanoemulsions were prepared using 

either decaglycerol monooleate (MO7S), modified lecithin (ML), sodium caseinate (SC), 

or combined ML-MO7S, as emulsifier. MO7S (non-ionic) and ML (ionic) are small-

molecule emulsifiers that possess steric and electrostatic stabilizing mechanisms, 

respectively. Meanwhile, SC is a surface-active protein with flexible structure that 

stabilizes the nanoemulsions by a combination of electrostatic and steric repulsion 

(electrosteric stabilizing mechanism) (Liu et al., 2016, Tan et al., 2016c). Finally, the 

combination of ML andMO7S (electrostatic-steric) was used to mimic the stabilizing 

mechanism of SC. Emulsifiers are critical components of a nanoemulsion and we believe 
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that the emulsifiers, each with its own stabilizing mechanism, will play an important role 

in the stability of emulsified droplet and protection and release of lipid-soluble bioactive 

compounds within the gastrointestinal tract. Therefore, the aim of this study was to study 

the impact of emulsifiers with different stabilizing mechanisms on the in vitro digestion 

and bioaccessibility of nanoemulsions loaded with ergocalciferol. 

 

4.2 Materials and methods 

4.2.1 Materials 

Sodium caseinate (SC), refined soybean oil, HPLC grade ethanol, and ɑ-amylase (015-

26372) were purchased from Wako Pure Chemical Industries (Osaka, Japan). 

Decaglycerol monooleate (MO7S) was provided by Sakamoto Yakuhin Kogyo Co., Ltd. 

(Osaka, Japan). Modified lecithin (ML; SLP WhiteLyso) was purchased from Tsuji Oil 

Mills Co., Ltd. (Tokyo, Japan). The following chemicals were purchased from Sigma-

Aldrich (St. Louis, MO): HPLC grade methanol and acetonitrile, mucin from porcine 

stomach, Type II (M2378), pepsin from porcine gastric mucosa (P7000), pancreatin from 

porcine pancreas (P7545) and bile extract porcine (B8631). All other chemicals used in 

the present work were of analytical grade. Milli-Q water having a resistivity of 18 MΩ 

cm was used to prepare all the solutions and nanoemulsions. 

 

4.2.2 Formulation of ergocalciferol-loaded O/W nanoemulsions 

Ergocalciferol nanoemulsions containing 95 wt% of aqueous phase (Milli-Q water with 

1 wt% of emulsifier) and 5 wt% of oil phase (soybean oil with 0.2 wt% ergocalciferol) 

were formulated by a high-pressure homogenization method (100 MPa, 4 Passes), which 

was described in Section 2.2.2 (Chapter 2). The emulsifiers used were ML, MO7S, SC or 
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ML-MO7S (ML: MO7S at a 1:1 ratio). The freshly produced nanoemulsions were then 

placed in a refrigerator (5 oC) for further analyses.    

 

4.2.3 In vitro digestion 

Ergocalciferol-loaded nanoemulsions prepared using different emulsifiers were subjected 

to an in vitro digestion model that simulated the mouth, stomach and small intestinal 

phases. The in vitro digestion model applied in our current study was based on those 

reported previously, with minor modifications (Qian et al., 2012, Xia et al., 2017). 

 

4.2.3.1 Mouth phase 

A simulated saliva fluid (SSF) containing 2.1g L-1 NaHCO3, 0.117 g L-1 NaCl, 0.14 g L-1 

KCl, 2.0 g L-1 α-amylase and 1 g L-1 mucin was prepared as described previously (Kong 

& Singh, 2008). Initial nanoemulsion sample (20 g) was mixed with an equivalent weight 

of SSF (20 g), and the mixture was adjusted to pH 7, if needed. The mixture was then 

shaken continuously at 100 strokes min-1 for 10 min using a temperature-controlled water 

bath at 37 °C (Personal-11, Taitec, Saitama, Japan).  

 

4.2.3.2 Stomach phase 

The simulated gastric fluid (SGF) was prepared by dissolving NaCl (2 g) and HCl (7 mL, 

35-37%) in 1 L of Milli-Q water and then adding 3.2 g of pepsin. Sample collected from 

mouth phase (20 g) was added into 20 g of SGF, and the pH of the mixture was adjusted 

to 2.5 using 2.5 mol L-1 NaOH solution. Simulations of digestion in stomach phase was 

performed by shaking the resulting mixture at 100 strokes min-1 for 2 h at 37 °C. 
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4.2.3.3 Small intestinal phase 

Thirty gram of sample collected from the stomach phase was adjusted to pH 7 using 

NaOH solution (2.5 M). Then, an aliquot (4 mL) of bile extract solution (46.8 mg mL-1 in 

phosphate buffer, pH 7) and 1 mL of calcium solution containing 110 mg of CaCl2 were 

then added into the 30 g of digesta under magnetic stirring (100 rpm min-1) at 37 oC. The 

pH of the resulting mixture was adjusted to 7, if needed. Next, 2.5 mL of freshly prepared 

pancreatin suspension (24 mg mL-1 in phosphate buffer, pH 7) was added to the mixture. 

From this point, the pH of the samples was controlled manually to maintain it at pH 7 by 

adding NaOH solution (0.5 M) to neutralize the free fatty acids (FFA) released from the 

lipid during digestion. The volume of the added NaOH against time was recorded during 

2 h of digestion in the small intestinal phase, and was then used to calculate the FFA 

release using the equation (4.1) (Ozturk et al., 2015c).    

%FFA(t) =
VNaOH(t) × MNaOH × mLipid

2 × WLipid
× 100 (4.1)       

where VNaOH (t) is the volume (L) of NaOH solution titrated at digestion time (min), 

MNaOH is the molarity of NaOH used (M), mLipid is the molecular weight of soybean oil 

(g/mol), and WLipid is the total mass (g) of soybean oil initially present in the samples 

during digestion in the small intestinal phase. 

 

4.2.4 Droplet size and size distribution measurement 

The measurement of droplet size was conducted according to the presented method in 

Section 2.2.3 (Chapter 2) 

 

4.2.5 ζ-potential measurement 

Prior to ζ-potential analysis, the samples from stomach phase were diluted 100 times with 
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water (pH 2.5), while all the other samples were diluted 100 times with phosphate buffer 

(5 mM, pH 7). And then the measurements were then conducted according to the 

presented method in Section 3.2.5 (Chapter 3). 

 

4.2.6 Ergocalciferol content measurement 

The content of ergocalciferol in the nanoemulsions was measured according to the 

presented method in Section 3.2.6 (Chapter 3).  

  

4.2.7 Bioaccessibility and chemical stability evaluation  

Ergocalciferol bioaccessibility in the nanoemulsion-based delivery system was 

determined by adopting a method described previously (Qian et al., 2012), with some 

modifications. In brief, an aliquot of the raw digesta (10 mL) was collected after the 

samples passed through the small intestinal phase, and then centrifuged at 9,000 g for 

60 min using a MX-307 centrifuge (Tomy Digital Biology Co., Ltd., Tokyo, Japan). 

Afterwards, an aliquot of the micelles phase was collected by passing the supernatant 

fraction through a syringe filter (0.45 µm). An aliquot of 0.5 mL raw digesta or micelles 

phases was mixed with 4.5 mL of ethanol, vortexed, ultra-sonicated for 30 min, and then 

filtered using a membrane filter (0.45 µm) before the ergocalciferol concentration 

analysis. The concentration of ergocalciferol in the raw digesta or micelles phases was 

then measured. The bioaccessibility and retention of ergocalciferol after digestion were 

calculated from the equations as follows: 

Bioaccessibility (%) =  
CMicelles

CInitial
× 100                (4.2)     

             Retention (%) =  
CDigesta

CInitial
× 100                       (4.3)                
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where CMicelles and CDigesta are the ergocalciferol contents recovered from micelles phase 

and raw digesta phase, respectively. CInitial is the ergocalciferol amount calculated in the 

initial nanoemulsion sample.  

   

4.2.8 Microstructural analysis 

Confocal scanning laser microscopy (Leica TCS SP8, Leica Microsystems Inc., 

Germany) was used to monitor the microstructural changes of samples before and after 

passing through each phase of digestion. Prior to confocal microscopy observation, 1 mL 

of each sample was mixed with 0.05 mL of Nile Red solution (1 mg mL-1 in ethanol) to 

stain the lipid phase. An oil-immersion objective lens was used to capture all 

microstructure images.  

 

4.2.9 Statistical analysis 

The statistical analysis was conducted according to the presented method in Section 2.2.4 

(Chapter 2). 

 

4.3 Results and discussion 

4.3.1 Effect of emulsifier type on droplet characteristics 

Initially, we investigated the influence of emulsifiers with different stabilizing 

mechanisms on the gastrointestinal fate of ergocalciferol-loaded nanoemulsions during 

digestion. Nanoemulsions were prepared using either MO7S, ML, SC or ML-MO7S as 

emulsifier. After each digestion phase, an aliquot of sample was taken for measurements 

of the droplet characteristics, including droplet size, size distribution, microstructure, and 

ζ-potential. 
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4.3.1.1 Initial nanoemulsions 

The droplet size, d4,3, was fairly small and similar for all the initial nanoemulsions 

stabilized using MO7S, ML, SC, or ML-MO7S: d4,3 = 148, 149, 142, and 150 nm, 

respectively (Fig. 4.1). In addition, all the samples had monomodal size distributions 

without relatively large droplets in the initial system (Fig. 4.2). Confocal images showed 

that the oil droplets in these nanoemulsions were uniformly distributed, without evidence 

of droplet aggregation (Fig. 4.3). These results suggested that the homogenization 

conditions used in our study were capable of producing stable emulsions containing nano-

sized droplets (d4,3 < 200 nm), regardless of the emulsifier type. For the small-molecule 

emulsifiers (ML, MO7S and ML-MO7S), their adsorption on the oil droplet surface was 

fast during the homogenization process, leading to the formation of nanoemulsions with 

small droplet sizes (Mao et al., 2009a). Protein-based emulsifiers are generally expected 

to result in larger droplet sizes due to their relatively lower absorption kinetics when 

compared with small-molecule emulsifiers (Mao et al., 2009a, Tan et al., 2016c). 

However, larger droplet size of SC-stabilized nanoemulsions comparing those stabilized 

by the other three emulsifiers was not observed in our study. For the SC-stabilized 

nanoemulsions, the mixture of surface-active casein molecule can form a thick layer with 

a combination of electrostatic and steric repulsion to prevent the newly-formed emulsion 

droplets from coalescing during the high-pressure homogenization, which presumably 

was responsible for the production of droplets with small sizes. The ζ-potential 

measurements revealed that all the initial electric charge of the nanoemulsions were of 

negative charge, with the magnitude highly dependent on the emulsifier type (Fig. 4.4). 

Relatively high ζ-potential values were obtained for nanoemulsions stabilized using ML, 
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SC and MLMO7S: -78, -50, and -65 mV, respectively. ML is an ionic emulsifier, and this 

intrinsic property of ML contributed towards the negative charge shown by ML-stabilized 

nanoemulsions. As for the case of SC-stabilized nanoemulsions, the ζ-potential will either 

be negative or positive charge depending on the pH of the nanoemulsions: pH either above 

or below the isoelectric point of SC (pI = 4.1-4.6) (Liu et al., 2016, Shu et al., 2016). 

Thus, in this study, the negative charge displayed by the SC-stabilized oil droplets could 

be attributed to the fact that the pH of primary nanoemulsions (around pH 7, data not 

shown) was much higher than the pI of SC. We anticipatedMO7S-coated oil droplets to 

possess an electric charge which is close to zero because MO7S is a non-ionic emulsifier. 

Unexpectedly, a moderate negative charge (-21 mV) was displayed by the MO7S-

stabilized nanoemulsions (Fig. 4.4). This may be due to the presence of impurities, such 

as FFA, in the oil phase or surfactant (Qian et al., 2012).   

 

4.3.1.2 Mouth phase 

After passing through the mouth phase, there was non-significant (p > 0.05) increase in 

d4,3 and little change in droplet size distributions of the nanoemulsions stabilized byMO7S, 

ML, and ML-MO7S (Figs. 4.1 and 4.2). These results were also confirmed by confocal 

microscopy, which showed that the oil droplets remained small and no droplet 

flocculation or coalescence occurred during the 10 min of incubation in the artificial 

saliva (Fig. 4.3). The observed high stability of these nanoemulsions was possibly related 

to the steric hindrance provided byMO7S and/or electrostatic repulsion generated by ML. 

In comparison, the droplet size of SC-stabilized nanoemulsions slightly increased from 

142 to 188 nm when the sample moved from the initial to the mouth phase.  In addition, 

the droplet size distribution of SC-stabilized nanoemulsions showed a small amount of 
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population with slightly larger droplet size after those had similar droplet dimensions to 

the initial sample (Fig. 4.2). Minor droplet coalescence was also detected by confocal 

images as shown in Fig. 4.3, suggesting that SC-stabilized nanoemulsions became slightly 

unstable towards droplet growth when exposed to the oral phase. Previous studies have 

reported that the depletion and / or bridging flocculation caused by the presence of mucin 

in the artificial saliva could contribute to the growth of oil droplets in protein-stabilized 

emulsions (Sarkar et al., 2009, Vingerhoeds et al., 2005, Zhang et al., 2015b). Generally, 

for all nanoemulsions, the ζ-potential remained fairly close to those displayed by the 

initial samples, even after being exposed to the artificial saliva (Fig. 4.4). The results 

indicated that the conditions of the mouth phase used in our study (neutral pH, and the 

presence of salt, mucin and ɑ-amylase) had little impact on the ζ-potential of the 

nanoemulsions. 

 

4.3.1.3 Stomach phase 

The droplet characteristics of the nanoemulsions after gastric digestion were highly 

dependent on the emulsifier type. The MO7S-stabilized nanoemulsions did not show 

changes in the droplet size (Fig. 4.1), size distribution (Fig. 4.2), and microstructure (Fig. 

4.3), suggesting that this emulsion system was highly stable against droplet aggregation 

under stomach conditions. The reason behind this observation could be related to the fact 

that the steric repulsion conferred by MO7S (a non-ionic emulsifier) is insensitive to the 

changes in pH, ionic strength, and protease activity (Zou et al., 2015). Conversely, there 

was an appreciable increase in droplet size for the nanoemulsions stabilized by ML and 

SC (Fig. 4.1). Measurements of size distributions and confocal images also showed that 

a fraction of large oil droplets was present in ML- and SC-stabilized nanoemulsions (Fig. 
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4.2 and 4.3). This indicated that these two nanoemulsions were highly unstable towards 

droplet growth after exposure to the stomach phase. A previous study has also found that 

emulsions stabilized by non-ionic emulsifiers were more stable towards flocculation and 

coalescence under gastric condition than those prepared using protein- and phospholipid-

based emulsifiers (Chang and McClements 2016). The instability of nanoemulsions 

stabilized by ML and SC under gastric phase was correlated with a series of 

physicochemical phenomenon: (i) the stomach phase reduced the electrostatic repulsion 

between ML and SC-coated droplets (as will be discussed later), thereby inducing 

aggregation; (ii) hydrolysis of the adsorbed protein layer by pepsin could possibly have 

reduced the ability of the protein layer to protect the droplets from growth; and (iii) the 

biopolymers might have promoted the depletion or bridging flocculation of oil droplets 

in the protein-stabilized nanoemulsions under acidic condition (Zou et al., 2015). 

Meanwhile, the nanoemulsions stabilized by the combined emulsifiers (MO7S and ML) 

were more resistant towards droplet growth as compared to the ML-stabilized ones, 

suggesting that the physical stability of nanoemulsions stabilized by ML could be 

improved by the addition of MO7S. This phenomenon was presumably attributed to the 

combined effects of steric hindrance and electrostatic interaction could help to protect the 

oil droplets from aggregating under the simulated conditions of the stomach phase. The 

magnitude of negative charge in all the nanoemulsions was significantly (p < 0.05) 

decreased after exposure to stomach phase (Fig. 4.4). The reduction in ζ-potential 

between ML and ML-MO7S coated droplets could be relate to two reasons: (i) the 

presence of salt might cause the electrostatic effect; and (ii) the anionic phosphate groups 

on ML have pKa values near 1.5, which would lose their negatively charge at low pH 

(Carvalho et al., 2014, Ozturk et al., 2014). As mention earlier, the SC-coated droplets 
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would be expected to be highly positively charged at highly acidic condition (pH 2.5), 

because of this pH value was well below the pI of SC. The anionic mucin molecules could 

absorb onto the cationic protein emulsified droplets in stomach phase, which has been 

reported in recent studies (Zou et al., 2015, Chang and McClements 2016). This effect 

may lead to the SC-stabilized nanoemulsions have a ζ-potential value near to zero.  

 

4.3.1.4 Small intestinal phase 

After 2 h of incubation in the small intestinal phase, a drastic increase in droplet size was 

observed in all samples (Fig. 4.1). Examination of the droplet size distribution revealed 

that the raw digesta for all the samples contained droplets with a broad size range (Fig.4.2). 

These measured droplets were presumably made up of a complex mixture of calcium salts 

sediment, non-digested oil, micelles, vesicles, and/or nondigested protein aggregates 

(Zhang et al., 2015b). The microscopy images also indicated the presence of visibly large 

particle aggregates in all the samples (Fig. 4.3). However, there was clearly a difference 

in the nature of droplets present in the raw digesta for the nanoemulsions prepared using 

different emulsifiers (Fig. 4.3). A numerous of irregularly-shaped clumps of small 

particles were observed in the nanoemulsions stabilized by small-molecule emulsifiers 

(MO7S, ML, and ML-MO7S). On the hand, there were many spherical droplets with large 

sizes present for the SC-stabilized nanoemulsions. Apparently, a full lipid hydrolysis led 

to the generation of a mixtures of vesicles and micelles present in the small emulsifier-

based nanoemulsions. On the other hand, partial digestion of lipid induced the 

coalescence between undigested oil droplets that was responsible for the large spherical 

droplets detected in the digesta of SC-based nanoemulsions. All samples exhibited 

relatively high negative electric charges after incubation in the small intestinal phase, as 
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seen in Fig. 4.4. The increase in the magnitude of negative charge on all the 

nanoemulsions could be attributed to several factors. Firstly, emulsifier molecules would 

be more negatively charged as the pH increased to 7 in small intestinal phase (Ozturk et 

al., 2015c). Secondly, the absorption of surface-active anionic substance (bile salt and 

phospholipids from bile extract) on the droplets would contribute to a relatively high 

negative charge at neutral pH. Thirdly, the presence of anionic free fatty acids generated 

from lipid digestion would also lead to a relatively high negative charge in the small 

intestinal phase. Similar trend in the ζ-potential when the nanoemulsions moved from 

stomach phase to small intestinal phase was also reported by other authors (Xia et al., 

2017, Zhang et al., 2015b).   

  

4.3.2 Effect of emulsifier type on lipid digestion 

The influence of emulsifier type on lipid digestion was determined by measuring the 

percentage of FFA released from the nanoemulsions in the small intestinal phase. 

According to Fig. 4.5a, there was an appreciable difference between the rate and extent 

of lipid digestion, depending on the emulsifier type used. The behavior of lipid digestion 

for the nanoemulsions stabilized by small-molecule emulsifiers (MO7S, ML and ML-

MO7S) showed relatively similar trends: most of the emulsified triacylglycerols were 

digested by lipase within 20 min, after which the digestion rate slowly reduced until a 

relatively constant plateau was reached. Looking at these nanoemulsions individually, we 

found that the initial rate of FFA release decreased in the following order: MO7S > ML-

MO7S > ML. There are two possible reasons behind the lowest initial lipid digestion 

detected in ML-stabilized nanoemulsions. Firstly, for the ML-stabilized nanoemulsions, 

extensive droplet flocs formed under gastric conditions, thus reducing the exposed surface 
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area and making it more difficult for pancreatic lipase to digest them when they move to 

the small intestinal phase (Zhang et al., 2015a, Zou et al., 2015). Secondly, it is known 

that calcium ion can bind with phospholipids, which is the main composition of ML 

(Sjoblom 2005). This interaction, to a certain extent, reduced the total amount of free Ca2+ 

present in the small intestinal phase, thereby decreasing the FFA release (Li et al., 2011, 

Zhang et al., 2015b).  In the case of nanoemulsions stabilized by SC, the initial rate and 

extent of FFA release was much lower than in those prepared using the small-molecule 

emulsifiers (Fig. 4.5a). This finding was in agreement with previous studies reported that 

SC-stabilized emulsions revealed slow rate of lipid digestion in the small intestinal phase 

(Li et al., 2012, Zhang et al., 2015b). We believe the severe aggregation of SC-coated 

lipid droplets within the stomach phase, and the reduction of free Ca2+ due to calcium 

bridging between the caseins were the main reasons to explain its lowest initial rate of 

lipid digestion. In addition, the SC forms thick protective layer around the lipid droplets, 

which might also have inhibited the access of pancreatic lipase to the triacylglycerols. As 

indicated in Fig. 4.5b, there was an appreciable amount of undigested oil remaining in the 

SC-stabilized nanoemulsions after full digestion. This finding was further confirmed 

through the images obtained from the confocal microscopy (Fig. 4.3). We suppose this 

was because of lipase having insufficient time to fully access the SC-coated lipids due to 

the severe flocculation of the lipid droplets in the small intestinal phase.  

           

4.3.3 Effect of emulsifier type on bioaccessibility and retention of ergocalciferol after 

digestion 

4.3.3.1 Ergocalciferol bioaccessibility  

The influence of emulsifiers with different stabilizing mechanisms on the bioaccessibility 
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of ergocalciferol was evaluated by measuring the ergocalciferol concentration in the 

micelle fraction. According to Fig. 4.6a, there were no significant (p > 0.05) differences 

in the ergocalciferol bioaccessibility between nanoemulsions stabilized using different 

small-molecule emulsifiers. We believe that this finding was possibly due to MO7S, ML 

and ML-MO7S emulsifiers generating similar percentages of FFA release at the end of 

the digestion process in the small intestinal phase. Conversely, the bioaccessibility of 

ergocalciferol in SC-stabilized nanoemulsions was only 12%, which was much lower than 

those shown by the other three nanoemulsions. Several potential reasons could be used to 

account for this phenomenon; (i) the lower amount of FFA released from SC-stabilized 

nanoemulsions resulted in lesser formation of mixed micelles available to solubilize the 

ergocalciferol, (ii) the oil droplets in the SC-stabilized nanoemulsions were not fully 

digested, therefore more ergocalciferol was retained within this undigested oil portion, 

(iii) the interaction between ergocalciferol and β-casein, one of the major protein fractions 

of SC, might have promoted the aggregation and precipitation of mixed micelles during 

digestion (Forrest et al., 2005, Mun et al., 2015), and (iv) MO7S and ML might participate 

in the formation of mixed micelles, thereby increasing the capacity to solubilize 

ergocalciferol.  

 

4.3.3.2 Ergocalciferol retention 

Finally, the stability of ergocalciferol after full digestion was also examined since it is one 

of the major factors affecting its bioaccessibility.  According to Fig. 4.6b, almost no loss 

of ergocalciferol was observed in any of the samples, which demonstrated that this 

encapsulated oil-soluble vitamin was very stable against degradation under the digestion 

conditions. Previous studies also showed that β-carotene (a type of carotenoids with poor 
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chemical stability) were chemical stable in nanoemulsion-based system during the 

digestion process, which was attributed to the short digestion time (Qian et al., 2012, Yi 

et al., 2014).      

 

4.4 Conclusions 

The present work has shown the importance of emulsifier type in the ergocalciferol-

loaded nanoemulsions on their potential biological fate (e.g., emulsion droplets stability, 

digestibility, and ergoaclciferol bioaccessibility and stability) within an in vitro digestion 

model. The physical stability of the prepared nanoemulsions during different phases of 

digestion was evaluated by measuring their droplet size, size distribution, ζ-potential and 

microstructure. The obtained results indicated that the physical stability of the 

nanoemulsions after passing through the mouth, stomach, and small intestinal phases was 

strongly dependent on the type of emulsifier used. Emulsifier type considerably affected 

the initial rate of FFA release from nanoemulsions by pancreatic lipases, and the results 

demonstrated that the access of pancreatic lipase to emulsified oil droplets decreased in 

the following order: MO7S > ML-MO7S > ML > SC.The nanoemulsions stabilized by 

small molecular emulsifiers (MO7S, ML and ML-MO7S) had similar ergocalciferol 

bioaccessibility, which may be related to the similar amount of lipid digestion products 

present. However, SC-stabilized nanoemulsions gave much lower ergocalciferol 

bioaccessibility than the other three nanoemulsions, which could be attributed to the fact 

that there was more undigested oil and less mixed micelles that solubilize the released 

ergocalciferol. The ergocalciferol remained stable in all samples, proving that the 

nanoemulsion-based delivery system was suitable to protect this oil-soluble vitamin from 

degradation under the in vitro digestion conditions. We are positively confident that the 
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findings obtained from this study will be important and useful for future designs of 

nanoemulsion-based delivery system to encapsulate lipophilic functional compounds, 

such as vitamin D. 
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Fig. 4. 1: Effect of emulsifier type on volume mean diameter (d4,3) of nanoemulsions 

loaded with ergocalciferol after exposure to different phases of the in vitro digestion 

model. 

 

 

 

 

 



 

 

80 

 

 

 

 

 

 

 

Fig. 4. 2: Effect of emulsifier type on droplet size distribution of nanoemulsions loaded 

with ergocalciferol after exposure to different phases of the in vitro digestion model. 
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Fig. 4. 3: Effect of emulsifier type on the microstructure (confocal microscopy) of 

nanoemulsions loaded with ergocalciferol after exposure to different phases of the in vitro 

digestion model. (Scale bar = 20 μm). 
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Fig. 4. 4: Effect of emulsifier type on the electric charge (ζ-potential) of nanoemulsions 

loaded with ergocalciferol after exposure to different phases of the in vitro digestion 

model. 
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(a) 

 

(b) 

 

 

Fig. 4. 5: (a) Effect of emulsifier type on the release of free fatty acids (FFA) from 

nanoemulsions loaded with ergocalciferol during digestion in small intestinal phase. (b) 

Effect of emulsifier type on the final amount of FFA released after 2 h of small intestinal 

digestion.  
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(b) 

 

Fig. 4. 6: Effect of emulsifier type on the bioaccessibility of ergocalciferol in 

nanoemulsion-based delivery system. (b) Effect of emulsifier type on the chemical 

stability of ergocalciferol after full digestion.  
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Chapter 5 

Formulation and Characterization of Ergocalciferol 

Nanodispersions Stabilized by Modified Lecithin and  

Sodium Caseinate 
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5.1 Introduction 

Vitamin D is one of the essential bioactive compounds for human being, due to its special 

health-promoting functionality. Previous studies have demonstrated that this substance 

contributes to the development of bone, teeth and cartilage (Cranney et al., 2008, Hark 

and Deen 2005). Moreover, it also prevents cancer, and enhances the heart and immune 

system (Haham et al., 2012, Holick 2004c). Ergocalciferol is a type of plant-based 

vitamin D, which is naturally present in a low amount in wild mushrooms, whereas 

another type called cholecalciferol can be produced in the human skin via the exposure 

of sunlight (Guttoff et al., 2015). However, there is still an estimated one billion people 

worldwide who either have vitamin D deficiency or insufficiency due to limited sun 

exposure, extensive UV-protecting sun cream usage, or poor dietary intake (Guttoff et al., 

2015, Khalid et al., 2015). For these above-mentioned reasons, fortified food and 

beverage products with vitamin D are gaining attention in food industry nowadays. 

However, vitamin D has poor water-solubility, chemical instability towards 

environmental stresses and variable oral bioavailability (Haham et al., 2012, Tsiaras and 

Weinstock 2011), which strongly limit the application of this vitamin as a functional 

ingredient to be incorporated into aqueous-based food products. In order to overcome 

these drawbacks in commercial usage, numerous efforts have been carried out to improve 

their water-solubility, stability and bioavailability through entrapment of this 

nutraceutical component into various types of colloidal delivery systems (Guttoff et al., 

2015, Abbasi et al., 2014, Mohammadi et al., 2014, Ozturk et al., 2015c, Patel et al., 

2012).  

Among these delivery systems, lipid-free nanodispersions consisting of fine nano-sized 

dispersed particles (20-200 nm) in aqueous phase have received great attention recently 
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in food, cosmetic and pharmaceutical applications, due to their high optical clarity and 

impressive improvement in solubility, stability and bioavailability (Anarjan et al., 2015, 

Acosta 2009). There are two approaches, namely high-energy or low-energy methods, 

used to produce fine nanodispersions. In the high-energy approach, e.g. emulsification-

evaporation method, certain expensive instrument such as high-pressure homogenizers, 

microfluidizers or ultrasonic probes are required to generate huge amount of disruptive 

forces to break large particles into nanoparticles. However, this approach might be 

undesirable for preparing nanodispersions containing heat-sensitive bioactive 

components due to the considerable generation of heat during the processing (Tan et al., 

2016b). Thus, the low-energy approach, including methods such as solvent displacement, 

emulsification-diffusion and spontaneous emulsification, is starting to gain popularity 

currently due to its simplicity and cost-effectiveness (Tan et al., 2016b). 

During the production of nanodispersions via either high-energy or low-energy 

methods, an emulsifier/surfactant is crucial for the formation of nanodispersed particles 

and to prevent them from aggregation against the destabilization process. In addition, it 

has been reported that this emulsifier layer could act as a barrier to protect the coated 

bioactive compounds from degradation by limiting the attack of oxidation inducers like 

free radicals and metal ions (Coupland and McClements 1996, Tan et al., 2016c). Many 

previous studies used synthetic surfactants (such as polysorbates, polyglycerol ester of 

fatty acids, sodium dodecyl sulfate and so on) to produce nanodispersion-based delivery 

system for nutraceuticals with poor water-solubility (Tan et al., 2016c, Tan and Nakajima 

2005, Tan et al., 2016a). However, consumers nowadays are demanding commercial food 

or beverage products containing ‘label-friendly’ ingredients in consideration of their 

health. Therefore, there is considerable interest in utilizing the more label-friendly 
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emulsifiers (such as natural emulsifiers) to produce nanodispersion- or nanoemulsion-

based delivery systems. Sodium caseinate (SC), is a natural protein emulsifier, widely 

used as an effective emulsifying agent in the food industry. SC is a good alternative to 

synthetic surfactants, since it can facilitate the formulation of colloidal delivery systems 

and stabilize the emulsified droplets/particles against aggregation owing to a combination 

of electrostatic and steric repulsion (Liu et al., 2016). In comparison to other protein 

emulsifiers (such as whey protein isolate and whey protein concentrate), SC has better 

thermal stability due to its relatively disordered structure (Chu et al., 2008). Natural 

lecithin derived from soybean, egg or milk, should be modified via chemical or enzymatic 

techniques before it is effective at stabilizing emulsion/dispersion (Weete et al., 1994). 

Modified lecithin (ML) is a zwitterionic emulsifier with effective emulsifying property, 

and provides high electrostatic repulsion to prevent the coated droplets/particles from 

growth. The ML emulsifier used in our work is an enzymatically modified phospholipid 

derived from the hydrolysis of soy lecithin. This kind of modified phospholipid could 

also be considered as a natural emulsifier, because both the materials and the enzymatic 

process used to produce the phospholipids is natural (van Hoogevest and Wendel 2014).  

To the best of our knowledge, information related to the formulation of ergocalciferol 

nanodispersions using SC or ML via low-energy methods is still limited. In the current 

work, we aimed to produce ergocalciferol nanodispersions using the natural emulsifiers 

(SC or ML) via solvent displacement method, and then compare the stabilizing properties 

of the two emulsifiers against different environmental conditions (such as pH, ionic 

strength and thermal treatment) and during long-term storage at 4 ºC. In addition, the 

bioaccessibility of ergocalciferol nanodispersions in commercial lemon juice and milk as 

model system was also investigated using an in vitro gastrointestinal digestion model. 
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The study provides important information for utilizing natural emulsifiers in the 

development of label-friendly nanodispersion-based delivery system for water-insoluble 

vitamins or other hydrophobic functional compounds. 

 

5.2 Materials and methods 

5.2.1 Materials 

Ergocalciferol, sodium caseinate, HPLC grade methanol, acetonitrile and ethanol were 

purchased from Wako Pure Chemical Industries (Osaka, Japan). Pepsin (from porcine 

gastric mucosa, P7000), pancreatin (from porcine pancreas, P7545) and bile extract 

(porcine, B8631) were purchased from Sigma Aldrich (St. Louis, MO, USA). Modified 

lecithin (SLP; WhiteLyso) was kindly provided by Tsuji Oil Mills Co. Ltd. (Tokyo, Japan). 

Lemon juice (commercial brand of C1000 Green Lemonade) and milk (commercial brand 

of Meiji Oishii Gyunyu) were purchased from a local supermarket in Japan. The lemon 

juice contains sodium (255 mg), carbohydrate (23g), vitamin C (1000 mg), citric acid 

(3000 mg) and polyphenol (10 mg) per 500 mL. The milk contains sodium (85 mg), 

calcium (227 mg), protein (6.8 g), fat (7.8 g), and carbohydrate (9.9 g) per 200 mL. Milli-

Q water was used for the preparation of all the solutions and nanodispersions in the 

current study. All other chemicals used in this work were of analytical grade and used as 

such during experimentation.     

 

5.2.2 Preparation of ergocalciferol nanodispersions 

Ergocalciferol nanodispersions were produced by using solvent displacement method 

according to a previous study with certain modifications (Chu et al., 2007). The Milli-Q 

water containing 0.1 wt% ML or SC were used as aqueous phase. Before preparation, SC 
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solution was centrifuged at 9,000 × g for 20 min at room temperature to remove any un-

dissolved particles. The organic phase consisted of ergocalciferol at a concentration of 1 

mg mL-1 in ethanol. The organic phase (5 mL) was then injected into 45 mL aqueous 

phase via a 22-gauge needle, under magnetic stirring at 550 rpm for 10 min.  The flow 

rate of injection was set at 2.5 mL min-1 using a syringe pump (Model 11, Harvard 

Apparatus Inc., MA, USA). After preparation, the ethanol was immediately removed 

from the nanodispersions using a rotary evaporator (Eyela, Tokyo Rikakikai, Tokyo, 

Japan) under reduced pressure (67 hPa) at a temperature of 36 ºC for 45 min.  

 

5.2.3 Nanodispersions stability testing 

The stability of ergocalciferol nanodispersions when exposed to different environmental 

conditions and during long-term storage was investigated. 

   

5.2.3.1 Effect of pH on the stability of ergocalciferol nanodispersions 

Fresh nanodispersions were diluted with the same volume of phosphate buffer (5 mM, 

pH 7). The mixture was adjusted to different pH values (2-7) by using 1 mol L-1 HCl or 

1 mol L-1 NaOH solution. The samples were then transferred to glass vials and stored at 

4 ºC in the refrigerator for 24 h before analysis. 

 

5.2.3.2 Effect of ionic strength on the stability of ergocalciferol nanodispersions 

Fresh nanodispersions (2 mL) were placed in glass vials, and the final salt concentration 

adjusted to a range of 0-500 mM by adding 2 mL of salt solution (either NaCl or CaCl2). 

Samples were later gently mixed and then stored at 4 ºC for 24 h prior to analysis. 
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5.2.3.3 Effect of thermal treatment on the stability of ergocalciferol nanodispersions 

Fresh nanodispersions (5 mL) were transferred to a glass test tube and sealed well using 

a metallic cap. The samples were placed in an autoclaving device (KTS-2346, ALP Co., 

Ltd, Tokyo, Japan) at 120 ºC for 0-60 min. The mean particle size was then measured 

after cooling at room temperature. 

 

5.2.3.4 Storage stability of ergocalciferol nanodispersions 

The nanodispersions were added with sodium azide (0.02 wt%) as an antimicrobial agent 

to inhibit any microbial growth. Samples were then transferred to glass tubes and 

incubated at 4 ºC for 30 days under dark condition. The particle size and ergocalciferol 

content in the nanodispersions system were measured at 10-day intervals. 

 

5.2.4 Ergocalciferol quantification 

The content of ergocalciferol in the nanoemulsions was measured according to the 

presented method in Section 3.2.6 (Chapter 3).  

 

5.2.4 In vitro gastrointestinal digestion  

The ergocalciferol nanodispersions, after overnight storage at 4 ºC, were used for 

experiments in this section. The nanodispersions were diluted with the same volume of 

lemon juice, milk or phosphate buffer (5 mM, pH 7) before they were passed through a 

two-step digestion model. We applied this in vitro gastrointestinal digestion model, which 

simulates the gastric and small intestinal conditions, according to a previous study, with 

minor modifications (Mun et al., 2015).  
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Stage I (stomach phase): The fresh simulated gastric fluid (SGF) was prepared by 

dissolving 2 g of NaCl and 7 mL concentrated HCl (35-37%) with Milli-Q water up to 1 

L and adding 3.2 g of pepsin. The diluted ergocalciferol nanodispersions (15 mL) in 

lemon juice, milk or phosphate buffer as mentioned above were mixed with 15 mL of 

SGF and then the pH was adjusted to pH 2.5 by using 2.5 mol L-1 NaOH. The resulting 

samples were then maintained at 37 °C with continuous shaking at 100 strokes min-1 for 

2 h in a Personal-11 water bath (Taitec, Saitama, Japan). 

Stage II (small intestinal phase): The samples from the stomach stage were adjusted to 

pH 7 using 2.5 mol L-1 NaOH. Then, 3.5 mL of freshly prepared bile extract solution 

(187.5 mg/3.5 mL in phosphate buffer, pH 7) and 1.5 mL of salt solution (150 mM NaCl 

and 10 mM CaCl2 in Milli-Q water) were added into the samples. The mixture was then 

adjusted back to pH 7, followed by the addition of 2.5 mL freshly prepared pancreatin 

suspension (187.5 mg/2.5 mL in phosphate buffer, pH 7). The samples were then 

incubated with continuous shaking at 100 strokes min-1 for 2 h in the water bath with 

temperature controlled at 37 °C. For the diluted nanodispersions in milk, NaOH (2.5 mol 

L-1) was added at 30 min intervals to neutralize the free fatty acid released from the milk 

lipid digestion and maintain the condition at pH 7.   

 

5.2.5 Particle size, size distribution and polydispersity index (PDI) measurement 

The measurements of particle size, size distribution and PDI of resulting ergocalciferol 

nanodispersions were obtained via dynamic light scattering technique using Zetasizer 

Nano ZS (Malvern Instruments Ltd, Worcestershire, UK). The nanodispersions without 

further dilutions were automatically measured at 25 ºC. The refractive indexes for 

ergocalciferol and water were set at 1.51 and 1.33, respectively. The intensity of the 
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scattered light was analyzed at an angle of 173º (non-invasive backscatter detection). The 

particle size of the nanodispersions was expressed as Z-average mean diameter (dav). The 

measurement of each sample was repeated thrice. 

 

5.2.6 ζ-potential measurement 

The ζ-potential measurements of ergocalciferol nanodispersions without further dilution 

were conducted according to the presented method in Section 3.2.5 (Chapter 3).  

 

5.2.7 Ergocalciferol bioaccessibility and stability after digestion 

The Ergocalciferol bioaccessibility and stability after digestion were conducted according 

to the presented method in Section 4.2.7 (Chapter 4).  

 

5.2.8 Statistical analysis 

The statistical analysis was conducted according to the presented method in Section 2.2.4 

(Chapter 2). 

 

5.3 Results and discussion 

5.3.1 Formulation of ergocalciferol nanodispersions 

Fig. 5.1 shows the dav, PDI and size distribution of ergocalciferol nanodispersions 

stabilized by ML and SC. The results indicated that both ML- and SC-stabilized 

nanodispersions have monomodal size distribution. The nanodispersions produced using 

ML had smaller dav of 56 nm with a PDI of 0.213 in comparison to the SC-stabilized 

nanodispersions which showed a dav of 112 nm and PDI of 0.137. During solvent 

displacement process, ML and SC molecules in the aqueous phase adsorbed onto the 
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surface of ergocalciferol particles, and then formed a protective layer to prevent the 

particles from aggregation. The observed differences in dav between ML- and SC- 

stabilized nanodispersions were related to the difference in the composition of the two 

emulsifiers. SC is a natural biopolymer containing larger molecules that adsorb more 

slowly onto the surface of ergocalciferol particles than emulsifier with smaller molecules 

such as ML. The lower adsorption rate of emulsifier could induce relatively higher 

coalescence during solvent diffusing process, thus leading to bigger dav in SC-stabilized 

nanodispersions. In addition, SC forms thicker interfacial layer around the particles, 

which also resulted in nanodispersions with bigger dav than those formulated with ML 

(Ozturk et al., 2015a).  

 

5.3.2 Effect of pH on the stability of ergocalciferol nanodispersions 

The effect of pH on the changes in dav and ζ-potential of ergocalciferol nanodispersions 

was investigated. Fig. 5.2a indicates that nanodispersions prepared using SC were only 

stable against particle size aggregation at pH 2 to 3 and 6 to 7. However, the 

nanodispersions became opaque with the dav increasing notably at pH 4. The 

nanodispersions were highly unstable to phase separation with a white precipitation 

observed at the bottom of the glass vials at pH 5. Fig. 5.2b shows the ζ-potential of SC-

stabilized particles with function of pH that provided some insight into the 

nanodispersions instability. The SC-stabilized nanodispersions exhibited positive charge 

well below the isoelectric point of caseinates (pI≈4.6) and highly negative charge above 

the pI. For SC-coated nanodispersions, the stability was primarily maintained by the 

strong electrostatic repulsion (combined with minimal steric hindrance) between the 

particles. Thus, particle flocculation occurred in SC-stabilized nanodispersions when the 
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electrostatic repulsion is not strong enough to overcome the attractive interactions (e.g., 

van der Waals and hydrophobic) acting between the particles at pH close to the pI. On the 

contrary, pH had little impact on the stability of ML-stabilized ergocalciferol 

nanodispersions, since their particle size did not increase across the range of pH as 

indicated in Fig. 5.2a. The good stability of ML-coated nanodispersions against different 

pH was due to the strong electrostatic repulsion between the highly negative charged 

particles, which was confirmed in Fig. 5.2b. The high negative charge allowed the 

particles to constantly repel one another, leading to inhibition towards particles 

aggregation. 

 

5.3.3 Effect of ionic strength on the stability of ergocalciferol nanodispersions  

The addition of minerals into foods and beverages may occur in commercial applications. 

Therefore, we examined the stability of ML- and SC-stabilized nanodispersions in the 

presence of salt such as NaCl or CaCl2 at different concentrations (0-500 mM). 

  

5.3.3.1 Effect of NaCl on the stability of ergocalciferol nanodispersions 

All the samples exhibited excellent stability against NaCl addition up to 500 mM, without 

showing any significant changes in visible appearance and dav (data not shown). For the 

nanodispersions containing SC-stabilized particles, similar result was reported in a 

previous study whereby 0.1% SC stabilized lutein nanodispersions were stable against 

NaCl concentration (0-500 mM) (Tan et al., 2016c). On the other hand, it has been 

reported that extensive particle size growth occurred at > 150 mM NaCl for the β-carotene 

nanodispersions stabilized using 1% SC (Chu et al., 2008). The observed difference in 

these results might be related to the differences in SC concentration used in the two 
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studies. The SC concentration used in their study (Chu et al., 2008) was much higher than 

the one used in our study. It is presumed that the large amount of free caseinate molecules 

in the aqueous phase might undergo consecutive self-association with increasing NaCl 

concentration, and exist as aggregates in the nanodispersions (Swaisgood 2003).   

 

5.3.3.2 Effect of CaCl2 on the stability of ergocalciferol nanodispersions 

Fig. 5.3a depicts the effect of CaCl2 addition on the changes in particle size of 

nanodispersions produced using ML and SC. In general, all the nanodispersions stabilized 

by ML became unstable with a slight increase in dav when they were subjected to solution 

containing CaCl2. The samples were most sensitive to particle growth at the lowest tested 

CaCl2 concentration (100 mM), whereas the particle size slightly decreased when the salt 

concentration was increased from 100 to 500 mM. As mentioned before, the ML provides 

electrostatic repulsive forces between the particles to prevent them from coming closer 

together and thus, preventing aggregation. The addition of divalent Ca2+ ions could screen 

the negative charge, and therefore reduce electrostatic repulsion between the particles, 

which led to the instability of ML-stabilized nanodispersions. This explanation was 

confirmed by Fig. 5.3b, which shows a decrease in the magnitude of ζ-potential with 

increasing CaCl2 concentration in ML-stabilized nanodispersions. On the other hand, the 

binding of Ca2+ ions to zwitterionic phospholipids at higher concentration could form 

thicker layer (Sjoblom 2005), which could explain the slight increase in the stability of 

ML-stabilized nanodispersions with further increasing salt concentration. In comparison, 

SC-stabilized nanodispersions became opaque and showed significant increase in particle 

size with increasing CaCl2 concentration. The instability was attributed to the screening 

effect of Ca2+ ions on the electrostatic repulsion between SC-coated particles as described 
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in this section earlier, and this is further confirmed by the drastic drop in the ζ-potential 

of SC-stabilized nanodispersions (Fig. 5.3b).  In addition, Ca2+ addition could induce 

calcium bridges between the protein emulsifier and promote extensive aggregation in the 

SC-stabilized nanodispersions (Teo et al., 2016).                            

 

5.3.4 Effect of thermal treatment on the stability of ergocalciferol nanodispersions  

The influence of thermal treatment on the physical stability of ergocalciferol 

nanodispersions was tested in this section. Fig. 5.4 illustrates that ML-stabilized 

nanodispersions were stable against high temperature, since the particle size remained 

constant across the entire range of heating time.  Probably, the electrostatic repulsion 

between ML-stabilized nanoparticles was still strong enough to prevent them from 

coming closer together, even during 60 min of heating at 120 ºC. In comparison, SC-

stabilized nanodispersions became unstable after thermal treatment, with an appreciable 

increase in particle size from 107 nm to 174 nm after 60 min of heating. In addition, a 

slight decrease in transparency was observed in SC-stabilized nanodispersions with 

increasing heating time, which was attributed to the increase in the particle size. The 

reason behind the thermal instability of SC-stabilized nanodispersions is that heating 

induced the dephosphorylation of serine phosphate groups in the caseinate molecules, 

which then led to a reduction in the negative molecule charge, thus promoting casein–

casein interaction (Guo et al., 1989).  

 

5.3.5 Long-term storage stability of ergocalciferol nanodispersions 

It is imperative to determine the shelf life of nanodipersions for potential food and 

beverage applications. Thus, we investigated the long-term physicochemical stability of 
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ergocalciferol nanodispersions formed using ML or SC during storage at 4 ºC for 30 days. 

These tests were performed using the nanodispersions at neutral pH without salt addition.  

 

5.3.5.1 Physical stability of ergocalciferol nanodispersions during storage 

Fig. 5.5a shows that there was no distinct increase in the dav for ML-stabilized 

nanodispersions after 30 days of storage at 4 ºC. There are several factors that explain the 

high long-term physical stability of nanodispersions prepared using ML. Firstly, the 

Brownian motion of tiny particles in ML-stabilized nanodispersions have the capability 

of overcoming the gravitational separation force that usually leads to nanodispersions 

instability (Tadros et al., 2004). Secondly, ergocalciferol as a water-insoluble compound, 

limits the destabilizing effect of Ostwald ripening (McClements and Rao 2011). Thirdly, 

the negative charge of ML-stabilized ergocalciferol particles was sufficient to inhibit 

particles from aggregating with each other during the tested period of storage. In 

comparison, we observed a slight increase in dav for SC-stabilized nanodispersions during 

the storage period. Nevertheless, the overall increase in dav after 30 days of storage was 

relatively small (from 122 nm to 134 nm), thus we consider them to be generally stable. 

The most likely reason behind the observed slight increase in the dav of SC-stabilized 

nanodispersions was depletion flocculation caused by the presence of unadsorbed 

caseinate in the aqueous phase (Dickinson and Golding 1997). The slow growth rate was 

ascribed to the small particle size and the slow rate of Ostwald ripening in SC-stabilized 

nanodispersions as described earlier. In addition, the strong electrostatic surface potential 

combined with some steric repulsion between the particles formed using SC could also 

inhibit the particles from aggregation. 
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5.3.5.2 Chemical stability of ergocalciferol during storage 

The initial ergocalciferol concentrations in ML- and SC-stabilized nanodispersions were 

125 ± 4 and 119 ± 5 mg/L, respectively (data not shown). Fig. 5.5b shows the changes in 

ergocalciferol retention of nanodispersions produced using ML and SC during storage at 

4 ºC. As expected, the nanodispersions containing SC-coated particles had good chemical 

stability, with only slight ergocalciferol loss of 8.5% at the end of the 30 days of storage. 

This result is in agreement with a previous study that evaluated vitamin D3-loaded casein 

micelles prepared by using ultra-high-pressure homogenization. Only a slight loss of 

vitamin D3 (≈10% loss) was observed over a period of 28 days at 4 ºC (Haham et al., 

2012). It is well established that protein emulsifier is effective at protecting encapsulated 

bioactive compounds with low stability (such as lutein and β-carotene) from degradation 

and oxidation due to its ability to form thick interfacial layer on the particles and iron-

chelating property (Tan et al., 2016c, Yin et al., 2009). We expected ergocalciferol to be 

more susceptible to degradation in nanodispersions with smaller particle size. We 

reasoned that smaller particle size means a larger specific surface area, and this would 

cause ergocalciferol to be exposed to oxidation or decomposition more quickly. However, 

in our study, no sign of ergocalciferol loss was observed in ML-stabilized nanodispersions, 

although the particle size was much smaller than those in SC-stabilized nanodispersions. 

This could be due to the fact that phospholipids emulsifiers can also act as an effective 

anti-oxidizing agent to retard the loss of ergocalciferol by reducing permeation of free 

radicals across the particle interface (Pan et al., 2013). Overall, the results suggested that 

both ML and SC are excellent natural emulsifiers that may be suitable for producing 

ergocalciferol nanodispersions with long-term storage stability.              
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5.3.6 Ergocalciferol bioaccessibility and stability after digestion 

Nanodispersion-based system for vitamin D or other bioactive compounds could be 

incorporated into other water-based products such as fruit juice and milk. Therefore, we 

investigated the influence of emulsifier type (ML and SC) and the incorporation of lemon 

juice or milk on the bioaccessibility and stability of ergocalciferol nanodispersions using 

an in vitro gastrointestinal digestion model. The nanodispersions with the addition of 

phosphate buffer was used as control. In the absence of milk, ML-stabilized 

nanodispersions presented much higher bioaccessibility (≈70%) as compared to those 

stabilized by SC (≈40%), which suggested that the nature of interfacial layer coating on 

the particles has a major impact on their bioaccessibility (Fig. 5.6). A previous study also 

showed similar result whereby curcumin nanoparticles exhibited low bioaccessibility 

(<35%) when coated with zein (another type of protein) (Zou et al., 2016). The difference 

in ergocalciferol bioaccessibility between ML- and SC-stabilized nanodispersions can be 

partially attributed to the difference in the structure of the emulsifier within the digestion 

period. Unlike ML, SC undergoes hydrolysis in the simulated stomach fluid containing 

pepsin (protein digestive enzyme), and this reduces their ability to prevent particles from 

growth and precipitation after small intestinal digestion (Agboola and Dalgleish 1996, 

Qiu et al., 2015, Mun et al., 2015). In addition, the simple mixed micelles formed by bile 

salts and phospholipids from the bile extract may not be capable of solubilizing the 

ergocalciferol molecule released from SC-stabilized nanodispersions effectively. The 

higher bioaccessibility for nanodispersions stabilized by ML was presumably associated 

with the stronger ability of this emulsifier to inhibit ergocalciferol particles from 

aggregation at the end of the digestion period. Another possible explanation for the 

relatively higher ergocalciferol bioaccessibility for ML-stabilized nanodispersions is that 
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ML formed relatively smaller particle size than SC in the initial delivery system. Pervious 

study has shown that the initial particle size of dispersion significantly influenced the 

micelle formation efficiency for β-carotene, with larger particle size resulting in lower 

bioaccessibility (Wang et al., 2012a). Fig. 5.6 also indicated that the presence of milk 

significantly improved the ergocalciferol bioaccessibility (increased to ≈ 82%) for both 

ML- and SC-stabilized nanodispersions. Milk, known as a natural oil-in-water emulsion, 

can be digested within the small intestine phase containing pancreatin, and then release 

the free fatty acids and monoacyglycerols from the lipid phase. The fatty acids, 

monoacyglycerols, bile salts and phospholipids in the small intestinal fluid can form 

complex mixed micelles, which significantly increase their capacity for solubilizing the 

hydrophobic ergocalciferol (Mun et al., 2015, Zou et al., 2016). 

We also evaluated the chemical stability of ergocalciferol in the end of the in vitro 

gastrointestinal digestion process (Fig. 5.7). In general, the degradation of ergocalciferol 

was relatively low for all samples, with more than 83% of the initial ergocalciferol 

remaining at the end of the simulated intestinal digestion. It is well known that vitamin D 

is quite sensitive to decomposition when exposed to acidic conditions or elevated 

temperatures (Khalid et al., 2015, Grady and Thakker 1980). Therefore, the slight loss of 

ergocalciferol found in our study is most likely due to the acid-degradation in gastric 

phase and thermal-degradation (37 ºC) during the whole digestion period. According to 

Fig. 5.7, the extent of ergocalciferol decomposition was slightly slowed down under 

simulated gastrointestinal conditions when the nanodispersions was incorporated with 

milk. We believe the lesser loss of ergocalciferol for the nanodispersions in the presence 

of milk was related to the iron-chelating and anti-oxidative properties of the high level of 

peptides released from the milk protein under simulated gastrointestinal conditions (Tan 
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et al., 2016c). 

 

5.4 Conclusions 

In the current study, nanodispersion-based delivery systems for ergocalciferol were 

successfully fabricated via solvent displacement method using ML and SC as emulsifiers. 

In comparison with SC, ML was a more effective emulsifier at forming nanodispersions 

containing smaller particles. SC-stabilized nanodispersions were unstable to particle 

growth when near the isoelectric point (pH 4 and 5) of protein, heating and in the presence 

of CaCl2 addition. However, instability with slight increase in particle size were observed 

in ML-stabilized nanodispersions only when they were added with CaCl2 solution. Both 

ML- and SC-formed nanodispersions exhibited good physical and chemical stabilities 

during storage at 4 ᵒC for a period of 30 days. The study of in vitro gastrointestinal 

digestion demonstrated that in the absence of milk, the emulsifier type could affect the 

ergocalciferol bioaccessibility of the nanodispersions. Our results also indicated that the 

presence of milk in nanodispersions could significantly improve the bioaccessibility of 

ergocalciferol after digestion.  
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(a) 

 

(b) 

 

 

Fig. 5. 1: Effect of emulsifier type on the formation of ergocalciferol nanodispersions via 

solvent displacement method. (a) Z-average mean diameter (dav) and polydispersity index 

(PDI) of nanodispersions stabilized by ML and SC.  
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 (a) 

 

(b) 

 

Fig. 5. 2: Effect of pH on the stability of ergocalciferol nanodispersions. (a) dav and (b) 

ζ-potential of the nanodispersions. ND means not determination, because of the sediment 

of particles.   

 

 



 

 

105 

 

 

 

(a) 

 

(b) 

 

Fig. 5. 3: Effect of CaCl2 addition on the stability of ergocalciferol nanodispersions. (a) 

dav and (b) ζ-potential of the nanodispersions. Samples were diluted using water (1:19 

(v/v)) prior to ζ-potential measurements.  
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Fig. 5. 4: Effect of heating time on dav and stability of ergocalciferol nanodispersions. The 

heating temperature was set at 120 ᵒC.  
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(a) 

 

(b) 

 

Fig. 5. 5: Long-term storage stability of ergocalciferol nanodispersions. (a) Physical 

stability and (b) Chemical stability of nanodispersions during 30 days of storage at 4 ᵒC.  
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Fig. 5. 6: Bioaccessibility of ergocalciferol nanodispersions after in vitro gastrointestinal 

digestion. The in vitro gastrointestinal digestion behavior was studied in buffer solution, 

milk and lemon juice. 
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Fig. 5. 7: Chemical stability of ergocalciferol nanodispersions stabilized by ML and SC 

after in vitro gastrointestinal digestion. The in vitro gastrointestinal digestion behavior 

was studied in buffer solution, milk and lemon juice. 
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Chapter 6 

General Conclusions and Future Prospective 
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Vitamin D deficiency is prevalent in many populations, which results in adverse health 

effects. Thus, it is important to develop foods and beverages with this water-insoluble 

bioactive compound. This study therefore concentrated on the developing effective 

dispersion systems for encapsulating and delivering ergocalciferol (vitamin D2). To better 

understand this dissertation, each chapter of this thesis was summarized in the following 

part. 

 

6.1 Summary of each chapter 

6.1.1 Chapter 1 

In this part, fundamentals of vitamin D, nanoemulsion/nanodispersion-based delivery 

systems were reviewed. The objectives and outlines of this thesis were also described 

 

6.1.2 Chapter 2 

In the part, ergocalciferol-loaded nanoemulsions were prepared by using high-pressure 

homogenization method. The effects of emulsifier type and concentration, oil type and 

concentration, and homogenization pressure on the droplet characteristics of 

nanoemulsions produced by high-pressure homogenizer were investigated. The results 

showed that the average size of emulsified droplets decreased with increasing operating 

pressure and emulsifier concentration. Nano-sized droplets (d4,3 < 150 nm) could be 

successfully formed using soybean oil, perilla oil and MCT. The nanoemulsionss 

stabilized by modified lecithin (ML), sodium caseinate (SC) or decaglycerol monooleate 

(MO7S) showed similar droplet size and size distribution. 

 

6.1.3 Chapter 3 

In this part, the effect of emulsifier type on the stability of ergocalciferol-loaded 

nanoemulsions was investigated. The stability of resulting nanoemulsions was evaluated 

when they exposed to different environmental stresses and during 30 days of storage at 

25 and 55 ᵒC. Results showed that the emulsions prepared by MO7S or ML were stable 

against a wide range of pH (2-8), while SC-stabilized emulsions showed instability with 

extensive droplet aggregation at pH 4 and 5. Only ML-stabilized emulsions showed 

droplet growth due to coalescence when treated at high NaCl concentration (300-500 
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mM). In the absence of glucose, SC-stabilized O/W emulsions showed better freeze-thaw 

stability, in comparison to those formed with ML or MO7S emulsifiers. The emulsion 

produced by ML was found to be stable to droplet aggregation at high temperatures (80-

120 ᵒC) for 1 h. All the O/W emulsions stored at 25 ᵒC showed good physical and 

chemical stabilities. However, the chemical stability of ergocalciferol in emulsion system 

decreased in order of ML > MO7S >> SC during storage at 55 ᵒC for a period of 30 days. 

Overall, we are positively confident that the findings obtained from this study will be 

important and useful for future designs of nano-delivery systems to encapsulate lipophilic 

functional compounds, such as vitamin D.  

 

6.1.4 Chapter 4 

In this part, the effect of emulsifier type on the in vitro bioaccessibility of ergocalciferol-

loaded nanoemulsions was examined (mouth, stomach and small intestinal phases). 

Results indicated that the droplet size, size distribution, ζ-potential and microstructure of 

nanoemulsions during digestion depended on the emulsifier type. The fate of lipid in the 

small intestinal phase also relied on the emulsifier type, with the free fatty acids release 

rate decreasing in the following order: MO7S > ML-MO7S > ML > SC. The 

ergocalciferol bioaccessibility in nanoemulsions prepared using MO7S, ML, and ML-

MO7S was 62%, 64%, 65%, respectively, which was higher than that stabilized by SC, 

12%. No significant loss of ergocalciferol was observed in all nanoemulsions after full 

digestion; they were chemically stable against digestion conditions, regardless of the 

emulsifier type. 

 

6.1.5 Chapter 5 

In this part, the formulation, stability and bioaccessibility of ergocalciferol 

nanodispersions stabilized by ML and SC as natural emulsifiers were investigated. The 

mean particle size of nanodispersions stabilized by ML, 56 nm, was much smaller than 

those stabilized by SC, 112 nm. The ML-stabilized nanodispersions were stable over a 

wide range of pH, NaCl concentrations and heating, but became unstable with slight 

increase in particle size when exposed to CaCl2 solution. In comparison, SC-stabilized 

nanodispersions were relatively unstable, becoming aggregation under the conditions of 

pH 4-5, CaCl2 addition and heating. Long-term stability for ergocalciferol were observed 
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in both ML- and SC-stabilized nanodispersions. The ergocalciferol bioaccessibility was 

strongly dependent on the emulsifier type, with ML providing much higher 

bioaccessibility than SC. 

 

6.2 General conclusions 

 Ergocalciferol-loaded O/W nanoemulsions with relatively small droplet size (d4,3 < 

150 nm) could be successfully prepared by high-pressure homogenization method. 

 Both ML and SC could be used as a natural emulsifier to produce ergocalciferol 

nanodispersions via solvent displacement method. 

 Ergocalciferol nanodispersions formed via solvent displacement method could be 

stabilized by low concentration of emulsifier.  

 Environmental stresses play an important role on the stability of the resulting 

ergocalciferol nanodispersions.    

 Efficient nanodispersion-based delivery systems with high stability and 

ergocalciferol bioaccessibility were prepared, but were highly dependent on 

emulsifier type. 

 Each emulsifier has its own advantages and disadvantages, emulsifier selection 

should be talked case by case. 

 ML-stabilized nanodispersions are promising delivery systems for ergocalciferol, 

and they have potential application for fortifying many food products. 

 

6.3 Future prospective 

In the present work, we chose to work with in vitro digestion model because it was a 

simple and straightforward method to evaluate the bioaccessibility of encapsulated 

bioactive compounds in dispersions. We hope the data obtained from our study could 

provide some important mechanistic insights into the performance of ergocalciferol 

nanoemulsion/nanodispersions prepared with different emulsifiers when exposed to 
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simulated conditions of the gastrointestinal tract (GIT). However, the behavior of those 

emulsified systems under real gastrointestinal conditions are still unknown. Thus, future 

study are required to have a more detailed investigation based on in vivo studies, using 

animal or human models, to determine the correlation between in vitro and in vivo 

digestion. In this study, we focused on the study of nanoemulsions and nanodispersion-

based delivery system for encapsulating ergocalciferol. However, there are many other 

type of nano-delivery system that can be used for food supplication. Thus, it would be 

meaningful to have a systematic comparison of different delivery systems, in order to 

select the most suitable and efficient way for ergocalciferol encapsulation.  

We are positively confident that the findings obtained from this study will be important 

and useful for future designs of nano-delivery systems to encapsulate lipophilic functional 

compounds, such as vitamin D. Food fortification with vitamin D contributes to human 

health by providing this micronutrient to prevent a series of diseases. A variety of products 

(e.g., soups and bervages) could be fortified with vitamin D-enriched 

nanoemulsions/nanodispersions, which may solve vitamin D deficiency prevalent in 

many people, e.g., old women who are suffering from osteoporosis.    

 

 

 

 

 

 



 

 

115 

 

References 

Abbasi, A., Emam-Djomeh, Z., Mousavi, M. A. E. & Davoodi, D. (2014). Stability of 

vitamin D3 encapsulated in nanoparticles of whey protein isolate. Food Chemistry, 

143, 379-383. 

Aboofazeli, R. (2010). Nanometric-scaled emulsions (nanoemulsions). Iranian Journal 

of Pharmaceutical Research, 9, 325-326. 

Acevedo-Fani, A., Soliva-Fortuny, R. & Martín-Belloso, O. (2017). Nanoemulsions as 

edible coatings. Current Opinion in Food Science, 15, 43-49. 

Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. 

Current Opinion in Colloid & Interface Science, 14, 3-15. 

Agboola, S. O. & Dalgleish, D. G. (1996). Enzymatic hydrolysis of milk proteins used 

for emulsion formation. 1. Kinetics of protein breakdown and storage stability of 

the emulsions. Journal of Agricultural and Food Chemistry, 44, 3631-3636. 

Ahmed, K., Li, Y., McClements, D. J. & Xiao, H. (2012). Nanoemulsion-and emulsion-

based delivery systems for curcumin: encapsulation and release properties. Food 

Chemistry, 132, 799-807. 

Alshahrani, F. & Aljohani, N. (2013). Vitamin D: deficiency, sufficiency and toxicity. 

Nutrients, 5, 3605-3616. 

Anarjan, N., Jafarizadeh-Malmiri, H., Nehdi, I. A., Sbihi, H. M., Al-Resayes, S. I. & Tan, 

C. P. (2015). Effects of homogenization process parameters on physicochemical 

properties of astaxanthin nanodispersions prepared using a solvent-diffusion 

technique. International Journal of Nanomedicine, 10, 1109-1118. 

Andersson, S. & Jörnvall, H. (1986). Sex differences in cytochrome P-450-dependent 25-

hydroxylation of C27-steroids and vitamin D3 in rat liver microsomes. Journal of 

Biological Chemistry, 261, 16932-16936. 

Anton, N., Benoit, J.-P. & Saulnier, P. (2008). Design and production of nanoparticles 

formulated from nano-emulsion templates-a review. Journal of Controlled 

Release, 128, 185-199. 

Anton, N. & Vandamme, T. F. (2009). The universality of low-energy nano-emulsification. 

International Journal of Pharmaceutics, 377, 142-147. 

Bai, L. & McClements, D. J. (2016). Formation and stabilization of nanoemulsions using 

biosurfactants: Rhamnolipids. Journal of Colloid and Interface Science, 479, 71-

79. 

Banville, C., Vuillemard, J. & Lacroix, C. (2000). Comparison of different methods for 

fortifying Cheddar cheese with vitamin D. International Dairy Journal, 10, 375-



 

 

116 

 

382. 

Bigliardi, B. & Galati, F. (2013). Innovation trends in the food industry: the case of 

functional foods. Trends in Food Science & Technology, 31, 118-129. 

Blank, S., Scanlon, K. S., Sinks, T. H., Lett, S. & Falk, H. (1995). An outbreak of 

hypervitaminosis D associated with the overfortification of milk from a home-

delivery dairy. American Journal of Public Health, 85, 656-659. 

Bouillon, R., De Groot, L. & Jameson, J. (2001). Vitamin D: from photosynthesis, 

metabolism, and action to clinical applications. Endocrinology. Elsevier Saunders, 

Philadelphia, PA,USA, 1009-1028. 

Bouillon, R., Van Cromphaut, S. & Carmeliet, G. (2003). Intestinal calcium absorption: 

molecular vitamin D mediated mechanisms. Journal of Cellular Biochemistry, 88, 

332-339. 

Carbonell-Capella, J. M., Buniowska, M., Barba, F. J., Esteve, M. J. & Frígola, A. (2014). 

Analytical methods for determining bioavailability and bioaccessibility of 

bioactive compounds from fruits and vegetables: A review. Comprehensive 

Reviews in Food Science and Food Safety, 13, 155-171. 

Carvalho, A., Silva, V. & Hubinger, M. (2014). Microencapsulation by spray drying of 

emulsified green coffee oil with two-layered membranes. Food Research 

International, 61, 236-245. 

Chang, Y. & McClements, D. J. (2016). Influence of emulsifier type on the in vitro 

digestion of fish oil-in-water emulsions in the presence of an anionic marine 

polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80. Food 

Hydrocolloids, 61, 92-101. 

Chang, Y., McLandsborough, L. & McClements, D. J. (2012). Physical properties and 

antimicrobial efficacy of thyme oil nanoemulsions: Influence of ripening 

inhibitors. Journal of Agricultural and Food Chemistry, 60, 12056-12063. 

Charoen, R., Jangchud, A., Jangchud, K., Harnsilawat, T., Naivikul, O. & McClements, 

D. J. (2011). Influence of biopolymer emulsifier type on formation and stability 

of rice bran oil-in-water emulsions: whey protein, gum arabic, and modified 

starch. Journal of Food Science, 76,165-172. 

Chau, C.-F., Wu, S.-H. & Yen, G.-C. (2007). The development of regulations for food 

nanotechnology. Trends in Food Science & Technology, 18, 269-280. 

Ching, S. H., Bhandari, B., Webb, R. & Bansal, N. (2015). Visualizing the interaction 

between sodium caseinate and calcium alginate microgel particles. Food 

Hydrocolloids, 43, 165-171. 

Christakos, S., Ajibade, D. V., Dhawan, P., Fechner, A. J. & Mady, L. J. (2012). Vitamin 



 

 

117 

 

D: metabolism. Rheumatic Disease Clinics of North America, 38, 1-11. 

Chu, B.-S., Ichikawa, S., Kanafusa, S. & Nakajima, M. (2007). Preparation and 

characterization of β-carotene nanodispersions prepared by solvent displacement 

technique. Journal of Agricultural and Food Chemistry, 55, 6754-6760. 

Chu, B. S., Ichikawa, S., Kanafusa, S. & Nakajima, M. (2008). Stability of protein‐

stabilised β-carotene nanodispersions against heating, salts and pH. Journal of the 

Science of Food and Agriculture, 88, 1764-1769. 

Coupland, J. N. & McClements, D. J. (1996). Lipid oxidation in food emulsions. Trends 

in Food Science & Technology, 7, 83-91. 

Cramp, G. L., Docking, A. M., Ghosh, S. & Coupland, J. N. (2004). On the stability of 

oil-in-water emulsions to freezing. Food Hydrocolloids, 18, 899-905. 

Cranney, A., Weiler, H. A., O'donnell, S. & Puil, L. (2008). Summary of evidence-based 

review on vitamin D efficacy and safety in relation to bone health–. The American 

Journal of Clinical Nutrition, 88, 513-519. 

Del Valle, H. B., Yaktine, A. L., Taylor, C. L. & Ross, A. C. (2011). Dietary reference 

intakes for calcium and vitamin D. National Academies Press. 

DeLuca, H. F. (2004). Overview of general physiologic features and functions of vitamin 

D. The American Journal of Clinical Nutrition, 80, 1689-1696. 

DeLuca, H. F. (2014). History of the discovery of vitamin D and its active metabolites. 

BoneKEy reports, 3, 479. 

Dickinson, E. & Golding, M. (1997). Depletion flocculation of emulsions containing 

unadsorbed sodium caseinate. Food Hydrocolloids, 11, 13-18. 

Eitenmiller, R. R., Landen Jr, W. & Ye, L. (2016). Vitamin analysis for the health and 

food sciences. CRC press. 

Ekwaru, J. P., Zwicker, J. D., Holick, M. F., Giovannucci, E. & Veugelers, P. J. (2014). 

The importance of body weight for the dose response relationship of oral vitamin 

D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLoS 

One, 9, 111265. 

El fakhri, N. (2016). Effect of vitamin D supplementation on bone status, glucose 

homeostasis and immune function in children with vitamin D deficiency, Ph.D 

thesis, University of Glasgow.  

Forrest, S. A., Yada, R. Y. & Rousseau, D. (2005). Interactions of vitamin D3 with bovine 

β-lactoglobulin A and β-casein. Journal of Agricultural and Food Chemistry, 53, 

8003-8009. 

Fraser, D. & Kodicek, E. (1970). Unique biosynthesis by kidney of a biologically active 

vitamin D metabolite. Nature, 228, 764-766. 



 

 

118 

 

Gallagher, J. C., Sai, A., Templin, T. & Smith, L. (2012). Dose response to vitamin D 

supplementation in postmenopausal women: a randomized trial. Annals of 

Internal Medicine, 156, 425-437. 

Ghosh, S. & Coupland, J. N. (2008). Factors affecting the freeze–thaw stability of 

emulsions. Food Hydrocolloids, 22, 105-111. 

Ghosh, S., Cramp, G. L. & Coupland, J. N. (2006). Effect of aqueous composition on the 

freeze-thaw stability of emulsions. Colloids and Surfaces A: Physicochemical and 

Engineering Aspects, 272, 82-88. 

Glisson, F., Armin, P., Bate, G. & Regemorter, A. (1951). A treatise of the rickets: being 

a disease common to children. London, Cambridge Univesity, 1660, 1-373. 

Grady, L. & Thakker, K. (1980). Stability of solid drugs: degradation of ergocalciferol 

(vitamin D2) and cholecalciferol (vitamin D3) at high humidities and elevated 

temperatures. Journal of Pharmaceutical Sciences, 69, 1099-1102. 

Gueli, N., Verrusio, W., Linguanti, A., Di Maio, F., Martinez, A., Marigliano, B. & 

Cacciafesta, M. (2012). Vitamin D: drug of the future. A new therapeutic approach. 

Archives of Gerontology and Geriatrics, 54, 222-227. 

Gulotta, A., Saberi, A. H., Nicoli, M. C. & McClements, D. J. (2014). Nanoemulsion-

based delivery systems for polyunsaturated (ω-3) oils: formation using a 

spontaneous emulsification method. Journal of Agricultural and Food Chemistry, 

62, 1720-1725. 

Guo, M., Fox, P. F., Flynn, A. & Mahammad, K. S. (1989). Heat-induced changes in 

sodium caseinate. Journal of Dairy Research, 56, 503-512. 

Guttoff, M., Saberi, A. H. & McClements, D. J. (2015). Formation of vitamin D 

nanoemulsion-based delivery systems by spontaneous emulsification: factors 

affecting particle size and stability. Food Chemistry, 171, 117-122. 

Haham, M., Ish-Shalom, S., Nodelman, M., Duek, I., Segal, E., Kustanovich, M. & 

Livney, Y. D. (2012). Stability and bioavailability of vitamin D nanoencapsulated 

in casein micelles. Food & Function, 3, 737-744. 

Hark, L. & Deen, D. (2005). Nutrition for Life: The Definitive Guide to Eating Well for 

Good Health. London: Dorling Kindersley. 

Hasenhuettl, G. L. & Hartel, R. W. (2008). Food emulsifiers and their applications. 

Springer. 

Hategekimana, J., Chamba, M. V., Shoemaker, C. F., Majeed, H. & Zhong, F. (2015). 

Vitamin E nanoemulsions by emulsion phase inversion: Effect of environmental 

stress and long-term storage on stability and degradation in different carrier oil 

types. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 483, 



 

 

119 

 

70-80. 

Heaney, R. P., Davies, K. M., Chen, T. C., Holick, M. F. & Barger-Lux, M. J. (2003). 

Human serum 25-hydroxycholecalciferol response to extended oral dosing with 

cholecalciferol. The American Journal of Clinical Nutrition, 77, 204-210. 

Heilbron, I. M., Kamm, E. D. & Morton, R. A. (1927). The absorption spectrum of 

cholesterol and its biological significance with reference to vitamin D. Part I: 

preliminary observations. Biochemical Journal, 21, 78-85. 

Hess, A. F., Unger, L. J. & Pappenheimer, A. M. (1922). Experimental rickets in rats : vii. 

the prevention of rickets by sunlight, by the rays of the mercury vapor lamp, and 

by the carbon arc lamp. Journal of Experimental Medicine, 36, 427-446. 

Hess, A. F., Weinstock, M. & Sherman, E. (1925). The antirachitic value of irradiated 

cholesterol and phytosterol. Journal of Biological Chemistry, 63, 305-308. 

Holick, M. F. (2004a). Sunlight and vitamin D for bone health and prevention of 

autoimmune diseases, cancers, and cardiovascular disease. The American Journal 

of Clinical Nutrition, 80, 1678-1688. 

Holick, M. F. (2004b). Vitamin D: importance in the prevention of cancers, type 1 

diabetes, heart disease, and osteoporosis. American Journal of Clinical Nutrition, 

79, 362-371. 

Holick, M. F. (2004c). Vitamin D: importance in the prevention of cancers, type 1 diabetes, 

heart disease, and osteoporosis. The American Journal of Clinical Nutrition, 79, 

362-371. 

Holick, M. F. (2006a). High prevalence of vitamin D inadequacy and implications for 

health. Mayo Clinic Proceedings, 81,353-373. 

Holick, M. F. (2006b). Resurrection of vitamin D deficiency and rickets. The Journal of 

Clinical Investigation, 116, 2062-2072. 

Holick, M. F. (2007). Vitamin D deficiency. New England Journal of Medicine, 357, 266-

281. 

Holick, M. F. (2011). Vitamin D: a d-lightful solution for health. Journal of Investigative 

Medicine, 59, 872-880. 

Holick, M. F., Binkley, N. C., Bischoff-Ferrari, H. A., Gordon, C. M., Hanley, D. A., 

Heaney, R. P., Murad, M. H. & Weaver, C. M. (2011). Evaluation, treatment, and 

prevention of vitamin D deficiency: an Endocrine Society clinical practice 

guideline. The Journal of Clinical Endocrinology & Metabolism, 96, 1911-1930. 

Holick, M. F., MacLaughlin, J., Clark, M., Holick, S., Potts, J., Anderson, R., Blank, I., 

Parrish, J. & Elias, P. (1980). Photosynthesis of previtamin D3 in human skin and 

the physiologic consequences. Science, 210, 203-205. 



 

 

120 

 

Hossein-nezhad, A. & Holick, M. F. (2012). Optimize dietary intake of vitamin D: an 

epigenetic perspective. Current Opinion in Clinical Nutrition & Metabolic Care, 

15, 567-579. 

Howat, G. R. & Wright, N. C. (1934). The heat-coagulation of caseinogen: The rôle of 

phosphorus cleavage. Biochemical Journal, 28, 1336-1345. 

Hunt, J. A. & Dalgleish, D. G. (1995). Heat stability of oil-in-water emulsions containing 

milk proteins: Effect of ionic strength and pH. Journal of Food Science, 60, 1120-

1123. 

Israelachvili, J. N. (2011). Intermolecular and surface forces. Academic press. 

Jacobs, C., Kayser, O. & Müller, R. (2000). Nanosuspensions as a new approach for the 

formulation for the poorly soluble drug tarazepide. International Journal of 

Pharmaceutics, 196, 161-164. 

Jafari, S. M., Assadpoor, E., He, Y. & Bhandari, B. (2008). Re-coalescence of emulsion 

droplets during high-energy emulsification. Food Hydrocolloids, 22, 1191-1202. 

Jaiswal, M., Dudhe, R. & Sharma, P. (2015). Nanoemulsion: an advanced mode of drug 

delivery system. 3 Biotech, 5, 123-127. 

Jones, G. (2008). Pharmacokinetics of vitamin D toxicity. The American Journal of 

Clinical Nutrition, 88, 582-586. 

Kabalnov, A. & Wennerström, H. (1996). Macroemulsion stability: the oriented wedge 

theory revisited. Langmuir, 12, 276-292. 

Kanafusa, S., Chu, B. S. & Nakajima, M. (2007). Factors affecting droplet size of sodium 

caseinate-stabilized O/W emulsions containing β-carotene. European Journal of 

Lipid Science and Technology, 109, 1038-1041. 

Khalid, N., Kobayashi, I., Neves, M. A., Uemura, K., Nakajima, M. & Nabetani, H. 

(2017). Encapsulation of cholecalciferol and ergocalciferol in oil-in-water 

emulsions by different homogenization techniques. European Journal of Lipid 

Science and Technology, 119, 1600247 

Khalid, N., Kobayashi, I., Wang, Z., Neves, M. A., Uemura, K., Nakajima, M. & Nabetani, 

H. (2015). Formulation characteristics of triacylglycerol oil-in-water emulsions 

loaded with ergocalciferol using microchannel emulsification. Rsc Advances, 5, 

97151-97162. 

Komaiko, J. S. & McClements, D. J. (2016). Formation of food-grade nanoemulsions 

using low-energy preparation methods: A review of available methods. 

Comprehensive Reviews in Food Science and Food Safety, 15, 331-352. 

Koutkia, P., Chen, T. C. & Holick, M. F. (2001). Vitamin D intoxication associated with 

an over-the-counter supplement. New England Journal of Medicine, 345, 66-67. 



 

 

121 

 

Kralova, I. & Sjöblom, J. (2009). Surfactants used in food industry: a review. Journal of 

Dispersion Science and Technology, 30, 1363-1383. 

Kulie, T., Groff, A., Redmer, J., Hounshell, J. & Schrager, S. (2009). Vitamin D: an 

evidence-based review. The Journal of the American Board of Family Medicine, 

22, 698-706. 

Lee, J. H., O'Keefe, J. H., Bell, D., Hensrud, D. D. & Holick, M. F. (2008). Vitamin D 

deficiency: an important, common, and easily treatable cardiovascular risk factor? 

Journal of the American College of Cardiology, 52, 1949-1956. 

Lee, L. & Norton, I. T. (2013). Comparing droplet breakup for a high-pressure valve 

homogeniser and a microfluidizer for the potential production of food-grade 

nanoemulsions. Journal of Food Engineering, 114, 158-163. 

Li, J., Ye, A., Lee, S. J. & Singh, H. (2012). Influence of gastric digestive reaction on 

subsequent in vitro intestinal digestion of sodium caseinate-stabilized emulsions. 

Food & Function, 3, 320-326. 

Li, Y., Hu, M. & McClements, D. J. (2011). Factors affecting lipase digestibility of 

emulsified lipids using an in vitro digestion model: proposal for a standardised 

pH-stat method. Food Chemistry, 126, 498-505. 

Liang, R., Shoemaker, C. F., Yang, X., Zhong, F. & Huang, Q. (2013). Stability and 

bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. 

Journal of Agricultural and Food Chemistry, 61, 1249-1257. 

Liu, X., McClements, D. J., Cao, Y. & Xiao, H. (2016). Chemical and physical stability 

of astaxanthin-enriched emulsion-based delivery systems. Food Biophysics, 11, 

302-310. 

Lund, J. & DeLuca, H. F. (1966). Biologically active metabolite of vitamin D3 from bone, 

liver, and blood serum. Journal of Lipid Research, 7, 739-744. 

Luo, Y., Teng, Z. & Wang, Q. (2012). Development of zein nanoparticles coated with 

carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. 

Journal of Agricultural and Food Chemistry, 60, 836-843. 

M. Boland, H. S., A. Thompson (2014). Milk proteins: From expression to food. 

Academic Press. 

MacLaughlin, J. & Holick, M. F. (1985). Aging decreases the capacity of human skin to 

produce vitamin D3. The Journal of clinical investigation, 76, 1536-1538. 

Mao, L., Xu, D., Yang, J., Yuan, F., Gao, Y. & Zhao, J. (2009a). Effects of small and large 

molecule emulsifiers on the characteristics of β-carotene nanoemulsions prepared 

by high pressure homogenization. Food Technology and Biotechnology, 47, 336-

342. 



 

 

122 

 

Mao, L. K., Xu, D. X., Yang, J., Yuan, F., Gao, Y. X. & Zhao, J. (2009b). Effects of small 

and large molecule emulsifiers on the characteristics of beta-carotene 

nanoemulsions prepared by high pressure homogenization. Food Technology and 

Biotechnology, 47, 336-342. 

McClements, D. J. (2004). Protein-stabilized emulsions. Current Opinion in Colloid & 

Interface Science, 9, 305-313. 

McClements, D. J. (2010). Emulsion design to improve the delivery of functional 

lipophilic components. Annual Review of Food Science and Technology, 1, 241-

269. 

McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and functional 

performance. Soft Matter, 7, 2297-2316. 

McClements, D. J. (2013). Edible lipid nanoparticles: digestion, absorption, and potential 

toxicity. Progress in Lipid Research, 52, 409-423. 

McClements, D. J. (2015). Food emulsions: principles, practices, and techniques. CRC 

press. 

McClements, D. J., Bai, L. & Chung, C. (2017). Recent advances in the utilization of 

natural emulsifiers to form and stabilize emulsions. Annual Review of Food 

Science and Technology, 8, 205-236. 

McClements, D. J., Decker, E. A. & Choi, S. J. (2014). Impact of environmental stresses 

on orange oil-in-water emulsions stabilized by sucrose monopalmitate and 

lysolecithin. Journal of Agricultural and Food Chemistry, 62, 3257-3261. 

McClements, D. J. & Rao, J. (2011). Food-grade nanoemulsions: formulation, fabrication, 

properties, performance, biological fate, and potential toxicity. Critical Reviews 

in Food Science and Nutrition, 51, 285-330. 

McCollum, E. V., Simmonds, N., Becker, J. E. & Shipley, P. (1922). Studies on 

experimental rickets XXI. An experimental demonstration of the existence of a 

vitamin which promotes calcium deposition. Journal of Biological Chemistry, 53, 

293-312. 

Mellanby, E. (1976). An experimental investigation on rickets. Nutrition Reviews, 34, 

338-340. 

Mohammadi, M., Ghanbarzadeh, B. & Hamishehkar, H. (2014). Formulation of 

nanoliposomal vitamin D3 for potential application in beverage fortification. 

Advanced Pharmaceutical Bulletin, 4, 569-575. 

Mun, S., Kim, Y.-R., Shin, M. & McClements, D. J. (2015). Control of lipid digestion and 

nutraceutical bioaccessibility using starch-based filled hydrogels: influence of 

starch and surfactant type. Food Hydrocolloids, 44, 380-389. 



 

 

123 

 

Nair, R. & Maseeh, A. (2012). Vitamin D: The “sunshine” vitamin. Journal of 

Pharmacology & Pharmacotherapeutics, 3, 118-126. 

Norman, P. & Powell, J. (2005). Vitamin D, shedding light on the development of disease 

in peripheral arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 39-

46. 

Ogawa, S., Decker, E. A. & McClements, D. J. (2003). Influence of environmental 

conditions on the stability of oil in water emulsions containing droplets stabilized 

by lecithin− chitosan membranes. Journal of Agricultural and Food Chemistry, 

51, 5522-5527. 

Ostertag, F., Weiss, J. & McClements, D. J. (2012). Low-energy formation of edible 

nanoemulsions: factors influencing droplet size produced by emulsion phase 

inversion. Journal of Colloid and Interface Science, 388, 95-102. 

Öztürk, B. (2017). Nanoemulsions for food fortification with lipophilic vitamins: 

Production challenges, stability, and bioavailability. European Journal of Lipid 

Science and Technology, 119, 1500539. 

Ozturk, B., Argin, S., Ozilgen, M. & McClements, D. J. (2014). Formation and 

stabilization of nanoemulsion-based vitamin E delivery systems using natural 

surfactants: Quillaja saponin and lecithin. Journal of Food Engineering, 142, 57-

63. 

Ozturk, B., Argin, S., Ozilgen, M. & McClements, D. J. (2015a). Formation and 

stabilization of nanoemulsion-based vitamin E delivery systems using natural 

biopolymers: Whey protein isolate and gum arabic. Food Chemistry, 188, 256-

263. 

Ozturk, B., Argin, S., Ozilgen, M. & McClements, D. J. (2015b). Nanoemulsion delivery 

systems for oil-soluble vitamins: influence of carrier oil type on lipid digestion 

and vitamin D3 bioaccessibility. Food Chemistry, 187, 499-506. 

Ozturk, B., Argin, S., Ozilgen, M. & McClements, D. J. (2015c). Nanoemulsion delivery 

systems for oil-soluble vitamins: influence of carrier oil type on lipid digestion 

and vitamin D 3 bioaccessibility. Food Chemistry, 187, 499-506. 

Ozturk, B. & McClements, D. J. (2016). Progress in natural emulsifiers for utilization in 

food emulsions. Current Opinion in Food Science, 7, 1-6. 

Palanuwech, J. & Coupland, J. N. (2003). Effect of surfactant type on the stability of oil-

in-water emulsions to dispersed phase crystallization. Colloids and Surfaces A: 

Physicochemical and Engineering Aspects, 223, 251-262. 

Pan, Y., Tikekar, R. V. & Nitin, N. (2013). Effect of antioxidant properties of lecithin 

emulsifier on oxidative stability of encapsulated bioactive compounds. 



 

 

124 

 

International Journal of Pharmaceutics, 450, 129-137. 

Patel, M. R., Martin‐ Gonzalez, S. & Fernanda, M. (2012). Characterization of 

ergocalciferol loaded solid lipid nanoparticles. Journal of Food Science, 77, 8-13. 

Pettifor, J. M., Bikle, D. D., Cavaleros, M., Zachen, D., Kamdar, M. C. & Ross, F. P. 

(1995). Serum levels of free 1, 25-dihydroxyvitamin D in vitamin D toxicity. 

Annals of Internal Medicine, 122, 511-513. 

Piorkowski, D. T. & McClements, D. J. (2014). Beverage emulsions: recent developments 

in formulation, production, and applications. Food Hydrocolloids, 42, 5-41. 

Qian, C., Decker, E. A., Xiao, H. & McClements, D. J. (2012). Nanoemulsion delivery 

systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chemistry, 

135, 1440-1447. 

Qiu, C., Zhao, M., Decker, E. A. & McClements, D. J. (2015). Influence of protein type 

on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, 

and whey protein. Food Chemistry, 175, 249-257. 

Raikos, V. (2010). Effect of heat treatment on milk protein functionality at emulsion 

interfaces. A review. Food Hydrocolloids, 24, 259-265. 

Ralla, T., Salminen, H., Tuosto, J. & Weiss, J. (2018). Formation and stability of 

emulsions stabilised by Yucca saponin extract. International Journal of Food 

Science & Technology, 53, 1381-1388 

Rao, J. & McClements, D. J. (2012). Impact of lemon oil composition on formation and 

stability of model food and beverage emulsions. Food Chemistry, 134, 749-757. 

Rosenheim, O. & Webster, T. A. (1927). The parent substance of vitamin D. Biochemical 

Journal, 21, 389-397. 

Ross, A. C., Manson, J. E., Abrams, S. A., Aloia, J. F., Brannon, P. M., Clinton, S. K., 

Durazo-Arvizu, R. A., Gallagher, J. C., Gallo, R. L. & Jones, G. (2011). The 2011 

report on dietary reference intakes for calcium and vitamin D from the Institute of 

Medicine: what clinicians need to know. The Journal of Clinical Endocrinology 

& Metabolism, 96, 53-58. 

Salvia-Trujillo, L., Fumiaki, B., Park, Y. & McClements, D. (2017). The influence of lipid 

droplet size on the oral bioavailability of vitamin D2 encapsulated in emulsions: 

an in vitro and in vivo study. Food & Function, 8, 767-777. 

Salvia-Trujillo, L., Qian, C., Martín-Belloso, O. & McClements, D. (2013). Influence of 

particle size on lipid digestion and β-carotene bioaccessibility in emulsions and 

nanoemulsions. Food Chemistry, 141, 1472-1480. 

Salvia-Trujillo, L., Sun, Q., Um, B., Park, Y. & McClements, D. (2015). In vitro and in 

vivo study of fucoxanthin bioavailability from nanoemulsion-based delivery 



 

 

125 

 

systems: Impact of lipid carrier type. Journal of Functional Foods, 17, 293-304. 

Sarkar, A., Goh, K. K. & Singh, H. (2009). Colloidal stability and interactions of milk-

protein-stabilized emulsions in an artificial saliva. Food Hydrocolloids, 23, 1270-

1278. 

Schubert, H. & Engel, R. (2004). Product and formulation engineering of emulsions. 

Chemical Engineering Research and Design, 82, 1137-1143. 

Schultz, S., Wagner, G., Urban, K. & Ulrich, J. (2004). High‐pressure homogenization 

as a process for emulsion formation. Chemical Engineering & Technology, 27, 

361-368. 

Seamans, K. M. & Cashman, K. D. (2009). Existing and potentially novel functional 

markers of vitamin D status: a systematic review. The American Journal of 

Clinical Nutrition, 89, 1997-2008. 

Shariffa, Y., Tan, T., Abas, F., Mirhosseini, H., Nehdi, I. & Tan, C. (2016). Producing a 

lycopene nanodispersion: The effects of emulsifiers. Food and Bioproducts 

Processing, 98, 210-216. 

Shu, G., Khalid, N., Chen, Z., Neves, M. A., Barrow, C. J. & Nakajima, M. (2018). 

Formulation and characterization of astaxanthin-enriched nanoemulsions 

stabilized using ginseng saponins as natural emulsifiers. Food Chemistry, 255, 67-

74. 

Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K. & Chourasia, 

M. K. (2017). Nanoemulsion: Concepts, development and applications in drug 

delivery. Journal of Controlled Release, 252, 28-49. 

Sjoblom, J. (2005). Emulsions and emulsion stability: Surfactant science series/61. CRC 

Press. 

Solans, C. & Solé, I. (2012). Nano-emulsions: formation by low-energy methods. Current 

Opinion in Colloid & Interface Science, 17, 246-254. 

Sono, R. (2005). Development and production of functional materials. Shokuhin Kougyo, 

48, 1-9. 

Srinivasan, M., Singh, H. & Munro, P. (2002). Formation and stability of sodium 

caseinate emulsions: influence of retorting (121 OC for 15 min) before or after 

emulsification. Food Hydrocolloids, 16, 153-160. 

Steel, R., Torrie, J. & Dickey, D. (1997). Principles and procedures of statistics: A 

biometrical approach New York, USA, McGraw Hill Book Co. 

Swaisgood, H. (2003). Chemistry of the caseins. In: Advanced dairy chemistry-1 

Proteins.Kluwer Academic/Plenum Publishers. New York. 

Taarji, N., da Silva, C. A. R., Khalid, N., Gadhi, C., Hafidi, A., Kobayashi, I., Neves, M. 



 

 

126 

 

A., Isoda, H. & Nakajima, M. (2018). Formulation and stabilization of oil-in-

water nanoemulsions using a saponins-rich extract from argan oil press-cake. 

Food Chemistry, 246, 457-463. 

Tadros, T., Izquierdo, P., Esquena, J. & Solans, C. (2004). Formation and stability of nano-

emulsions. Advances in Colloid and Interface Science, 108, 303-318. 

Talwar, S. A., Aloia, J. F., Pollack, S. & Yeh, J. K. (2007). Dose response to vitamin D 

supplementation among postmenopausal African American women. The 

American Journal of Clinical Nutrition, 86, 1657-1662. 

Tan, C. P. & Nakajima, M. (2005). Effect of polyglycerol esters of fatty acids on 

physicochemical properties and stability of β-carotene nanodispersions prepared 

by emulsification/evaporation method. Journal of the Science of Food and 

Agriculture, 85, 121-126. 

Tan, K. W., Tang, S. Y., Thomas, R., Vasanthakumari, N. & Manickam, S. (2016a). 

Curcumin-loaded sterically stabilized nanodispersion based on non-ionic 

colloidal system induced by ultrasound and solvent diffusion-evaporation. Pure 

and Applied Chemistry, 88, 43-60. 

Tan, T. B., Yussof, N. S., Abas, F., Mirhosseini, H., Nehdi, I. A. & Tan, C. P. (2016b). 

Comparing the formation of lutein nanodispersion prepared by using solvent 

displacement method and high-pressure valve homogenization: Effects of 

formulation parameters. Journal of Food Engineering, 177, 65-71. 

Tan, T. B., Yussof, N. S., Abas, F., Mirhosseini, H., Nehdi, I. A. & Tan, C. P. (2016c). 

Stability evaluation of lutein nanodispersions prepared via solvent displacement 

method: The effect of emulsifiers with different stabilizing mechanisms. Food 

Chemistry, 205, 155-162. 

Tang, S. Y., Manickam, S., Wei, T. K. & Nashiru, B. (2012). Formulation development 

and optimization of a novel Cremophore EL-based nanoemulsion using 

ultrasound cavitation. Ultrasonics Sonochemistry, 19, 330-345. 

Tangsuphoom, N. & Coupland, J. N. (2009). Effect of thermal treatments on the 

properties of coconut milk emulsions prepared with surface-active stabilizers. 

Food Hydrocolloids, 23, 1792-1800. 

Teo, A., Goh, K. K., Wen, J., Oey, I., Ko, S., Kwak, H.-S. & Lee, S. J. (2016). 

Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised 

nanoemulsions: Effect of temperature, pH and salt. Food Chemistry, 197, 297-306. 

Tsiaras, W. G. & Weinstock, M. A. (2011). Factors influencing vitamin D status. Acta 

dermato-venereologica, 91, 115-124. 

van Hoogevest, P. & Wendel, A. (2014). The use of natural and synthetic phospholipids 



 

 

127 

 

as pharmaceutical excipients. European Journal of Lipid Science and Technology, 

116, 1088-1107. 

Velluz, L., Amiard, G. & Goffinet, B. (1955). Le précalciferol. Structure et photochimie. 
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