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Abstract 

    The conversion of CO2 to other valuable carbonic compound is one of the effective way 

to alleviate the greenhouse effect in the world. Unlike the chemical procedure, which employs 

the costly catalysts, such as Ru, Pb, Rh, etc, under the high pressure or temperature condition, 

the bioconversion of CO2 by hydrogenotrophic methanogens can realize the transformation 

from CO2 to biofuel (CH4) under a mild condition with a lower cost. However, the mass transfer 

of hydrogen, and the low biomass growth rate remain as the hurdles for this procedure. However, 

the low gas-liquid mass transfer (kLa) of H2 limits the commercial application of this 

bioconversion. Micro-nano bubbles (MNBs) are tiny bubbles with diameters ranging from tens 

of nanometers to several tens of micrometers. MNBs had been widely used in various medical, 

wastewater purification, food processing, marine and agriculture applications. Several special 

characteristics of MNBs, such as high specific area (surface area per volume) and high 

stagnation in liquid phase, increase the gas dissolution. Moreover, it has been reported that the 

collapse of micro-bubbles, due to the high density of ions in gas-liquid interface just before the 

collapse, will lead to free radical generation, which might be favorable for microbial 

metabolism and further stimulate the bioactivity. Up to now, however, little information can be 

found on the combination of MNB with anaerobic microorganisms. 

    The objectives of this study are: 1) to apply the MNBs for bioconversion of H2 and CO2 

to CH4, to realize simultaneously CO2 removal with renewable biofuel production, and 2) to 

investigate the feasibility and mechanism of enhancement for methane yield, and finally 3) to 

promote the large-scale application of MNBs by conducting the influencing factors experiments 

to find the optimal conditions. 

    Firstly, this study explored the feasibility of applying the micro-nano bubbles for 

bioconversion by constructing two stirred tank reactors (STRs) equipped with a micro-nano 

sparger (MNS) and common micro sparger (CMS), respectively. MNS was found to display 

superiority to CMS in methane production with the maximum methane evolution rate (MER) 

of 171.40 mmol/LR/d and 136.10 mmol/LR/d, along with a specific biomass growth rate of 0.15 

d-1 and 0.09 d-1, respectively. The gas-liquid mass transfer of H2 was twice in the MNSR (12.95 

h-1) compared with CMSR (6.60 h-1) mainly due to the increased specific surface area. Energy 

analysis indicated that the energy-productivity ratio for MNS was higher than that for CMS.  

    Secondly, the effect of nano scale bubbles (NBs) on the bioconversion was investigated 

by preparing liquid medium with or without H2/CO2 mixture nano bubbles. The results showed 
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that both methane production and VFAs degradation were enhanced by the pre-supplementation 

of NBs in the liquid. The higher coenzyme F420 content was obtained in the inoculated nano 

bubble medium (INBM) group with content of 1.84 μmol/g-VS, while 1.56 μmol/g-VS for 

inoculated distilled medium (IDM) group. The intracellular Fe contents in INBM group were 

higher than the distilled water (DW) group, with the concentration of 1159.53±20.34, 

1035.28±12.01 μg/g-VS, respectively. For the metal speciation, the higher percentage of acid 

soluble and exchangeable fraction, while lower percentage of organic matter and sulfide 

fractions in the NBW group were achieved than the DW group. The micro-nano bubbles may 

enhanced the mass transfer and bioavailability of trace metals.  

    Thirdly, the effect of air NBs on bioconversion was investigated under different initial iron 

and cysteine concentrations. Results showed that for the inoculated groups, the stimulation for 

methane production by air NBs was more obvious under lower iron (50 μM) or cysteine 

concentrations (3 mM). The methane production was inhibited at 100 μM Fe concentration, 

while the more obvious inhibition was obtained in NB group. The soluble sulfide concentration 

increased for all the nano bubble groups compared with the groups without bubbles, especially 

under 6 mM cysteine concentration (0.62 mg/L in NB group, 0,42 mg/L in control group). For 

the pure medium, the bubbles may combine with the particles, which can be proved by an 

increased zeta potential (from -31.80±1.90 to -26.62±2.05). While the ORP before and after 

introduction of NBs did not change obviously. For the metal speciation analysis, the increase in 

Fe concentrations lead to an increase in adsorbed fractions, and the existence of NBs enhanced 

this increment.  

    This study provided a possible application of micro-nano bubbles for bioconversion of 

CO2 to CH4. Enhanced mass transfer of H2 and biomass growth, while low energy consumption 

were obtained, suggesting that MNS can be used as an applicable resolution to the limited kLa 

of H2 and thus enhance the bioconversion. The existence of nano bubbles may improve the 

bioavailability and mass transfer of trace metals. Based on these results, the micro-nano bubble 

aeration may be a potential pre-treatment for improving the microbial activity and 

bioconversion efficiency. 

Keywords: Micro-nano bubbles, hydrogenotrophic methanogens, mass transfer, 

Bioavailability.  
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Chapter 1 Introduction 

1.1 Bioconversion of CO2 to CH4 

1.1.1 Hydrogenotrophic methanogens 

    Methanogens can be classified into three types according to different substrates utilization, 

acetoclastic methanogens, methanol methanogens and hydrogenotrophic methanogens. 

Hydrogenotrophic methanogens utilize CO2 and H2, as carbon and energy source, respectively, 

to realize simultaneous growth and CH4 production (Thauer et al., 2008). The characteristics of 

CO2-type hydrogenotrophic methanogens has been elucidated by many extraordinary studies 

(Rospert et al., 1990, 1991; Bonacker et al., 1993; Deppenmeier, 2002). In comparison to the 

chemical-based methanogenesis process (Satier process), bio-conversion offers many benefits 

including the relatively moderate condition with the temperature range of -5 ℃ to 122 ℃ 

(Cavicchioli, 2011), much lower than the range for chemical conversion (250 ℃ to 400 ℃) 

(Hoekman et al., 2009). The methanogens employ the inexpensive elements like nickel and iron 

as the catalysts for the bioreactions (Liu & Whitman, 2008), instead of the costly materials 

(ruthenium and titan) (Brooks et al., 2007). 

  In order to realize the bioconversion of CO2 to methane, the reduction by H2 is of special 

interest. Currently, H2 can be produced from renewable energy (i.e. wind or solar power) via 

water electrolysis (Hoekman et al., 2009) or obtained from biological process (biohydrogen) 

(Benemann, 2000; Ghirardi et al., 2000; Redwood & Macaskie, 2006; Redwood et al., 2012; 

Rittamann & Herwig, 2012). H2 is also contained in waste gas emitted from the industry (de 

Filippis et al., 2004). This emphasizes bioconversion of CO2 to CH4 as a highly promising 

bioprocess for simultaneous CO2 capture and energy conversion and storage. 

1.1.2 Limitation of bioconversion 

  However, the main barrier for the commercial scale-up of the bioconversion is the gas-

liquid mass transfer of H2, due to its low solubility. Bioconversion of CO2 to CH4 is a 

heterogeneous system consisting of gaseous substrate, liquid fermentation medium and solid 

cells. Generally, the conversion rates are limited by the gas-liquid mass transfer in the 

bioprocesses which use sparingly soluble gases as key substrates. For instance, homoacetogens 

utilize CO or H2 as carbon and energy sources, while, aerobic respiration employs O2 as electron 

acceptors for ATP generation (Rittmann et al., 2015). Vega et al. (1989) summarized that gas to 

liquid mass transfer phenomenon consist of multiple steps, (I) the absorption of a gaseous 
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substrate across the gas-liquid interface, (II) the transfer of the dissolved gas to the fermentation 

media and (III) diffusion through the culture media to the cell surface. Compared with the other 

limitation factors for the mass transfer, including the properties of the liquid, mixing rate, 

bubble size, interfacial adsorption, etc., the solubility of gaseous substrates (sparingly soluble) 

in the biochemical reaction is the biggest obstacle to the mass transfer (Klasson et al., 1992; 

Munasinghe and Khanal, 2010; Vega et al., 1989). 

1.1.3 Solutions to overcome gas-liquid mass transfer limitation 

  Higher productivities of a bioprocess are strongly dependent on the high mass transfer rate 

and high cell concentration (Liu et al., 2014). The results of Chang et al. (2001) showed that 

the poor mass transfer of gaseous substrates led to the low cell, indicating that the gas-liquid 

mass transfer was the most limiting factor in the fermentation reaction, leading to reduced 

productivity. Most of these methods depend on increasing the interfacial surface area and 

promote the bubble breakup by increasing the agitator’s mixing rate. However, these 

approaches are energy and cost intensive and hard to be scaled up. To simultaneously realize 

the energy efficiency and high mass transferred conditions, different bioreactor configurations 

have been investigated for maximum bioconversion. Researchers obtained the efficiency of 

mass transfer rate in these reactors by predicting the kLa according to the hydrodynamic 

conditions (Munasinghe and Khanal, 2010). 

  The mass transfer of O2 is also a critical parameter for aerobic bioreactor development. 

However, the difference is that oxygen is just partially converted because of the excess supply 

of oxygen in the aerobic processes, bioconversion of CO2 focuses at full conversion of the 

gaseous substrates even at high H2/CO2 gassing rates. This is a much critical demand for 

bioreactor design since when considering the suitable methods for enhancement of mass 

transfer in aerobic cultures, the possible decrease in biological conversion efficiency of CO2 

can not be neglected. Many researchers focused on investigating and optimizing the gas-liquid 

mass transfer by bioreactor design. The most widely used bioreactor was continuously stirred 

tank reactor (CSTR) (de Poorter et al., 2007; Nishimura et al., 1992; Peillex et al., 1990; 

Rittmann et al., 2012; Schoenheit et al., 1980). Other methods were also employed for 

improving the mass transfer of hydrogen as shown in Table 1-1. 

1.2 Micro-nano bubbles 

    Recently, many researchers utilized the ultrafine bubbles including microbubbles (MBs) 



3 

 

and nanobubbles (NBs) to improve the gas-liquid mass transfer of sparingly soluble gases. Most 

studies focused on the fundamental researches, such as generation methods, measuring 

techniques, and characterization of the fine bubbles. Whereas few studies revealed the 

feasibility of micro-nano bubbles for scaling up application at commercial levels. Johnson and 

Cooke (1981) reported the earliest direct evidence of bulk nanobubbles with diameters of ＜1 

μm. They reported that bubbles produced can survive for long periods (about 22 h) as a result 

of the formation of surface films assistant by naturally present surfactants. They demonstrated 

the bubbles may expanded when under negative pressure and shrank by applying the applied 

pressure because they are gas-filled.  

1.2.1 Definition and classification of micro-nano bubbles 

  Bubbles were classified based on different characteristics, including bubble size, surface 

nature, and the lifetime of the bubbles. Ushikubo et al. (2010) found that bubbles size 

distribution decided most of these factors. Hence, the bubble size was the most frequently used 

classification basis. Accordingly, various studies defined the bubbles as macro bubbles, micro 

bubbles, and sub-micro or nano bubbles for conventional or big bubbles, fine bubbles, and 

ultrafine bubbles, respectively. Nano bubbles consist of the surface nanobubbles and bulk 

nanobubbles. Surface nano bubbles existed on a surface, are in the form of a spherical cap, with 

the diameter of 10-100 nm. While, the bulk nano bubbles are spherical bubbles with the 

diameter of ＜1000 nm. The alternative term for nano bubbles is ultrafine bubbles. 

1.2.2 Characteristics of MNBs 

  (1) Slow rising rate 

  According to the description of Li et al. (2014), Stokes’ law could be applied for the 

calculation of the rising velocity of micro-nano bubbles. It can be found that the size of radius 

is in proportion to the rising speed. Takahashi et al. (2009) pointed out that the rising velocity 

of microbubbles bigger than 7-8 μm approximately obeyed the Stokes’ law, while the rising 

speed of smaller bubbles was more slowly than calculated. The evolution procedure for 

different size bubbles was shown in Fig. 1-1. 

  (2) High pressure inside MBs 

  As shown in Young-Laplace equation (Eq. (1-1)), the surface tension σ may lead to the 

increase in the inside pressure of a bubble (ΔP) with diameter (d), even larger than the 

surrounding environment. 
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ΔP = 4σ/d (1-1) 

  The pressure in the bubble increases with the decrease in bubble size. When decreasing 

bubble size, the partial pressure of gas component inside the bubbles increases, accordingly, the 

gas dissolves easily. 

  (3) Large interfacial area 

  Eq. (1-2) showed the interfacial area. Smaller bubble diameter d is beneficial to the 

interfacial area (A/V) and gas dissolution fraction. 

 

A/V = 6/d (1-2) 

  (4) Large gas dissolution 

  If the gas phase mass transfer resistance can be neglected, Eq. (1-3) can be utilized to 

calculate the gas-liquid mass transfer rate, or the dissolving rate N (mol/s). 

N = kLa(p − p*)/H (1-3) 

where kL is the liquid phase mass transfer coefficient (m/s), a is the bubble surface area (m2), p 

is the partial pressure of dissolved component in bubble (Pa), p* is the partial pressure of gas 

phase equilibrium with dissolved component in liquid (Pa) and H is the Henry constant. 

  kL is written by Eq. (1-4), and the rising velocity of spherical bubble follows Stokes’ law, 

where DL is the gas diffusion coefficient in liquid phase, and U is the bubble rising velocity. 

 

𝑘𝐿  =
𝐷𝐿

𝑑
[1 + (1 +

𝑑𝑈

𝐷𝐿
)

1
3⁄

] (1-4) 

  When a bigger bubble (1 mm) shrinks into smaller bubbles with the diameters of 10 μm 

and 100 nm, the numbers increase by 106 and 1012 times, respectively, therefore, the surface 

areas increase by 6 × 104 and 6 × 1010 folds, respectively. By using MNBs, the dissolution rate 

increases rapidly. 

  (5) Electrostatically charged surface 

  The MNBs are usually surface charged and the electrical property depends on the 

relationship between pH and their isoelectric point. Consequently, the repulsion force may 

formed between the MNBs. 

  (6) Longer retention time 

    The stabilization of nano-bubbles in water was investigated by Ushikubo et al. (2010) by 

measuring the particle size distribution, zeta potential and proton NMR spin-lattice relaxation 
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time. Results showed that the oxygen nano-bubbles survived for several days. NMR spin-lattice 

relaxation time increased with the existence of micro-nano bubbles. The stability of nano-

bubbles may be caused by the electrically surface charge which makes the bubbles repulse with 

each other, further prevent the coalescence. The lifetime of a bubble can be obtained by 

employing Eq. (1-5) proposed by Ljunggren et al. (1997). 

t =
𝐾𝑑0

2

12𝑅𝑇𝐷
 (1-5) 

where K, d0, R, T, and D are the Henry law constant, bubble diameter at t= 0, gas constant, 

temperature, and diffusion constant, respectively. Based on the assumption of Tsuge et al. 

(2014), the lifespan of bulk NBs is about 0.41 μs, and the concentration of bulk NB will not 

increase with the mixing time. 

1.2.3 Application of MNBs 

    (1) In physicochemical field 

1) Flotation 

    Flotation is one of the traditional approaches to separate the solid from water, including 

powders, chemicals, metal ions, oils and organics (Rubio et al., 2002). The decrease in bubble 

size is beneficial to the flotation efficiency. Accordingly, micro-nano bubbles were utilized to 

the flotation processes (Miettinen et al., 2010). Yoon et al. (1993) reported bubble size reduction 

may providing higher probability for the collusion of small particles with fine gangue. The 

similar size and opposite charge between the MNBs and the fine particles lead to more chance 

of collision and make the flotation much easier (Haarhoff et al., 2001). Fan et al. (2010) showed 

that the presence of NB broadened flotation particle size range and increased particle surface 

hydrophobicity. Moreover, from the economic aspect, the NB flotation technology followed by 

coagulation/flocculation is found to be cost-effective than the conventional processes. While, 

the feasibility of the NB flotation for a field scale application still need to be explored further. 

2) Advanced oxidation 

    Advanced oxidation process is another most common technology utilizing the bubbles. The 

main objectives of applying MNBs technologies are to improve the solubility of ozone, which 

can further enhance the oxidation efficiency and realize the high removal efficiency with low 

energy and cost consumption. 

    (2) In biological field 

javascript:void(0);
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    The MNBs were also applied in the biological field for enhancing the biological matter 

degradation, microbial growth rate, seed germination, and growth rates. 

1) Application for animals 

  In the 1980s, microbubble generators was introduced to aquaculture, such as shellfish and 

fish culture, aiming at relieving the shortage of oxygen supply due to high-density culturing. 

Endo et al. (2008) using a microbubble generator to create the rotational flow to control the DO 

levels, which had a prominent advantage to treat a large amount of the water in the fish farms 

due to the excellent ability of controlling DO levels and the low energy consumption compared 

to the conventional aeration devices. 

  Ebina et al. (2013) investigated the effect of the NB aeration on the growth of fish and mice. 

Results showed that Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, 

whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. Free oral intake of oxygen-

nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; p, 0.01) and the length 

(17.0 vs. 16.1 cm; p, 0.001) of mice compared to that of normal water. Researches revealed that 

oxygen-rich water brought about by micro/nano bubble injection enhances blood flow and 

branchial respiration of fishes. Some researchers utilized the nitrogen nanobubbles to create an 

ultra-low oxygen condition to keep fishes fresh. Under such conditions freshness is successfully 

kept at least 8 days with good taste. Similarly, the CO2 nano bubbles were utilized as a media 

for keeping fishes asleep to meet the requirements of long distance transport. The high 

dissolubility of gases induced by micro-nano bubbles contributed mostly to all of applications 

in the animals fields. 

2) Application for plants 

  Ebina et al. (2013) explored the effect of nanobubbles on the growth of leaf lettuce (Lactuca 

satuva). Results showed that both the fresh (2.1 times) and dry weights (1.7 times) of the lettuce 

were improved with the aeration of NBs than that with the macro bubbles. Moreover, the 

germination rates of barley seeds dipped in nitrogen NB water was increased by 15-25 

percentage than those dipped in distilled water, which indicated the significant effect of NBs 

on the physiological activity of plants. The mechanism with which nanobubbles (NBs) promote 

physiological activity was investigated using nuclear magnetic resonance (NMR) relaxation-

time (T2) measurements. The NB water showed a longer T2 value than control water. While, the 

T2 value of NB water decreased after degassing, indicating that the existence of NBs may lead 

to the difference of T2 value. Liu et al. (2016) explored the oxygen NBs effect on germination 

of spinach and carrot seeds. The final germination rates of spinach seeds in distilled water, low-
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number density NB water, and high-number density NB water were 54%, 65%, and 69%, 

respectively. The existence of NBs can also promote the growth of sprout growth. While the 

high density of NB water showed a negative effect on the carrot seeds, which was concluded 

by the authors that the amount of exogenous ·OH in high-number density NB water may do 

harm to hypocotyl elongation and chlorophyll formation. This study proposed that NB water 

may produce the exogenous reactive oxygen species (ROS) when NB collapse and provided a 

reasonable explanation for the promotion effects of oxygen NBs. 

3) Application for aerobic microorganisms 

  Aeration is the effective method to provide the life-sustaining gas (O2) to the aquatic lives 

and biochemical reactions for aerobic processes. The aerobic biological matter degradation and 

the growth of microbes can be improved by enhancing the aeration efficiency. Recently, MNBs 

were employed improve mass transfer in the area of aeration. Li et al. (2014) studied the 

dispersion and gas-liquid mass-transfer rate of oxygen. The organic waste degradation in the 

NB aerated unit was significantly shortened the retention time compared with the conventional 

system. Similarly, the biomass growth was enhanced with the existence of NBs. Wang et al. 

(2017) applied fine bubble aeration technology to a filtration system with aiming at treating the 

subsurface wastewater. The results show that fine bubble aeration can improve the effectiveness 

of nitrogen degradation. The effect of the fine bubble aeration technology is beneficial when it 

is used to strengthen land-treatment technology. However, the effect of MNBs on nitrifying 

bacteria and the other bacteria was overlooked. The results of Li et al. (2014) indicated the 

MNBs existed in the pore water may not significantly influence the hydraulic conductivity of 

the sand. 

  Ozonation is a promising method for disinfection of pathogens (Khuntia et al., 2015). The 

application of MNBs exhibited a faster reduction rate, a smaller tank size, and a lower ozone 

requirement in relation to the conventional ozonation process. The inactivation of E. coli was 

attributed to the generation of ·OH and shock waves from collapsing MBs. In addition, the 

MNBs may lead to higher mass transfer of ozone, resulting in a higher dissolved ozone and 

·OH amount, which was benefit for improving the disinfection efficiency. 

  While, there are still no studies focused on the effect of MNBs for the anaerobic 

microorganisms. So that this study intends to investigate the variation of anaerobic 

microorganisms with the existence of MNBs. 

1.3 The originality and contents of this study 
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1.3.1 The originality and objectives 

    The aims of this study are: 

1) To investigate the effect of MNBs for the anaerobic microbe, hydrogenotrophic 

methanogens. Try to reveal whether the MNBs will enhance the bioconversion of CO2 

and H2 to CH4 or not. 

2) To explore the mechanism for the effect induced by the MNBs. In other words, to 

reveal how the MNBs affect the anaerobic procedure. 

3) To identify the effect of MNBs under different conditions. In this study, the trace metal 

concentration and sulfur source concentration were chosen as the influencing factors, 

to investigate the bioconversion proformance with or without nano bubbles under 

different level of trace metal and sulfur concentrations. 

1.3.2 The contents of this study 

    The summary of the contents of this study were drawn in Fig. 1-2. 

    In the first experiment, two stirring tank reactors were constructed with different spargers 

(a common micro sparger & a micro-nano sparger) to supply the H2/CO2 mixture for the 

methanogens continuously. Further decreased the bubble size leads to the higher solubility of 

the hydrogen. Based on this, the methane production, VFAs variation and biomass enrichment 

were analyzed. The gas-liquid mass transfer of hydrogen was also measured. After analyzing 

the performance for the two systems, the energy consumption was also investigated. 

    In the second experiment, the H2/CO2 mixture nano bubbles were pre-loaded to the 

medium. The medium without nano bubble introduction was set as the control group. Under 

conditions with or without nano bubbles, CH4 and VFAs were analyzed. The coenzyme F420 

were measured to reveal the microbial activity. Cause the trace metal elements were the key 

components for coenzyme synthesis, the trace metal content in the cells were also detected. The 

metal speciation helps us to understand the variation of different fractions of metal with time. 

    In the third experiment, instead of H2/CO2 mixture, air was chosen as the gas source for 

the generation of nano bubbles. Oxygen was one of the main component of air, while it is 

harmful for the anaerobic processes. Therefore, whether the air nano bubbles will benefit or 

harm the bioconversion to methane need to be explored. What’s more, how the effect will be 

influenced by the variation of conditions favor to the larger scale application of micro nano 

bubbles. The iron concentration and initial cysteine concentration were set as the indicators for 



9 

 

the condition variation. And also to confirm the accuracy of mechanism investigated in the 

second experiment by conducting the experiments under different conditions. 
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Table 1-1 Summary of solutions for improving the gas-liquid mass transfer of hydrogen. 

Methods References 

Increasing agitation speed 
Robinson and Wilke, 1973; Kramer and Bailey, 

1991; Luo et al., 2013 

Gas or liquid flow rate Guiot et al., 2011; Yagi and Yoshida, 1975 

Reactor geometry (CSTR, TBR, 

PBR) 
Klasson et al., 1992; Jee et al., 1988a; Luo & 

Angelidaki, 2013 

Nature of liquid (surfactant) Bredwell et al., 1997 

Increasing the specific surface area 

(microbubble sparger) 
Bredwell et al., 1999; Munasinghe and Khanal, 2012 
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Fig. 1-1 Proposed range of the bubble sizes and major properties  

(Temesgen et al., 2017). 
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Fig. 1-2 The structure of this study.
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Chapter 2 Enhanced bioconversion of hydrogen and carbon dioxide to methane using a 

micro-nano sparger system 

2.1 Introduction 

  Carbon dioxide (CO2) has been regarded as the largest contributor to the global warming, 

accounting for about 60% greenhouse gas effects (Francisco et al., 2010). According to a recent 

survey (GIO, 2015), following the energy industry, the industry and product sector (7%) is the 

second emission source in Japan, especially the iron and steel industry. CO2 is usually 

discharged as a waste product due to its inert, non-reactive, and low Gibbs free energy 

properties. Various CO2 removal technologies including absorption (Aronu et al., 2010), 

adsorption (Sayari et al., 2011), cryogenic distillation (Xu et al., 2014), and membranes (Zee et 

al., 2013) have been proposed and investigated to mitigate its emission. While, taking into 

consideration that CO2 is another important carbon source, the conversion of CO2 to chemicals 

and energy products that are currently produced from fossil fuels is promising due to the high 

potential market and promising benefits. In comparison to the chemical-based CO2 capture, 

biological conversion of CO2 together with hydrogen (H2) to methane (CH4) gains a particular 

focus, because the profits generated from CO2 utilization can offset a portion of the capture cost 

under mild operational conditions (Burkhardt & Busch, 2013; Lam et al., 2012). Bioconversion 

of CO2 and H2 to CH4 by hydrogenotrophic methanogens is of considerable interest because 

this process realizes energy storage and conversion, as well as biological-based CO2 capture 

and sequestration technique (Jee et al., 1988a; Ju et al., 2008). The calorific value can be 

improved by converting nonflammable CO2 to CH4 (with a calorific value of 55 kJ/kg). 

Meanwhile, the energy donor H2 is of special interest, as H2 is also a co-product in the steel 

sector, and can be rapidly produced via water electrolysis (Hoekman et al., 2009), or obtained 

from biological process (bio-hydrogen) (Redwood et al., 2012; Rittmann & Herwig, 2012). CH4 

as the product of the bioconversion is also regarded as an energy carrier for electricity storage, 

which is more easily transported or stored than H2 (Szuhaj et al., 2016). 

  However, a big obstacle to the successful development of the technology for scaling up is 

the poor gas-liquid mass transfer rate (kLa) of low soluble H2 gas (Bassani et al., 2015, 2016; 

Diaz et al., 2015). When gas is sparged into the liquid, the kLa principally depends on the size 

and number of bubbles present (Jeffrey et al., 1990), which are affected by many factors such 

as agitation speed (Robinson and Wilke, 1973; Luo & Angelidaki, 2012), gas or liquid flow rate 
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(Guiot et al., 2011), reactor geometry (Jee et al., 1988; Luo and Angelidaki, 2013) and the nature 

of the liquid (Bredwell et al., 1997). Although there are various enhancement measures, the 

economic and practical viability of them should be carefully evaluated for their applications in 

large scale fermentation systems. Recently, a special attention has been paid to the application 

of micro-nano bubble (MNB) technology in many fields, including medicine science (Dixon et 

al., 2013), food science (Kobayashi et al., 2010), aquaculture (Kugino et al., 2016), and water 

remediation (Agarwal et al., 2011). Several special characteristics of MNB, such as high 

specific area (surface area per volume) and high stagnation in liquid phase, increase the gas 

dissolution. Moreover, it has been reported that the collapse of micro-bubbles, due to the high 

density of ions in gas-liquid interface just before the collapse, will lead to free radical generation, 

which might be favorable for microbial metabolism and further stimulate the bioactivity 

(Ushikubo et al., 2010). Up to now, however, little information can be found on the combination 

of MNB with methanogenesis. 

  In this chapter, MNBs were applied for the bioconversion of H2 and CO2 to CH4, aiming 

at supplying a higher gas-liquid mass transfer. This was achieved by operating two bioreactors 

equipped with micro-nano sparger (MNS) and common micro sparger (CMS), respectively. The 

effect of MNBs on methanogens was evaluated by analyzing the variations of reactants and 

products in the two bioreactors. Also, the economical analysis was conducted to figure out the 

commercialization potential of MNS. In order to explore the influences of MNBs on 

biomethanation process, the gas-liquid mass transfer of hydrogen was also determined in this 

study.  

2.2 Materials and methods 

2.2.1 Experimental apparatus and operation conditions 

  This study was carried out in two identical stirred tank reactors (STRs) equipped with a 

micro-nano sparger (MNS) (Foamest Column 16-60, Nac sales corporation, Japan) and a 

common micro sparger (CMS) (HA003, Haohai, China), respectively. The two reactors have a 

same total volume of 1.1 L (headspace: liquid=6:5, v/v). The H2 and CO2 gas mixture (80/20, 

v/v) was transferred from the head space of the reactor to the liquid phase by a diaphragm pump 

(GS-6EA, E.M.P.-Japan Ltd, Japan), with a continuous recirculation rate of 40 mL/min which 

is the maximum rate for the MNS. A gas holder connected to the head space of the reactor was 

used to allow fermentation to proceed without creating vacuum and maintain a positive and 

constant pressure inside the reactor during the fermentation. A magnetic stirrer was employed 
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for both reactors to maintain mixing (500 rpm) and temperature maintenance (37  2ºC). All 

the tube connections, stoppers, and seals were made of butyl rubber and glass. The diagram of 

the experimental setup in this study is illustrated in Fig. 2-1. 

2.2.2 Inoculum and medium 

  The acclimated inocula, collected from the pond sediment (Matsumi Ike, Tsukuba 

campus) which has been well adapted to the H2/CO2 gas mixture (80/20, v/v) for 4 months’ 

methane production, were introduced at a ratio of 1:4 (v/v) into the medium. The compositions 

of medium were the same as a previous study (Zhang et al.,1993). 

2.2.3 Analytical methods 

  The contents of H2, CO2, and CH4 in the gas phase were analyzed by gas chromatograph 

(Shimadzu GC-8A, Japan) equipped with a thermal conductivity detector connected to a 

chromatopac data analyzer (Shimadzu C-R4A, Japan). A stainless steel column packed with 

Porapak-Q was used for the analysis, with the temperatures of both detector and injector at 60ºC 

and of the column at 80ºC, respectively. N2 was used as the carrier gas at an inlet pressure of 

199 kPa and an outlet pressure of 150 kPa, respectively. The gas samples were taken at an 

interval of 24 h. 

  Total solid (TS), volatile solid (VS), and biomass concentration were analyzed according 

to the standard methods (APHA, 2005). Volatile fatty acids (VFAs) were analyzed by gas 

chromatography (GC–FID, Shimadzu C-R8A, Japan). The liquid samples were collected every 

three days, which were used for VFAs analysis after filtration through 0.22 μm filters.  

  The bubble size distribution from the two sparger systems was analyzed by Nano Sight 

(nano scale bubbles) and a high-speed camera (micro scale bubbles) with distilled water as the 

media. The mean bubble size was utilized for the calculation of specific surface area. 

  The mass transfer coefficient (kLa) of H2 was determined before inoculation. H2 was 

supplied to the reactors continuously. H2 gas samples were collected from a three-way gas 

sampling port at an interval of 5 min. The first gas sample was collected at 2 min after the 

introduction of H2 gas into the reactor. Once being collected, the gas sample was injected into 

a 20 mL sealed vial which contained some water at a same gas phase to liquid phase ratio as 

the reactor. Then the gas and the liquid was well mixed using a vortex mixer for 1 min and 

allowed 1 h to equilibrate the gas and the liquid phases. A gas sample from the head space was 

then taken and analyzed for gas composition in the gaseous phase using GC-TCD (Shimadzu 

GC-8A, Japan). The gas content in the head space was then converted to the aqueous phase 
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concentration according to Henry's law (Eq. (2-1)).                                        

𝐾𝐻 =
𝑃

𝑋
 (2-1) 

where, KH is the Henry's law constant (atm), P is the partial pressure of gas above the aqueous 

phase (atm) and X is the mole fraction of gas in the solution (unitless). The Henry's law constant 

used for H2 in this analysis was 7.52 × 104 atm (at 35ºC and 1 atm). 

2.2.4 Calculation 

(1) Determination of kLa of hydrogen 

  Assuming that the concentration in the liquid phase at the gas-liquid interface is in 

equilibrium with the gas concentration in the gaseous phase, the volumetric mass transfer 

coefficient (kLa) in the absence of microorganisms was determined using the following equation 

(Eq. (2-2)). 

  
𝑑𝑐

𝑑𝑡
= 𝑘𝐿𝑎(𝐶𝑖 − 𝐶) (2-2) 

where, C is the gas concentration in the liquid phase (mg/L) at any given time t (min), and Ci 

is the saturated gas concentration (mg/L). Eq. (2-2) can be further simplified to Eq. (2-3), 

ln (
𝐶𝑖 − 𝐶0

𝐶𝑖 − 𝐶
) = (𝑘𝐿𝑎)𝑡 

(2-3) 

where, C0 is the initial gas concentration in the liquid phase (mg L-1). 

(2) Hydrogen conversion efficiency 

  Hydrogen was provided as the sole electron donor for the batch experiments. As the total 

mass of H2 supplied into the systems (𝑚𝐺𝐻2,𝑖𝑛
) is the sum of the mass utilized by the microbes 

and the mass left (effluent) in the system, the H2 conversion efficiency (%) was calculated 

according to Eq. (2-4), 

𝜂𝐻2
= 100 (𝑚𝐺𝐻2,𝑖𝑛

− 𝑚𝐺𝐻2,𝑒𝑓𝑓
)/𝑚𝐺𝐻2 ,𝑖𝑛 (2-4) 

where 𝑚𝐺𝐻2 ,𝑖𝑛 is the mass flow rate of H2 fed into the reactor per day and 𝑚𝐺𝐻2,𝑒𝑓𝑓
 is the mass 

flow rate of H2 in the effluent gas. The utilized H2 (𝑚𝐻2,𝑢𝑡𝑙) was the difference between 𝑚𝐺𝐻2,𝑖𝑛
 

and 𝑚𝐺𝐻2,𝑒𝑓𝑓
, as shown in Eq. (2-5): 

𝑚𝐻2,𝑢𝑡𝑙 = 𝑚𝐺𝐻2,𝑖𝑛
− 𝑚𝐺𝐻2,𝑒𝑓𝑓

 (2-5) 

        𝑚𝐻2,𝑢𝑡𝑙  can be classified into two parts, H2 employed for microorganisms growth 

(anabolism) and consumed to produce energy (catabolism). Since the H2 as an energy source 



17 

 

can be transferred to VFAs as the intermediates and CH4 as the final product, the utilized H2 

can be quantified according to Eq. (2-6). 

𝑚𝐻2,𝑢𝑡𝑙 = 𝑚𝐶𝐻4,𝐻2
+ 𝑚𝑉𝐹𝐴𝑠,𝐻2

+ 𝑚𝑔𝑟𝑜𝑤𝑡ℎ,𝐻2
 (2-6) 

where 𝑚𝐶𝐻4,𝐻2
 is the mass of CH4 as equivalent H2，𝑚𝑉𝐹𝐴𝑠,𝐻2

 is that of H2 transferred into 

VFAs, and 𝑚𝑔𝑟𝑜𝑤𝑡ℎ,𝐻2
 is that of H2 employed for microbial growth. 

(3) Carbon balance analysis  

  The carbon was supplied in three phases in this study: CO2 (gas phase), Na2CO3 (liquid 

phase), and inoculum or biomass (solid phase), which can be expressed as follows: 

𝐶𝑇𝑜𝑡𝑎𝑙,𝑖𝑛 = 𝐶𝑖𝑛,𝐺,𝐶𝑂2
+ 𝐶𝐿,𝑚𝑒𝑑𝑖𝑢𝑚 + 𝐶𝑆,𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (2-7) 

     After the reaction, CO2 can be transferred into CH4, VFAs, and utilized for microbial 

growth, and other metabolites. Finally, the unreacted CO2 was left in the system. 

𝐶𝑇𝑜𝑡𝑎𝑙,𝑖𝑛 = 𝐶𝐺,𝐶𝐻4
+ 𝐶𝐺,𝐶𝑂2,𝑒𝑓𝑓 + 𝐶𝐿,𝑉𝐹𝐴𝑠 + 𝐶𝐿,𝑜𝑡ℎ𝑒𝑟 + 𝐶𝑆,𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (2-8) 

(4) Estimation of Monod kinetic parameters for the batch experiments 

In order to estimate the maximum specific growth rate (μmax), the nutrients were supplied 

sufficiently to create the condition of nutrients concentration (C) and Ks (i.e. C/ (Ks + C) ≈ 1). 

During the exponential growth phase, the Monod equation can be simplified to Eq. (2-9).  

(
𝑑𝑋

𝑑𝑡
)

𝑔𝑟𝑜𝑤𝑡ℎ
= 𝜇𝑚𝑎𝑥𝑋 (2-9) 

where μmax is the maximum specific growth rate (d-1). Then, μmax can be obtained by Eq. (2-10): 

𝜇𝑚𝑎𝑥 =
1

𝑡
𝑙𝑛

𝑋𝑡

𝑋0
 (2-10) 

where X0 is the initial biomass concentration (g-biomass/L) and Xt is the biomass concentration 

at time t during exponential growth with no limitation of nutrients (g-biomass/L).      

(5) Energy consumption analysis 

    The electricity consumed by the systems was estimated by monitoring the energy 

consumption of the related devices. The energy input was the sum of electricity cosumed by 

pumps and stirrers, as shown in Eq. (2-11): 

𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝐸𝑝𝑢𝑚𝑝 + 𝐸𝑠𝑡𝑖𝑟𝑟𝑒𝑟 (2-11) 

where 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 , 𝐸𝑝𝑢𝑚𝑝, and 𝐸𝑠𝑡𝑖𝑟𝑟𝑒𝑟 are the total energy consumed by the system, the energy 

consumed by pump and stirrer, respectively. 

  The energy-product ratio (R) was calculated by Eq. (2-12). 
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𝑅 =
𝑌𝐶𝐻4,𝑡𝑜𝑡𝑎𝑙

𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
 

(2-12) 

where R is the energy-product ratio (L/kW), 𝑌𝐶𝐻4,𝑡𝑜𝑡𝑎𝑙 is the accumulated methane production 

during the whole experimental period (L). The energy consumption is mainly attritutable to the 

heat loss during the operation with a small amount utilized by the growth of microbes. 

2.2.5 Statistic analysis 

    All the data were expressed as mean value  standard deviation in this study. The 

significance of difference in the quantitative variables (e.g. CH4 content in the output gas) 

between the two reactor systems was analyzed by one-way analysis of variance (ANOVA) 

using Origin 9.0 (Originlab, USA), and significance was assumed at p < 0.05. Moreover, 

regarding the microbial community, statistical analysis was carried out as previously described 

by Tsapekos et al. (2016) to identify the significant abundance difference in microorganisms 

among the samples. 

2.3 Results and discussion 

2.3.1 Bioconversion performance 

(1) Methane production 

  To compare the effect of MNS and CMS on CH4 production, the MNS reactor (MNSR) 

and CMS reactor (CMSR) systems were established to produce CH4 from H2 and CO2. A start-

up period was noticed in both reactors with a gradually increased methane production rate (Fig. 

2-2), due to the adaption of methanogens to the new conditions. While the methane production 

trended to be stable from day 14 to day 45 with the maximum methane evaluation rate (MER) 

of 171.40 mmol/LR/d in the MNSR. Similarly, the stable phase in the CMSR was detected from 

day 27 to day 50, achieving the maximum MER of 136.10 mmol/LR/d. The delayed 

achievement on the maximum MER in the CMSR was most probably attributed to its lower 

biomass growth rate. At the very beginning, both the aqueous substrates and the gaseous 

substrates were sufficient for the microbes, so that the microbial growth exhibited a rapid 

increase which agrees with the increase in methane production, the major product in this kind 

of systems. However, when the biomass increased to some extent, the dissolved hydrogen 

concentration (DHC) became the limiting factor for the microbes, leading to the maximum 

methane production maintained at a stable period. From day 46 to day 51, the MER of MNSR 

began to decrease gradually, as a result of the exhaustion of some nutrients in the medium. The 
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results from this study indicate that MNSR can produce more CH4 than CMSR. 

  The finding of this work is to some extent similar to that of Weimer & Zeikus (1978) who 

used Methanosarcina barkeri MS as the inoculum, achieving the MER of 5.539 mmol/L/h in a 

2 L reactor under fed-batch mode conditions. Their result is comparable to the MER of CMSR, 

while lower than that of MNSR. The current work is also comparable to Roennow & 

Gunnarsson (1982) who carried out the fed-batch experiments in a 1-L reactor. 

(2) H2 utilization efficiency 

  In order to confirm that the enhancement on CH4 production by MNSR was brought about 

by improvement of kLa using MNBs, H2 balance analysis was used to investigate whether the 

bioconversion efficiency of H2 was stimulated by the MNBs or not. The utilized H2 

concentration was calculated by Eq. (5). As shown in Fig. 2-3, H2 was not exhausted in both 

MNSR and CMSR, due to the decreased dissolved H2 concentration along with operation time, 

resulting in weakened driving force for gas-liquid mass transfer. As the same trend with CH4 

production, H2 consumption increased gradually, and then became stable for some period. The 

maximum H2 utilization in the MNSR was detected on day 20 with the maximum 𝜂𝐻2
 of 95%. 

In comparison to MNSR, mH2, utl  in the CSR was lower, correspondingly yielding to a lower 

maximum 𝜂𝐻2
 of 80% (day 25). This observation implies that MNS can transfer more H2 from 

gas phase into liquid phase during the same operation duration compared with CMS. An ideal 

condition for the bioconversion is that H2 could be transferred at a high rate without any 

accumulation. The maximum dissolved hydrogen concentration in the water is about 1.6 mg/L 

at normal pressure (Munasinghe & Khanal, 2014). While the utilized hydrogen concentration 

in the two reactors is much higher than 1.6 mg/L, illustrating that H2 was consumed by the 

microbes. The H2 converted to CH4 (𝑚𝐶𝐻4,𝐻2
) was lower than the utilized H2 concentration 

(𝑚𝐻2,𝑢𝑡𝑙), indicating that there could be a prior in biomass growth than CH4 production. From 

day 20 on, the 𝑚𝐶𝐻4,𝐻2
 in the MNSR contributed over 95% to the total utilization of H2, and 

maintained at this high proportion for about 20 days. The CH4 production in both reactors did 

not show a continuous increase, demonstrating the lack of dissolved hydrogen for methanogens. 

Specifically, the contribution of 𝑚𝐶𝐻4,𝐻2
 in the CMSR to 𝑚𝐻2,𝑢𝑡𝑙 was slightly lower (about 

90%), indicating H2 was also engaged in VFAs production and biomass growth. 

2.3.2 Biomass enrichment 

  To determine the effect of MNBs on biomass growth, biomass concentration was 
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quantified in time course (Fig. 2-4). The superiority of the MNSR was not obvious till day 5. 

After day 5 the MNSR experienced a rapid increase in biomass and earned a higher maximum 

specific growth rate of 0.15 d-1 in comparison to 0.09 d-1 in the CMSR. Moreover, the total 

amount of biomass was much greater in MNSR than that in CMSR. Seen from the SEM images, 

the MNSR seems to enrich methanogens cell density more efficiently than the CMSR. These 

results suggest that methanogens use more dissolved H2 in MNSR due to its higher kLa. 

However, the biomass concentration showed a stable trend following the rapid growth period, 

demonstrating that the dissolved H2 concentration was still the limiting factor which dominates 

H2 utilization for catabolism reactions (CH4 production). The inocula used in this study was the 

acclimated anaerobic sludge, a mixed culture. Compared to the pure culture, generally the 

mixed culture is more advantageous regarding availability and cost, if not thinking about the 

relatively lower conversion rate due to the competitive communities. Moreover, the MNSR can 

be applied in large-scale tests according to the results from the acclimated anaerobic sludge. 

2.3.3 Variation in volatile fatty acids (VFAs)  

  Anaerobic conversion of CO2 can support a variety of microorganisms from different 

trophic groups within a microbial community. Therefore, the pathways involved in CH4 

production from CO2 become more complex when taking the mixed anaerobic consortium into 

consideration. For a mixed methanogenic culture, i.e. the acclimated anaerobic sludge used in 

this study, it is essential to consider all possible reactions that are involved in the conversion of 

CO2 to CH4. The possible pathways indicate that hydrogenotrophic methanogens can directly 

convert H2 and CO2 to CH4 through the pathway (a). On the other hand, homoacetogenic 

bacteria can participate in the conversion of the H2 and CO2 to acetate, a thermodynamically 

favorable reaction (pathway (b)). Then the acetoclastic methanogenesis will occur according to 

the pathway (c). Conversely, syntrophic acetate-oxidizing (SAO) bacteria can convert acetate 

to H2 and CO2 (pathway (d)) when acetoclastic methanogenesis is deficient (Karakashev et al., 

2006). The SAO reaction becomes thermodynamically favorable at low H2 partial pressure (＜

10-4 atm at 35ºC) (Lee & Zinder, 1988; Cord-Ruwisch et al., 1998). 

  VFAs accumulation was not detectable in the MNSR during the first week (Fig. 2-5). 

Then VFAs concentration increased with the increase in CH4 production. However, at the end 

of the experiments VFAs was not detectable in the MNSR, indicating that VFAs in this reactor 

experienced a production followed by consumption progress. It has been pointed out that a high 

dissolved H2 concentration inhibits propionate and butyrate conversion to acetate or H2 and 
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CO2 during anaerobic digestion, yielding lower conversion rate or the whole process breakdown 

(Diaz et al., 2015). Thus, a higher acetic acid concentration in the MNSR can be used for more 

CH4 production when compared to the CMSR, possibly contributed by the higher dissolved H2 

concentration in the reactor.  

  From the whole process, the concentration of total VFAs in the MNSR was lower than 

that in the CMSR, indicating more substrates were converted into CH4. While, on 40th day, the 

higher concentration of VFAs in the MNSR was observed than the CMSR, which may be caused 

by the different sampling time compared with others. The H2/CO2 mixture gas was supplied to 

the reactor in one day’s interval. The concentration of VFAs was varied dynamically. It may 

experience increase then decrease trend even in one day. The different conditions caused 

different reaction rates in the two reactors. Meanwhile, in the CMSR, VFAs accumulation was 

detected at the beginning of experiment. From day 12, the total VFAs concentration decreased 

while maintained at a relatively stable level, reflecting that VFAs consumption in the CMSR 

was not so efficient.  

2.3.4 Carbon mass balance analysis 

  To evaluate carbon conversion efficiency in the reactors, carbon elements in the liquid, 

solid and gaseous phases were quantified as illustrated in Fig. 2-6. The C content in biomass 

was estimated according to a theoretical formula (C60H87N12O23P) for microbes. In addition, 

the calculation of CL, TVFAs was based on the individual VFA. During the wholel experiments, 

except for the initial carbon in the biomass and medium, the carbon input is only from CO2 in 

the gas phase. The carbon balance was analyzed according to Eq. (2-8). Being consistent with 

the results from above two sections, a relatively more carbon conversion into the solid phase 

(CS, Biomass) was achieved in the MNSR in comparison to the CMSR. And the final biomass yield 

in the MNSR was 2.34 g-biomass/L, which was 1.98 g-biomass/L in the CMSR. Anyhow, the 

liquid phase carbon percentage gradually was found to decrease to a low level in both reactors, 

which might be utilized as a source for biomass growth. Considering the gaseous phase carbon 

fractions, CG, CH4 in the two reactors showed a remarkable difference. Still, a considerable part 

of CO2 (CG, CO2, Rest) was remained in both systems. Seen from the whole conversion process, 

the input CO2 tended to be employed for microbial growth first, and then the CG,CH4 increased 

with the increase in biomass growth.  

2.3.5 Energy consumption 

  The economic and practical feasibility of this enhancement approach should be evaluated 
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for its applications in large scale fermentation systems. MNS clearly has a significant 

stimulation potential for hydrogenotrophic methanogenesis. Enrichment of methanogens in the 

MNSR provides a greater H2-bioconversion potential than in the CMSR, suggesting that the 

gas-liquid mass transfer limitation is minimized. However, the advantage could be mitigated by 

high energy consumption. In this context, energy consumption analysis is essential for both the 

MNSR and CMSR. Table 1 summarizes the results relating to the energy consumptions by the 

MNSR and CMSR according to Eqs. (2-11) and (2-12).   

  As shown in Table 2-1, both the work of pump (Epump) and stirrer (Estirrer) in the MNSR 

were higher than those in the CMSR, leading to the higher energy consumption in the MNSR 

system. However, when evaluating the technology, the product value (CH4 in this work) also 

should be taken into account. In this work, the energy-product ratio (R) was employed to 

represent the potential for practical application. As for the MNSR, although a higher CH4 yield 

is corresponding to a higher energy consumption, its R value is still higher than the that for the 

CMSR, demonstrating its great potential for scaling-up application. In fact, continuous-type 

reactors dominate the industrial scale fermentation systems, and the methane yield can also be 

improved by increasing the gas recirculation rate. As proposed by Szuhaj et al. (2016), the 

energy for H2 production could be supplied by the renewable resources such as the wind or 

solar energy. In this case, the application of MNSR for bioconversion of H2 and CO2 is more 

meaningful. 

2.3.6 Gas-liquid mass transfer evaluation 

    In order to find out the reason for the enhancement effect by MNS, the H2 gas-liquid mass 

transfer was evaluated based on the dissolved H2 concentration. Gas mass transfer in the two 

reactors occurs in two zones. Mass transfer in the liquid phase is similar to that in the CSTR. 

Gas transfer in the headspace happens through a very thin liquid boundary layer between the 

bulk gas and the culture cells. The mass transfer in the liquid phase is characterized through 

quantification of the volumetric coefficient (kLa). Vega et al. (1989) have described the multiple 

steps when mass transfer occurs from gas to liquid phases, which involve (1) the absorption of 

a gaseous substrate across the gas-liquid interface, (2) the transfer of the dissolved gas to the 

fermentation media, and (3) diffusion through the culture media to the cell surface. And the 

most sparingly soluble gases utilized in the biochemical reactions trigger the major resistance 

in the liquid film around the gas-liquid interface (Klasson et al., 1992; Munasinghe and Khanal, 

2010). 
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    Because during the batch bioconversion experiments, the kLa value was continuously 

varying, the kLa in this study was evaluated before incubation by analyzing the dissolved H2 

concentration in the liquid. As shown in Fig. 2-7, the kLa value in the MNSR (12.95 h-1) is 

almost twice that in the CMSR (6.60 h-1), most probably due to the increase in specific surface 

area because of much smaller bubble size. 

    The specific surface area to liquid volume ratio was calculated by according to both the 

micro-scale and nano-scale bubble size distribution in the two reactors. The average bubble size 

in the CMSR and MNSR was determined as about 845 μm and 220 μm, respectively, 

corresponding to the specific area to liquid volume of 5,640 cm2/LR, and 48,042 cm2/LR. This 

specific area has been increased by one order of magnitude, implying more sufficient contact 

chance between methanogens and the gaseous substrates. 

    Results show the significant difference in the kLa value of MNSR and CMSR. As it is 

known, both reactor configurations and operation conditions can affect the kLa value. Smaller 

sparger pore size may have higher kLa value, which is also verified by this study (Table 2-2). 

The kLa value obtained from this study is much lower than that from Bassani et al. (2017), 

possibly resulted from the low recirculation rate applied in this study (40 mL/min). Thus, the 

followed-up experiments will be carried out to optimize the kLa value taking higher 

recirculation rate and higher temperature into consideration. In a summary, these results 

demonstrate that kLa is a key factor for the enhanced CH4 production from the MNSR. 

2.4 Summary 

    The enhanced bioconversion of H2 and CO2 to CH4 was realized by using the MNS. The 

maximum MER of 171.4 mmol/LR/d in the MNSR is much higher than that in the CMSR (136.1 

mmol/LR/d). The MNSR also displayed superior biomass growth with specific growth rate of 

0.15 d-1 than that of CMSR. The VFAs accumulation was not detectable in MNSR. Higher gas-

liquid mass transfer was achieved in the MNSR than that in the CMSR. A higher energy-product 

ratio and economic analysis indicates that MNS has applicable potential for improvement of 

CO2 and H2 conversion into CH4 in large-scale plants.
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Table 2-1 Energy consumption for the two reactor systems 

 

Epump - the energy consumed by the pump; 

Estirrer - the energy consumed by the stirrer; 

Econsumed - the sum of Epump and Estirrer.

Reactor Epump (W) Estirrer (W) Econsumed (W) R (L/kW) 

MNSR 2.80×104 1.59×104 4.39×104 1.80 

CMSR 2.69×104 1.39×104 4.08×104 1.45 
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Fig. 2-1 Schematic diagram of the batch fermentation system. 1- Magnetic stirrer, 2- Rotor, 3- 

Micro-nano sparger (or common micro sparger), 4- Liquid sample port, 5- Flow meter, 6- Gas 

recirculation pump, 7- Gas input port, 8- Gas sample port, 9- Gas holder, 10- Saturated 

sodium bicarbonate solution. 
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Fig. 2-2 Methane evolution rate (MER) for the two reactors. Solid squares denote MNSR 

(micro-nano sparger reactor) and open circles denote CMSR (common micro sparger reactor). 
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Fig. 2-3 H2 balance analysis for the two reactor systems. Solid symbols denote the micro-

nano sparger (MNS) and open symbols denote the common micro sparger (CMS) (𝑚𝐺𝐻2,𝑖𝑛
 - 

the mass flow rate of H2 fed into the reactor per day; 𝑚𝐻2,𝑢𝑡𝑙 - the utilization rate of H2 in the 

reactor per day; 𝑚𝐶𝐻4,𝐻2
 - the yield rate of CH4 as equivalent H2 per day). 
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Fig. 2-4 Variation in biomass concentration in the two reactors. Solid squares denote MNSR 

(micro-nano sparger reactor) and open circles denote CMSR (common micro sparger reactor). 
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Fig. 2-5 VFAs variations in the two reactors (dashed line: MNSR - micro-nano sparger reactor; 

solid line: CMSR – common micro sparger reactor) 
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Fig. 2-6 Carbon balance analysis for MNSR (micro-nano sparger reactor) (a) and CMSR 

(common micro sparger reactor) (b). 
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Fig. 2-7 Determination of kLa-H2 from dissolved H2 concentration data. Solid squares denote 

MNSR (micro-nano sparger reactor) and open circles denote CMSR (common micro sparger 

reactor).
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Chapter 3 Enhanced bioconversion of H2 and CO2 to methane by pre-loaded bulk nano 

bubbles (NBs) via improving trace metal bioavailability 

3.1 Introduction 

    As demonstrated in Chapter 2, the micro-nano bubbles, compared with the micro bubbles, 

significantly improved the gas-liquid mass transfer of hydrogen, while the enhancement was 

concluded by the enhancement of dissolution of hydrogen resulted from smaller size and 

correspond bigger interfacial surface area of the micro-nano bubbles. The micro bubbles may 

dissolve directly when introduced into the water, so that the dissolution amount was promoted 

obviously compared with larger bubbles. However, the bubbles in nano scale (nano bubbles, 

NBs) can persist in water for longer periods (Seddon et al., 2012). The stability of NBs is 

supported by the electrically charged liquid–gas interface, which creates repulsion forces that 

prevent the bubble coalescence, and by the high dissolved gas concentration in the water, which 

keeps a small concentration gradient between the interface and the bulk liquid (Ushikubo et al., 

2010). 

  In this chapter, we attempted to carry out a batch experiment to verify the effect of NBs to 

methanogens and provide reasonable and convincing explanations of these effects. 

3.2 Materials and methods  

3.2.1 Medium preparation 

  The medium with the same components as that in Zhang et al. (1993) was prepared by 

distilled water and H2/CO2 NB water, respectively. For the H2/CO2 NB water, the components 

contained in the medium were first dissolved in 1 L of distilled water. Then the solution and 

H2/CO2 gas mixture (80/20, v/v) (with the flow rate of about 0.1 L/min) were introduced into a 

NB generator (HACK FB11, Japan) under room temperature. In order to stabilize the NB 

number, the medium with NBs was placed for 1 h and then stored in a sealed serum bottle. 

3.2.2 Inoculation 

    The inocula was the same as Chapter 2 with the same inoculation ratio. The experiments 

were carried out in the serum bottles with the liquid and headspace volume of 50 mL and 60 

mL, respectively. The H2/CO2 mixture gas was supplied to the headspace of the serum bottles 

with the pressure of 2.5 atm. The temperature was controlled at 37±2ºC. The inoculum was 

cultivated with the Fe-deficient medium.  
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3.2.3 Metal extraction and speciation 

(1) Metal extraction from cells 

    The experimental design was shown as Table 3-1. In order to analyze the trace metal in the 

cell of methanogens, 10% HCl was added into the samples with twice the sample volume. Then 

the samples were stirred at 300 rpm for 5 min (Ginter et al., 1995). After extraction, the 

extracellular metals were separated from the biomass into the supernatant while the intracellular 

metals were remained in the biomass. The treated biomass was digested and analyzed by ICP-

MS (Zhang et al., 2003). 

(2) Metal speciation and mass balance analysis 

    The Bureau Communautaire de Reference (BCR) sequential extraction procedure modified 

by Sahuquillo et al. (1999), was employed to carry out metal speciation (triplicate). CH3COOH, 

NH2-OH-HCl, H2O2 and CH3COONH4 were utilized as the extraction agent to sequentially 

extract different fractions of metals, corresponding to soluble/exchangeable, Fe and Mn oxides, 

and organic matter and sulfide fractions. The content in the residual fraction was first digested 

according to Zhang et al. (2015), then analyzed by ICP-MS . 

3.2.4 Analytical methods 

    The contents of H2, CO2, and CH4 in the gas phase were analyzed as the same method in 

Chapter 2. by gas chromatograph (Shimadzu GC-8A, Japan). The gas samples were taken at an 

interval of 24 h. 

  Total solid (TS), volatile solid (VS), and biomass concentration were analyzed according 

to the standard methods (APHA, 2005). Volatile fatty acids (VFAs) were analyzed by gas 

chromatography (GC–FID, Shimadzu C-R8A, Japan).  

  The size distribution and number of the H2/CO2 NBs were measured by a nanoparticle 

tracking analyser (NanoSight LM-10, Malvern Instruments Ltd., Malvern, Worcestershire, UK). 

The zeta potential of H2/CO2 NBs in solution was measured by using a zeta potential analyser 

(Nano ZS, Malvern, UK). The pH was measured by the pH meter (B-211, Horiba, Japan). The 

concentration of coenzyme F420 was determined using a fluorescence spectrophotometer (F-

4500, HITACHI, Japan) (Bashiri et al., 2010). 

3.2.5 Statistical analysis 

  The significance of changes in methane production, VFAs variation, cell metal contents 

and the metal speciation (BCR extraction) between different stages of this study were assessed 
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by carrying out independent sample t-tests when necessary. Statistical significance was set at p 

< 0.05 (95%). 

3.3 Results and discussion 

3.3.1 Methane production 

    The daily methane yields with and without nano bubbles were summarized in Fig. 3-1. The 

NBW reactor showed a more excellent performance in methane production rate than the DW 

reactor, with the maximum daily methane production of 264.83 mL/g-VS/d and 238.05 mL/g-

VS/d, respectively. Correspondingly, the average H2 conversion efficiency improved with the 

presence of NBs by 4%, resulting in 66.17% of H2 converted to CH4 (with a maximum of 

72.81%).  The enhancement induced by the nanobubble group seems more obvious in the first 

10 days. In the following days, the improvement showed a declining trend. These were likely 

due to the lifetime of nano bubbles was about 15 days (Ushikubo et al., 2010), with the decrease 

in bubble concentrations, the effect of nano bubbles will weaken. Albeit the H2/CO2 NBW 

reactor supplied relatively more substrates (H2/CO2) than the DW reactor, the amount can be 

eliminated considering the small bubble size and concentration. Therefore the effect of nano 

bubbles may be induced by other reasons. By t-test, the difference was significant with the p 

value lower than 0.05. 

    The carbon balance analysis of NBM group indicated that the introduce of H2/CO2 nano 

bubble did not cause significant increase in amount of H2/CO2, indicating that the 

enhancement for methane yield is not mainly related to the extra substrates. 

3.3.2 VFA variation 

    The effect of nano bubbles on net VFAs yield without initial pH adjustment was shown in 

Fig. 3-2. It was clear that the existence of nano bubbles favored the deradation of VFAs. After 

7 days' operation, a low maximum TVFAs yield of 275.47 mg/L was obtained in the NBW 

reactor, while higher in DW reactor (394.83 mg/L). The TVFAs trended to decrease in the 

following days. The VFAs detectable in this experiment were short-chain fatty acids with 2-5 

carbon atoms. Acetic acid (HAc), including acetic, propionic, iso-butyric, n-butyric, iso-valeric 

and trace of n-valeric acids concentrations in two reactors were relatively low, indicating that 

the effective transformation of acetic acid to methane by aceticlastic methanogens. While the 

INBM group showed a higher HAc concentration but lower propionic acid (HPr) and iso-valeric 

acid (iso-HVa) concentration, illustrating that the conversion from HPr and iso-HVa to HAc in 
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the IDM reactor is relatively less efficiently than the INBM reactor. In view of VFAs variation, 

the NBs may also influence the transformation between the short-chain fatty acids. The 

conversion rate from acids with more C atoms to less C atoms was accelerated by the NBs. 

    As for the pH, the NBs seems no obvious effect on the pH, considering that the initial pH 

in the INBM reactor was 8.03, while pH of IDM reactor was 8.30, only a slight decrease, which 

may be cause by the existence of CO2. The variation during the experiment was also similar, 

the final pH of IDM (7.56) is lower than INBM reactor (7.85) may result from the higher VFAs 

accumulation. pH varied in the optimal range for the growth of methanogens in the whole 

process (Xu et al., 2018). 

3.3.3 Coenzyme F420 content 

    Coenzyme F420 is a unique electron carrier of Archaea and Mycobacteria. It has been shown 

that F420 is important in archaeal energy metabolism (Bashiri et al., 2010). Considering F420 is 

a unique coenzyme to methanogens, the content of coenzyme F420 can be indirectly attributed 

methanogenic activity of methanogens (Ma et al., 2013). Fig. 3-3 presents the changes of 

coenzyme F420 concentrations in the reactors. It should be noted that the relatively short 

experiment time of 30 d in this study may lead to no obvious variations in the microbial 

communities. Therefore, the methanogenic activity of the reactors can still be justified by the 

content of F420 considering the same inoculum. It was found that with the existence of NBs, the 

NBW reactor obtained a higher coenzyme F420 content. After the experiment, the concentration 

of F420 in the NBW reactor reached 1.80 μmol/g-VS, which was 1.23-fold of that in the DW 

reactor. The results were in consistent with the methane production enhancement and confirmed 

the positive effect of NBs on the coenzyme of methanogens.   

3.3.4 Trace metals transformation 

(1) Trace metals variation in the cells of methanogens 

  Previous studies showed that iron (Fe), nickel (Ni) and cobalt (Co) are essential elements 

for both acetoclastic and hydrogenotrophic methanogenesis. Fe and Ni formed the important 

subunits of enzymes such as hydrogenase and acelyl-CoA synthase involved in methanogenesis 

pathways (Lindahl and Chang, 2001; Thauer et al., 2010). The central site of the key enzyme 

in the final step of all the methanogenesis is also formed by the Ni element (Dimarco et al., 

1990; Jiang et al., 2017). Cobalt is the major component of key cofactors (corrinoids) in 

methanogenesis pathways (Muller, 2003; Thauer et al., 2008).  

  The intracellular metal concentrations were obtained by addition of 10% HCl (Ginter et al., 
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1995). The cells before and after HCl immersion were observed by SEM, as shown in Fig. 3-4. 

Before immersion, the surface of cells was rough and seemed be covered by some chemicals or 

crystals. After immersion by HCl, the surface of cells became smooth indicating the 

extracellular metals had been removed effectively. 

  The final VSs for INBM group and IDM group was 3.76 g/L and 3.48 g/L, respectively. 

Higher Fe, Ni and Co contents in the methanogens in NB group were achieved in relation to 

the DW group, as shown in Table 1. Among them, Fe was the most abundant for the cell pellets 

of the two reactors, which reached 1159.53±20.34 μg/g-VS and 1035.28±12.01 μg/g-VS in the 

INBM and IDM groups, respectively. While the Co content was the least abundant one, with 

10.93±1.56 μg/g-VS in NBW reactor, and 7.38±1.37 μg/g-VS in DW reactor. The content of Fe 

was comparable with the results of Neubeck et al. (2016), while the Ni and Co concentrations 

in cells were higher or lower. The difference in the uptake amount of these three metals is 

depending on their demand by the cells and the different feeding strategy.  

  The deficiency of iron lead to a VFA accumulation which may be the evidence that the 

higher concentration of Fe uptake in the INBM group earned a lower VFA accumulation. The 

acidogens preferably produce butyrate and propionate to act as a feed-back metabolism to 

reduce the hydrogen concentration in the reactors once hydrogenotrophic methanogenesis is 

slower than the acetate/hydrogen production (Ketheesan and Stuckey, 2015). Moreover, the 

higher coenzyme content in the NBW reactor may be resulted from the more metals uptake.  

(2) Trace metal speciation and mass balance analysis 

    In anaerobic digestion, metal nutrients are always dosed excessively in the feed to maintain 

the stability of the process. Whereas, the function of metal nutrients is not related to the amount 

of metal nutrients but correlated with their bioavailability. Because the behavior of metal 

nutrients may be affected by several physical indexes including pH, ORP, temperature, and 

chemical factors such as precipitation, adsorption, and complexation (Ketheesan et al., 2016).  

    Fig. 3-5 showed the mass balance of trace metals in the two reactors. The speciation of Fe, 

Ni and Co were analyzed by BCR extraction method. In general, the soluble and acid soluble 

fraction of metals are considered as the most bioavailable, which can be directly uptake by 

microorganisms (Gustavsson et al., 2013). The Fe-Mn oxides, and organic matter and sulfide 

fractions are potential bioavailable. The residual fraction is the least bioavailable fractions of 

metals, which is fixed in the crystal lattice of the mineral components (Ortner et al., 2015). For 

Fe fractions, due to the deficiency of Fe in the cultivation period, the Fe content in the seed 



38 

 

sludge was relatively lower than the common sludge, only 532.17 μg/g-VS. The Fe tended to 

transform from high bioavailability fractions (soluble and acid soluble fractions) into fractions 

with low bioavailability (organic matter and sulfide and residual). Compared with the IDM 

group, the soluble fraction in the INBM group was lower, while the acid soluble fraction was 

higher, leading to the high bioavailability fractions (the sum of these two fractions) were higher 

than that in the IDM group. Correspondingly, the lower organic matter and sulfide and residual 

fractions was obtained in the INBM group. Worth to mention that the organic matter and sulfide 

fraction in the NBW reactor was lower than the DW reactor, while the final VS in the INBM 

was higher than IDM group, illustrating that the Fe sulfide may decrease to some extent. This 

agrees with the phenomenon that after 15 days’ operation, some blank particles appeared at the 

bottom of the DW reactor, while the NBW reactor showed a much less formation of such blank 

particles, which may be the metal sulfides. It has been shown that sulfide formation/dissolution 

showed major influence on the bioavailability of trace metals in anaerobic digestion (Gonzalez-

Gil et al., 1999; van der Veen et al., 2007). Based on these results, the existence of NBs may 

improve the bioavailability of trace metals for the methanogens. 

    As for the Ni and Co fractions, there was some difference with the Fe fractions. While the 

trend that increase in high available fractions and decrease in low bioavailable fractions was 

similar. 

3.3.5 Bubble size distribution and zeta potential 

    The distilled water with H2/CO2 NBs was set as the control reactor under the same condition. 

The concentration of NBs decreased significantly from the first day to the tenth day, from 

2.35×107 to 6.43×105/mL. The size also decreased which is in consistent with the study that 

smaller bubbles tend to decrease the size and dissolve in the water. Zeta potential describes the 

charge characteristics of NBs and affects their dispersion (Li et al., 2013). High absolute value 

of zeta potential prevents NBs from coalescence and improves their stability. The zeta potential 

for NB control reactor is -43.4 mV confirming the negative charge of NBs. Although the 

condition for the control group is not exactly same with the other groups considering the 

medium and the microbes, the results showed us the lifetime for the NBs.  

    The bubble size distribution for NBW and medium with or without NBs were shown as Fig. 

3-6. According to the results, after introduction of NBs resulted in the increased particle size in 

the medium, while decreased total number. Combining with the corresponding zeta potentials 

(Table 3-3), the supplementation of NBs decreased the zeta potential of medium, which 
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indicated that NBs may coagulated with the chemical particles in the medium.   

  It is difficult to distinguish the bubbles and the microbes or chemicals, so that the size and 

distribution was only done in the groups without inoculation. Suitable technologies are 

necessary for further analysis of mixed systems composted of nano bubble and microbes.  

3.3.6 Possible mechanism for the enhancement 

  The trace metal bioavailability depends on not only biological (transport across membrane), 

but also physical-chemical processes (diffusion and dissociation of metal complexes) (Worms 

et al., 2006). Specially, the physical-chemical processes will change the existing state of trace 

metals. However, there is a paucity of quantitative data to reveal which stage is the limitation 

step of metal bio-uptake, including diffusion, chemical dissociation, adsorption to the microbial 

interface, or transfer through the plasma membrane (Wilkinson and Buffle, 2004). Several 

factors including the characteristics of precipitate, the degree of coprecipitation and adsorption 

and the size of particles play an important role. 

  It is a complex process for the gas fermentation. Taking the three kinds of species in the 

system in account, the bubbles, particles, and microbes may interact each other. Wu et al. (2015) 

demonstrated that the dispersion, electrostatic double layer, and hydrophobic forces governed 

the interaction energy, and further determined the degree of attachment between gas bubbles 

and particles. We assume the mechanism for the enhancement induced by the NBs is bound up 

with the bubble-microorganism or bubble-particle interactions in the reactor. The NBs existed 

in the solution may aggregate with the particles in the reactor by collision derived by shaking, 

just like the flotation procedure. Recently, Zhang et al. (2016) proposed that for nano scale 

particles, the NBs may interact with them by new nucleation on the nano particles. The NBs 

may also adsorb the positive ions in the medium by electrostatic attraction in view of the 

negative charge characteristics. 

  Mishchuk et al. (2006) put forward that NBs coated on the surface of particles had a 

profound effect on the correlation between particles and bubbles, and, specially, significantly 

decreases the critical particle size for coagulation. Xie et al. (2018) studied the interaction 

between air NBs and bitumen surfaces in the aqueous media. Results showed that the 

attachment of bubble-bitumen was inhibited by the electrical double layer (EDL) repulsion 

under low concentration of NaCl. While in 500 mM NaCl, the bubble-bitumen attachment could 

be induced by the hydrophobic attraction. Consequently, the high ion concentrations in the 

medium is favor to the bubble-particle attachment. 
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  Fig. 3-7 showed the possible pathway for trace metals transferred into the cells. Taking Fe 

as an example, Fe was added into the reactor as ion form, then it experienced the diffusion 

procedure to shorten the distance with the microbe cells. Then certain amount of ionic Fe is 

transferred into different types of complexes. What’s more, Fe will also react with the sulfide 

which is the product by the anaerobic reduction of cysteine, to form the Fe sulfide. NBs may 

serve as a media between the ionic Fe and the surface of the cells. What’s more, even the 

undissolved Fe species could also coagulate with NBs due to the long-term hydrophobic 

attraction force. Considering the hydrophobic characteristics of the membrane of cells, the NBs 

may also tend to attach on the cell surface. The NBs on the surface of the particles and the cells 

will accelerate the aggregation of particles and cells. Based on these, the existence of NBs may 

“bring” more different type of Fe to the surface of the cells, so that supplied more chance for 

the uptake of Fe by the cells, further enhance the efficiency of Fe transfer from the extracellular 

to the intercellular. Cause more Fe was combined with other complexes, the formation of Fe 

sulfide was decreased which can explain the less darker color in the INBM group than IDM 

group. 

  The possible pathways for the effect of NBs were proposed according to the phenomenon 

and results in this study, while it have not been verified. It is a pity for this study did not test the 

forces between the particles and bubbles using some technology such as the atomic force 

microscopy to reveal the interactions between bubbles and microbes directly. This section will 

be taken into consideration in the future study. 

3.4 Summary 

  Effect of nano bubbles (NBs) on the hydrogenotrophic methanogens was investigated by 

preparing liquid medium with or without H2/CO2 mixture nano bubbles. Results showed that 

enhanced methane production with pre-supplied NBs was achieved with a maximum daily 

methane yield of 264. 53 mL/g-VS, while 238.05 mL/g-VS without NBs. The higher coenzyme 

F420 content was obtained in the group with NBs, which is 1.23 fold than control group. 12% 

increment of intracellular iron content was realized with the existence of NBs, which can be the 

evidence for the higher coenzyme content. For the trace metal speciation, the higher percentage 

of acid soluble and exchangeable fraction, while lower percentage of organic matter and sulfide 

fractions in the group with NBs were achieved than the control group. The nano bubbles may 

enhance the mass transfer and metal bioavailability of trace metals. This study indicates that 

the bulk nano bubbles have the potential for the enhancement of methane production or other 
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microbial stimulation.
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Table 3-2 Trace metals in cells for IDM and INBM groups 

 

*IDM - Isolated medium without nano bubbles;  

 INBM - Isolated medium with nano bubbles 

  

 Trace metals in cells (μg/g-VS) 

 Fe Ni Co 

IDM 1035.28±12.01 59.14±3.29 7.38±1.37 

INBM 1159.53±20.34 63.13±2.72 10.93±1.56 
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Table 3-3 Bubble size and number and zeta potential for groups without inoculum. 

 

*NBW-10 – the distilled water with nano bubbles on the 10th day; 

 DM-10 – the pure medium without nano bubbles on the 10th day; 

 NBM-10 – the pure medium with nano bubbles on the 10th day. 

 

  

Groups 
Mean particle 

size (nm) 

Total particle number 

(/mL) 

Zeta potential 

(mV) 

NBW-10 158.8±58.6 1.94×107±1.42×107 -19.5± 0.8 

DM-10 187.5±6.9 7.12×108±3.42×107 -31.8±0.9 

NBM-10 220.4±3.9 6.98×108±2.17×107 -28.8±3.0 
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Fig. 3-1 Methane production and H2 conversion efficiency of IDM (isolated medium without 

nano bubbles) and INBM (isolated medium with nano bubbles) groups. 
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Fig. 3-2 VFAs and pH variation in the IDM (isolated medium without nano bubbles and 

INBM (isolated medium with nano bubbles) groups (Solid line: IDM, dashed line: INBM).  
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Fig. 3-3 Coenzyme F420 content in the IDM (isolated medium without nano bubbles) and 

INBM (isolated medium with nano bubbles) groups during the gas fermentation. 
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Fig. 3-4 SEM images for the methanogen cells before (a) and after (b) extraction with 10% 

HCl. 
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Fig. 3-5 Metals speciation for the IDM (isolated medium without nano bubbles) and INBM 

(isolated medium with nano bubbles) groups (a) Fe fractions; (b) Ni fractions; (c) Co 

fractions.  
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Fig. 3-6 Particles distribution for different groups (a) NBW (distilled water with nano 

bubbles); (b) DM (pure medium without nano bubbles) (c) NBM (pure medium with nano 

bubbles). 
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Fig. 3-7 Conceptual model of some of the important physicochemical processes leading to 

and following the uptake of a trace metal by a methanogen with the existence of NBs. 

Pathways with solid or dashed narrow arrow stand for the common processes. Pathways with 

wide arrow stand for the special processes with the existence of NBs.
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Chapter 4 The effect of air nano bubbles on iron bioavailability in anaerobic digester 

under varied iron and sulfur concentrations 

4.1 Introduction 

    Oxygen has often been considered an inhibitor of methanogenesis (Chu et al., 2005). 

Aeration may result in the oxidation of part of the substrate and the inhibition of anaerobic 

archaea activity. However, provided the amount is controlled in a suitable range, it may alleviate 

the acidification due to accumulation of VFAs and consequent decrease in pH, subsequently 

enhance the methane production (Botheju et al., 2010). On the other hand, aerobic treatment 

may also enhance hydrolysis procedure by stimulating the activity of hydrolysing bacteria (Hao 

et al., 2009). Moreover, micro-aeration may be of use in reducing sulphides content and, 

therefore, minimizing the toxic effect of aqueous sulphides on acetogenic, methanogenic 

microorganisms (Krayzelova et al., 2015; Nghiem et al., 2014). Whereas, the effect of micro-

aeration on the bioavailability of trace metals and further the methanogenesis has yet been 

explored in depth. 

  The air micro-nano bubbles exhibited beneficial to the germination of plant seed and the 

growth of mice and fish, due to the generation of ROS during the collapse of bubbles (Liu et 

al., 2016). The pre-loaded air nano bubbles may also influence the methanation and microbe 

growth, while it is worthy to explore whether the effect was caused by the micro-aeration 

(dissolved oxygen) or the existence of nano bubbles. 

    During anaerobic digestion, iron is an essential component of some cofactors and enzymes 

that stimulate the biogas process performance, with the largest content in the methanogens cells 

among the trace metals (Scherer et al., 1981). The effect of metals is not dependent on the total 

metal concentration, but the bioavailability of metals, because the chemical forms of the metals, 

and the different physical parameters (pH and redox potential) can also affect the solubility of 

metals (Ketheesan et al., 2016). Accordingly, the high bioavailability of Fe is beneficial to the 

methanogenesis process. 

  In this chapter, we introduced the air nano bubbles into the anaerobic digester. Based on 

the conclusion of last section, we focused on the trace metal (Fe) bioavailability under varied 

Fe and sulfur concentrations. The objective of this chapter is to investigate the effect of air 

nano-bubbles on bioconversion of CO2 and H2 to CH4 under different iron and sulphide 

concentrations. Moreover, to reveal the effects were caused by the micro-aeration condition 

(oxygen) or the interaction resulting from the NBs. 
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4.2 Materials and methods 

4.2.1 Medium preparation 

    The medium same as Zhang et al. (1993) was prepared by distilled water (DW) and air 

nanobubble water (NBW), respectively. For the air NBW, the components contained in the 

medium were first dissolved in 1 L of distilled water. Then the solution and air were introduced 

into a NB generator (HACK FB11, Japan) at the room temperature and a standard atmosphere. 

Under the above conditions. The flow rate of air was about 0.1 L/min. The medium was stored 

in a sealed serum bottle at room temperature after 1 h of bubble generation, to guarantee the 

stabilization of bubble number.  

4.2.2 Inoculation 

    The acclimated inocula, collected from the pond sediment (Matsumi Ike, Tsukuba campus) 

which has been well adapted to the H2/CO2 gas mixture (80/20, v/v) for 4 months’ methane 

production, were introduced at a ratio of 1:9 (v/v) into the medium. The experiments was carried 

out in the serum bottles with the liquid and headspace volume of 50 mL and 60 mL, respectively. 

The H2/CO2 mixture gas was supplied to the headtop of the serum bottles with the pressure of 

2.5 atm. The gas was supplied in fed-batch mode, while the medium was in batch mode. The 

temperature was controlled at 37±2ºC. During cultivation, the supplied medium was without 

Fe addition.  

4.2.3 Metal speciation and mass balance analysis 

  The metal speciation was carried out according to the method of Stover et al. (1976). A 

description of the extraction procedure is given in Table 4-1. The total metal content in the 

sludge, and the residual fraction after sequential extraction was digested according to Zhang et 

al. (2015). Then the digested samples were analyzed by ICP-MS. 

  The experimental design of batch trials was summarized and shown in Table 4-2. In order 

to investigate the effect of air-NBs on methane production under different iron concentrations, 

varing concentrations of Fe (0, 50, 100 μM) were added to different batch bottles respecitively. 

Meanwhile, the cysteine was utilized as the sulfur source for methanogens with varied initial 

concentration of 0, 3, 6 mM. 

4.2.4 Analytical methods 

    The contents of H2, CO2, and CH4 in the gas phase were analyzed as the same method in 
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Chapter 2. The gas samples were taken at an interval of 24 h. 

  Total solid (TS), volatile solid (VS), and biomass concentration were analyzed according 

to the standard methods (APHA, 2005). Volatile fatty acids (VFAs) were analyzed by gas 

chromatography (GC–FID, Shimadzu C-R8A, Japan).  

  The size distribution and number of the air NBs were measured by a nanoparticle tracking 

analyser (NanoSight LM-10, Malvern Instruments Ltd., Malvern, Worcestershire, UK). The 

zeta potential of air NBs in solution was measured by using a zeta potential analyser (Nano ZS, 

Malvern, UK). The pH was measured by the pH meter (B-211, Horiba, Japan). The oxidation-

reduction potential (ORP) was detected by the ORP meter (YK-23RP, Lutron, Taiwan). 

4.2.5 Statistical analysis 

  The significance of changes in methane production, VFAs variation, intracellular metal 

contents and the metal speciation in different stages of this study were assessed by carrying out 

independent sample t-tests when necessary. Statistical significance was set at p < 0.05 (95%). 

4.3 Results and discussion 

4.3.1 The effect of nano bubbles on the medium without methanogens 

    The bubble size distribution for NBW and medium with or without NBs were shown as 

Table 4-3. According to the results, after introduction of NBs resulted in the increased particle 

size in the medium, while decreased total number. Combining with the corresponding zeta 

potentials (Table 4-3), the supplementation of NBs decreased the zeta potential of medium, 

which indicated that NBs may coagulated with the chemical particles in the medium. The 

oxidation-reduction potential (ORP) was also measured to evaluate the effect of air on the 

physical-chemical properties of the medium. The introduction of NBs only resulted in a slight 

decrease in ORP due to the creation of anaerobic environment. Therefore, the existence of nano 

bubbles may not affect the ORP very obviously. 

    The Fe speciation under different conditions in DM and NBM groups were shown as Fig. 

4-1. Results showed that the existence of air NBs will improve the percentage of soluble 

fractions, in other words, less precipitations occurred in the NBM group. The variation of Fe 

concentration lead to a more significant change for the fractions than altering cysteine 

concentrations. 

4.3.2 Effect of Fe concentrations 

    Trace metals are components of the essential enzymes, which can catalyse various 
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anaerobic biochemical reactions. Zayed and Winter (2000) analysed the metal content in the 

cell of ten methanogenic strains, and results showed that Fe content was the highest in the 

methanogenic strain cells, compared with Zn, Ni, Co, Mo and Cu. The effect of metals is not 

dependent on the total metal concentration, but the bioavailability of metals, because the 

chemical forms of the metals, and the different physical parameters (pH and redox potential) 

can also affect the solubility of metals. The excess concentration of metals may damage the 

disruption of enzyme function and structure due to binding of metals with functional groups on 

protein or the substitution of essential metals in enzymes (Chen et al. 2008a, b). It is generally 

believed that acidogens are more resistant to heavy metal toxicity than methanogens (Mudhoo 

et al., 2013).  

(1) Methane production 

  In order to investigate the effect of air-NBs on methane production under different iron 

concentrations, varing concentrations of Fe were added to the batch bottles. Fig. 4-2 showed 

the methane production for different groups under varied Fe concentrations. 

    It was found that the supplementation of Fe showed the stimulation of methane yields 

under low and moderate concentrations. However, after reaching maximum methane yield at 

50 μM (395.14 mL/g-VS for IDM group, 428.17 mL/g-VS for INBM, respectively), the further 

increased concentrations of Fe (100 μM) led to the decreased methane yield. The excessive 

supplementation of Fe exhibited the obvious inhibition to methanogens. The results of Su et al. 

(2015) showed that the high concentration of Fe lead to the decreased availability of P, which 

may due in part to the decreased bioavailability of nutrients.  

    The air-NBs showed positive effect on the methane yield with the Fe concentration of 0, 

50 μM. The maximum enhancement was achieved at 0 μM with an increase of 30.78%. While 

the increment was the lowest for groups with 50 μM Fe addition. Interestingly, supplementation 

of 100 μM Fe caused a stronger inhibition for INBM than IDM group (with the methane yield 

of 308.32 mL/g-VS and 371.90 mL/g-VS, respectively).  The inhibition concentration of Fe 

was different with the other study (Zhang et al., 2015), which may be resulted from the different 

microbial composition, one of the more convincing way to evaluate the effect of Fe 

concentrations may be to calculate the ratio of Fe concentration and the VS, to get the specific 

Fe concentration. 

(2) VFAs variation 

  Supplementation of Fe also affected the VFAs production and degradation (Fig. 4-3). For 
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both group, after 7 days fermentation, acetic acid was dominant in VFAs production. The total 

VFAs production was lowest under Fe concentration of 50 μM. Both the deficiency and 

excessive dose of Fe will lead to the accumulation of VFAs. The VFAs accumulation reached 

maximum value of 450.68 mg/L for IDM group at Fe concentration of 100 μM, indicating that 

the acidegens may tolerate higher Fe concentrations than methanogens.  

    Propionate to methane conversion involves the activity of propionate oxidizing bacteria as 

well as the hydrogenotrophic and acetoclastic methanogens (de Bok et al., 2004). Therefore, 

not only the propionate oxidizing bacteria but also the hydrogenotrophic and acetclastic 

methogens may contribute to the conversion of propionate to methane. As evidenced by acetate 

can still be directly converted into methane by acetoclastic methanogens under high Fe 

concentrations, acetoclastic methanogens were more constrained by Fe deficiency in 

comparation with the other methaogens (Ketheesan et al., 2016). Taking these into 

consideration, the deficiency of Fe may lead to the accumulation of acetate. 

(3) Fe speciation 

    To examine the dynamics of Fe speciation under different Fe concentrations for both IDM 

and INBM groups under different Fe concentrations, the Fe fractions were extracted 

sequentially to determine the availability of Fe in solid matrics. To date, the trace metals 

contained in anaerobic sludge can be sequentially extracted by a variety of approaches (Stover 

et al., 1976; Tessier et al., 1979; Lake et al., 1985; Osuna et al., 2004). However, the reason for 

choosing the scheme proposed by Stover et al. (1976) and modified by Lake et al. (1985) in this 

study was that the metal sulphide fractions can be clearly differentiated. 

    As shown in Fig. 4-4, the Fe fractions in the inoculum were dominated by organically 

bounded (S3), adsorbed (S2) and sulfides (S5). Cause the inoculum was supplied without Fe 

addition during acclimation, the initial composition was different with the study of Ketheesan 

et al. (2016), which stated Fe initially accumulated in the inoculum as sulphides, 

carbonate/phosphates and non-defined forms (residuals) due to a prolonged supply of Fe in the 

seed. 

    After 7 days fermentation, the fraction distribution changed under different Fe 

supplementation. Worth to mention that, the sulfur content in the medium was increased from 

1 μM (acclimation period) to 3 μM (batch fermentation), resulting in an obvious increase in the 

sulfides (S5) and carbonate/phosphates compared with the initial samples, while declined 

percentage of organically bounded fraction (from 71.53% to 30%~40%) for the groups with 



57 

 

different Fe supplementation. The variation indicated that the increase in sulfur supply could 

induce the enhanced formation of sulfides. 

    As for the comparison of IDM and INBM group, under 50 and 100 μM Fe concentrations, 

the transformation from liquid phase (soluble fraction) to solid phase (the sum of S1 to S6 

fractions) was enhanced by the air NBs. The Fe bounded by electrostatic attraction (S1) and 

adsorbed to the methanogens (S2) for the INBM group were higher than the IDM group. While, 

the fraction of sulfide may decrease by the introduction of NBs. These were in consistence with 

the mechanism we proposed in the previous study that the existence of nano bubbles may “bring” 

more metal ions and sulfides to the surface of cells and improve the bioavailability and bio-

uptake of metals. 

(4) Soluble sulfides 

    Methanogenic bacteria are known to require reduced sulphur, e.g. sulfide or cysteine, as a 

source of a sulfur for growth (Bryant et al., 1971). So that the cysteine will experience the 

anaerobic degradation and be reduced to sulfides. Some part will be utilized for microbial 

growth, while the other part will react with metal ions or some other chemical components to 

form the sulfides. According to Fig. 4-5, the soluble sulfides decreased with the increase in Fe. 

And the highest level was reached by the groups without Fe addition (1.29 mg/L for IDM and 

1.06 mg/L for INBM, respectively). Accordingly, the increase of Fe concentration will lead to 

the significant decrease of soluble sulfides.  

  Under different Fe concentrations, the soluble sulfide in IDM group is lower than INBM 

group. While, if the stimulation was caused by the oxygen released from the bubbles, the soluble 

sulfides should be oxidated by the oxygen resulting in the decline in soluble sulfides. Based on 

these results, the enhancement induced by the NBs may not caused by the addition of oxygen, 

but the nano bubbles with long lifetime, which will contribute to the dispersion further to 

increase the dissolution of sulfides (s) by decreasing the particle sizes. Therefore, with the 

sulfide concentration lower than the toxic concentration, the more soluble sulfide may be 

benefit for the anaerobic digestion. 

4.3.3 Effect of S concentrations 

    Methanogenic bacteria are known to require reduced sulphur, e.g. sulfide or cysteine, as a 

source of a sulfur for growth (Bryant et al., 1971). It is well known that methanogens possess a 

unique sulphur-rich cofactor, coenzyme M (2-mercaptoethanesulfonic acid), used in methane 

formation. Furthermore, methanogenic bacteria contain, in addition to coenzyme M, a large 
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number of iron-sulfur proteins, which presumably take part in the electron transport (Merchant 

et al., 2012). 

    The observations made above indicate that the consumed sulphide is used for two main 

purposes: primarily to produce sulphur compounds taking part in the energy production and 

also to form sulphur-containing amino acids, proteins, etc. (i.e., as a general sulphur source for 

new building blocks required for growth). (Ronnow et al., 1981). 

    While, sulfate and sulfer-containing organic compounds can be reduced to sulfide by the 

microbes under anaerobic conditions, and superfluous sulfide may hinder the anaerobic 

digestion process by two major inhibitory mechanisms. The organic acids competition caused 

by the sulfate-reducing bacteria is the main inhibition. Moreover, sulphide also have toxic effect 

on microorganisms. Free unionized hydrogen sulphide can pass through the cell membrane and 

react with the cell components when above certain concentration. Hydrogen sulphide level in 

anaerobic environments affects the microbial production of S-containing proteins and their 

related metabolic mechanisms (Bragg et al., 2006). 

(1) Methane production 

    L-cystaine was chosen as the sulfur source. Cysteine has been reported to have the 

properties of stabilizing oxidation-reduction potential, affecting catalytic activity, and making 

posttranslational modifications of some proteins. For example, it can lower the redox potential, 

scavenge oxygen, stimulate the reduction of iron (III) oxides by Geobacter sulfurreducens, 

affect biohydrogen production, mediate electron transfer between different guilds, and act as 

nitrogen source supplier. Data showed that endogenous CH4 production was lower in the 

absence of cysteine (Fig. 4-6), and CH4 production increased with the increasing concentrations 

of cysteine. While, the increment in methane production was the most obvious for the groups 

without cysteine addition.  

(2) VFAs variation 

    Same as the last section, the dominant product of VFAs is acetic acid, with the amount of 

over 90% (Fig. 4-7). The maximum accumulation was found with the cysteine concentration of 

3 mM in the IDM and INBM groups, which illustrated that the degradation rate of VFAs to CH4. 

Zhuang et al. (2017) investigated the ability of cysteine for acceleration of propionate 

degradation, demonstrating that at an appropriate concentration, cysteine might function as an 

electron carrier to stimulate syntrophic propionate oxidization and CH4 production, which can 

be the evidence for the deceased VFAs accumulation under higher cysteine concentration (6 
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mM). The stimulatory effect of air NBs on methanogenic VFAs degradation under low cysteine 

concentration was more apparent than the effects under higher concentrations.  

(3) Fe speciation 

    Rare studies focus on the effect of cysteine for the speciation of trace metals. The variation 

of cysteine concentration affects the transformation from soluble fraction to solid phase. The 

soluble Fe fractions dominated the Fe speciation in the absence of cysteine (Fig. 4-8), while the 

addition of cysteine lead to decreased soluble fractions, instead, more sulfide and residual 

fractions, which can be resulted from the formation of precipitation of FeS (s). With the 

increment in cysteine concentration, these two fractions trended to take larger percentage. 

    Under lower cysteine concentrations, the NBs showed a trend to transform more soluble 

fractions into solid, which can be explained by the faster mass transfer. The sulfide and residual 

fractions in the groups with NBs were lower than the groups without NBs.  

(4) Soluble sulfide 

    Soluble sulfides are the products of anaerobic reduction of cysteine. At the nontoxic 

concentration, the sufficient sulfide content is favor to the synthesis of proteins such as the 

essential S-containing enzymes. The higher soluble sulfide content in the groups with NBs was 

obtained than that without NBs, which is also consistent with the lower content in the solid 

phase (Fig. 4-9).  

4.4 Summary 

  The stimulation for methane production by air NBs was more obvious under lower iron or 

cysteine concentrations with an increment of 30.78% without iron addition and 32.45% without 

cysteine supply, respectively. The methane production was inhibited at high Fe concentration, 

while the more obvious inhibition was obtained in NB group.  

    The particle distribution analysis indicated that the bubbles may combine with the particles, 

which resulted in a decreased zeta potential. While the ORP before and after introduction of 

NBs did not change obviously indicating the oxygen included in the NBs may not the main 

reason for the higher methane yield. For the metal speciation analysis, the increase in Fe 

concentrations lead to an increase in adsorbed fractions, and the existence of NBs enhanced this 

increment. The Fe bioavailability was mainly influenced by the Fe/S ratio. The effect of nano 

bubbles (stimulation or inhibition) depends on different conditions. Under optimal condition, 

the nano bubbles will benefit the microbial growth and methane yield.
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Table 4-1 Operating conditions required in the Stover sequential extraction method 

Fraction Extracting agent 

Extraction conditions 

Shaking 

time 
Temperature 

S1. Exchangeable 30 mL KNO3 (1 M, pH=7) 16 h 20ºC 

S2. Sorbed 48 mL KF (0.5 M, pH=6.5) 16 h 20ºC 

S3. Organically 

bound 
48 mL Na4P2O4 (0.1 M) 16 h 20ºC 

S4. Carbonates 48 mL EDTA (0.1 M, pH=6.5) 2×8 h 20ºC 

S5. Sulfides 30 mL HNO3 (1 M) 16 h 20ºC 

S6. Residual 
10 mL distilled water and 10 mL aqua 

regia (HCl/HNO3, 3:1) 
30 min Digester 
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Table 4-3 The particle size distribution and zeta potential and oxidation and reduction 

potential of different groups 

 

*NBW-initial – distilled water with nano bubbles at the beginning of the experiment; 

 DM-initial – pure medium without nano bubbles at the beginning of the experiment; 

 NBM-initial – pure medium with nano bubbles at the beginning of the experiment; 

 NBW-final – distilled water with nano bubbles at the end of the experiment; 

 DM-final – pure medium without nano bubbles at the end of the experiment; 

 NBM-final – pure medium with nano bubbles at the end of the experiement. 

 

Groups 
Mean particle size

（nm） 

Total particle 

number（/mL） 

Zeta potential

（mV） 

ORP pH DO 

NBW-

initial 
112.9±40.5 2.92×107±8.80×105 -26.91±3.10 - - - 

DM-

initial 
105.6±6.9 8.45×108±6.19×107 -31.80±1.90 -320 7.60 5.01 

NBM-

initial 
121.8±3.9 7.86×108±3.29×107 -26.62±2.05 -312 7.45 5.15 

NBW-

final 
135.3±20.2 8.59×106±4.57×105 -23.79±4.12 - - - 

DM-final 150.0±3.5 1.13×109±3.44×107 -25.73±0.32 -344 7.69 4.46 

NBM-

final 
171.0±22.8 1.60×108±3.80×107 -21.36±0.45 -330 7.48 4.53 
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Fig. 4-1 The Fe speciation under different concentrations for DM (pure medium without nano 

bubbles) and NBM (pure medium with nano bubbles) groups (a) with varied Fe 

concentrations; (b) with varied cysteine concentrations. 
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Fig. 4-2 The accumulated methane production under different Fe concentration for IDM 

(isolated medium without nano bubbles) and INBM (isolated medium with nano bubbles) 

groups. 
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Fig. 4-3 The VFAs variation under different Fe concentration for IDM (isolated medium 

without nano bubbles) and INBM (isolated medium with nano bubbles) groups. 
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Fig. 4-4 The Fe speciation under different Fe concentration for IDM (isolated medium 

without nano bubbles) and INBM (isolated medium with nano bubbles) groups. (S-soluble 

fraction, S1- exchangeable fraction, S2- adsorbed fraction, S3 organically bounded fraction, 

S4-Carbonate fraction, S5-sulfide fraction, S6-residual) 
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Fig. 4-5 The soluble sulfide concentration under different Fe concentration for IDM (isolated 

medium without nano bubbles) and INBM (isolated medium with nano bubbles) groups. 
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Fig. 4-6 The methane production under different cysteine concentration for IDM (isolated 

medium without nano bubbles) and INBM (isolated medium with nano bubbles) groups. 
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Fig. 4-7 The VFAs variation under different cysteine concentration for IDM (isolated medium 

without nano bubbles) and INBM (isolated medium with nano bubbles) groups. 
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Fig. 4-8 The Fe speciation under different cysteine concentration for IDM (isolated medium 

without nano bubbles) and INBM (isolated medium with nano bubbles) groups. (S-soluble 

fraction, S1- exchangeable fraction, S2- adsorbed fraction, S3-organically bounded fraction, 

S4-Carbonate fraction, S5-sulfide fraction, S6-residual) 
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Fig. 4-9 The soluble sulfide concentration under different cysteine concentration for IDM 

(isolated medium without nano bubbles) and INBM (isolated medium with nano bubbles) 

groups. 
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Chapter 5 Conclusions and Future research 

  The conversion of CO2 to other valuable carbonic compound is one of the effective way 

to alleviate the greenhouse effect in the world. Unlike the chemical procedure, which employs 

the costly catalysts, such as Ru, Pb, Rh, etc, under the high pressure or temperature condition, 

the bioconversion of CO2 by hydrogenotrophic methanogens can realize the transformation 

from CO2 to biofuel (CH4) under a mild condition with a lower cost. However, the mass transfer 

of hydrogen, and the low biomass growth rate remain as the hurdles for this procedure. In order 

to convert CO2 to CH4 more effectively, the micro-nano bubbles was utilized to overcome the 

limitations, considering the specific characteristics, larger interfacial area, long retention time 

and surface charge. Though a series of experiments including feasibility, mechanism and 

influencing factors researches, the following conclusions were obtained. 

5.1 Enhanced bioconversion of hydrogen and carbon dioxide to methane using a micro-

nano sparger system 

  The bioconversion performance for the stirred tank reactors equipped with a common 

micro sparger and a micro-nano sparger were compared. The conclusions were as follows: 

    1) The enhanced bioconversion of H2 and CO2 to CH4 was realized with the higher 

maximum methane evolution rate of 171.4 mmol/LR/d by using the MNS than that of 136.1 

mmol/LR/d by the CMS. 

    2) The MNSR also displayed superior biomass growth with a higher specific growth rate 

(0.15 d-1).  

    3) The VFAs accumulation was not detectable in MNSR.  

    4) Higher gas-liquid mass transfer was achieved in the MNSR (12.95 h-1) than that in the 

CMSR (6.60 h-1).  

    5) A higher energy-product ratio and economic analysis indicates that MNS has applicable 

potential for improvement of CO2 and H2 conversion into CH4 in large-scale plants. 

5.2 Enhanced bioconversion of H2 and CO2 to methane by pre-loaded bulk nano bubbles 

(NBs) via improving trace metal bioavailability 

  The effect of nano bubbles (NBs) on the hydrogenotrophic methanogens was investigated 

by preparing liquid medium with or without H2/CO2 mixture nano bubbles. The conclusions 
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were drawn as follows: 

    1) Methane yield was enhanced by the pre-supplementation of NBs in the liquid with the 

maximum daily production of 264. 53 mL/g-VS, while 238.05 mL/g-VS without NBs. 

    2) The higher coenzyme F420 content was improved by 1.23 fold via the addition of nano 

bubbles.  

    3) The intracellular Fe contents (1159.53±20.34 μg/g-VS) in INBM group were higher 

than the distilled water (IDM) group (1035.28±12.01 μg/g-VS), which can be the evidence for 

the higher coenzyme content.  

    4) For the metal speciation analysis, the higher percentage of acid soluble and 

exchangeable fraction, while lower percentage of organic matter and sulfide fractions in the 

NBW group were achieved than the DW group. 

    5) The micro-nano bubbles may enhanced the mass transfer and bioavailability of trace 

metals. This study indicated that the bulk nano bubbles have the potential for the enhancement 

of methane production or other microbial stimulation. 

5.3 The effect of air nano bubbles on iron bioavailability in anaerobic digester under 

varied iron and sulfur concentrations 

    The effect of air NBs on bioconversion of H2 and CO2 to CH4 was investigated under 

different initial iron and cysteine (sulfur source) concentrations. Following conclusions were 

obtained: 

    1) The stimulation for methane production by air NBs was more obvious under moderate 

iron or cysteine concentrations (maximum methane yield at 50 μM (395.14 mL/g-VS for control 

group, 428.17 mL/g-VS for NB group, respectively).  

    2) The methane production was inhibited at high Fe concentration (decreased to 308.32 

mL/g-VS in NB group and 371.90 mL/g-VS in control group, respectively)., while the more 

obvious inhibition was obtained in NB group.  

    3) The particle distribution analysis indicated that the bubbles may combine with the 

particles, which resulted in a decreased zeta potential. While the ORP before and after 

introduction of NBs did not change obviously indicating the oxygen included in the NBs may 

not the main reason for the higher methane yield.  

    4) For the metal speciation analysis, the increase in Fe concentrations lead to an increase 

in adsorbed fractions, and the existence of NBs enhanced this increment.  
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5.4 Future research 

In this study, the effect of micro-nano bubbles on the bioconversion of H2 and CO2 to CH4 

was investigated. Although we proposed a hypothesis that the nano bubbles may improve the 

trace metal bioavailability and biouptake, the deeper research should be explored in the future 

research. 

1) The experiments utilizing pure strains of methanogens may be necessary to better 

understand the effect of nano bubbles on the methanogens. 

2) The interaction of particles, microorganisms and bubbles should be investigated by 

utilizing the AFM or some other effective methods.  

3) The changes for the metabolism of methanogens with the existence of nano bubbles 

should be revealed in a micro scale.  

4) The long-term influence of air nano bubbles on the methanogens is worth to be found 

out by conducting an experiment continuously supply the air nano bubbles. 

5) The application of nano bubbles for other anaerobic microorganisms and the 

degradation of hard degradable substance.



75 

 

References 

Agarwal A, Ng WJ, Liu Y. (2011). Principle and applications of microbubble and nanobubble 

technology for water treatment. Chemosphere, 84(9), 1175-1180. 

APHA. (2005). Standard Methods for the Examination of Water and Wastewater. 21st ed., 

American Public Health Association/American Water Work Association/Water Environment 

Federation, Washington, DC. 

Aronu UE, Svendsen HF, Hoff KA. (2010). Investigation of amine amino acid salts for caorbon 

dioxide absorption. Int. J. Greenh. Gas. Con., 4(5), 771-775. 

Bassani I, Kougias PG, Treu L, Angelidaki I. (2015). Biogas upgrading via hydrogenotrophic 

methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic 

conditions. Environ. Sci. Technol., 49, 12585–12593. 

Bassani I, Kougias PG, Angelidaki I. (2016). In-situ biogas upgrading in thermophilic granular 

UASB reactor: key factors affecting the hydrogen mass transfer rate. Bioresour. Technol., 221, 

485–491. 

Bassani I, Kougias PG, Treu L, Porte H, Campanaro S, Angelidaki I. (2017). Optimization of 

hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading. Bioresour. 

Technol., 234, 310-319. 

Bashiri G, Rehan MA, Greenwood RD, Dickson JMJ, Baker NE. (2010). Metabolic Engineering 

of Cofactor F420 Production in Mycobacterium smegmatis. Plos one, 5(12), 1-10. 

Bredwell MD, Telgenhoff MD, Barnard S, Worden RM. (1997). Effect of surfactants on carbon 

monoxide fermentations by Butyribacterium methylotrophicum. Appl. Biochem. Biotechnol., 

63–65, 637–647. 

Bryant MP, Tzeng SF, Robinson IM, Joyner AE. (1971). Nutrient requirements of methanogenic 

bacteria. Adv. in Chem., 105, 23-40. 

Benemann JR. (2000). Hydrogen production by microalgae. J Appl Phycol, 12, 291–300. 

Bonacker LG, Baudner S, Moerschel E. (1993). Properties of the two isoenzymes of methyl-

coenzyme M reductase in Methanobacterium thermoautotrophicum. Eur J Biochem, 217, 

587–95. 

Botheju D, Samarakoon G, Chen C, Bakke R. (2010). An experimental study on the effecs of 

oxygen in bio-gasification; Part 2, in proceedings of the International Conference on Spain, 

March, 2010. 



76 

 

Bragg JG, Thomas D, Baudouin-Cornu P. (2006). Variation among species in proteomic sulphur 

content is related to environmental conditions, Proc. R. Soc. B. Bio. Sci., 273, 1293-1300. 

Bredwell MD, Srivastava P, Worden RM. (1999). Reactor design issues for synthesis-gas 

fermentations. Biotechnol. Prog. 15, 834–844. 

Brooks KP, Hu J, Zhu H, Kee RJ. (2007). Methanation of carbon dioxide by hydrogen reduction 

using the Sabatier process in microchannel reactors. Chem. Eng. Sci., 62, 1161–70. 

Burkhardt M & Busch G. (2013). Methanation of hydrogen and carbon dioxide. Appl. Energy, 

111, 74-79. 

Cavicchioli R. (2011). Archaea – timeline of the third domain. Nat. Rev. Microbiol., 9, 51–61. 

Chang IS, Kim BH, Lovitt RW. (2001). Effect of CO partial pressure on cell-recycled continuous 

CO fermentation by Eubacterium limosum KIST612. Process Biochem. 37, 411–421. 

Chen Y, Cheng JJ, Creamer KS. (2008a). Inhibition of anaerobic digestion process: a review. 

Bioresour. Technol., 99, 4044–4064. 

Chen SD, Lee KS, Lo YC, Chen WM, Wu JF, Lin CY, Chang JS. (2008b). Batch and continuous 

biohydrogen production from starch hydrolysate by Clostridium species. Int. J. Hydrogen 

Energy, 33, 1803–1812. 

Chu L, Zhang X, Li X, Yang F. (2005). Simultanious removal of organic substances and nitrogen 

using a membrane bioreactor seeded with anaerobic granular sludge under oxygen-limited 

conditions. Desalination, 172, 271-280. 

Cord-Ruwisch R, Lovley DR, Schink B. (1998). Growth of Geobacter sulfurreducens with 

acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl. Environ. 

Microbiol. 64, 2232-2236. 

de Filippis P, Borgianni C, Paolucci M. (2004). Prediction of syngas quality for two-stage 

gasification of selected waste feedstocks. Waste Manage., 24, 633–639. 

de Poorter LMI, Geerts WJ, Keltjens JT. (2007). Coupling of Methanothermobacter 

thermautotrophicus methane formation and growth in fed-batch and continuous cultures 

under different H2 gassing regimens. Appl. Environ. Microbiol., 73, 740–749. 

Deppenmeier U. (2002). The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol 

Biol, 71, 223–283. 

Diaz I, Perez C, Alfaro N, Fdz-Polanco F. (2015). A feasibility study on the bioconversion of CO2 

and H2 to biomethane by gas sparging through polymeric membranes. Bioresour. Technol., 

185, 246-253. 



77 

 

DiMarco AA, Bobik TA, and Wolfe RS. (1990). Unusual coenzymes of methanogenesis. Annu. 

Rev. Biochem. 59, 355-394. 

Dixon AJ, Dhanaliwala AH, Chen JL, Hossack JA. (2013). Enhanced intracellular delivery of a 

model drug using microbubbles produced by a microfluidic devices. Ultrasound Med. Biol., 

39(7), 1267-1276. 

Endo A, Srithongouthai S, Nashiki H, Teshiba I, Iwasaki T, Hama D, Tsutsumi H. (2008). DO 

increasing effects of a microscopic bubble generating system in a fish farm. Mar. Pollut. Bull., 

57(1), 78–85. 

Fan X, Tao D, Honake R, Luo R. (2010). Nanobubble generation and its applications in froth 

flotation (part II): fundamental study and theoretical analysis. Min. Sci. Technol. (China), 

20(2),159–177. 

Ferry JG. (2011). Fundamentals of methanogenic pathways that are key to the biomethanation of 

complex biomass. Curr. Opin. Biotechnol., 22(3), 351-357. 

Francisco GJ, Chakama A, Feng X. (2010). Separation of carbon dioxide from nitrogen using 

diethanolamine-impergnated poly(vinyl alcohol) membranes. Sep. Purif. Technol., 75, 205-

213. 

Frigon JC & Guiot SR. (1995). Impact of liquid-to-gas hydrogen mass transfer on substrate 

conversion efficiency of an upflow anaerobic sludge bed and filter reactor. Enzyme Microb. 

Technol., 17, 1080-1086. 

Ghirardi ML, Zhang L, Lee JW. (2000). Microalgae: a green source of renewable H2. Trends 

Biotechnol., 18, 506–11. 

GIO. (2015) National greenhouse gas inventory report of JAPAN. 

Ginter MO, Grobicki AM. (1995). Analysis of anaerobic sludge containing heavy metals: A novel 

technique. Water Res., 29(12), 2780-2784. 

Gonzalez-Gil G, Kleerebezem R, Lettinga G. (1999). Effects of nickel and cobalt on kinetics of 

methanol conversion by methanogenic sludge as assessed by on-line CH4 monitoring. Appl. 

Environ. Microbiol., 65, 1789-1793. 

Guiot SR, Cimpoia R, Carayon G. (2011). Potential of wastewater-treating anaerobic granules for 

biomethanation of synthesis gas. Environ. Sci. Technol., 45, 2006–2012. 

Gustavsson J, Yekta SS, Karlsson A, Skyllberg U, Svensson BH. (2013). Potential bioavailability 

and chemical forms of Co and Ni in the biogas process-An evaluation based on sequential 

and acid volatile sulfide extractions. Eng. Life Sci., 13(6), 572-579. 



78 

 

Haarhoff J, Edzwald JK. (2001). Modelling of floc-bubble aggregate rise rates in dissolved air 

flotation. Water Sci. Technol., 43(8), 175–184. 

Hao L, He P, Lu F, Shao L, and Zhu M. (2009). Regulating the hydrolysis of organic waste by 

micro-aeration and effluent recirculation. Waste Manage., 29, 2042-2050. 

Hoekman SK, Broch A, Robbins C, Purcell R. (2009). CO2 recycling by reaction with renewably-

generated hydrogen. Int. J. Greenh. Gas Con., 4, 44-50. 

Huang W, Huang W, Yuan T, Zhao Z, Cai W, Zhang Z, Lei Z, Feng C. (2016). Volatile fatty acids 

(VFAs) production from swine manure through short-term dry anaerobic digestion and its 

separation from nitrogen and phosphorus resources in the digestate. Water Res., 90, 344-353. 

Jee HS, Nishio N, Nagai S. (1988a). Methane production from hydrogen and carbon dioxide by 

Methanobacterium thermoautotrophicum cells fixed on hollow fibers. Biotechnol Lett, 10, 

243–248. 

Jee HS, Nishio N, Nagai S. (1988b). Continuous methane production from hydrogen and carbon 

dioxide by Methanobacterium thermoautotrophicum in a fixed-bed reactor. J Ferment 

Technol, 66, 235–238. 

Jeffrey A, Donald L, Willian H. (1990). Increased oxygen transfer in a yeast fermentation using 

a microbubble dispersion. Appl. Biochem. Biotechnol., 24, 470-484. 

Jiang Y, Zhang Y, Banks C, Heaven S, Longhurst P. (2017). Investigation of the impact of trace 

elements on anaerobic volatile fatty acid degradation using a fractional factorial experimental 

design. Water Res., 125, 458-465. 

Ju D, Shin J, Lee H, Kong S. (2008). Effects of pH conditions on the biological conversion of 

carbon dioxide to methane in a hollow-fiber membrane biofilm reactor (Hf-MBfR). 

Desalination, 234, 409-415. 

Karakashev D, Batstone DJ, Trably E, Angelidaki I. (2006). Acetate oxidation is the dominant 

methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl. Envion. 

Microbilo. 72, 5138-5141. 

Ketheesan B, Stuckey DC. (2015). Effects of hydraulic/organic shock/transient loads in anaerobic 

wastewater treatment: a review. Crit. Rev. Environ. Sci. Technol., 45, 2693-2727. 

Ketheesan B, Thanh PM, Stuckey DC. (2016). Iron deficiency and bioavailability in anaerobic 

batch and submerged membrane bioreactors (SAMBR) during organic shock loads. Bioresour. 

Technol., 211, 136-145. 

Khuntia S, Majumder SK, Ghosh P. (2015). Quantitative prediction of generation of hydroxyl 

radicals from ozone microbubbles. Chem. Eng. Res. Des., 98, 231–239. 



79 

 

Klasson KT, Ackerson CMD, Clausen EC. (1992). Biological conversion of synthesis gas into 

fuels. Int. J. Hydrogen Energy 17, 281–288. 

Kobayashi F, Ikeura H, Tamaki M, Hayata Y. (2010). Application of CO2 micro- and nano-bubbles 

at lower pressure and room temperature to inactivate microorganisms in cut Wakegi (Allium 

Wakegi Araki). Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-cut 

Produce, 875, 417-424. 

Krayzelova L, Bartacek J, Diaz I, Jeison D, Volcke EIP, Jenicek P. (2015). Microaeration for 

hydrogen sulphide removal during anaerobic treatment: a review. Rev. Environ. Sci. Bio-

Technol., 14(4), 703-725. 

Kugino K, Tamaru S, Hisatomi Y, Sakaguchi T. (2016). Long-duration carbon dioxide anesthesia 

of fish using ultra fine (nano-scale) bubbles. Plos one, 11(4), 1-9. 

Kurata K, Taniguchi T, Fukunaga T, Matsuda J, Higaki H. (2008). Development of a compact 

microbubble generator and its usefulness for three-dimensional osteoblastic cell culture. 

Colloids Surf. A, 2, 166–177. 

Lake DL, Kirk PWW, Lester JN. (1985). The effects of anaerobic digestion on heavy metal 

distribution in sewage sludge. Water Pollut. Control, 84, 549–558. 

Lam MK, Lee KT, Mohamed AR. (2012). Current status and challenges on microalgae-based 

carbon capture. Int. J. Greenh. Gas Con., 10, 456-469. 

Lee M & Zinder SH. (1988). Hydrogen partial pressure in a thermophilic acetate-oxidizing 

methanogenic coculture. Appl. Environ. Microbiol., 54, 1457-1461. 

van Leeuwen HP, Town RM, Buffle J, Cleven RFMJ, Davison W, Puy J, van Riemsdijk W, Sigg 

L. (2005). Dynamic speciation analysis and bioavailability of metals in aquatic systems. 

Environ. Sci. Technol., 39(22), 8545-8556. 

Li H, Hu L, Xia Z. (2013). Impact of groundwater salinity on bioremediation enhanced by micro-

nano bubbles. Materials, 6, 3676–3687.  

Li H, Hu L, Song J, Al-Tabbaa A. (2014). Subsurface Transport Behavior of Micro-Nano Bubbles 

and Potential Applications for Groundwater Remediation. Int. J. Environ. Res. Public Health, 

11, 473-486. 

Lindahl PA & Chang B. (2001). The evolution of acetyl-CoA synthase. Orig. Life Evol. Biosph. 

31, 403-434 

Liu Y & Whitman WB. (2008). Metabolic, phylogenetic, and ecological diversity of the 

methanogenic archaea. Ann. N. Y. Acad. Sci., 1125, 171–189. 



80 

 

Liu K, Atiyeh HK, Stevenson BS. (2014). Continuous syngas fermentation for the production of 

ethanol, n-propanol and n-butanol. Bioresour. Technol. 151, 69–77. 

Liu S, Oshita S, Kawabata S, Makino Y, Yoshimoto T. (2016). Identification of ROS produced by 

nanobubbles and their positive and negative effects on vegetable seed germination. Langmuir, 

32, 11295-11302.  

Ljunggren S, Eriksson JC. (1997). The lifetime of a colloid-sized gas bubble in water and the 

cause of the hydrophobic attraction. Colloids Surf. A, 129, 151−155. 

Luo G & Angelidaki I. (2013). Co-digestion of manure and whey for in situ biogas upgrading by 

the addition of H2: process performance and microbial insights. Appl. Microbiol. Biotechnol., 

97, 1373–1381. 

Luo G, Wang W, Angelidaki I. (2013). Anaerobic digestion for simultaneous sewage sludge 

treatment and CO biomethanation: Process performance and microbial ecology. Environ. Sci. 

Technol. 47, 10685-10693. 

Ma X, Yang X, Zhang S. (2013). Study on the inhibitory effect of bayberry tannin extract on 

anaerobic fermentation. Appl. Mech. Mater., 361-363, 562-566. 

Merchant SS & Helmann JD. (2012). Elemental economy: Microbial strategies for optimizing 

growth in the face of nutrient limitation. Adv. Microb. Physiol., 60, 91-210. 

Miettinen T, Ralston J, Fornasiero D. (2010). The limits of fine particle flotation. Miner. Eng. 

23(5), 420–437. 

Mishchuk N, Ralstion J, Fornasiero D. (2006). Influence of very small bubbles on particle/bubble 

heterocoagulation. J. Colloid Interf. Sci., 301, 168-175. 

Mudhoo A & Kumar K. (2013). Effects of heavy metals as stress factors on anaerobic digestion 

processes and biogas production from biomass. Int. J. Environ. Sci. Technol., 10, 1383–1398. 

Muller V. (2003). Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol., 69, 

6345-6353. 

Munasinghe PC & Khanal SK. (2010). Syngas fermentation to biofuel: evaluation of carbon 

monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol. Prog., 

26, 1616–1621. 

Munasinghe PC & Khanal SK. (2014). Evaluation of hydrogen and carbon monoxide mass 

transfer and a correlation between the myoglobin-protein bioassay and gas chromatography 

method for carbon monoxide determination. RSC Advances, 4(71), 37575-37581. 



81 

 

Nghiem LD, Manassa P, Dawson M, Fitzgerald SK. (2014). Oxygen injection into anaerobic 

digester for reducing hydrogen sulphide concentration in biogas. Bioresour. Technol., 173, 

443-447. 

Nishimura N, Kitaura S, Mimura A, Takahara Y. (1992). Cultivation of thermophilic methanogen 

KN-15 on hydrogen-carbon dioxide under pressurized conditions. J Ferment Bioeng, 73, 477-

480. 

Ortner M, Rameder M, Rachbauer L, Bochmann G, Fuchs W. (2015). Bioavailability of essential 

trace elements and their impact on anaerobic digestion of slaughterhouse waste. Biochem. 

Eng. J. 99, 107-113. 

Osuna MB, van Hullebusch ED, Zandvoort MH, Iza J, Lens PN. (2004). Effect of cobalt sorption 

on metal fractionation in anaerobic granular sludge. J. Environ. Qual., 33, 1256-1270. 

Pauss A, Andre G, Perrier M, Guiot SR. (1990). Liquid-to-gas mass transfer in anaerobic 

processes: inevitable transfer limitations of methane and hydrogen in the biomethanation 

process. Appl. Environ. Microbiol., 56, 1636-1644. 

Peillex JP, Fardeau ML, Belaich JP. (1990). Growth of Methanobacterium thermoautotrophicum 

on hydrogen-carbon dioxide: high methane productivities in continuous culture. Biomass, 21, 

315-321. 

Redwood MD & Macaskie LE. (2006). A two-stage, two-organism process for biohydrogen from 

glucose. Int. J. Hydrogen. Energ., 31, 1514-1521. 

Redwood MD, Orozco RL, Majewski AJ, Macaskie LE. (2012). Electroextractive fermentation 

for efficient biohydrogen production. Bioresour. Technol., 107, 166-174. 

Rittmann S., Seifert A, Herwig C. (2015). Essential prerequisites for successful bioprocess 

development of biological CH4 production from CO2 and H2. Crit. Rev. Biotechnol., 35, 141-

151. 

Rittmann S & Herwig C. (2012). A comprehensive and quantitative review of dark fermentative 

biohydrogen production. Microb. Cell Fact., 11, 115. 

Rittmann S, Seifert A, Herwig C. (2012). Quantitative analysis of media dilution rate effects on 

Methanothermobacter marburgensis grown in continuous culture on H2 and CO2. Biomass 

Bioeng., 36, 293-301. 

Robinson CW, Wilke CR. (1973). Oxygen absorption in stirred tanks: a correlation for ionic 

strength effects. Biotechnol. Bioeng., 15, 755-782. 

Ronnow PH & Gunnarsson LAH. (1981). Sulfide-dependent methane productionand growth of a 

thermophilic methanogenic bacterium. Appl. Envirion. Microbiol., 42(4), 580-584. 



82 

 

Roennow PH, Gunnarsson LAH. (1982). Response of growth and methane production to limiting 

amounts of sulfide and ammonia in two thermophilic methanogenic bacteria. FEMS 

Microbiol. Lett., 14, 311-315. 

Rospert S, Linder D, Ellermann J, Thauer RK. (1990). Two genetically distinct methyl-coenzyme 

M reductases in Methanobacterium thermoautotrophicum strain Marburg and Delta H. Eur J 

Biochem, 194, 871–877. 

Rospert S, Boecher R, Albracht SPJ, Thauer RK. (1991). Methylcoenzyme M reductase 

preparations with high specific activity from hydrogen-preincubated cells of 

Methanobacterium thermoautotrophicum. FEBS Lett, 291, 371–375. 

Rubio J, Souza ML, Smith RW. (2002). Overview of flotation as a wastewater treatment technique. 

Miner. Eng., 15(3), 139–155. 

Sahuquillo A, López-Sánchez JF, Rubio R, Rauret G, Thomas RP, Davidson CM, Ure AM. (1999). 

Use of a certified reference material for extractable trace metals to assess sources of 

uncertainty in the BCR three-stage sequential extraction procedure. Anal. Chim. Acta, 382, 

317–327. 

Sayari A, Belmabkhout Y, Serna-Guerrero R. (2011). Flue gas treatment via CO2 adsorption. 

Chem. Eng. J., 171, 760-774. 

Seddon JRT, Lohse D, Ducker WA, Craig VSJ. (2012). A deliberation on nanobubbles at surfaces 

and in bulk, Chem. Phys. Chem. 13, 2179–2187. 

Stover RC, Sommers LE, Silveira DJ. (1976). Evaluation of metals in wastewater sludge. J. Water 

Pollut. Control Fed., 48, 2165. 

Szuhaj M, Ács N, Tengölics R, Bodor A, Rákhely G, Kovács KL, Bagi Z. (2016). Conversion of 

H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: a 

novel route for the power-to-gas concept. Biotechl Biofuels, 9, 102. 

Takahashi M. (2009). Base and Technological Application of Micro-Bubble and Nano-Bubble. 

Mater. Integr., 22, 2–19. 

Tessier A, Campbell PG, Bisson M. (1979). Sequential extraction procedure for the speciation of 

particulate trace metals. Anal. Chem. 51, 844–851 

Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. (2008). Methanogenic archaea: 

ecologically relevant differences in energy conservation. Nat Rev Microbiol, 6, 579–591. 

Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S. (2010). Hydrogenases 

from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem., 

79, 507-536. 



83 

 

Tsapekos P, Kougias PG, Treu L, Campanaro S, Angelidaki I. (2016). Process performance and 

comparative metagenomic analysis during co-digestion of manure and lignocellulosic 

biomass for biogas production. Appl. Energy. 185, 126–135. 

Tsuge H. (2014). Characteristics of microbubbles: micro- and nanobubbles. Chapter 1.  

Ure AM, Quevauviller P, Muntau H, Griepink B. (1993). Speciation of heavy metals in soils and 

sediments. An account of the improvement and harmonization of extraction techniques 

undertaken under the auspices of the BCR of the commission of the european communities. 

Int. J. Environ. Anal. Chem., 51, 135–151. 

Ushikubo FY, Furukawa T, Nakagawa R, Enari M, Makino Y, Kawagoe Y, Shiina K, Oshita S. 

(2010). Evidence of the existence and the stability of nano-bubbles in water. Colloids and 

Surfaces A: Physicochem. Eng. Aspects, 361, 31-37. 

van der Veen A, Fermoso FG, Lens PNL. (2007). Bonding form analysis of metals and sulfur 

fractionation in methanol-grown anaerobic granular sludge. Eng. Life Sci., 7, 480-489. 

Vega JL, Clausen EC, Gaddy JL. (1989). Study of gaseous substrate fermentations-carbon 

monoxide conversion to acetate. 1. Batch culture. Biotechnol. Bioeng., 34(6), 774-784. 

Weimer PJ & Zeikus JG. (1978). One carbon metabolism in methanogenic bacteria: cellular 

characterization and growth of methanosarcina barkeri. Arch. Microbiol., 119, 49-57. 

Wilkinson KJ & Buffle J. (2004). Critical evaluation of physicochemical parameters and 

processes for modelling the biological uptake of trace metals in environmental (aquatic) 

systems. In Physicochemical Kinetics and Transport at Biointerfaces; van Leeuwen HP, 

Koster W, Eds; vol. 9, IUPAC Series on Analytical and Physical Chemistry of Environmental 

Systems; Buffle J, van Leeuwen HP, Series Eds; Wiley: Chichester, 445-533. 

Wu C, Wang L, Harbottle D, Masliyah J, Xu Z. (2015). Studying bubble-particle interactions by 

zeta potential distribution analysis. J. Colloid Inter. Sci., 449, 399-408. 

Xie L, Cui X, Huang J, Wang J, Liu Q, Zeng H. (2018). Probing the interaction mechanism 

between air bubbles and bitumen surfaces in aqueous media using bubble probe atomic force 

microscopy. Langmuir, 34, 729-738. 

Xu G, Liang F, Yang Y, Hu Y, Zhang K, Liu W. (2014). An improved CO2 separation and 

purification system based on cryogenic separation and distillation theory. Energies 7, 3484-

3502. 

Xu R, Zhang K, Liu P, Khan A, Xiong J, Tian F, Li X. (2018). A critical review on the interaction 

of substrate nutrient blance and microbial community structure and function in anaerobic co-

digestion. Bioresour. Technol., 247, 1119-1127. 



84 

 

Yagi H, Yoshida F. (1975). Enhancement factor for oxygen absorption into fermentation broth. 

Biotechnol. Bioeng. 17, 1083–1098. 

Yoon RH. (1993) Microbubble flotation. Miner. Eng. 6(6), 619–30. 

Zandvoort MH, van Hullebusch ED, Fermoso FG, Lens PNL. (2006). Trace metals in anaerobic 

granular sludge reactors: bioavailability and dosing strategies. Eng. Life Sci., 6, 293-301. 

Zayed G & Winter J. (2000). Inhibition of methane production from whey by heavy metals-

protective effect of sulfide. Appl. Microbiol. Biotechnol., 53, 726–731. 

Zee YY, Thiam LC, Peng WZ, Abdul RM, Chai S. (2013). Synthesis and performance of 

microporous inorganic membranes for CO2 separation: a review. J. Porous Mater., 20, 1457-

1475. 

Zhang M, Seddon JRT. (2016). Nanobubble-nanoparticle interactions in bulk solutions. Langmuir, 

32, 11280-11286. 

Zhang W, Zhang L, Li A. (2015). Enhanced anaerobic digestion of food waste by trace metal 

elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS 

via improving metals bioavailability. Water Res., 84, 266-277. 

Zhang Y, Zhang Z, Suzuki K, Maekawa T. (2003). Uptake and mass balance of trace metals for 

methane producing bacteria. Biomass Bioenerg, 25, 427-433. 

Zhang Z, Maekawa T. (1993). Kinetic study on fermentation from CO2 and H2 using the 

acclimated-methanogen in batch culture. Biomass Bioenerg., 4(6), 439-446.



85 

 

Acknowledgement 

    I would like to express my sincere gratitude to my academic advisor, Professor Zhenya 

Zhang, for his guidance, encouragement during my three-year study in Tsukuba. He is an 

excellent example I can follow throughout my life, not only his academic level but also his 

attitude of life.  

    I would also like to thank the other academic advisor, Professor Zhongfang Lei and 

Professor Kazuya Shimizu, for their supervision, guidance and support during the doctoral 

study in Tsukuba. I also need to express my grateful to Professor Motoyashi Kobayashi for 

providing me the important equipments. 

    I also would like to express my great appreciation to my dissertation committee members, 

Professor Kaiqin Xu, Professor Lei, Professor Shimizu. and really appreciate their numerous 

suggestion, comments, and the previous time to serve as my advisory committee members. 

    Special appreciation is expressed to my supervisor in master’s degree, Professor 

Chuanping Feng, for giving me the chance to pursue higher education and improve research 

ability at University of Tsukuba. Thanks for China Scholarship Council (CSC) for offering me 

the scholarship to complete my research.  

During the past three years, I received lots of help from my friends and fellow students. 

They deserve recognition for their direct and indirect contributions to this dissertation. Here I 

express my heartfelt appreciation to them. 

I reserve much of my appreciation for my family. This dissertation would not be completed 

without their love and support. 

    This dissertation is dedicated to the people of the world who have devoted their lives to 

the protection of our environment.



86 

 

Appendix 

1. Liu, Ye, Wang, Ying, Wen Xinlei, et al. Enhanced bioconversion of hydrogen and carbon 

dioxide to methane using a micro-nano sparger system: mass balance and energy consumption. 

RSC Advances, 2018, 8, 26488-26496. 

2. Liu, Ye, Zhang, Baogang, et al. Optimization of enhanced bio-electrical reactor with 

electricity from microbial fuel cells for groundwater nitrate removal using response surface 

methodology, Environmental Technology, 2016, 37(8), 1008-1017. 

3. Liu, Ye, Zhang, Baogang, et al. Research Progress in Combination of Microbial Fuel Cell 

and Conventional Wastewater Treatment Technology. World Science and Technology Research 

and Development, 2014, 36(5), 480-487. 

4. Hu, Qili, Liu, Ye, Feng, Chuanping, et al. Predicting equilibrium time by adsorption kinetic 

equations and modifying Langmuir isotherm by fractal-like approach, Journal of Molecular 

Liquids, 2018, 268, 728-733. 

5. Zhang, Baogang, Liu, Ye, Huang, Wenli, et al. A bibliometric analysis of research on 

hexavalent chromium removal from 1975 to 2012, Fresenius Environmental Bulletin, 2015, 

24(12), 4834-4841. 

6. Zhang, Baogang, Liu, Ye, Tong, Shuang, et al. Enhancement of bacterial denitrification for 

nitrate removal in groundwater with electrical stimulation from microbial fuel cells，Journal of 

Power Sources, 2014, 268, 423-429. 

7. Zhang, Baogang, Liu, Ye, Tian, Caixing, et al. A bibliometric analysis of research on upflow 

anaerobic sludge blanket (UASB) from 1983 to 2012, Scientometrics, 2014, 100(1), 189-202. 

8. Wang, Ying, Yin, Chenzhu, Liu, Ye, et al. Biomethanation of blast furnace gas using 

anaerobic granular sludge via addition of hydrogen, RSC Advances, 2018, 8, 26399-26406. 

9. Liu, Huipeng, Zhang, Baogang, Liu, Ye, et al. Continuous bioelectricity generation with 

simultaneous sulfide and organics removals in an anaerobic baffled stacking microbial fuel cell, 

International Journal of Hydrogen Energy, 2015, 40, 8128-8136. 

10. Ye, Zhengfang, Zhang, Baogang, Liu, Ye, et al. Continuous electricity generation with 

piggery wastewater treatment using an anaerobic baffled stacking microbial fuel cell, 

Desalination and water treatment, 2015, 55, 2079-2087. 

11. Zhang, Baogang, Zhang, Jing, Liu, Ye, et al. Identification of removal principles and 

involved bacteria in microbial fuel cells for sulfide removal and electricity generation. 

International Journal of Hydrogen Energy, 2013, 38(33), 14348-14355. 



87 

 

12. Ye, Zhengfang, Zhang, Baogang, Liu, Ye, et al. A bibliometric investigation of research 

trends on sulfate removal. Desalination and Water Treatment, 2013, 52(31-33): 6040-6049. 

 


