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Abstract 
 

1. Introduction     
    Semiconductor crystals of the nanometer size have been one of the most important research topics in 

electronics and solid state physics for decades [1, 2]. The conventional nanostructures such as quantum wells and 
quantum dots (QDs) have been systematically investigated and have played a central role in many practical 

applications including solar cells [3, 4], LEDs [5, 6], and medical imaging [7, 8]. The developing synthesis 
technologies have succeeded in fabricating new nanostructures with complex geometries [9, 10]. Because the 
shape of nanostructures has a critical influence on their electronic and optical properties, the investigations of 
new nanostructures with complex geometries are important for both fundamental and application research fields. 

Due to the nonuniformity of the size and shape of the nanostructures, the experimental spectroscopy of 
nanostructures always suffers from the large inhomogeneous broadening. Consequently, the feature of the 

electronic and excitonic structures may be hidden in the spectroscopy, and it is difficult to identify the optical 
transitions. To reveal the fundamental physics of the nanostructures, the theoretical investigation is necessary. 
With appropriate assumptions and approximations, the theoretical study can clarify the effect of individual 
influence factors, which is an obvious advantage over the experimental results including the influence from 
many factors simultaneously. Thus, the theoretical investigation is powerful to explain the experimental 
observation. Furthermore, the theoretical study can predict the electronic and optical properties of 

nanostructures, which is helpful for the future experimental studies.  
    Motivated by the experimental results of our collaborators, we studied the exciton states of nanostructures 

with complex geometries recently reported, that is, the tetrapod-shaped and coupled ring-shaped nanostructures 
as well as their response to external electric and magnetic fields. The calculation results showed a good 
agreement with the experimental observation and offered a prediction of the optical properties of these 
nanostructures. In addition, inspired by the recent study of the photonic crystal, we investigated the electronic 
structure of the periodically modulated quantum wells and predicted the formation of the Dirac cones at the Γ 
point of band structure. 
 

2. Theoretical method 

    Because the nanostructures in the present thesis are in the strong confinement regime, the kinetic energy of the 

carriers is larger than the Coulomb energy among them. Thus, we first calculated the kinetic energy, and then 
took the contribution of Coulomb interaction into consideration. Because we were interested in the low energy 

states near the band edge, the single-band effective mass approximation was applied in our calculation. The 
time-independent Schrödinger equation was solved by analytical or numerical method according to the 
complexity of the nanostructure geometry. The nanostructures with complicated shapes cause difficulties in the 



theoretical investigation by analytical methods and require reliable numerical studies. The finite element method 
is a flexible numerical method that offers an efficient approach to the complex geometries. In our calculation, the 

electron and hole wave functions were assumed as:  

 

where φe (φh) and ue (uh) are the envelope function and atomic wave function of the electron (hole). The 

envelope functions and energy of single particle states were obtained by solving the single-band Schrödinger 
equation: 

 
where  is the Laplace operator,  is the confinement potential, and  is the energy eigenvalue. By using the 

results of single particle states to form the pair state basis, the wave functions of the exciton states can be 
expanded with these bases. 

 
The two-body Schrödinger equation for exciton states is: 

 
where e0 is the elementary charge, ɛ0 is the permittivity of free space, and ɛ is the dielectric constant. The energy 
levels and wave functions of the exciton states were calculated with configuration interaction (CI) approach. By 

increasing the number of pair state basis in the exciton calculation, we carefully checked the convergence and 
ensure the sufficient accuracy of our calculation for the following quantitative discussion.  

 
3. Results and discussion 

(1) Tetrapod-shaped nanostructures 

  

Fig. 1: (a) TEM image of the tetrapod-shaped nanostructures (quantum tetrapods) [11]. (b) 3D model of 
quantum tetrapods used in our calculation. (c) The arm width (D) dependence of the spin-singlet exciton 
energy of quantum tetrapods made of CdTe. 



    In the present thesis, firstly tetrapod-shaped nanostructures of various II-VI semiconductor materials were 
investigated. The tetrapod-shaped nanostructures consist of a central core and four branches at tetrahedral angles 
as shown in Fig. 1 (a) and (b) [9]. The central core has a zinc blende crystal structure and the branches have a 
wurzite crystal structure. Because of the strong confinement in the tetrapod-shaped nanostructures, their 
absorption spectra showed obvious quantum size effect, thus we can denote these nanostructures as “quantum 
tetrapod” hereafter [12]. Compared with the rapid progress of the experimental studies of quantum tetrapod, the 

systematic study of their exciton states is lacking. In our study, the spatial symmetry of wave functions for single 
particle states and electron-hole pair states were analyzed according to group theory. Our prediction of the wave 

function symmetry was confirmed by the numerical calculation. With CI calculation, we assigned the symmetry 
of exciton wave functions according to their main contributing pair state basis. As shown in Fig. 1 (c), for low 
energy excitons, their wave functions only have A1 and T2 symmetry. Because the lowest exciton state has A1 
symmetry, it has non-zero overlap integral between the wave functions of electron and hole. This indicated that 
the quantum tetrapods are optically active. The absorption spectra of quantum tetrapod were investigated with a 
wide range of parameters. The dominant influence of arm width on the absorption peak energy was revealed due 

to the strong confinement.  

 

    The comparison between calculation results and available experimental data showed a good agreement as 

Fig. 2: (a) The arm width (D) dependence of the peak energy of the lowest (black square) and second lowest 
(white square) absorption bands calculated for CdTe quantum tetrapods and the lowest absorption peak 
energy observed in Ref. [13] (exp1, circle), Ref. [14] (exp2, triangle), and Ref. [15] (exp3, diamond). (b) The 
peak energy of the lowest absorption band of CdSe quantum tetrapods: calculation (black square) and 
observation in Ref. [16] (exp1, circle), Ref. [17] (exp2, triangle), and Ref. [18] (exp3, diamond). (c) The lowest 
absorption peak energy calculated for CdS, ZnTe, and ZnSe quantum tetrapods (square) and observed for ZnSe 
(Ref. [19], circle). 



shown in Fig. 2. The absorption peaks observed in the experiment were assigned according to our prediction of 
the size effect of quantum tetrapods. The low energy peaks with small intensity were found which are difficult to 
be distinguished in the experiment results.  

 

    The developing experimental investigations of quantum tetrapods succeeded in core-shell tetrapod-shaped 
heterostructures [20]. This new heterostructure has shells covering the lateral surface of the branches of the 

tetrapod as shown in Fig.3 (a) and (b). A tetrapod-shaped heterostructure composed of a CdTe tetrapod and CdS 
shells possess type-II band structure. The difference between the optical properties induced by the tetrahedral 
symmetry of tetrapod-shaped heterostructures and those of the well-studied type-II core-shell nanocrystals with 
spherical symmetry is interesting for fundamental investigation. So, we performed the first theoretical 
investigation of the influence of geometrical parameters and strain on the exciton states in branched 
heterostructure. We found that the strain promotes the type-II band structure. With increasing shell thickness, 

electrons and holes were confined in the non-adjacent regions of this heterostructure. Accordingly, more efficient 
charge separation is realized compared with type-II spherical core-shell QDs. The strain induced a small blue 

energy shift of the exciton ground state. As shown in Fig. 3 (c), when the strain effect was considered, the 
calculated shell thickness dependence of the lowest exciton energy showed a good agreement with that of the 
photoluminescence peaks observed in the experiment. The study of the core-shell tetrapod-shaped 
heterostructures with broken symmetry was also performed. We revealed that electrons and holes were confined 
in the same or different branches by manipulating the randomness, which is unique to branched core-shell 
heterostructures. 

 

Fig. 3: (a) TEM image of the tetrapod-shaped CdTe/CdS heterostructures (csTP) [11]. (b) 3D model of csTP used 
in our calculation. (c) Comparison of the calculated lowest spin-singlet exciton energy with the experimental 
photoluminescence peak energy of strained csTPs with arm width D = 2.2 nm. The experimental data are 
denoted by solid circles. The calculation results with and without strain effect were denoted by solid and 
dashed lines, respectively. The experimental results were shifted to align them with the calculated exciton 
energy at shell thickness sh = 0. The error bar indicates the full width at half maximum (FWHM) of the 
observed luminescence peak. 



(2) Ring-shaped nanostructures 
    Ring-shaped nanostructures offer a new platform to investigate the Aharonov-Bohm effect (A-B effect) using 
spectroscopic techniques. But the oscillation signature of the excitonic A-B effect in the single quantum rings is 
not significant in both experimental and theoretical results [21-24]. To clarify the reason for this weak excitonic 
A-B effect, we initially investigated the effect of magnetic field on the exciton state and trion state of a GaAs 
single quantum ring. By using the perturbation theory, the analytical solution of the single particle state was 

obtained, which showed a good agreement with numerical calculation results.  

 

    The exciton states were calculated with the CI method. In the energy spectra of the electron-hole pair states 
without Coulomb interaction, the energy oscillation and total angular momentum transition can be found for the 
ground state as shown in Fig. 4 (a) and (b). When Coulomb interaction was taken into consideration, the energy 
oscillation feature of the lowest pair state disappeared as shown in Fig. 4 (c). The contribution of each pair state 
basis to the exciton ground state was analyzed. The vanishing excitonic A-B effect in the single quantum ring 
was ascribed to the Coulomb interaction which coupled the low-lying pair states with the same total angular 

momentum. 
    To avoid this situation and observe a clear A-B effect, we proposed the use of coupled nanostructures with 

applied electric field along the alignment direction of the components as shown in Fig. 5 (a) and (b). With this 
method, the Coulomb interaction can be reduced and a large difference in the average radii of the electron and 
hole trajectories can be realized at the same time.  As shown in Fig. 5 (c) and (d), an obvious excitonic A-B 
effect was demonstrated in the QD-ring coupled nanostructures with moderate experimental conditions. We 
expect our proposal can be verified by the experimental observation of a sudden change of the emission spectra 

Fig. 4: (a) Energy of the non-interacting pair states with total angular momentum L = 0, -1 and +1 as a function 
of the magnetic field for a 2D ring with average radius R= 12 nm and width W= 8 nm. The combination of the 

electron and hole angular quantum number (le; lh) is denoted for the low-energy pair states with L = 0. (b) The 

magnified figure of the region in the green square in (a). (c) Exciton energy as a function of the magnetic field 
for L = 0, -1 and +1 in the same 2D ring. For both the pair states and the excitons, the states with L = 0, -1 and 
+1 are plotted with the solid lines, dashed lines, and dotted lines, respectively. For each L, the first, second and 
third lowest states are plotted in black, red and blue colors, respectively. 
 



intensity according to the total angular momentum transition in the excitonic A-B effect. 

 

     
(3) Periodically modulated quantum wells 

 

Fig. 5: (a) AFM image of a QD-on-Ring nanostructure [25]. The inset is the schematic illustration of its cross 
section. (b) Illustration of the carrier separation in the QD-on-Ring nanostructure by applied electric field along 
the growth direction. The energy of lowest exciton states with the total angular momentum L = 0 and -1 in the 
QD-on-Ring nanostructure as a function of the magnetic field for the different applied electric field (c) E = 0, (d) 
E = 120 kV/cm. The exciton states with L = 0 and -1 are plotted with the solid squares and triangles, 
respectively. 

Fig.6: (a) Side view of a periodically modulated quantum well composed of GaAs and AlGaAs layers with a 
cylindrical bump in each unit structure. Top view of the quantum wells with the (b) square and (c) triangular 
structural modulations. Energy bands of the periodically modulated GaAs/AlGaAs quantum wells with (d) 
square lattice (lattice constant a=30 nm, t =15 nm, h =6 nm, and d =22.8 nm), (e) triangular lattice (lattice 
constant a=30 nm, t=15 nm, h=6 nm, and d=20.55 nm). The vertical axis is the electron energy measured from 
the bottom of the GaAs conduction band. The horizontal axis is the wave vector in the two-dimensional 
Brillouin zone. X/5, for example, means that the horizontal axis is magnified by five times. 



    The Dirac cones in the photonic crystal were characterized by their isotropic linear dispersion. Recent 
theoretical investigations revealed the nature of photonic Dirac cone formation [26-30]. The realization of 
accidental degeneracy of two modes requires the specific combination of the wave function symmetry of the 
involved modes. In addition to the photonic crystal, the Dirac cones can be expected for other wave systems 
according to the same rule of wave function symmetry. By using the k·p perturbation theory and the group 
theory, we judged the formation of Dirac cones in the vicinity of the Γ point for periodically modulated quantum 

wells whose illustration can be found in Fig. 6 (a). The necessary combinations of wave function symmetry were 
revealed for the modulated quantum wells with square lattice and triangular lattice. The prediction of Dirac cone 

formation in these two kinds of quantum wells was confirmed by numerical calculation with the finite element 
method as shown in Fig. 6 (d) and (e). 
 

4. Conclusion 
    By using theoretical calculation, we investigated the exciton state, absorption and emission spectra of II-VI 
and III-V nanostructures with complex geometries. The effect of shape on their electronic and optical properties 

was revealed by combining the group theory and configuration interaction method. The quantum size effect of 
our calculation results showed a good agreement with the published experimental data, thus they can be used to 

explain the experimental observation. Moreover, our calculation predicted the electronic and optical properties of 
new nanostructures such as the excitonic A-B effect in the ring-shaped coupled nanostructure and the Dirac 
cones in the periodically modulated quantum wells. These results offer guidelines and reference information for 
the future experimental investigations. 
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Chapter 1:

Introduction

By the rapid progress in the fabrication technology, various semiconductor materials

of the nanometer size have been reported, which will be denoted as nanostructure in

the present thesis [1, 2]. For example, by the chemical synthesis methods, free-standing

colloidal nanocrystals were reported [3–7]. On the other hand, the epitaxial synthesis

methods succeeded in growing nanostructures on substrates [8, 9]. For example, by the

droplet epitaxy method, strain-free systems can be realized for quantum wells, quantum

dots and quantum rings [10]. The nanostructures attract the interests from both the

experimental and theoretical investigations and have played an important role in many

application fields including solar cells [11–13], LEDs [14,15], and medical imaging [16,17].

1.1 Low-dimensional nanostructures

The synthesized nanostructures usually have the nano-scale size in one, two or three

dimensions, which correspond to the terminology of quantum well (QW), quantum wire

(QWire) and quantum dots (QD). The limited size constricts the motion of electrons along

certain dimensions, which is conventionally denoted as “confinement”. And the semicon-

ductor materials subject to the confinement are named low-dimensional semiconductors.

Because the size of the nanostructure is comparable with the de Broglie wavelength of the

electron, the wave feature of the electron becomes obvious, thus the novel effects on their

electronic and optical properties can be expected according to the quantum mechanics.

When the motion of a free electron in the bulk material encounters the confinement

along certain dimensions, the impenetrable boundary condition requires the wave func-

tion of the electron to behavior like a standing wave. The corresponding energy levels for

the nanostructures are discrete. Compared with the bulk material, these low-dimensional

semiconductors have a different density of states as shown in Fig. 1.1. Thus the signif-

icant changes in absorption and emission spectra occur because of the confinement as

systematically explained in Refs. [19, 20].

1.2 Symmetry of nanostructures

In addition to the different dimensions, the various shapes of nanostructures have

a critical influence on their electronic and optical properties [4,21]. The symmetry of the

nanostructure shape plays an important role for not only the degeneracy of the electronic

states, but also the intensity of the optical spectra. Besides spherical-shape quantum

dots, nanostructures with a lower symmetry have been reported recently, e.g., scroll-like

nanoplatelets [22,23], tetrapod [24,25] and octapod-shaped nanocrystals [26,27].

1



Figure 1.1: The schematic illustration of the confinement effect and the density of
states (DOS) of various low-dimensional structures:(a)bulk material, (b)quantum well,
(c)quantum wire and (d)quantum dot [18].

In fact, it is difficult to extract the nature of electronic structures and the features of

optical properties only by experimental studies. In particular, the experimental measure-

ment of nanostructures always suffers from the size distribution and shape randomness.

So theoretical investigations are necessary. Motivated by the recent experimental results

of our collaborators, we theoretically investigated the electronic and optical properties of

the following representative nanostructure systems:

(a) Excitons of II-VI tetrapod-shaped nanostructure,

(b) Excitons of tetrapod-shaped core-shell heterostructure,

(c) Exciton complexes of ring-shaped and QD-Ring coupled nanostructures in the

magnetic and electric fields,

(d) Electronic band structure of periodically modulated quantum wells.

1.3 Tetrapod-shaped nanostructures

Since the first report on their synthesis in 2000 [24], tetrapod-shaped nanocrystals

of II-VI semiconductors have been attracting a great deal of attention due to their unique

structure and the interest in the chemical process of their synthesis as shown in Fig 1.2.

They consist of a central core and four arms connecting to the core part at tetrahedral

angles.

Studies on tetrapods made of CdSe [24, 28–31], CdS [28, 32], CdTe [25, 28, 33–40],

ZnTe [28, 41], ZnSe [42] have been reported. In addition to the synthesis and characteri-

2



Figure 1.2: (a)Schematic model of a CdTe tetrapod. (b)TEM images of the tetrapods [25].

zation studies, applications to single-electron transistors [43] and photovoltaic cells were

reported [11,12,44–46]. Because the energy levels of electron and hole in tetrapod-shaped

nanocrystals are quantized due to the three-dimensional confinement of their wave func-

tions, we call the tetrapod-shaped nanocrystals “quantum tetrapods” hereafter.

In their experimental studies, the specimens of quantum tetrapods not only suffer

from their size distribution like other conventional nanocrystals, but also from their im-

perfect shapes. It is common that the geometric parameters of each arm are not the same

in a single quantum tetrapod. Also the specimen of the quantum tetrapod is always mixed

with bipod (with two arms) and tripod (with three arms). Consequently, their absorption

and luminescence spectra possess peaks with a large broadening. It leads to difficulties in

extracting the features of physics of the quantum tetrapods from the experimental results

alone.

For the theoretical analysis of the electronic states of the quantum tetrapods, single-

particle states were discussed by using a semiempirical pseudopotential method [47, 48]

and the effective-mass approximation [34], while exciton states were investigated by the

Hartree approximation [49–51] and the pseudopotential method [52]. On the other hand,

we recently analyzed the exciton states of CdTe quantum tetrapods by numerical diago-

nalization of the configuration interaction Hamiltonian [53, 54]. This method is superior

to the Hartree approximation, if sufficiently converged eigenvalues are obtained, because

the latter does not take into consideration the full correlation energy.

In our systematic investigation, we revealed the influence of the tetrahedral sym-

metry of quantum tetrapods on their electronic and optical properties. We predicted the

size dependence of the absorption peaks for quantum tetrapods of various II-VI materi-

als. The comparison between calculation and available experimental data showed a good

agreement. The detail of this investigation will be described in Chapter 3.

3



Figure 1.3: The illustration of the energy band alignment of type-I and type-II het-
erostructures.

1.4 Low-dimensional heterostructures

In addition to nanostructures composed of a single material, the continuous growth

of different materials in one nanostructure leads to low-dimensional heterostructures [6].

Because of the different energy band structures of the component materials, the het-

erostructure can have a type-I or type-II band diagram as shown in Fig. 1.3. For the

type-II heterostructures, the effective band gap is different from those for the component

materials. Thus the heterostructure is a platform to manipulate the band gap and tran-

sition energy to fill the gap of the emission energy of pure semiconductor materials. The

low-energy conduction band (CB) electron and the valence band (VB) hole are spatially

separated in the type-II system. This leads to a long lifetime of the electron-hole pair due

to the small recombination probability, which is desirable for the application to solar cells.

The investigations of the spherical-shape and rod-shape core-shell nanocrystals have

been reported [55, 56]. In 2009, our collaborating group in the Material Department of

the Lomonosov Moscow State University reported a systematic study of the core-shell

tetrapod-shaped nanostructures [57], which is denoted as csTPs hereafter. The core-shell

tetrapod consists of a quantum tetrapod and shells covering the lateral surface of the arms

of the quantum tetrapod as shown in Fig. 1.4.

Compared with the quantum tetrapods, the study of the csTPs is more compli-

cated. In accordance with the band alignment of their constituent materials, synthesized

CdTe/CdS csTPs have the type-II band structure, that is, the electrons tend to be lo-

calized in the shells, which is isolated from the electrons in other arms. Meanwhile, the

holes tend to be localized in the tetrapod part of the csTPs. As we mentioned, structural

symmetry plays an important role regarding the nature of the carrier wave functions and

also crucially influences the optical properties of the nanocrystals. The difference between

the optical properties induced by the tetrahedral symmetry of the type-II csTPs and those

of the well-studied type-II core-shell nanocrystals with a spherical symmetry is interesting

for fundamental investigation.

On the other hand, the component materials of heterostructures usually have a non-
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Figure 1.4: (a)(b) CdTe/CdSe tetrapod-shaped heterostructures based on CdTe
tetrapods. (c) The illustration of the CdSe shell of tetrapod-shaped heterostructures
covering the lateral surface of the arms of a CdTe tetrapod [7].
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Figure 1.5: Atomic force microscopy (AFM) image of coupled nanostructures: (a) concen-
tric quantum double rings and (b) a concentric quantum dot-ring nanostructure [63,65].

negligible difference in their lattice constants. At the interface between the two materials,

the arrangement of lattice point is modified at both sides (strain) to realize the continuous

growth of the heterostructure. The strain in the heterostructure has a non-negligible

influence on their energy band close to the interface [58]. For the csTPs consisting of a

CdTe tetrapod and CdS arms, the large lattice mismatch between the constituent materials

leads to non-negligible strain in the csTP. The strain strongly affects the band structure

of the csTPs and is important to the investigation of the optical properties of the csTPs.

Our calculation results including the strain effect showed a better agreement with the

experimental data than that without the strain effect. An efficient electron-hole separation

was revealed in the csTPs compared with the type-II spherical core-shell nanocrystals. In

addition to studying excitons in the csTPs with a perfect tetrahedral symmetry, we will

also discuss the effect of the broken symmetry. The detailed discussion will be given in

Chapter 4.

1.5 Ring-shaped nanostructure and coupled nanostructures

The ring-shaped nanostructures form an important sub-field of the nanostructure

investigation. The central hole of the rings leads to the non-singly-connected structure,

which is distinguished from the singly-connected structure, e.g., spherical QD. Conse-

quently, the exploration of physical properties and applications of ring-shaped nanos-

tructures attracted broad attention [59]. The ring-shape nanostructures can be fab-

ricated by lithography [60] or droplet epitaxy method [61, 62]. The droplet epitaxy

method leads to the possibility of growth of strain-free systems, e.g., the lattice-matched

GaAs/AlGaAs nanostructures can be obtained, which is an advantage compared with

conventional SK(Stranski-Krastanov) growth method. By the droplet epitaxy method,

the geometry of the ring-shaped nanostructures can be controlled. Furthermore, coupled

nanostructures can also be successfully fabricated. Thus, different kinds of ring-shaped

nanostructures and coupled nanostructures were reported [63–65] as shown in Fig. 1.5.

Single quantum ring is the simplest ring-shaped nanostructure, but it offers a new

platform to investigate the Aharonov Bohm (A-B) effect using spectroscopic techniques.
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According to the simplest one-dimensional (1D) ring model [66], the kinetic energy of an

electron in a 1D ring under the magnetic field (B) piercing the ring interior is expressed

as

El =
h̄2

2m∗R2

(
l +

ϕ

ϕ0

)2

, (1.1)

where m∗ is the effective mass, R is the ring radius, l = 0,±1,±2 . . . is the angular

momentum that specifies the electron motion, ϕ = πR2B is the magnetic flux, ϕ0 = 2πh̄/e

is the flux quantum, and e is the elementary charge. The spectral set {El(ϕ)}l=0,±1,...

becomes identical when ∆ϕ = nϕ0 (n = 1, 2, . . .), so it leads to a magneto oscillation in

the energy spectrum with an oscillation period of ϕ0. A signature of the A-B oscillation

was observed using the far-infrared capacitance spectroscopy for self-assembled quantum

rings [67].

Similar spectral oscillation is expected to appear in the energy spectra of an exciton

which consist of a CB electron and a VB hole bound by the Coulomb interaction. The

ring size in this case must be smaller than the exciton Bohr radius, which means the

Coulomb interaction is much smaller than the kinetic energies of the electrons and holes.

Otherwise, the electron and hole are tightly bound and move together inside the ring, and

the charge-neutral composite does not respond to the magnetic flux [68]. Thus, different

trajectories for the electron and hole are necessary for the emergence of the excitonic A-B

effect [69]. For this purpose, the non-uniform confinement of the electron and hole along

the growth direction was utilized by applying an electric field perpendicular to the ring to

make the average radius of their trajectories different from each other [70, 71]. However,

the oscillation signature in both the experimental and the theoretical results of this case

was not significant, probably because the Coulomb potential mixed different electron-hole

pair states so that Eq. (1.1) did not hold any more.

We calculated the energy spectra of the exciton in a single quantum ring. The

magnetic response does not show an obvious A-B oscillation. By analyzing the exciton

wave functions, we revealed the reason for this vanishing excitonic A-B effect. On the

other hand, our calculation of the trion state in the same single quantum ring showed

energy oscillation for their ground state. Even when the Coulomb interaction is strong,

the trion behaves like a noncharge-neutral composite and its motion is influenced by the

magnetic field.

To overcome the issue of the vanishing A-B effect, we propose the use of coupled

nanostructures to achieve a clear excitonic A-B effect. Among the reported ring-shaped

coupled nanostructures [63–65,72], we focus on the self-assembled quantum-dot (QD)-ring

coupled structures, whose formation has recently been observed [72]. In Chapter 6, we

will build a 3D model of the QD-ring coupled structure according to the experimental

observation. Our calculation demonstrates that a clear excitonic A-B effect is obtained in

these coupled nanostructures with the help of an external electric field.

As for the quantum double rings (QDRs) fabricated by Mano et al. [63] for the first

time by the droplet epitaxy method, they have a smaller height and a larger lateral size

than the single quantum rings fabricated in the same institute (NIMS). Micro photolumi-

nescence (PL) spectra and electronic structures of GaAs QDRs covered with an AlGaAs
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barrier layer were reported in Refs. [63] and [64]. Because the QDR has a nearly perfect

circular symmetry, its electronic state can be characterized by the radial quantum number

and the azimuthal quantum number. Some previous theoretical studies on the QDRs used

this circular symmetry [73]. This property was also used for the theoretical study of its

electronic states in a magnetic field perpendicular to the rings [74–76], which is relevant to

the excitonic A-B effect [77]. Although the QDRs also attracted the interest of researchers

for the A-B effect [78], we are interested in their large lateral sizes that can be used for

frequency tuning.

The recent development of photonic crystal (PC) microcavities with large quality

factors (Q) [79,80] has made it possible to observe interesting quantum optical phenomena

such as the Purcell effect [81]. In the experiments reported so far, exciton emission of

semiconductor QDs was used for this purpose, since the process of fabricating them has

been fully established and is compatible with that of the PC microcavities. The ensemble of

QDs shows a wide inhomogeneous distribution of exciton emission wavelengths due to their

size distribution. This makes it difficult to tune their emission wavelength to the cavity

resonance frequency when we try to observe photon emission from single dots to verify the

Purcell effect. Most experiments have used temperature tuning of the exciton energy level,

while others have used an excellent digital etching technique in addition to temperature

tuning [82]. However, when the sample temperature is changed, not only the emission

wavelength but also other important properties such as the dephasing time change. In

addition, it takes a rather long time to reach a uniform temperature distribution after

setting a new target temperature, which may be an experimental obstacle. Another quick

and reliable tuning method is desirable. Recently we observed a relatively large Stark shift

up to 4 meV for GaAs quantum double rings (QDRs) due to their large lateral sizes [83].

This indicated a possible method to tune the emission wavelength of QDRs to the cavity

resonance frequency. For a better understanding of the experimental observation, the

influence of the lateral electric field on the electronic structure of the QDRs was calculated.

The results will be discussed in Chapter 5.

1.6 modulated QW nanostructures

Photonic crystals are regular arrays of materials with different refractive indices

[84]. Photonic Dirac cones, or the Dirac cones with the linear dispersion relation of the

electromagnetic eigen modes, can be realized on the Γ point (Brillouin-zone center) by

accidental degeneracy of two modes (See Fig. 1.6) [85–89] in the band structure of the

photonic crystals. Mei et al. [87] discussed the formation of Dirac cones, Berry phase,

and mapping into the Dirac Hamiltonian for phononic and photonic crystals by the k · p
perturbation theory. Because the Dirac point in the Brillouin-zone center is equivalent

to a zero effective refractive index [85], it has much potential for various applications like

scatter-free waveguides [90] and lenses of arbitrary shapes [91].

The essence of the photonic Dirac-cone formation by accidental degeneracy of two

modes is the particular combination of the spatial symmetry of their wave functions [87–

89]. Its general proof for arbitrary periodic optical media was given by the k·p perturbation
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Figure 1.6: (a) Dirac cone (gold) with an auxiliary quadratic dispersion surface (dotted
lines) and (b) double Dirac cone on the Γ point (k = 0) of the two-dimensional Brillouin
zone materialized by accidental degeneracy of two modes with particular combinations of
mode symmetries. ωΓ denotes the Dirac point.

theory combined with the group theory [87, 88]. Because the presence of the photonic

Dirac cone on the Γ point is purely a consequence of particular combinations of mode

symmetries, Dirac cones are expected to be realized not only in photonic structures but

also in any wave systems including electron, phonon, and exciton systems. By introducing

periodic structural modulation and/or applying periodic external potentials, we can realize

subbands to the energy spectra or dispersion relations of these quasi particles. Then, the

symmetry of their wave functions is governed by the symmetry, or the point group, of

the periodic modulation. In Chapter 8, we would like to show the fact that the general

rules of the formation of photonic Dirac cone can be applied to the modulated quantum

well nanostructures. Our calculation results demonstrate the formation of the Dirac cone

in the band structure of these quantum well with the square and triangular structural

modulations. This can be used as a method for controlling the effective mass of quasi

particles at will.
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Chapter 2:

Method of calculations

2.1 Effective mass approximation (EMA)

2.1.1 Energy band of semiconductor crystals

The periodical arrangement of atoms in the crystalline structure can be represented

by primitive unit cells translated along the primitive lattice vectors in the real space.

Alternatively, this arrangement in crystals can be described by the reciprocal lattice in

the wave vector space (k). Electron in the crystal feel the potential from the periodically

arranged atoms, and their motion can be described by the Schrödinger equation [20]:

Hψλ(k, r) ≡
{
− p2

2m0
+ V0(r)

}
ψλ(k, r) = Eλ(k)ψλ(k, r) (2.1)

where p is the momentum of the electron, m0 is the free electron mass, and V0 is the

periodically varying potential energy. The electron wave function satisfying the above

equation has the form of the Bloch wave function:

ψλ(k, r) =
eik·r

L3/2
uλ(k, r) (2.2)

where L3 is the volume of the crystal, λ specifies the band, uλ(k, r) is the Bloch function

that describes the wave function in the atomistic scale.

If the electron wave function (Eq. 2.2) is substituted into Eq. 2.1 and we solve the

Schrödinger equation with the second order perturbation theory for the wave vector k,

the band energy dispersion shows a quadratic dependence of k close to the Γ point in the

first Brillouin zone. The effective mass is defined to approximate the parabolic feature in

the vicinity of the band extremum.

m∗
λ =

h̄2

d2Eλ(k)
dk2

(2.3)

For the investigations of the electronic states close to the band extremum, the effective

mass approximation is valid to approximate the effect of the periodic atoms arrangement

in the crystal [19].
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2.1.2 Calculation method for the electronic structure

For a nanostructure with confinement along certain directions, the confinement effect

leads to the discrete electronic structure, which can be calculated by several calculation

methods, e.g. the k · p method, empirical pseudopotential method, density functional

method, and tight-binding method.

The density functional theory, empirical pseudopotential method and the tight-

binding method deal with the atomistic detail of the nanostructures, which leads to high

accuracy, but meanwhile suffers from the significant computational cost, especially for the

big nanostructures composed of millions of atoms.

On the other hand, with the effective mass approximation (EMA), the k · p calcu-

lation is an efficient method without the requirement of a large amount of computational

assumptions. It calculates the dispersion relation with the known electron wave function

and energies at the Γ point. The range of k · p calculation in the k space increases by

increasing the number of the energy band involved. The conventional 6-band and 8-band

k · p method are only accurate for the region close to the Γ point. For the k space far

from the Γ point, 15-band and 30-band k ·p calculation are necessary to describe the band

structure of the full first Brillouin zone [92].

2.1.3 Single-band calculation with EMA

The nanostructures involved in my calculation mainly have the zinc-blende crystal

structure, in which the CB minimum has the s-orbital character and the VB maximum has

the p-orbital character. At the Brillouin zone center, the VB is doubly degenerate, which

includes the heavy hole and light hole bands. In the nanostructures, this degeneracy is

lifted due to the spatial confinement. Because of the small effective mass, the kinetic energy

of the light hole is larger than that of the heavy hole at the Brillouin zone center. The

difference between their kinetic energy is inversely proportional to the squared length in

the confinement direction. Our calculation interest mainly concentrated on the transition

between the low-energy electron and hole states close to the band edge. The influence of

the light hole was not involved because its energy is located out of the energy range of our

interest. Consequently, a single band calculation with the EMA is sufficient in our study.

To calculate the single particle energy in low-dimensional nanostructures, especially

for big nanostructures with the size much larger than the lattice constant, we assume that

the electron and hole wave function are given by the envelope function approximation:

ψλ(k, r) = φλ(r)uλ(k, r), (2.4)

where φλ is the envelope function, which slowly varies over the atomic scale, and the uλ is

the atomic part of the single particle wave function. With the EMA, the envelope function

and the energy of the single particle states are calculated by solving the time-independent

Schrödinger equation [20]:

Hφ(r) =
{
− h̄

2∆

2m∗ + V (r)

}
φ(r) = Eφ(r) (2.5)
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where m∗ is the effective mass, which was assumed to be isotropic in my calculations

as the first-order approximation. V (r) is the potential term including the external field

as well as the confinement potential that reflects the symmetry and morphology of the

nanostructures. For nanostructures with simple shapes, such as, quantum wells and disk-

shaped quantum dots, solutions can be obtained by analytically solving the Schrödinger

equation. If the shape of the nanostructure is complicated, a numerical method is necessary

to solve the Schrödinger equation.

The finite element method (FEM) is a flexible numerical method that offers an

efficient approach to the complex geometries for the calculation of energy eigenvalues of

quantum mechanical systems. The basic idea of the FEM is to break up the region of

interest in the problem into small elements with nodes at their ends. If we take the

integration of the partial differential equation (PDE), the integration can be expressed

by the summation of the integration in each element. By assuming the solution with

the interpolation of basis function at each node, the solution of PDE can be obtained by

calculating the eigenvalue of the matrix according to the basis functions. By decreasing

the size of the element or increasing the degree of the interpolation functions, the accuracy

of the solution can be improved. In the present study, the numerical calculation of the

single-particle Schrödinger equation was implemented with the COMSOL multiphysics

commercial FEM software.

2.1.4 The effect of the external field

When the external electric field or magnetic field is applied over the nanostructure,

additional potential terms are induced into the potential energy part of the Schrödinger

equation to consider the effect of the external field. The influence of the electric field

and magnetic field on the exciton of nanostructures will be discussed in Chapter 5 and 6,

respectively.

2.1.5 The effect of the strain in heterostructures

To realize the continuous growth of a heterostructure composed of materials with

different lattice constants, the lattice points close to the interface between two materials

are displaced from their original positions, which forms the strain as shown in Fig. 2.1. If

the strain accumulated at the interface is larger than the critical value, the strain energy

will be relaxed by forming defects. The strain changes the arrangement of the lattice

points and consequently modifies the energy band. The effect of strain is introduced into

the Schrödinger equation by the deformation potential. The single particle Hamiltonian

with the strain-induced band edge modification will be discussed in the fourth chapter.

2.2 Exciton and trion calculation

2.2.1 Coulomb interaction

For nanostructures, the confinement limits the spatial extension of the electron and

hole wave functions, so the interaction between the electrons and holes is expected to

12



Figure 2.1: (a)The lattice of various crystals without deformation (b)The deformed lattice
to fulfill the lattice match at the interface between different crystals [93].

be stronger than the bulk materials. The Coulomb interaction binds the electron and

hole, which leads to a red shift with respect to the non-interacting electron-hole pair

state energy. This energy shift is denoted by the binding energy (Eb). By modifying the

overlap between the electron and hole wave functions, the Coulomb interaction also has

an effect on the peak intensity of the absorption (Abs) and PL spectra. Thus, in order

to investigate the optical properties of the semiconductor nanostructures, the Coulomb

interaction should properly be treated.

Considering a low-dimensional semiconductor nanostructure with a size of d along

the confinement direction, according to the exciton Hamiltonian, the kinetic part of the

Hamiltonian is proportional to 1/d2, meanwhile, the Coulomb interaction term is approxi-

mately proportional to 1/d. For nanostructures with small d, the kinetic energy is expected

to be much larger than the Coulomb energy. According to the comparison between the

bulk material Bohr radius (ab) and the size of the nanostructure along the confinement

direction (d), the nanostructure can be distinguished into different quantum confinement

regimes (strong confinement regime, intermediate confinement regime and weak confine-

ment regime). In the strong confinement regime (ab > d), the Coulomb interaction can

be neglected in the calculation [94].

In the present study, our calculation involved the CdTe/CdS heterostructure and

the GaAs/Al0.3Ga0.7As quantum nanostructures. According to S.Adachi’s handbook [95],

the dielectric constant of GaAs and AlAs are 12.9 and 10.06, respectively. With the

linear interpolation scheme, the dielectric constant of Al0.3Ga0.7As was estimated to be

12.05 [96]. As pointed out by Peyghambarian and Koch [19], the effect of the difference in

the dielectric constant on the binding energy can be neglected for the GaAs/Al0.3Ga0.7As

system due to their similar values. Similarly, the effect of different dielectric constant

was also neglected for the CdTe/CdSe system (ε = 10.4 for CdTe, ε = 9.8 for CdS [95]).

As for the difference in the dielectric constant between the colloidal CdTe/CdSe tetrapod

and the surface ligands (and the solvent), its effect was neglected in our calculation for

simplicity.

13



In additional to the Coulomb interaction in the exciton, we can extend our study to

other few-body systems, for instance, the trion (two electrons and one hole or two holes

and one electron) and bi-exciton (two electrons and two holes). The increasing number of

particles in the target system leads to a considerable increase in the computational cost.

Thus an appropriate calculation method is necessary to deal with this problem with the

reasonable calculation burden. There are several developed methods for the calculation

of the few-body system, e.g. Hartree method and configuration interaction method (CI

method). In the present study, the CI method was applied which fully takes the Coulomb

interaction into consideration.

2.2.2 Configuration interaction

In this section, the CI method will be briefly introduced which is a powerful method

to deal with the few-body system problem with the relatively small number of particles [94].

Let us start by considering a system with N identical particles. The Hamiltonian

is:

H = H1 +H2 (2.6)

where H1 is the summation of the Hamiltonians of the non-interacting N particles, and

H2 represents the interaction among them.

Because the N particles in the system are indistinguishable, the H0 for each particle

should be the same. For the non-interacting N particles system, the wave function Ψ and

eigen energy E can be assumed as:

ΨM (r1, r2, ..., rN ) =
N∏
i=1

ψmi(ri) (2.7)

EM =
N∑
i=1

Emi (2.8)

where ψmi and Emi are the wave function and eigen energy of the single particle state

with the quantum number mi, M = [m1,m2, ...mN ] is the configuration which denotes

the quantum number set of N particle system.

In our study, the N particles (electrons and holes) are fermions. The wave function

of N fermions should be antisymmetric when we apply the permutation operations on

the fermions. Considering all possible (N !) permutations among the fermions, the wave

function should be revised such that

ΨM (r1, r2, ..., rN ) =
1√
N !

∑
σ∈Sym(N)

sgn(σ)
N∏
i=1

ψmσ(i)
(ri), (2.9)

where σ is a member of symmetric group Sym(N) and sgn(σ) = 1 for even permutations

and -1 for odd permutations. A compact form of the N fermion wave function is the Slater

determinant, which describes the feature of antisymmetry.
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The Schrödinger equation for the system with N identical particles is

HΨ = (H1 +H2)Ψ = EΨ (2.10)

If the wave function of the N interacting fermions is assumed as a linear combination of

wave function bases of non-interacting fermions with configuration Mi:

Ψ(r1, r2, ..., rN ) =
∑
Mi

CMiΨMi(r1, r2, ..., rN ) (2.11)

multiplying Ψ∗
Mj

to Eq. 2.10 and integrate with respect to (r1, r2, ..., rN ), Eq. 2.10 is

reduced to: ∑
Mi

CMi

{
EMiδMj ,Mi + ⟨Mj |H2|Mi⟩

}
=
∑
Mi

CMiEδMj ,Mi (2.12)

where E is the eigen energy of the N interacting fermion system, ⟨Mj |H2|Mi⟩ is the

interaction matrix elements. The eigen energy can be obtained by the diagonalization of

the matrix
{
EMiδMj ,Mi + ⟨Mj |H2|Mi⟩

}
.

Because the number of solution for Eq. 2.12 is infinite, it is impossible to include the

infinite number of wave function bases Mi in the calculation. If we are only interested in

the low-energy states, the summation can be truncated and only certain low-energy wave

function bases are involved as an approximation. By increasing the number of involved

wave function bases, the accuracy of solutions will be enhanced. Also, we can judge

whether the truncated bases are sufficient by checking the convergence of the calculated

eigen energy as a function of the number of bases.

For large-size nanostructures with small kinetic energy intervals that is comparable

with the off-diagonal interaction matrix elements, a large number of the high-energy states

are necessary to be taken into consideration because their contributions to the lowest state

are not negligible. Although modern computers can deal with the CI calculation with a

considerably large number of basis functions, some technique is desirable to reduce the

calculation time. Considering the symmetry of the nanostructure, such as, the cylindrical

symmetry, we can classify the basis states into different groups according to the selection

rule of their total angular momentum, and the interaction matrix elements between the

basis states from different groups are zero according to this symmetry. In each group,

the energy spacing between the pair states is often large enough to obtain an acceptable

convergence.

2.2.3 Direct Coulomb interaction and exchange interaction

In the investigation of a system composed of two indistinguishable particles, the

mere product of the individual wave functions does not satisfy the permutation symmetry.

The linear combination of all the permutations is required. Consider the exchange of the

spatial coordinate, the wave functions of this two-particle system are

Ψ± =
1√
2
[φa(r1)φb(r2)± φb(r1)φa(r2)] (2.13)
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where φa and φb are the wave functions of individual particles, and Ψ± is the two-particle

wave function, which denotes the symmetric or antisymmetric properties with respect to

the permutation.

If the interaction Hamiltonian H2 in Eq. 2.10 is the Coulomb interaction. The

expectation value of the second term is

⟨Ψ±|H2|Ψ±⟩ = ⟨φa(r1)φb(r2)|H2|φa(r1)φb(r2)⟩ ± ⟨φa(r1)φb(r2)|H2|φb(r1)φa(r2)⟩ (2.14)

where the first and second term on the right-hand-side is the direct Coulomb interaction

and exchange interaction terms, respectively.

In additional to the permutation symmetry of the spatial part of the wave function,

the permutation symmetry of the spin part is also important. It is well known that the

spin configuration of the two-electron system can be categorized as the spin-singlet and

spin-triplet states according to their permutation symmetry [97]. When we consider the

spin configuration for the electron-hole pair states, they are also categorized as spin-singlet

|ij(s)⟩ and spin-triplet states |ij(t)⟩

|ij(s)⟩ = 1√
2
(|i ↑ j ↓⟩+ |i ↓ j ↑⟩) (2.15)

|ij(t)⟩ =


|i ↑ j ↑⟩

1√
2
(|i ↑ j ↓⟩ − |i ↓ j ↑⟩)

|i ↓ j ↓⟩
(2.16)

The Coulomb matrix elements of the spin-singlet and spin-triplet excitons can be found

in Chapter 3.

Because the transitions between the spin-triplet excitons and the ground state are

spin-forbidden, the spin-singlet and spin-triplet excitons correspond to the bright and dark

excitons. And the exchange interaction leads to the energy splitting between the lowest

bright and dark excitons. According to Ref. [98], this energy splitting shows a nearly

linear dependence on the size of the nanostructures. In the present thesis, the exchange

interaction was involved in my models of II-VI materials, for instance, the tetrapod-shaped

nanostructures due to their small size. On the other hand, the small exchange interaction

was neglected for the GaAs nanostructures due to their large size.

The main computation burden comes from the calculations of the interaction matrix

elements that are multiple dimension integrals. In our study, the Coulomb matrix elements

are six-dimensional integrals, which were calculated by the Monte Carlo method. The

Monte Carlo method is a kind of numerical integration using the random numbers and

it changes the definite integration to a summation. For the simplest case, let us consider

a one-dimensional integral
∫ b
a f(x)dx for x ∈ D = [a, b]. By taking a large number (N)

of sampling random points with respect to the uniform probability distribution in the

integral domain D, the probability of each sampling point is p(xi) = 1/N . The targeting

integral can be approximated with the product of the length of D and the average value
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of f(r) in this domain:

∫ b

a
f(x)dx = (b− a)

N∑
i=1

f(xi)p(xi) =
(b− a)

N

N∑
i=1

f(xi) (2.17)

The Monte Carlo integral is a desirable method for the multiple dimension integration

because the calculation time does not increase a lot with increasing integral dimensions. Its

disadvantage is that the error of the solution decreases slowly by increasing the number of

sampling random points. Especially when the function of the integrand seriously deviates

from the uniform distribution function, the convergence of calculation is slow due to the

uniform sampling strategy.

To overcome this problem, if we can roughly estimate the shape of the integrand

function in advance, the strategy of random point sampling will be modified to the so-

called importance sampling method. The basic idea of the importance sampling method

is that a large number of sampling random points should be taken for the region where

the integrand has a large value. When we induce a function h(x) whose shape in D is

similar to the integrand f(x) into Eq. 2.17 and assume the h(x) is not zero for x ∈ D.

∫ b

a
f(x)dx =

∫ b

a

f(x)

h(x)
h(x)dx =

∫ b

a

f(x(y))

h(x(y))
dy =

(b− a)

N

N∑
i=1

f(x(yi))

h(x(yi))
(2.18)

where we assume h(x) = dy/dx and y(x) =
∫
h(x)dx. In Eq. 2.18, the integrand

f(x(y))/h(x(y)) become smooth in D. By using the uniform sampling of y for the in-

tegral in Eq. 2.18, a faster convergence than Eq. 2.17 is expected. Actually the x(y) in

Eq. 2.18 can be considered as the random points taken with respect to the probability

density function h(x) similar to the integrand f(x). In Fig. 2.2, by using a one-dimensional

integral with the exact solution of π/4, we compare the convergence speed of the Monte

Carlo integral with the uniform sampling strategy and the importance sampling strat-

egy. A probability density function h(x) = (4− 2x)/3 was assumed, whose accumulative

distribution function can be easily obtained. The latter one shows an obviously faster

convergence speed than the former one. In our study, if the integrand of the integral is

the wave function of confined electronic states, we can guess the distribution function of

the integrand and accelerate our calculation by the importance sampling method.

2.3 Calculation of the absorption spectra

The electron transition between different states leads to the photon emission or

absorption. To study the transition process, the Fermi Golden rule is always applied to

calculate the transition probability per unit time for the transition of an electron from an

initial state |i⟩ to a final state |f⟩ [99].

Pi,f =
2π

h̄
|⟨f |Hint|i⟩|2 ρ (2.19)
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Figure 2.2: The comparison of the convergence of a one dimensional Monte Carlo inte-
gral with the uniform sampling strategy and the importance sampling strategy (with the
probability density function h(x) = (4− 2x)/3).

where Hint is the Hamiltonian for the interaction between the light and the matter, ρ is

the density of the final states.

With the electric dipole approximation, the Hint can be reduced to [19]

Hint = E0eq · d =
E0e

im0ω
eq · p (2.20)

where eq is the unit vector that describes the polarization direction of the incident field,

E0 is the electric field intensity, d is the electric dipole moment, ω is the frequency, p is

the momentum, e is the elementary charge and m0 is the genuine electron mass.

The wave functions of the initial and final states were assumed as a product of the

envelope function (φ) and the Bloch function (uk=0,λ) and substituted into the dipole

matrix element ⟨f |Hint|i⟩ as

dif = ⟨f |Hint|i⟩ =
E0e

im0ω
[⟨φf |eq · p|φi⟩⟨uk=0,λ2|uk=0,λ1⟩+ ⟨φf |φi⟩⟨uk=0,λ2|eq · p|uk=0,λ1⟩]

(2.21)

The first and the second term on the right-hand side of Eq. 2.21 correspond to the intra-

band and inter-band transition. In the present thesis, I concentrate on the inter-band

transition (λ1 ̸= λ2), thus the 1st term in the above equation is neglected. The ⟨uk=0,λ2|eq ·
p|uk=0,λ1⟩ is related to the Kane matrix element [99]. It is obvious that the dipole matrix

element is proportional to the overlap integral of the envelope functions. Accordingly,
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|di,f |2 is proportional to the squared overlap integral that indicates the probability of the

electron and hole occurring at the same spatial position. Thus the spatial symmetry of

the envelope function has a critical influence on the transition probability.

During the transition, the energy and momentum must be conserved. As for the

inter-band transition between the p-like valence band and the s-like conduction band, the

atomic part of the electron wave function has an angular momentum difference |∆l| = 1.

Because the involved photon induces an additional angular momentum l = 1 in the dipole

approximation, to keep the conservation of the momentum, the transition only takes place

for the envelope functions with angular momentum difference ∆l = 0, which corresponds

to the dipole-allowed transition.

When the Coulomb interaction is considered, the |di,f |2 is proportional to the

squared overlap integral of the exciton wave function with the same physical meaning [100].

|di,f |2 ∝
∣∣∣∣∫

V
Ψex(re, rh)δ(re − rh)dredrh

∣∣∣∣2 (2.22)

The formulas for the band edge absorption spectra for the 3D, 2D, 1D and 0D

semiconductors are shown in Koch’s textbook in details [20]. In the present study, the

absorption spectra of the nanostructures with 3D confinement were calculated by the

equation for the quantum dots.

α(ω) ∝ ω
∑
f

|di,f |2
γ

γ2 + (ωf − ω)2
(2.23)

where ωf is the quantized exciton frequency corresponding to the transition energy. A

series of Lorentzian peaks was introduced to smooth the absorption peaks, in which γ is

the half-width at half-maximum (HWHM) of the peaks.

In the experiment, the observed absorption peaks always have a certain full width of

half maximum (FWHM) rather than the delta-function feature in the calculation, this peak

width is defined as the broadening. The broadening is distinguished as the homogeneous

broadening due to the electron-phonon interaction and the inhomogeneous broadening

due to the size distribution of the nanostructures. If the inhomogeneous broadening is

considered in the absorption spectra, the average absorption spectra can be calculated by

taking the convolution of the size distribution function f(R) and the absorption spectrum

(α(ω)|R) for a given size of R [20]. We should notice that the size distribution of the

experimental specimen always leads to a large peak broadening, the low-energy peaks

with small intensity may merge into adjacent strong peaks, which need to be assigned by

the calculation.
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Chapter 3:

Exciton of tetrapod-shaped nanostructures

3.1 Background

In 2011, we reported the first theoretical investigation of the effect of quantum

tetropod shape on their exciton states by the configuration interaction method [53]. By

using group theory, we found that the low energy electron and hole states had A1 or

T2 symmetry. The low energy electron-hole pair states also have A1 or T2 symmetry.

Consequently, the symmetry of the low energy excitons was assigned according to their

main contributing pair states. A distinct selection rule for the electric-dipole transition due

to the tetrahedral symmetry of quantum tetrapods was revealed and only A1 excitons were

optically active. Our calculation results indicated that the width of tetrapod arms has the

dominant effect on the absorption peak wavelength, which showed a good agreement with

available experimental data. In the present study, we applied the same method to CdTe,

CdS, CdSe, ZnTe, and ZnSe quantum tetrapods with a wider range of sample parameters

and examined the above five properties. To the best of our knowledge, no systematic

investigation has been reported on the electronic and optical properties of those quantum

tetrapods in spite of the rapid progress of their synthesis studies.

3.2 Theory and model

We assume the tetrahedral symmetry for quantum tetrapods to clarify their unique

electronic and optical properties caused by their structural symmetry, although it is known

that there are various types of non-symmetric deformation in actual specimens. Then, Fig.

3.1 shows the structure and band diagram of the quantum tetrapods that we analyze in

this study. They consist of a spherical central core and four cylindrical arms. Because early

experimental studies showed that the core had a zinc blende structure whereas the arms

had a wurtzite structure [25, 33, 34], we generally assume non-zero band offsets between

the core and arms as shown in Fig. 3.1(b) except ZnSe and ZnTe tetrapods for which both

the core and arms have the zinc blende structure [41,42].

We deal with both electron and hole states of quantum tetrapods by the single-band

effective-mass approximation, which is justified when we only treat relatively low energy

states close to the absorption edge. The valence band actually consists of heavy and light

hole states. Their energy difference is 16 meV for wurtzite CdS, for example, and they

are mixed by the confinement potential. However, the kinetic energy of the light hole is

generally larger than the heavy hole due to the smaller effective mass of the former, so the

light hole states are less important when we discuss the low energy part of the absorption

spectrum. This was proven, for example, by Ref. [101] that showed a good agreement
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Figure 3.1: (a) Structure and (b) band diagram of quantum tetrapods. We assume the
perfect tetrahedral symmetry for their structure, which consists of a spherical central core
and four cylindrical arms. We denote the diameter and length of the arms by D and L,
respectively. The diameter of the central core is assumed to be the same as D. In the
band diagram, we generally assume different energy values for the core and arm, since
early experimental studies revealed that the core had a zinc blende structure whereas the
arms had a wurtzite structure. The confinement potential height of the conduction band
is assumed to be the same as the electron affinity (χe), while an infinite potential barrier
is assumed for the valence band. The band gap is denoted by Eg and the band offsets
between the arm and core are denoted by ∆ECB and ∆EVB for the conduction and valence
bands, respectively [54].
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Table 3.1: Parameters used in the present calculation. m0 is the genuine electron mass.
See Fig. 3.1 for the definition of ∆ECB, ∆EVB, and χe [54].

Material Eg m∗
e m∗

h ∆ECB
[102] ∆EVB

[102] χe
[103] ε [95]

(eV) (m0) (m0) (eV) (eV) (eV)

CdSeZB 1.74 [104] 0.11 [105] 0.44 [105] 9.6

CdSeWZ 1.799 0.13 [106] 0.45 [106] 0.094 0.035 4.95

CdSZB 2.5 [107] 0.14 [105] 0.51 [105] 9.8

CdSWZ 2.579 0.205 [108] 0.7 [108] 0.115 0.046 4.79

CdTeZB 1.5 [34] 0.11 [109] 0.69 [109] 4.18 [110] 10.4

CdTeWZ 1.547 0.11 0.69 0.065 0.018

ZnSeZB 2.67 [111] 0.165 [112] 0.57 [113] 4.09 8.9

ZnTeZB 2.29 [114] 0.122 [115] 0.6 [116] 3.53 9.4

between the single-band and the multi-band calculations of low-energy exciton states in

CdTe/CdSe core-shell quantum dots. As we will show in the following, the single-band

calculation for quantum tetrapods also gives a good agreement with available experimental

data. As for the selection rule, on the other hand, we do not think that there is a difference

even when we take the light hole into consideration, since the structural symmetry is Td
and is sufficiently low. So, we assume the following forms for the electron and hole wave

functions:

ψe(re) = φe(re)ue(re), (3.1)

ψh(rh) = φh(rh)uh(rh), (3.2)

where φe (φh) and ue (uh) are the envelope function and atomic wave function of the CB

electron (VB heavy hole), respectively. The electron and hole coordinates are denoted

by re and rh. The envelope functions are obtained by solving the Schrödinger equation

assuming an isotropic effective mass for both the electron (m∗
e) and heavy hole (m∗

h):

Heφe(re) ≡
{
− h̄

2∆e

2m∗
e

+ Ve(re)

}
φe(re) = Eeφe(re), (3.3)

Hhφh(rh) ≡
{
− h̄

2∆h

2m∗
h

+ Vh(rh)

}
φh(rh) = Ehφh(rh), (3.4)

where ∆ is the Laplace operator, V is the confinement potential, and E is the energy

eigenvalue. The numerical calculation was conducted by the finite element method using

commercial software COMSOL Multiphysics. Material parameters assumed in this study

are listed in Table 3.1.

Because we assume the tetrahedral symmetry for the quantum tetrapod structure,

the confinement potential V is invariant for any symmetry operation R of point group Td.
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Since the Laplace operator is also invariant for R, the single-particle Hamiltonian He,h

commutes with R:

RHe,hR
−1 = He,h (∀R ∈ Td). (3.5)

Therefore, the eigen functions φe and φh are irreducible representations of point group

Td. It has two one-dimensional representations (A1 and A2), one two-dimensional repre-

sentation (E), and two three-dimensional representations (T1 and T2) [117].

For exciton energy levels and wave functions, we calculate them by numerical di-

agonalization of configuration interaction Hamiltonian. We solve the following two-body

Schrödinger equation based on the expansion of the total wave function Ψ by the linear

combination of pair states of electron and hole envelope functions:

HXΨ(re, rh) ≡
(
He +Hh −

e20
4πε0ε|re − rh|

)
Ψ(re, rh) = EXΨ(re, rh), (3.6)

Ψ(re, rh) =
∑
i,j

aijφ
(i)
e (re)φ

(j)
h (rh), (3.7)

where e0 denotes the elementary charge, ε0 is the permittivity of free space, and ε is the

dielectric constant of the quantum tetrapod. Because the Coulomb term is also invariant

for any symmetry operation R of Td, the exciton Hamiltonian HX also commutes with R:

RHXR
−1 = HX (∀R ∈ Td). (3.8)

Therefore, the exciton wave function Ψ is an irreducible representation of point group Td
as well.

It is important to note that only pair states of the A1 symmetry contribute to the

dipole-allowed optical transition, since the following overlap integral (Io) is non-zero only

for the A1 symmetry:

Io =

∫
drφ∗

e(r)φh(r). (3.9)

Because the exciton wave function and the constituent pair states in Eq. (3.7) should have

the same symmetry, only excitons of the A1 symmetry contribute to the dipole-allowed

optical transition. As a consequence, if the lowest exciton has another symmetry, quantum

tetrapods are essentially non-luminescent.

In our calculation of the Coulomb energy, we did not take into consideration the

surface polarization charge induced by the discontinuity of the dielectric constant as was

done for spherical quantum dots in Ref. [118]. This is because we cannot obtain its

analytical solution for the tetrapod geometry in contrast to the spherical geometry, so we

have to rely on the numerical solution of Poisson’s equation to evaluate the Coulomb term,

which is quite time-consuming and impractical in the theoretical framework of the present

study. The neglect of the surface polarization charge may result in the underestimation

of the binding energy of excitons. This matter remains a future problem.

To evaluate the Coulomb term, we should take into consideration the exchange

interaction for different spin configurations. For spin-singlet pair states, we can easily

prove that the matrix element of the two-body part (H2) of the exciton Hamiltonian
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Figure 3.2: Energy convergence of the lowest twenty exciton states as a functoin of the
number of pair state basis of tetrapod-shaped nanocrystals.

(HX) is given by

⟨kl(s)|H2|ij(s)⟩ = ⟨kj|H2|il⟩ − 2 ⟨jk|H2|il⟩ , (3.10)

where

⟨kj|H2|il⟩ = −
∫ ∫

dr1dr2φ
(j)∗
h (r2)φ

(k)∗
e (r1)

e20
ε0ε|r1 − r2|

φ(i)
e (r1)φ

(l)
h (r2), (3.11)

etc. For spin-triplet pair states, the matrix element of the two-body part only has the

Coulomb term:

⟨kl(t)|H2|ij(t)⟩ = ⟨kj|H2|il⟩ . (3.12)

The multiple dimension integrals in Eq. (3.11) were calculated by the standard Monte

Carlo method. Convergence of the exciton energy was checked by increasing the number

of electron-hole pair states basis up to 400. As shown in Fig. (3.2), with increasing

number of pair state bases, the exciton energy showed a fast convergence. Because the

Bohr radius (aB) of the semiconductor materials analyzed in the present study is from

2.6 nm (CdS) to 6.5 nm (CdTe), the structural size of the tetrapod that is represented

by D satisfies D/2 ≤ aB in most cases, which means that the system is in the strong

confinement regime. So, the Coulomb energy is relatively small compared with the kinetic

energy, which justifies our numerical method of the diagonalization of the configuration

interaction Hamiltonian. It also brings about distinct peaks in the absorption spectra in

spite of the large inhomogeneous broadening as will be shown in the following section.

We found that most of the electron and hole wave functions in the low energy range
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Figure 3.3: Wave functions of the lowest five electron states of bare tetrapod-shaped
nanocrystals.

are characterized by the angular momentum around the arm axis, l, and the number

of nodes along the arm axis, n, since four arms are approximately independent being

separated by the central core and the arms have a cylindrical symmetry. We also found

that as far as the low energy range close to the absorption edge is concerned, important

contribution is made by one-particle states with l = 0. Then, it is convenient to know

their possible symmetry in advance, since we can judge whether they can contribute to

the dipole-allowed optical transition. When we denote the electron or hole wave function

localized in the ith arm by ϕi, it is easy to see that their symmetric combination gives a

wave function of the A1 symmetry of point group Td:

ϕA1 =
1

2
(ϕ1 + ϕ2 + ϕ3 + ϕ4) . (3.13)

The remaining three independent linear combinations give the basis of a T2-symmetric

energy level:

ϕ
(1)
T2

=
1

2
(ϕ1 + ϕ2 − ϕ3 − ϕ4) , (3.14)

ϕ
(2)
T2

=
1

2
(ϕ1 − ϕ2 + ϕ3 − ϕ4) , (3.15)

ϕ
(3)
T2

=
1

2
(ϕ1 − ϕ2 − ϕ3 + ϕ4) . (3.16)

In our calculation, the arm of our tetrapod model was of a cylinder shape, so the

electron and hole wave functions in the arm must have cylindrical symmetry about its

axis. Azimuthal quantum number l can be used to distinguish the feature of cylindrical

symmetry of different states. Since we only consider the low energy states, which have

l = 0, they are symmetric under the mirror reflection operation about a diagonal plane

(σd). Consulting the character table of point group Td shown in Table 3.2, the low energy

states with l = 0 can only realize the A1 and T2 symmetry. This is consistence with our

previous discussion in Eqs. (3.13)-(3.16).

Because the single-particle state with the T2 symmetry are 3-fold degenerate, we

can find out the accuracy of numerical calculation by examining the relative error of the

energy for three T2 states. The relative error for 3-fold degenerate electron (hole) states
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Table 3.2: The character of point group Td. The symmetry operations are listed in the
first row. The irreducible representations of point group Td are listed in the first column.

Td E 6IC4 3C2 6σd 8C3

A1 1 1 1 1 1

A2 1 -1 1 -1 1

E 2 0 2 0 -1

T1 3 1 -1 -1 0

T2 3 -1 -1 1 0

was 1.0× 10−4 (5.8× 10−7), which indicated sufficient accuracy in our calculation.

The lowest electron wave function, which has the A1 symmetry, is localized in and

around the central core as shown in Fig 3.3. It is worth noting that we can tell the

symmetries of low energy excitons from this fact. Actually, the pair states composed of the

lowest electron level and low energy hole levels, the latter of which have A1 or T2 symmetry

as mentioned above, can only have A1 or T2 symmetry, which can be easily verified by

using the well-known reduction formula of group theory [117]. By using the configuration

interaction method in our calculation, the dominantly contributing pair state for each

exciton can be found. Furthermore, the symmetry of excitons can be assigned according

to the symmetry of contributing pair states. Therefore, excitons in the low energy range

close to the absorption edge are characterized by the A1 and T2 symmetries, among which

only A1 excitons contribute to dipole-allowed optical transitions. As a consequence, if

the lowest exciton has the T2 symmetry, quantum tetrapods are non-luminescent unless

thermal excitation induces a non-vanishing population of higher energy A1 excitons.

3.3 Results and discussion

Figure 3.4 shows the D (arm diameter) dependence of the lowest twenty exciton

energies for CdTe, CdS, CdSe, ZnTe, and ZnSe quantum tetrapods. From our previous

study [53], we found that the L (arm length) dependence of the exciton energy was small,

so we fixed it to 9 nm, which is a typical value observed in experiments. On the other hand,

we varied D from 2.2 to 7 nm in order to compare our numerical results with available

experimental data. We also examined the wave functions of the lowest twenty electron

and hole states, which govern the absorption and emission spectra in the vicinity of the

absorption edge, and found that all of them were characterized by the angular momentum

of l = 0 and had A1 or T2 spatial symmetry. In a higher energy range, we also found l ≥ 1

states. But they were not important for the energy range that we deal with in this study.

As we described in the previous section, all these excitons have A1 or T2 symme-

try. They show an apparent blue shift with decreasing D as a consequence of quantum

confinement of exciton wave functions. Most of the lowest spin-singlet excitons have the

A1 symmetry in our results, so those quantum tetrapods are luminescent. Exceptions are
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Figure 3.4: The D dependence of the spin-singlet exciton energy of quantum tetrapods
made of (a) CdTe, (b) CdS, (c) CdSe, (d) ZnTe, and (e) ZnSe. (f) Spin-triplet exciton
energy of the CdTe quantum tetrapod [54].
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Figure 3.5: The D dependence of the binding energy of the lowest spin-triplet exciton [54].

CdS for all D, CdTe with D ≥ 4 nm, and CdSe with D ≥ 5 nm. Their lowest spin-singlet

excitons have the optically inactive T2 symmetry, so they are basically non-luminescent.

However, the energy difference between this lowest T2 and the lowest A1 excitons is less

than 2 meV. So, the room-temperature thermal energy (26 meV) mixes the population of

these two exciton states and luminescence from the A1 exciton level must be observed.

In Fig. 3.4(f), the energy of spin-triplet excitons is shown. As we found for CdTe

tetrapods with 1.9 nm ≤ D ≤ 2.2 nm in our previous study [53], the binding energy of the

lowest spin-triplet exciton, which is defined by the energy difference between the lowest

pair state and the lowest spin-triplet exciton state, is exceptionally large due to the strong

confinement of both electron and hole wave functions to a small central-core region, and

so, the large negative Coulomb energy. This binding energy decreases with increasing D

because of the delocalization of the wave functions. As shown in Fig. 3.5, this tendency

is common to all tetrapods that we dealt with in this study.

Because we obtained the energy levels and wave functions, we could calculate the

absorption spectra of quantum tetrapods according to Fermi’s golden rule. The absorption

spectra of CdTe tetrapods are shown in Fig. 3.6. Because the single-band approximation

is appropriate for the low energy range around the absorption edge, we focused on the

lowest and second lowest absorption bands in our calculation, for which the single-band

approximation can safely be applied. A continuum of higher energy absorption bands

should follow these two bands. The actual specimens of quantum tetrapods have a fairly

large size distribution. So, we rather arbitrarily assumed an inhomogeneous width of 60

meV (FWHM) for each absorption line. This value corresponds to the diameter-size (D)

distribution of about 0.5 nm on average, which was deduced from the D dependence of the

exciton energy shown in Fig. 3.4. This value (0.5 nm) of the diameter-size distribution is

among the typical values found in experimental studies. In addition to an obvious quantum

confinement effect, the relative decrease of the lowest band intensity with increasing D
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Figure 3.6: The D dependence of the absorption spectrum of the CdTe tetrapod [54].

is observed in Fig. 3.6, which is caused by the decrease of the overlap integral of the

lowest electron and hole wave functions mainly due to the delocalization of the latter with

increasing D. This point will be discussed again later in connection with Fig. 3.8.

It is worth noting the difference in the optical properties between quantum tetrapods

and spherical QDs. According to our calculation results, the lowest absorption peak has

the main contribution from the lowest exciton state with the A1 symmetry, which consists

of the lowest electron and hole states with wave functions strongly localized in the core

part of the quantum tetrapods. This situation is similar to the spherical QDs, whose lowest

exciton also has the A1 symmetry. For higher energy A1 excitons in quantum tetrapods,

their wave functions are mainly in the arm part. Comparing with the spherical QDs,

the arms of tetrapods under weak spatial confinement will lead to small exciton energy

intervals and weak absorption peak intensity due to the reduction of the wave-function

overlap integral between electron and hole. The rotational symmetry in the arms with

angular momentum l = 0 will also leads to the single particle states with T2 symmetry,

which lead to T2 excitons that do not contribute to dipole-allowed transitions. When l ̸= 0

in the arms, the states with T1 and E symmetry are also present, which are not found in

the spherical QDs.

Figure 3.7 shows the absorption spectra of five kinds of quantum tetrapods, where

D is fixed to 3 nm. Their spectral shift is mainly caused by the change in the band gap

energy.

Finally, Fig. 3.8 shows theD dependence of the lowest absorption peak energy and its

comparison with experiments, where the amount of the D dependence is mainly governed

by the kinetic energy of carriers, and so, by their effective mass. Experimental data are

mainly available for CdTe and CdSe tetrapods. If we take into consideration the fairly

large size distribution and structural deformation from the perfect tetrahedral symmetry

in actual specimens, we may conclude that the agreement between our calculation and the
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Figure 3.7: The material dependence of absorption spectra. D was assumed to be 3
nm [54].

experimental observation is good.

However, there is a somewhat systematic deviation between them for the CdTe

tetrapod with D ≥ 3 nm. This deviation may be explained by the relative decrease of

the lowest band intensity compared with the second lowest band. If the inhomogeneous

width is large, the lowest band may be difficult to identify experimentally and the second

band may be regarded as the absorption edge. From this point of view, the calculated

peak energy of the second band is also plotted in Fig. 3.8(a), which shows considerably

good agreement with the experimental data for D ≥ 4 nm.

We also quantitatively evaluated the influence of arm phase on the exciton energy

of tetrapods and showed the results in Fig. 3.9. It’s worth noting that changing the arm

phase from wurtzite to zinc blende led to an energy decrease of the lowest spin-singlet

exciton. The change in the binding energy of the lowest exciton induced by different arm

phases was less than 3 meV for the entire range of D in the present calculation, which is

considerably smaller than the change in the exciton energy. Therefore, the difference in

the exciton energy mainly derived from the change in one-particle energy of electron and

hole. This exciton energy difference increased with decreasing D, which was caused by

the larger band gap of the wurtzite arms where a larger portion of electron wave function

is distributed for smaller D.

3.4 Conclusion

We systematically investigated exciton states of CdTe, CdS, CdSe, ZnTe, and ZnSe

quantum tetrapods by numerical diagonalization of configuration interaction Hamiltonian

with the single-band effective-mass approximation. We found five main features of their

electronic and optical properties: (1) the lowest twenty electron and hole states, which gov-
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Figure 3.9: The lowest spin-singlet exciton energy of CdTe tetrapods with wurtzite and
zinc blende arms, and their energy difference as a function of D.

ern the absorption and emission spectra in the vicinity of the absorption edge, have A1 or

T2 symmetry; (2) the lowest twenty exciton states have the A1 or T2 symmetry as well; (3)

most of the lowest spin-singlet excitons have the A1 symmetry, so they are optically active

and luminescent. Even when it is of T2 symmetry, the room-temperature thermal energy

induces non-vanishing population in the lowest A1 exciton, so the tetrapod can essentially

be luminescent; (4) the binding energy of the lowest spin-triplet exciton is exceptionally

large, for small D in particular, because of the large Coulomb interaction between elec-

tron and hole due to their efficient confinement into the small central-core region; (5) the

wavelength of the lowest absorption band agrees well with available experimental data.
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Chapter 4:

Exciton of the tetrapod-shaped core-shell

nanostructure

4.1 tetrapod-shaped core-shell nanostructure

In the previous chapter, we revealed the influence of the tetrahedral symmetry of

II-VI tetrapod nanostructures on their electronic and optical properties. Now we extend

our study to tetrapod-shaped heterostructures recently synthesized by chemical methods

[57, 119–123]. The surface of a bare tetrapod nanostructure is partly covered by another

II-VI material that forms the tetrapod-shaped core-shell nanostructure (csTPs).

In the present chapter, we applied the same theoretical method to the exciton states

of CdTe/CdS csTP nanocrystals (NCs) with different dimensions. We concentrated on

the following two aspects: Firstly, the influence of tetrahedral symmetry on the electronic

structures of the csTPs by using the group theory. A comparison with core-shell spherical

NCs revealed a uniquely efficient carrier separation in the csTPs. Secondly, the effect of

strain on the electronic properties was investigated. In addition to the investigation of

excitons in csTPs with perfect tetrahedral symmetry, we also discussed the effect of broken

symmetry. For the CdTe/CdS csTPs with a type-II band structure, the distinct peaks in

absorption spectra are mainly contributed by the high-energy exciton states, which are

beyond the range of the present investigation.

4.2 Model of strained nanoheterostructures

Figure 4.1(a) shows the three-dimensional structure of the CdTe/CdS csTP that we

assumed in our numerical study in accordance with the observation reported in Ref. [57].

It consists of a spherical central core (CdTe with zinc-blende structure), four cylindrical

arms (CdTe with wurtzite structure), and four CdS shells (CdS with wurtzite structure)

covering the lateral surfaces of the arms. The shells on the csTP arms are assumed to be

isolated from each other. The maximum shell thickness, the diameter and length of the

arms are denoted by sh, D and L, respectively.

The shells on all the arms were assumed to be the same except for their spatial

orientation, thus this csTP model exhibited perfect tetrahedral symmetry as the bare

tetrapods in Ref. [53]. The band diagrams for the electrons and holes of the bulk CdTe

and CdS are shown in Fig. 4.1(b). When the effect of strain is taken into consideration,

these band diagrams will be modified due to the distortion of the lattice framework.

The approach described in Ref. [125] for a freestanding structure was used in our

study to calculate the strain distribution over the entire csTP heterostructure. We applied
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Figure 4.1: SEM images of (a) bare tetrapod and (b) core-shell tetrapod. (c) Structure
of the CdTe/CdS core-shell tetrapod assumed in the calculation. It consists of a spherical
central core (CdTe with zinc blende structure), four cylindrical arms (CdTe with wurtzite
structure), and four CdS shells covering the arms. The maximum shell thickness and the
diameter and length of the arms are denoted by sh, D and L, respectively. The diameter of
the central core is assumed to be the same as D. (d) Energy band diagrams for electrons
and holes. The confinement potential height of CB is assumed to be the same as the
electron affinity. 4.7 eV is assumed for the CdS electron affinity, which is the sum of
the electron affinity (4.18 eV) for CdTe with the zinc blende structure [110] and the CB
offset between CdTe and CdS [123], whereas 1.5 eV is assumed for the zinc blende CdTe
bandgap [34]. An infinite potential barrier is assumed for the VB. As for the band offset
between the CdTe with the zinc blende and wurtzite structures, we used 65 meV for the
CB and 18 meV for the VB, which were obtained by theoretical calculation [102]. For the
effective masses of the electrons (m∗

e) and heavy holes (m∗
h), we assumed m∗

e = 0.11×m0

and m∗
h = 0.69×m0 for CdTe [109] and m∗

e = 0.18×m0 and m∗
h = 0.7×m0 for CdS [50],

where m0 is the genuine electron mass [124].
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the continuum elasticity approximation, which assumes that the heterostructure has a

coherent interface where the lattice points of the constituent materials match each other

perfectly.

To fulfill the interface matching requirement, we initially assumed an interface

matching configuration with unstrained CdTe arms and a deformed shell. Considering

the gradual growth of the thin shell on the arm, the CdTe arm was initially assumed

to be the unstrained substrate [125]. The central core was assumed to be a part of the

unstrained substrate due to the lattice similarity between the wurtzite CdTe arm and

zinc-blende CdTe core at their interface. The deformation is denoted by u0 (u0 = 0

in the arm), which produces anisotropic initial strain ε0xx = ε0yy = (aA − aS)/aS , and

ε0zz = (cA − cS)/cS , in which the superscript A(S) denotes the arm (shell)domain in the

csTP model, and a and c are the lattice constants of wurtzite crystals. The lattice con-

stants used in our calculation were a = 0.457 nm, c = 0.747 nm [126] and a = 0.4136

nm, c = 0.6713 nm [127] for wurtzite CdTe and CdS, respectively. With the interface

matching assumption, no rotation was considered for the initial strain. Thus the initial

strain tensor had zero off-diagonal elements. The initial strain can be expressed as:

ε0ij =
1

2
(
∂u0i
∂xj

+
∂u0j
∂xi

) i, j = x, y, z (4.1)

where ui is a component of the deformation u0.

It should be noted that the interface matching configuration is not an equilibrium

configuration. The system will deform with respect to the interface matching configuration

and relax to equilibrium with the lowest elastic energy, while maintaining the interface

matching. During this relaxation, the deformation vector is defined as u. The consequent

elastic strain is related to the components of u:

εeij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) i, j = x, y, z (4.2)

Because the total strain distribution that we needed is generated by the total defor-

mation (u0+u) from the initial unstrained configuration to the equilibrium configuration,

the total strain of the system is:

εij = εeij + ε0ijδij i, j = x, y, z (4.3)

where ε0ij = 0 in the arm domain, and δij = 1 (or δij = 0) if i = j (i ̸= j). The elastic

energy is:

W =

∫
1

2
ΣijklCijklεijεkldV, i, j, k, l = x, y, z (4.4)

where Cijkl is the anisotropic elastic modulus tensor for the wurtzite structure, taken from

the Landolt-Börnstein database [127].

The elastic energy minimization was implemented with the finite element method

software COMSOL Multiphysics based on the virtual work principle [128]. The defor-

mation and consequent strain distribution can be obtained for the equilibrium configu-
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ration. To enhance the computational efficiency and accuracy, we calculated the strain

distribution in the “core + one arm” region of the csTP according to its symmetry. Be-

cause interface matching was maintained during the calculation, the continuous deforma-

tion of the constituent materials was employed as a boundary condition at the interface

(uA |interface= uS |interface). For the uniqueness of the solution, the core was assumed to

be motionless (u = 0) as a constraint to prevent the translation or rotation of the struc-

ture. The other outer boundaries were specified as free surfaces due to the zero external

force assumption for freestanding csTPs.

The strain induced modification of the lowest conduction band (CB) Veε and the

highest valence band (VB) Vhε can be evaluated using the strain-related Hamiltonian for

a wurtzite semiconductor found in Ref. [95]. Considering the single-band calculation in

the present study, we found that the band modification of the electron in question and

the heavy hole states were:

Veε(re) = aczεzz + act(εxx + εyy) (4.5)

Vhε(rh) = (D1 +D3)εzz + (D2 +D4)(εxx + εyy) (4.6)

where acz and act, respectively, are the deformation potentials of CB along the c-axis

and transverse to the c-axis of wurtzite materials, Di(i = 1 ∼ 4) are the deformation

potentials of VB. For the wurtzite CdTe arms, the deformation potentials were derived

from those of zinc-blende CdTe [129] with the quasi-cubic approximation [95]. The idea

of this approximation is based on the similarity between the wurtzite structure along the

[0001] direction and the zinc-blende structure along the [111] direction. For the wurtzite

CdS shell, the deformation potentials were taken from Refs. [127,130].

The strain induced band-edge shifts play a role in the potential modification of the

heterostructure. This modification can be expressed as an extra potential term in the

single-particle Schrödinger equation:

Hiφi(ri) ≡
{
− h̄

2△i

2m∗
i

+ Vi(ri) + Viε(ri)

}
φi(ri) = Eiφi(ri), i = e, h, (4.7)

where △ is the Laplace operator, Vi is the band offset of unstrained CB and VB, φi is the

envelope function of electrons and holes, and E is the energy eigenvalue. m∗ is the isotropic

effective mass assumed in our calculation. The numerical calculations were performed with

the finite element method using the commercial software COMSOL Multiphysics.

In the II-VI semiconductors, the heavy and light hole states are not degenerate,

and the heavy hole states have lower kinetic energy due to their larger effective mass.

Because we are only interested in the low-energy excitons, the VB state mixing is not

concerned in the present paper. In addition, there was good agreement between the low-

energy excitons of CdTe/CdSe core-shell spherical NCs calculated with single-band and

multi-band theory [101]. Thus the single-band approximation in the present study is valid

as long as we focus our discussion on low-energy excitons.

The obtained envelope functions and energy of the low-energy electron and hole

states are utilized to form pair states for the calculation of excitons. The calculation
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Figure 4.2: Cross-section of the calculated strain components (a) εxx, (b) εyy, and (c) εzz
in one arm of a csTP with sh = 1.2 nm [124].

of exciton states using configuration interaction approach followed the same procedures

described in our previous study [53]. When the defect is not concerned, our present

calculation method is suitable for the tetrapod-shaped core-shell nanocrystals with other

materials in the strong confinement regime, which ensures the validity of configuration

interaction approach and sufficient convergence in the numerical calculation.

4.3 Results and Discussion

Figure 4.2 shows the distribution of the calculated strain components εxx, εyy, and

εzz in an x-z cross-section of one branch of a csTP with sh = 1.2 nm. The CdTe arms

are under compressive strain in all three directions due to the larger lattice constant. On

the other hand, the CdS shells are under tensile strain εyy and εzz, but the εxx in the

x-z cross-section is compressive due to Poisson’s effect as shown in Fig. 4.2(a). The main

features of the strain components in Fig. 4.2 agree with those of the InAs/InP core-shell

nanowire [56], in which the core material has a larger lattice constant as the CdTe/CdS

system in our calculation.

The compressive strain in the arms is dominated by its εzz components. Because

the z-direction component of the deformation potential of CdTe is negative for CB and

positive for VB, the corresponding band edge energy shifts mainly have positive and

negative values as shown in Fig. 4.3. This modification of VB is smaller than that of CB

due to the smaller deformation potential in VB. With increasing sh, the strain decreases

in the shell and increases in the arm, leading to larger band modification in the arm.

As a result, the effective band gap of the arm is larger and the type-II nature of the

heterostructure band structure is more pronounced.
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Figure 4.3: The strain induced band edge modification of (a) the CB and (b) the VB along
the axial direction of the arms for csTPs (D = 2.2 nm) with different shell thicknesses [124].

To study the possible symmetries of single-particle states, we expressed the sym-

metric eigenfunctions by a linear combination of the wave function localized in each arm

of bare tetrapod in the previous section. The eigenfunctions of A1 and T2 symmetry are

given by Eqs.(3.13)∼(3.16). The basis function ϕi is rotationally symmetric about the

arm axis, so their angular momentum l around the arm axis is equal to 0.

However, in the high energy range, there are also such functions with non-zero

angular momentum. In that case, there are two basis functions rotating clockwise and

counterclockwise on each arm. The total eight functions constitute the eigenfunctions of

the tetrapods. Their symmetries can be found by the conventional reduction procedure

[117].

For l = 1, the two basis functions on each arm have the angular (θ) dependence

around the arm axis like e±iθ, or we may use their linear combination, cosθ and sinθ.

Then, we examine their transformation property when symmetry operation R of point

group Td, which are listed in Table 4.1, are applied. Since the number of invariant arms

NR is equal to zero for IC4 and C2, they are irrelevant to the following calculation.

For the reflection by the diagonal mirror plane, σd, we may take the origin of θ on

the mirror plane without loss of generality. Then the two functions are transformed as

σd

(
cosθ

sinθ

)
=

(
1 0

0 −1

)(
cosθ

sinθ

)
(4.8)

so their character χ1(σd), which is given by the sum of the diagonal elements of the above

transformation matrix, is vanishing. On the other hand, when we apply the three-fold
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Figure 4.4: (a) The electron states energies as a function of the shell thickness. The
origin of the energy is taken at the conduction band bottom of the central CdTe core.
Square and circle denote the A1 and T2 states, respectively. Triangle denotes the non-zero
l states. (b)The wave function of electron states with various l on one arm of the tetrapod.

Table 4.1: Symmetry of the electron state in a core-shell tetrapod. The character of
electron state as well as the symmetry obtained by the reduction procedure were shown.

Td R E 6IC4 3C2 6σd 8C3 symmetry

NR 4 0 0 2 1

l = 0 χ1(R) 1 − − 1 1

χ(R) 4 0 0 2 1 → A1 + T2

l = 1 χ1(R) 2 - - 0 -1

χ(R) 8 0 0 0 -1 → E + T1 + T2

l = 2 χ1(R) 2 - - 0 -1

χ(R) 8 0 0 0 -1 → E + T1 + T2

l = 3 χ1(R) 2 - - 0 2

χ(R) 8 0 0 0 2 → A1 +A2 + T1 + T2
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rotation C3, they are transformed as

C3

(
cosθ

sinθ

)
=

 −1
2 −

√
3
2√

3
2 −1

2

( cosθ

sinθ

)
(4.9)

so χ1(C3) = −1. Then, from the total character χ(R) ≡ χ1(R)NR, we obtain the symme-

tries of eigenfunctions by the standard reduction procedure [117]. As the results, we find

that there are E, T1 and T2 modes.

Similarly, in the case of l = 2, we have the following relations:

σd

(
cos2θ

sin2θ

)
=

(
1 0

0 −1

)(
cos2θ

sin2θ

)
(4.10)

C3

(
cos2θ

sin2θ

)
=

 −1
2

√
3
2

−
√
3
2 −1

2

( cos2θ

sin2θ

)
(4.11)

and again there are E, T1 and T2 modes. For l = 3, similar consideration leads to the

presence of A1, A2, T1 and T2 modes. These qualitative conclusions are confirmed by

numerical calculation in the following.

Figure 4.4(a) shows the calculated electron energy as a function of the shell thick-

ness t. As a general feature, the electron energy decreases with increasing t because the

confinement volume (central core + arms + shells) is larger, which reduces the electron

kinetic energy. The electron confinement potential of the shell is smaller than the core

and arms as shown in Fig. 4.1(d), which also reduces the electron energy.

Another feature of Fig. 4.4(a) is the presence of non-zero l states for large t. For

t = 1.2nm, for example, three such states are shown by the triangle symbol in the figure.

l is equal to one for the lowest state among the three. Its wave function is shown in

Fig. 4.4(b). For the second lowest one among the three states with non-zero angular

momentum, l is also equal to one. The difference between the two l = 1 state is that the

latter wave function has a node along the arm axis, while the former one does not. These

non-zero l states have relatively high energies for smaller t. Although it is not shown in

Fig. 4.4, we also found l = 3 states in the higher energy range. On the other hand, the

difference among several A1 or T2 states are mainly the number of nodes along the arm

axis.

In a spherical type-II structure, we only need to be concerned with the carrier wave

functions along the radial direction. When the shell thickness is infinite, the electrons

and holes can be considered completely spatially separated. For real core-shell type-II

spherical NCs, the finiteness of the shell thickness leads to a non-zero overlap of the

confined electron and hole wave functions. Hence, a sufficiently large shell thickness is

necessary for efficient carrier separation.

The situation in a csTP with tetrahedral symmetry is more complex than in a

spherical heterostructure. Figure 4.5 shows the effect of strain on the wave functions of

the lowest electron and hole states, which mainly determine the nature of the lowest exciton

state. The wave function of the lowest electron and hole states of csTPs have A1 symmetry
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Figure 4.5: Cross-section of the wave function of the lowest electron and hole states for
csTPs with various shell thicknesses. Wave functions of csTPs (a) without and (b) with the
strain effect are plotted for comparison. The labels (e) and (h) denote the wave function
of electron and hole states, respectively [124].

and are localized in the core region for a bare tetrapod (sh = 0). As sh increases, the larger

volume in the ”CdTe arm + CdS shell” region attracts both the electrons and holes. The

electrons are eventually distributed in the CdS shells for a sufficiently large sh, because of

the smaller potential energy there. We notice that as the shell thickness increases to 1.2

nm, the electrons in the shell and the holes in the arm are still not completely separated.

The inclusion of strain leads to a more pronounced type-II band alignment in the

CdTe/CdS csTPs. This phenomenon is consistent with the results for the core-shell type-

II spherical NCs in which the core material has a larger lattice constant than the shell [58,

131,132]. But we notice that the type-II nature of the strained csTPs induces the carrier

separation more effectively. As shown in Fig. 4.5(b), the strain induced band modification

prevents carrier delocalization out of the core region. As sh increases, electrons with larger

kinetic energy can be redistributed in the shell with smaller potential energy, but the holes

remain in the core region. The electrons and holes can be considered completely separated

according to their localization in the nonadjacent regions.

With the results of single particle states, we can discuss the exciton states in csTPs.

For all the sh values in the present study, the lowest spin-singlet exciton has A1 symmetry

(optically active), which mainly consists of the lowest electron-hole pair state. As sh

increased, a red shift in the exciton energy was observed for the type-II structure as a

result of the decreasing confinement. Moreover, the oscillator strength of the lowest and

the second lowest A1 spin-singlet exciton quickly decreased due to the carrier separation

as shown in Fig. 4.6. The oscillator strength of the lowest exciton decreased by 99% when

the shell thickness increased to 0.6 nm, reflecting the high efficiency of carrier separation

in csTPs. With a sufficiently large shell thickness, the luminescence of csTPs with perfect

symmetry may be very weak. Therefore, we suppose that there are other contributions to

the luminescence observed in the experiment, for example csTPs with broken symmetry,
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which we discuss below.

The effect of dimensions and strain on the energy of the lowest spin-singlet exciton

is shown in Fig. 4.7 (a). The inclusion of strain induces a small blue shift in the lowest

exciton energy. This can be explained by the penetration of carrier wave functions into the

CdTe arms with an enhanced band gap modified by the strain. Meanwhile, the increasing

sh leads to a red shift with a magnitude larger than the influence of the strain. This is

consistent with the calculation results for spherical core-shell type-II NCs [130, 132]. For

csTPs with a large D, the energy of the lowest exciton is less tunable by sh, which is

consistent with the results for CdTe/CdSe spherical dots reported in Ref. [101]. On the

other hand, the strain has less effect on the lowest exciton energy because there is less

strain in an arm with a larger D.

Figure 4.7 (b) compares calculation results and a previously reported experimental

observation [57]. To concentrate on the effect of shell thickness, the experimental results

were shifted to align them with the calculation result at sh = 0. When the large in-

homogeneous broadening in the experimental results is taken into consideration, the sh

dependence of the calculated exciton energy agrees well with the photoluminescence data.

In an actual csTP specimen, broken symmetry may influence the carrier distribution

and consequently the emission properties. Because it is impossible to study all kinds of

randomness, here we analyzed the combination of parameters D and sh, which have a

dominant influence on the optical properties [53]. We studied the change induced by two

kinds of modifications to csTP with D = 2.2 nm and sh = 0.9 nm, and tried to identify

the essential features of symmetry breaking in a qualitative manner: For the first case,

we modified one arm with a larger diameter D′ (D′ > D) or a larger shell thickness sh′

(sh′ > sh) for the csTP; for the second case, we modified the same arm or two different

arms of the csTP with a larger diameter D′ and a larger shell thickness sh′.
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Figure 4.7: (a) The shell thickness dependence of the lowest spin-singlet exciton energy of
strained csTPs with different D values. The corresponding data for unstrained csTPs are
also plotted for comparison. (b) Comparison of the calculated lowest spin-singlet exciton
energy with the experimental photoluminescence peak energy of strained csTPs. The
data for D = 2.2 nm and D = 3.7 nm are denoted by circles and triangles respectively.
The experimental results were shifted to align them with the calculated exciton energy at
sh = 0. The error bar indicates the full width at half maximum (FWHM) of the observed
luminescence peak [124].
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Figure 4.8: The wave function of the lowest electron and hole state for (a) csTP with
perfect symmetry (arm width D, shell thickness sh), (b) csTP with one modified arm
( with larger shell thickness sh’ ), (c) csTP with two modified arms (with larger shell
thickness sh’ and larger arm width D’ , respectively.

As shown in Fig. 4.8(b), with larger D′ or sh′ in only one arm, the low-energy

electron and hole state tend to locate in the modified arm due to the increased confinement

volume, which is consistent with the results described in Ref. [50]. We revealed thatD′ and

sh′ mainly influence the hole and electron distribution, respectively. On the basis of this

result, we can design the hole and electron distribution by manipulating the parameters

of each isolated branch of a csTP.

As shown in Fig. 4.8(c), with the simultaneous modification of D′ and sh′ in two

different arms, we found that the low energy electron and hole states were localized on

the corresponding different arms. This kind of randomness-induced carrier separation

is unique for branched core-shell NCs, and cannot be found in core-shell spherical or rod

systems. With the simultaneous modification of D′ and sh′ on the same arm, the increased

wave function overlap between low-energy electrons and holes is assumed to contribute to

the luminescence in the experiment.

Figure 4.9 shows the absorption spectra of sh = 0.9 nm csTP with and without

perfect symmetry. To capture any small changes of the spectra, a small full width at

half maximum (FWHM) of 10 meV was assumed. With larger D′ or sh′, the intensity

of the main peak decreased compared with that of the csTP with perfect symmetry, and

a new peak occurs on the longer wavelength side corresponding to the absorption in the

modified arm. The new peak for sh′ = 1.2 nm had nearly the same wavelength as that of

the absorption peak for csTP with sh = 1.2 nm. Since the low energy electron and hole

wave functions for large sh are localized in the “arm + shell” regions, their absorption
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Figure 4.9: Comparison of absorption spectra for sh = 0.9 nm csTP with perfectly
tetrahedral symmetry (solid line), and broken symmetry including D = 2.8 nm for one
arm (dash line), sh = 1.2 nm for one arm (dot line). The straight lines (from left to right)
denote the wavelength of the lowest singlet exciton for these three models, respectively.
The FWHM of the spectra is assumed to be 10 meV.

spectra are well represented by the sum of spectra of individual “arm + shell” regions.

So, the absorption spectrum of the broken-symmetry structure in the above case can be

approximated by a weighted average of spectra of sh = 0.9 nm and sh = 1.2 nm with a

ratio of 3:1. Thus, as far as both the electron and hole are located in the same arm, the

broken symmetry can be regarded as a part of inhomogeneous broadening.

It is worth noting that the largerD′ led to smaller energy spacing between hole levels.

The energy difference between the lowest exciton and higher exciton with relatively larger

oscillator strength is only 4 meV. Therefore the room temperature thermal energy (26

meV) may mix the population of these excitons, and the luminescence from the lowest

exciton can be expected. This feature was not found for arm of csTP with larger sh′.

Thus, the non-uniformity of D contributed to the luminescence.

4.4 Conclusion

The exciton states of strained CdTe/CdS core-shell tetrapod-shaped NCs were in-

vestigated theoretically. The inclusion of the strain effect promotes the type-II nature

of the band structure in CdTe/CdS csTPs. When compared with type-II spherical NCs,

tetrahedral symmetry combined with the strain effect leads to more efficient carrier sepa-

ration by confining the low-energy electrons and holes in nonadjacent regions. The strain

effect induces a blue shift of the lowest spin-singlet exciton state. Increasing shell thickness

leads to a red shift with a larger magnitude than the influence of strain, which is consistent

with previous results for spherical type-II core-shell NCs. For csTPs with a larger D, both
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sh and the strain have less influence on the energy of the lowest exciton. The shell thick-

ness dependence of the calculated exciton energy agreed well with available experimental

data. From a practical point of view, type II CdTe/CdS csTPs with charge separation are

interesting for photovoltaic applications in devices with an active layer based on nanopar-

ticles, wherein the charge separation occurs within the nanoparticle [133]. So, the present

calculation provides an opportunity to predict electronic properties and improve the ef-

fectiveness of charge separation.

The study of csTPs with broken symmetry revealed that electrons and holes can

be confined in the same or different branches by manipulating the randomness. The

randomness induced carrier separation into different branches of a csTP is unique for

a branched core-shell heterostructure. When the electrons and holes are localized in

the same branch, we supposed the spatial direct transition in the branch contribute to

the luminescence observed in the experiment. Tetrapods with broken symmetry provide

evidence for the view that type II csTPs behave like four weakly connected quantum dots

(each branch of the tetrapod) with the possibility of an electron remaining in a single

dot for a long time. This might find interesting applications in nanoelectronics (e.g. as

memory devices or elements for quantum computing).
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Chapter 5:

Electronic structure of quantum double rings

in the lateral electric field

5.1 Quantum double rings

Self-assembled GaAs quantum double rings (QDRs) were fabricated for the first time

by Mano et al. [63] by means of droplet epitaxy [61, 62]. Micro photoluminescence (PL)

spectra and electronic structures of GaAs QDRs covered with an AlGaAs barrier layer were

reported in Refs. [63] and [64]. Because the QDR has a nearly perfect circular symmetry, its

electronic state can be characterized by radial quantum number N and azimuthal quantum

number l. Some previous theoretical studies on the QDR used this circular symmetry [73].

This property was also used for the theoretical study of its electronic states in a magnetic

field perpendicular to the rings [74–76], which is relevant to the exciton Aharonov-Bohm

effect [77]. Recently a relatively large Stark shift up to 4 meV was observed for GaAs

QDRs due to their large lateral sizes [83], which can be used for frequency tuning. Figure

5.1 shows their AFM (atomic force microscope) image. In previous experiment of the Stark

shift of GaAs QDRs [83], however, the external electric field broke the circular symmetry

of the geometry because it was applied parallel to the sample surface, that is, parallel to

the double rings. Thus we have to use another numerical method that does not assume

circular symmetry to analyze the energy levels of the electron and hole in the QDR.

In this chapter, we report such calculations on the energy levels and distribution

of the probability density of the electron and heavy hole in the GaAs QDR, and the

optical transition oscillator strength by the three-dimensional finite element method. We

present the Stark shift of the lowest 14 energy levels for both electron and heavy hole in

the lateral electric field up to 2 kV/cm. We will show that an energy shift of 4 meV is

brought about by an applied electric field of 0.7 kV/cm for the ground state transition.

But considering its oscillator strength decreases rapidly with increasing electric field, so

the observed shifted emission peak may not be explained by the Stark shift of the ground-

state exciton emission alone. We presume that higher energy levels are also relevant whose

emissions become allowed due to symmetry breaking by the applied electric field and/or

intense photo excitation of carriers.

47



Figure 5.1: AFM image of GaAs QDRs [134].

5.2 Model of quantum double rings in the uniform electric

field

We calculated the energy levels of the electron and heavy hole confined in the QDR

by the finite element method with the single-band effective-mass approximation. We used

a three-dimensional model of a specimen that was obtained by measuring its shape with

AFM. Figure 5.2 shows one half of the vertical cross section of the double ring structure

for the GaAs QDR embedded in the Al0.3Ga0.7As barrier layer reported in Ref. [63]. The

GaAs QDR is denoted by dark gray and the Al0.3Ga0.7As substrate and barrier layer are

denoted by light gray. The QDR is circularly symmetric about the z axis. The amplitude

of the wave functions out of the volume denoted by the light gray color was assumed to

be vanishing, because we are interested in only those states that are well confined in the

GaAs QDR.

The conduction band of GaAs has an s-orbital character and is non-degenerate,

while its valence band has a p-orbital character and is doubly degenerate on the Γ point

of the first Brillouin zone [19]. The degeneracy is lifted by the introduction of mesoscopic

confinement because of the difference of the effective mass between the two bands, so

appreciably separate heavy- and light-hole bands are formed [20]. In the energy range of

the analysis given below, only the heavy hole is relevant. So, we also used the single-band

effective-mass approximation for the valence band.

The effective mass of the electron and heavy hole in the two materials and their band

offsets are listed in Table 5.1, which are the same values used in a previous calculation

without an applied electric field [63]. We assumed an isotropic effective mass for the

heavy hole following previous calculations [63,74,75], although anisotropy of the effective

mass of the heavy hole is brought about by the quantum confinement [19]. According to

Ref. [19], the heavy hole effective mass of GaAs is 0.11 (0.5) times electron mass in the

direction parallel (perpendicular) to the quantum well. However, the change in the heavy

hole energy brought about by the anisotropy is rather small for low energy states with
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Figure 5.2: One half of the vertical cross section of the double ring structure of GaAs
assumed in the calculation. The GaAs QDR is denoted by dark gray and the Al0.3Ga0.7As
substrate and barrier layer by light gray. The QDR is symmetric about the z axis. The
static electric field is applied in the positive x direction.

small angular momenta as we will see in the next section, so we also used the isotropic

effective mass for the heavy hole. The one-particle Schrödinger equation with external

static electric field was solved by the finite element method with the commercial software

COMSOL Multiphysics. The discretization mesh size of the finite-element calculation was

decreased sufficiently to obtain converged results.

Table 5.1: Parameters used in the calculation. m0 is electron mass [134].

Quantity Unit GaAs Al0.3Ga0.7As

Electron effective mass [135] m0 0.067 0.093
Heavy hole effective mass [135] m0 0.51 0.57
Conduction band offset [136] meV 262
Valence band offset [136] meV 195

5.3 Results and Discussion

Figure 5.3 shows the energy levels as functions of the external electric field E applied

in the lateral (x) direction. The lowest 14 levels are given for the electron in Fig. 5.3(a)

and for the heavy hole in Fig. 5.3(b). The origin of the vertical axis of Fig. 5.3(a) is the

conduction-band bottom of the Al0.3Ga0.7As barrier layer and that of Fig. 5.3(b) is the

valence-band top of the Al0.3Ga0.7As layer.

First, let us check the energy levels without the electric field. In this case, the QDR

configuration has circular symmetry so that all electronic states are characterized by the
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Figure 5.3: Energy levels of the quantum-confined (a) electron and (b) heavy hole in the
GaAs QDR as functions of the external electric field in the lateral direction. The origin
of the vertical axis of Fig. 5.3(a) is the conduction band bottom of the AlGaAs barrier
layer and that of Fig. 5.3(b) is the valence-band top of the AlGaAs layer. l = 0 (s), 1 (p),
2 (d), 3 (f), 4 (g), 5, and 6 states are denoted by circle, triangle, square, diamond, star,
hexagon, and pentagon, respectively. N = 1 states are denoted by solid symbols and N
= 2 states are denoted by open symbols. States with even and odd parities about the x
axis are denoted by solid line and dashed line, respectively.

principal quantum number N and the azimuthal quantum number (angular momentum)

l. We denote the states with l= 0, 1, 2, 3, and 4 by s, p, d, f, and g, respectively. We

should note that the s states are not degenerate but all other states are doubly degenerate,

since there are two independent wave functions proportional to exp(ilϕ) and exp(−ilϕ),
respectively, where ϕ is the azimuthal angle.

The energy levels for E = 0 were obtained in the previous calculation by the exact

diagonalization of the effective-mass Hamiltonian by means of the Fourier-Bessel expansion

of the wave function assuming structural circular symmetry [64]. When we compare the

energy levels for E = 0 calculated by the present method with the previous results [63],

they agree with each other quite well. In addition, the transition energy of the ground

state, which is attributed to the 1s hole to 1s electron transition, is 1.613 eV and the

energy difference to the first excited state, which is attributed to the 2s hole to 2s electron

transition, is 9.0 meV in their calculation. These values show reasonable agreement with

reported experimental results, that is, 1.68 eV for the former and 8.5 meV for the latter

[63]. When we use the anisotropic effective mass for the heavy hole described in the

previous section, we obtain 1.617 eV for the ground state energy and 10.4 meV for the

energy difference to the first excited state. Since the changes induced by the effective-mass

anisotropy are relatively small, we assumed the isotropic effective mass in the rest of the

calculations.

Next, let us examine the probability density distribution of the electron and heavy

hole. Figure 5.4 shows its vertical cross section for the 1s, 2s, and 3s states of the confined

electron and heavy hole. For both particles, the 1s and 2s states are localized in the

outer and inner rings, respectively, which is consistent with the previous calculation [63].
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Figure 5.4: Distribution of the probability density in the QDR. (a) 1s state, (b) 2s state,
and (c) 3s state of the electron and (d) 1s state, (e) 2s state, and (f) 3s state of the heavy
hole [134].
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Figure 5.5: The 1s electron energy as a function of the lateral electric field. Energy shift
(a) for relatively small electric fields with a quadratic-fitting curve and (b) for relatively
large electric fields with a linear-fitting curve.

We should note, however, that this feature may not be universal but may depend on the

distance between the inner and outer rings and their widths as was shown by Climente et

al. [73]. As for 3s states, their wave functions apparently have nodes.

Now let us proceed to the case of non-zero electric fields. Figure 5.5 shows the 1s

electron energy as a function of the lateral electric field. The origin of the vertical axis is

the conduction band bottom of the Al0.3Ga0.7As barrier layer as before. Black dots denote

the numerical results and solid lines are linear- and quadratic-fitting curves. It is clearly

seen that the energy shift shows a quadratic change for relatively small electric fields up

to 0.05 kV/cm and then shows a linear change for relatively large electric fields up to 2.0

kV/cm. The transition from quadratic to linear behavior with increasing amplitude of

the electric field is consistent with the perturbation theory. When applied electric field

is small, its influence on the energy of the non-degenerate lowest electron state (1s) can

be described with non-degenerate perturbation theory. Because of the odd symmetry of

electric dipole in the spatial coordinates, the first order perturbation term is zero. The

second order perturbation of energy dominates, that leads to the quadratic dependence of

electric field.

As we mentioned, the electric field in the x direction broke the cylindrical symmetry

of the QDR geometry. Therefore, the l is not a good quantum number for non-zero E.

But the wave functions of the electrons and holes have even or odd symmetry about

the direction of the electric field (x). The matrix element of electric dipole ⟨ψj |eEx|ψi⟩
between the states i and j are nonzero when they have the same symmetry about the x

direction. (Here e denotes the elementary charge.) Consequently, these two states will

couple with each other and their wave function will mix. Since we have the 1p state about

0.5 meV above the 1s state, the coupling between the 1s and 1p state is not negligible for

large electric field. The influence of electric field on this system must be described with

degenerate perturbation theory. The linear dependence on electric field occurred, due to

the nonzero first order perturbation term between the 1s and 1p state.

Figure 5.5 shows that about a 2 meV shift of the 1s state is attained by application
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of the electric field of about 0.7 kV/cm. Since the behavior of the 1s heavy hole state

is similar as shown below, we conclude that we can expect the 4 meV Stark shift of the

GaAs emission peak energy found in previous experiment [83] with an electric field of the

order of 0.7 kV/cm. This value of the Stark shift seems reasonable, since we obtain a

Stark shift of 5.6 meV if we assume a polarization of electron and hole along the diameter

of the outer ring that is approximately 80 nm. However we should note that the Coulomb

binding energy of the exciton may depend on the charge polarization caused by the applied

electric field. We evaluated the Coulomb attraction energy between the electron and heavy

hole with a dielectric constant of 12.53 for GaAs QDR [137]. By assuming the average

distance between the electron and heavy hole equal to the radius of QDR (60 nm), the

Coulomb energy of 1.9 meV was obtained. Because the Coulomb energy is much smaller

than the kinetic energy of electrons and holes, it was neglected in the following discussion.

In addition, the oscillator strength of the ground-state emission decreases rapidly with

increasing electric field due to charge separation. So, the shifted emission peak observed

in the recent experiment may not be explained by the Stark shift of the ground-state

transition alone.

Now, let us go back to Fig. 5.3. A clear transition from quadratic to linear behavior

is also found for the 1s heavy hole state. On the other hand, each degenerate energy

level with l ̸= 0 is split into two by the application of the electric field in the lateral (x)

direction. Their wave functions are symmetric or anti-symmetric about the x axis. The

symmetric and anti-symmetric states are denoted by solid and dashed lines, respectively.

In contrast to the case of the 1s electron (heavy hole) state, for which all other energy

levels are located above (below) it, the energy shift as a function of the applied electric

field is not necessarily monotonic for the rest of the energy levels because of the repulsion

between levels with the same symmetry. This feature of our results is consistent with a

previous calculation for single rings [138]. Another feature of Fig. 5.3 is the smaller spacing

of energy levels for the heavy hole due to its larger effective mass than the electron, which

results in the faster transition from quadratic to linear behavior.

When two energy levels with the same parity come close and cross each other with

the increasing applied electric field, an anti-crossing should take place. This behavior can

be seen for the 1g and 2s electron states in Fig. 5.3(a), for example. Figure 5.6 shows

a magnified view of Fig. 5.3(a) around E = 1.08 kV/cm and energy level of -178.5 meV

and top views of five relevant wave functions. With increasing E, the 2s state goes down

whereas the split 1g states go up. Because the 2s state has even parity about the x

axis, one of the 1g states with even parity repels the 2s state and shows the anti-crossing

behavior. Then, as revealed by the distribution of the wave functions, the characters of

the two branches are exchanged with each other. A similar behavior was found for single

rings [138].

An interesting behavior of the probability density distribution is accompanied by

the non-monotonic variation of energy levels with the applied electric field as shown in Fig.

5.7. For the 1s electron, its polarization is normal as shown in the left part of the figure.

But for the 1p electron with even parity, which is shown in the right part, the electron

is polarized in the opposite direction firstly and then in the normal direction when the
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Figure 5.6: Anti-crossing of the 2s and 1g electron states and the distribution of the wave
functions of the relevant states.
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Figure 5.7: Wave function of 1s and 1p (even parity) electrons in three different electric
fields.
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electric field is further increased.

5.4 Conclusion

We calculated the energy levels of the quantum-confined electron and heavy hole of

the GaAs QDR in the lateral electric field by means of the finite element method with the

single-band effective-mass approximation. We assumed a three-dimensional model of the

QDR that was derived from the shape of the specimen measured by AFM. For a vanishing

electric field, we obtained energy levels consistent with the previous calculation by the

exact diagonalization of the effective-mass Hamiltonian. These results were characterized

by principal quantum number N and azimuthal quantum number l although we did not

use the circular symmetry of the structure explicitly, which shows the accuracy of our

calculation. The numerical results showed a transition from quadratic to linear behavior

of the energy shift for the 1s electron and 1s heavy hole as a function of the applied electric

field, which is consistent with the degenerate perturbation theory. On the other hand,

energy levels of other states often showed non-monotonic changes due to repulsion with

adjacent energy levels of the same spatial symmetry. Consequently, this behavior leads

to anomalous behaviors of charge polarization and oscillator strength. We can attain a

fairly large Stark shift of 4 meV that was recently observed in reported experiment by an

external electric field of the order of 0.7 kV/cm. However, the observed shifted emission

peak may not originate from the ground-state transition alone, but also from higher energy

transitions whose emission have larger oscillator strength.
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Chapter 6:

Aharonov-Bohm effect in QD-ring coupled

nanostructures

6.1 Excitonic Aharonov-Bohm effect in the ring-shaped nanos-

tructures

Since the first report on the self-assembly of semiconductor quantum rings in 1997

[139], ring-shaped nanostructures have attracted extensive attention as they offer a new

platform to investigate the Aharonov-Bohm (A-B) effect using spectroscopic techniques.

According to the formulation of A-B effect, the oscillation signature of single charged

particles can be expected in their energy spectra. However, the A-B effect of exciton in

the ring-shaped nanostructure may not be observed clearly due to the Coulomb interaction

between the electrons and holes. To our best knowledge, the oscillation signature in both

the experimental and the theoretical results of this case was not significant [70,71].

In this chapter, we firstly studied the effect of magnetic field on the exciton state of

a single quantum ring and revealed the reason for the vanishing excitonic A-B effect. We

propose the use of coupled nanostructures to achieve a clear excitonic A-B effect. We focus

on the self-assembled quantum-dot (QD)-ring coupled structures (denoted as QD-on-Ring

hereafter), whose formation has recently been observed [72,140] in the National Institute

for Materials Science (NIMS). In this system, a QD is formed exactly above the center

of a quantum ring. The QD and the ring are separated by a thin barrier layer (see the

atomic-force microscope image in Fig. 6.1). Their advantage for the excitonic A-B effect

is as follows: (1) By applying an electric field along the alignment direction of the QD

and the ring, we can decrease the influence of the Coulomb interaction on the A-B effect

by the partial separation of the electron and hole wave functions. (2) When the electron

and hole are mainly located in the ring and the QD, respectively, the average radius of

their angular motion has a large difference in the plane perpendicular to the magnetic

field, which is desirable for an obvious A-B effect. In the present study, we examined the

effects of the electric and magnetic fields on the electronic and optical properties of the

QD-on-Ring nanostructures and found an obvious A-B effect.

6.2 Calculation of the excitons in ring-shaped nanostruc-

tures

A three-dimensional (3D) model of the QD-on-Ring with cylindrical symmetry was

assumed in our calculation as shown in Fig. 6.1(c). A uniform thickness was assumed for
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Figure 6.1: Atomic-force microscope images of (a) a quantum ring and (b) a QD-on-Ring
nanostructure. The insets are the schematic illustrations of their cross sections. (c) Cross
section of the QD-on-Ring model used in our calculation. The following parameters were
assumed: QD radius r3 = 12.5 nm, QD height h3 = 9 nm, h1 = 1 nm, h2 = 4 nm,
r1 = 20 nm, r2 = 25 nm. A barrier layer thickness of t = 3 nm was assumed to ensure the
interaction between the QD and the ring [141].
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the barrier layer between the QD and the ring. Static electric and magnetic fields were

assumed to be applied along the growth direction (z-direction).

Because we were interested in the electronic states near the band edge, the effective

mass approximation was used in this study. Due to the cylindrical symmetry, the z-

projection of the single-particle angular momentum is a good quantum number. The

energies and wave functions of the electron and hole, which were characterized by the

angular quantum number le(h) and the radial quantum number ne(h), were numerically

calculated by solving the single-band Schrödinger equation by the finite element method.

The exciton states were calculated with the configuration interaction method.

In the cylindrical coordinates (r, z, θ), the conventional single particle wave function

can be assumed as φnl = eilθfn,l(r, z)/
√
2π with the quantum number l and n. f(r, z) is

the radial component of the single particle wave function.

The Coulomb matrix elements between the electron-hole pair state |e1h1⟩ and |e2h2⟩
is expressed as

⟨e2h2 |Vc| e1h1⟩

=

∫ ∫ ∫ ∫ ∫ ∫
φ∗
e2(re)φ

∗
h2(rh)Vcφe1(re)φh1(rh)dzedzhredrerhdrhdθedθh, (6.1)

in which Vc is express in the cylindrical coordinates as

Vc =
e2

4πε0εr |re − rh|

=
e2

4πε0εr

[
r2e + r2h + (ze − zh)

2 − 2rerhcos(θe − θh)
]− 1

2 . (6.2)

Substituting the single particle wave function into Eq. (6.2)

⟨e2h2 |Vc| e1h1⟩

=
1

4π2

∫ ∫ ∫ ∫ ∫ ∫
f∗e2(re, ze)f

∗
h2(rh, zh)Vcfe1(re, ze)fh1(rh, zh)

exp [iθe(le1 − le2) + iθh(lh1 − lh2)] dzedzhredrerhdrhdθedθh. (6.3)

Considering the θe − θh in Vc, let us introduce new variables θ+ = θe + θh and

θ− = θh − θe. We have dθedθh = 1
2dθ+dθ−. Then the Coulomb matrix element with the

new variables is

⟨e2h2 |Vc| e1h1⟩

=
1

8π2

∫ ∫ ∫ ∫ ∫ ∫
f∗e2(re, ze)f

∗
h2(rh, zh)(Vc)fe1(re, ze)fh1(rh, zh)

exp

[
i

2
θ+(le1 + lh1 − le2 − lh2) +

i

2
θ−(le1 + lh2 − le2 − lh1)

]
dzedzhredrerhdrhdθ+dθ−.

(6.4)

The integral on the θ+ requires le1 + lh1 = le2 + lh2 to ensure a non-zero Coulomb
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matrix element as

⟨e2h2 |Vc| e1h1⟩

=
1

2π

∫ ∫ ∫ ∫ ∫ ∫
f∗e2(re, ze)f

∗
h2(rh, zh)(Vc)fe1(re, ze)fh1(rh, zh)

×δ(le1+lh1),(le2,lh2)exp [iθ−(le1 − le2)] dzedzhredrerhdrhdθ+dθ−. (6.5)

Because exp [iθ−(le1 − le2)] = cos(le1 − le2)θ− + isin(le1 − le2)θ−, and its imaginary part

with sin function is odd in the integral region, only the real part will remain.

⟨e2h2 |Vc| e1h1⟩

=
1

2π

∫ ∫ ∫ ∫ ∫
f∗e2(re, ze)f

∗
h2(rh, zh)(Vc)fe1(re, ze)fh1(rh, zh)

×δ(le1+lh1),(le2,lh2)cos[(le1 − le2)θ−]dzedzhredrerhdrhdθ− (6.6)

The five-dimension integrations were calculated by the Monte Carlo method.

The size of our QD-on-R model is comparable with the GaAs exciton Bohr radius.

The intermediate confinement leads to small contribution of the exchange interaction [98],

so the exchange interaction was ignored in our calculation.

In the present study, the electron and hole effective masses were the same as the

values in Table 5.1. The band gaps of 1.5194 eV and 1.9472 eV were taken for GaAs and

Al0.3Ga0.7As at low temperature [142]. The ratio of the band offset of the conduction

band (CB) to the valence band (VB) was assumed to be 6:4, resulting in a CB offset of

0.2567 eV and a VB offset of 0.1711 eV. The dielectric constant of 12.53 was used for

GaAs at low temperature [137]. For simplicity, the difference in the dielectric constant

between GaAs and Al0.3Ga0.7As was ignored.

6.3 Results and discussion

6.3.1 Exciton in 2D rings

We firstly discuss the excitonic A-B effect in a 2D GaAs ring, where the motion of

the electron and hole is assumed to be confined in the xy plane. With the assumption of

a parabolic confinement potential, previous theoretical studies predicted a vanishing A-B

effect for the exciton ground state of 2D rings due to the Coulomb interaction [143, 144].

But the parabolic confinement is not appropriate for the study of the A-B effect of quantum

rings with a large width because of the loss of ring features due to the vanishing central

hole. In our calculation, we applied a square potential-well confinement along the radial

direction. In the following, the radius (R) and the width (W ) of the ring are defined as

the average value of the inner (Ri) and outer radius (Ro) of the ring and their difference.

The influence of the magnetic field on the single particle states was calculated by the

first-order perturbation theory [145]. The Hamiltonian of the single particle was expressed

in the polar coordinates as

H = H0 +H
′
(B),
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Figure 6.2: The perturbative calculation results (solid lines) and the numerical results
(circles) of the energy of (a) electron and (b) hole states with the lowest radial quantum
number as a function of the magnetic field for a 2D ring with R = 12 nm and W = 8 nm.
(c) The average radii of the electron (solid lines) and hole (dashed lines) states with the
angular quantum number of 0 (squares), 1 (triangles), and -1 (circles) as a function of the
magnetic field [141].

H0 = − h̄2

2m∗

[
1

r

∂

∂r

(
1

r

∂

∂r

)
+

1

r2
∂2

∂θ2

]
+ V (r),

H
′
= − h̄2

2m∗

[
− iqB

h̄

∂

∂θ
− (qBr)2

4h̄2

]
, (6.7)

where H0 is the Hamiltonian for B = 0 and H
′
(B) is the perturbative part. Symmetric

gauge was applied for the vector potential. V (r) is the confinement potential, which is

equal to zero in the GaAs ring and equal to the band offset in the Al0.3Ga0.7As barrier

layer. q = −e and e for electron and hole, respectively. m∗ is the effective mass for

electron and hole, which is different between the GaAs ring and the Al0.3Ga0.7As barrier

layer. The calculation of the single particle state in a 2D ring without the magnetic field

is shown in the Appendix.

The second-order energy correction was much smaller than the first-order term,

which was confirmed by our numerical calculation. In Fig. 6.2, the numerical results of

the single particle energy calculated by the finite element method show a good agreement

with the first-order perturbative results, which confirms the validity of our calculation.

In the first-order perturbation, we evaluated ⟨φnl|r2/m∗|φnl⟩ by numerical integration

using unperturbed wave function φnl given in the Appendix. The matrix element can be

approximated by ⟨φnl|r2|φnl⟩/m∗, where m∗ is ⟨φnl|m∗|φnl⟩, since the difference in m∗
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Figure 6.3: (a) The average radii of the electron (solid lines) and hole (dashed lines)
states with the angular quantum number of 0 (squares), 1 (triangles), and -1 (circles) as
a function of the magnetic field for the 2D ring in Fig. 6.2. (b) The average radius of the
lowest electron (solid lines) and hole (dashed lines) states as a function of the magnetic
field for a 2D ring with R = 12 nm and different ring width W = 8nm (squares) , W = 4
nm (diamonds).

between GaAs and Al0.3Ga0.7As is small (less than 30%). Then, the single particle energy

with the first-order correction is

Enl(B) ∼= Enl(0)−
h̄2l2

2m∗⟨φnl|r2|φnl⟩
+

h̄2

2m∗⟨φnl|r2|φnl⟩

(
l − ϕ

′

ϕ
′
0

)2

, (6.8)

where Enl(0) is the energy of the single particle state for B = 0, ϕ
′
= Bπ⟨φnl|r2|φnl⟩,

and ϕ
′
0 = 2πh̄/q. The last term on the right-hand side of Eq. (6.8) is B-dependent and

has a similar form as Eq. (1.1) of the 1D ring [67] in Chapter 1 except for three main

differences: First, when B = 0, the energy of the lowest state is dependent on both the

angular momentum and the confinement along the radial direction; Second, the fixed 1D

ring radius is replaced with the average radius of the single particle that depends on the

ring width and varies for different states; Third, because of the finite potential barrier

height, the average value of the effective mass was used to take their r dependence into

consideration. When the width of the 2D ring is infinitesimally small, the B dependence

of Eq. (6.8) approaches Eq. (1.1).

The average radius of the electron and hole in the 2D ring varies for different an-

gular quantum number and the magnetic field as shown in Fig. 6.3(a). Because the

magnetic-field-induced potential pushes both the electron and hole towards the center of

the structure, the average radius decreases with increasing magnetic field. The average
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Figure 6.4: (a) Energy of the non-interacting pair states with total angular momentum
L = 0,−1 and +1 as a function of the magnetic field for a 2D ring with R= 12 nm and
W= 8 nm. The combination of the electron and hole angular quantum number (le, lh)
is denoted for the low-energy pair states with L = 0. (b) The magnified figure of the
region in the green square in (a). (c) Exciton energy as a function of the magnetic field
for L = 0,−1 and +1 in the same 2D ring. For both the pair states and the excitons, the
states with L = 0,−1 and +1 are plotted with the solid lines, dashed lines, and dotted
lines, respectively. For each L, the first, second and third lowest states are plotted in
black, red and blue colors, respectively [141].

radius reduction of the electron is faster than the hole due to the larger kinetic energy

of the former. According to Eq. (6.8), the energy oscillation period of the lowest single

particle state is determined by its average radius. Figure 6.2(c) shows that the low-energy

electron and hole states have a very similar average radius when B < 15 T. Therefore, the

energy oscillation periods of the lowest electron and hole states are close to each other,

which is seen in Fig. 6.2(a) and (b).

The energy of the non-interacting pair state Eps(B) (= Eg + E
(e)
nl (B) + E

(h)

n′ l′
(B),

Eg: band gap of GaAs) is shown in Fig. 6.4(a). For the lowest pair state, the oscillating

energy is observed with increasing B. By magnifying the region surrounded by the green

square in Fig. 6.4(a), the total angular momentum transition from L = 0 to 1 for the

lowest-energy pair state is found in a narrow magnetic field range as shown in Fig. 6.4(b),

which is attributed to the similar energy oscillation period for the electron and hole states.

The exciton energy of the 2D ring was calculated by the configuration interaction

method as shown in Fig. 6.4(c). The A-B oscillation was not observed for the exciton

ground state, but was found in the excited states, which agrees with Ref. [143]. By the

configuration interaction method, we can also analyze the contribution of each pair state

to the exciton ground state. We found that the wave functions of the pair states with

the same L were mixed by the Coulomb interaction, and the crossing behavior between
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their energies was replaced by an anti-crossing behavior. So, the oscillation feature of

the magnetic field dependence of the lowest pair state energy was smoothed, and the

narrow B range for the non-zero L vanished. These resulted in the disappearance of

the excitonic A-B effect, and the lowest exciton was always a bright one with L = 0.

Note that the electric-dipole transition between the excited state and the ground state is

allowed only for excitons with L = 0 due to the conservation of angular momentum [20].

As an evidence of the Coulomb mixing, we found that as the magnetic field increased,

the angular momentum of the largest contributing pair state for the exciton ground state

changed from (le = 0, lh = 0) to (le = −1, lh = +1) and (le = −2, lh = +2) for B = 10

and 20 T, respectively. Our analysis showed that the Coulomb interaction was the reason

for the vanishing A-B effect in the 2D ring.

6.3.2 QD-on-Ring nanostructures

To avoid the Coulomb mixing among pair states, we may increase their kinetic

energy interval by decreasing the width of the ring. But this method may simultaneously

decrease the difference between the electron and hole average radii, which is undesirable

for the A-B effect. If a ring with a small radius is used alternatively, the energy oscillation

and the L transition of the exciton ground state may occur for a large magnetic field, which

causes difficulty for experimental studies. Thus, in previous theoretical and experimental

investigations, the visibility of the excitonic A-B effect was not clear for 3D rings [60,70].

For a clear excitonic A-B effect in 3D nanostructures, we propose the use of the

QD-on-Ring nanostructure with an applied electric field (E) along the growth direction.

The advantages of the coupled nanostructure stated in the introduction section are also

the conditions for the realization of a clear A-B effect. The recently reported QD-on-Rings

fulfill these conditions [72], thus the effect of the magnetic field on the exciton states of the

QD-on-Ring was numerically investigated to verify the appearance of the A-B effect. The

model assumed in our calculation was shown in Fig 6.1. The geometric parameters were

taken according to the AFM measurement. To show the coupling of the single particle

states in the QD and ring part in a QD-on-Ring nanostructure, the calculated energy of

the lowest electron and hole states was plotted as a function of the barrier layer thickness

(t) as shown in Fig 6.6. With decreasing t, the energy of the single particle states decrease

because of the extension of the wave function in the entire QD-on-Ring nanostructure and

the wave functions in the QD and ring parts mixed with each other. According to the

calculation result, the QD-on-Ring with t= 3 nm has coupled QD and ring parts.

Figure 6.5(a) shows the exciton energy of the QD-on-Ring as a function of the

magnetic field for E = 0. Neither the energy oscillation nor the L transition was observed

for the exciton ground state because the electron and hole were strongly bound (binding

energy of 27 meV) in the QD part as can be seen from their average radii in Fig. 6.7(a).

When an electric field is applied, the excitons have lower energy than those for E = 0

due to the Stark shift [20] as shown in Fig. 6.5. When B = 0, the largest contributing pair

state for the lowest exciton state with L = 0 is (le = 0, ne = 1, lh = 0, nh = 1), in which

the electron is redistributed from the QD to the ring with the increasing electric field and

the hole remains in the QD.
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Figure 6.5: Energy of the lowest exciton states with the total angular momentum L = 0
and −1 in the QD-on-Ring nanostructure as a function of the magnetic field for different
applied electric fields (E). The exciton states with the total angular momentum L = 0
and −1 are plotted with the solid squares and triangles, respectively [141].
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Figure 6.6: The energy of the (a) lowest electron state and (b) lowest hole state as a
function of the barrier layer thickness (t) between the QD and the ring in a QD-on-Ring
nanostructure.

Figure 6.7: (a) The electron (solid lines) and hole (dashed lines) average radii of the
lowest exciton state with L = 0 as a function of the magnetic field for E = 0 (in black
color) and E = 120 kV/cm (in red color). (b) The squared overlap integral of the lowest
exciton state with L = 0 as a function of the magnetic field for E = 0, 100, 110, 120, 130
and 150 kV/cm [141].
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Figure 6.8: Energy of the (a) non-interacting pair states and (b) exciton states in the
QD-on-Ring nanostructure as a function of the magnetic field for the electric field E = 120
kV/cm. The states with the total angular momentum L = 0 and −1 are plotted with the
black squares and red triangles, respectively. For each L, the lowest state and the excited
state are plotted with the solid lines and the dashed lines, respectively. The combination of
the electron and hole angular quantum number (le, lh) is denoted for the pair states [141].
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Figure 6.8(a) shows the pair state energy of the QD-on-Ring for E = 120 kV/cm

as an example. When B = 0, the lowest electron and hole states are separated in the

ring and QD, respectively. According to Eq. (1.1), the kinetic energy of single particles

is inversely proportional to the square of its trajectory radius, thus the energy difference

between the electron states (in the ring) with le = 0 and le = ±1 is smaller than that

between the hole states (in the QD) with lh = 0 and lh = ±1 for E = 120 kV/cm.

This leads to a large energy difference between the lowest pair states (with L = 0,−1)

and the corresponding higher energy pair states with nonzero-lh hole involved as shown

in Fig. 6.8(a). By the charge separation, the Coulomb binding energy (7 meV) of the

lowest exciton is smaller than this energy difference, which avoids the Coulomb mixing.

At the same time, the magnetic field response of the lowest pair states with L = 0,−1 is

dominated by that of the electron which is localized in the ring and has a larger trajectory

radius, so a clear L transition is observed in Fig. 6.8(a). When Coulomb interaction

is taken into consideration, the electron and hole remain spatially separated with a big

difference in their average radii as shown in Fig. 6.7(a), which results in a large magnetic

flux between their trajectories. So a clear A-B effect is observed for E = 120 kV/cm as

shown in Fig. 6.8(b).

The magnetic-field-induced potential leads to the decreasing average radii of both

the electron and hole as shown in Fig. 6.7(a). Furthermore, the squared overlap integral

of the lowest exciton (L = 0) increases with the magnetic field as shown in Fig. 6.7(b).

This leads to an increasing binding energy and the effect of the Coulomb mixing becomes

obvious, shown as the anti-crossing behavior between the first and second lowest exciton

(L = 0) for B = 12 T in Fig. 6.8(b). The influence of the magnetic field on the distribu-

tion of the low-energy single particles partly cancels for the electric-field-induced charge

separation.

The lowest exciton for E = 0 is always a bright exciton. When the L transition

occurs for the exciton ground state at B = 4 T for E = 120 kV/cm, this bright exciton with

a non-negligible squared overlap integral turns dark. Therefore, we propose an excitonic

A-B effect with the moderate external fields, which may be verified by the experimental

observation of the emission spectra by tuning the applied electric field.

6.3.3 QD-in-Ring nanostructures

Motivated by the synthesis of the QD-Ring nanostructure which was reported in

2011 for the first time [65], we searched for other methods to obtain clear excitonic A-B

effect. We propose another QD-Ring coupled nanostructure for the electric field tunable

A-B effect of the exciton in this section. As shown in Fig. 6.9(b), this nanostructure

consists of a ring and a QD located in the center of the ring. To distinguish from the QD-

on-Ring nanostructure mentioned before, we denoted this nanostructure as QD-in-Ring

hereafter. Previous theoretical studies showed that the electronic structure of a QD-in-

Ring is a combination of that of a QD and a ring [146]. The wave function distribution

of the low-energy electron is in the QD or the ring, which is sensitive to the confinement

of the QD and ring parts [147]. Till now, the influence of donor impurities and lateral

electric field on the electron states were reported [148–150]. To the best of our knowledge,
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Figure 6.9: The cross section of the QD-in-Ring model used in our calculation. The ma-
terial of QD-in-Ring is GaAs in the present calculation. The barrier material surrounding
the QD-on-Ring is Al0.3Ga0.7As. (b) atomic force microscope (AFM) image of a GaAs
QD-in-Ring nanostructure [65].

the study of exciton state in the QD-in-Ring nanostructure has not been reported. In the

last section, we proposed the necessary conditions for the occurrence of the A-B effect in a

coupled nanostructure. According to these conditions, if the electric field is applied along

the radial direction of a QD-in-Ring nanostructure and leads to the charge separation, the

A-B effect can be expected.

We assumed a 3D model for the QD-in-Ring with cylindrical symmetry, whose cross-

section is shown in Fig. 6.9. In 1999, Zhitenev et al. realized the electric field along the

radial direction for the measurement of the single-electron capacitance spectroscopy of

a GaAs QD by a combination of a top gate and a surrounding side gate [151]. Thus

our assumption of the applied electric field along the radial direction is reasonable. The

uniform magnetic field was assumed to be applied along the growth direction (z-direction).

The following parameters were assumed for the QD and ring in Fig. 6.9: r1 = 5.5 nm,

r2 = 8 nm, r3 = 14 nm, h1 = 4 nm, h2 = 1.5 nm, h3 = 4 nm. In the present study, the

electron and hole effective masses as well as the GaAs dielectric constant are the same

as those used in our study of QD-on-Ring in the previous section. The band offset of

the conduction band (CB) and the valence band (VB) are assumed to be 0.252 eV and

0.147 eV [152]. The calculation method is similar to that in the previous section. In

the appendix, we found a good agreement for the comparison of the single particle state

energy between the numerical calculation results and the semi-analytical solution in a

QD-in-Ring for different angular momentum le, which verifies the accuracy of our present

numerical calculation.

Figure 6.10 shows the exciton energy as a function of the magnetic field. When the

external electric field is zero, the main part of the wave functions of the lowest electron

and hole states are both in the QD part, consequently, the A-B effect of the exciton ground

state was suppressed. We notice that a small part of the wave function of the low-energy
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Figure 6.10: The exciton energy as a function of the magnetic field for different applied
electric field along the radial direction in a QD-in-Ring nanostructure. The exciton states
with the total angular momentum number L = 0, 1,−1 are distinguished with solid lines,
dotted lines and dashed lines. For each L, the first and second lowest exciton states are
plotted in black and red colors, respectively.
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Figure 6.11: (a) The electron (solid line) and hole (dash line) average radius of the lowest
exciton with the total angular momentum number L = 0 as a function of the magnetic
field for radial electric field E = 0 (in black) and E = 100 kV/cm (in red). (b) The
squared overlap integral of the lowest exciton with L = 0 as a function of the magnetic
field for E = 0 (solid line) and E = 100 kV/cm (dashed line).
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electron and hole can penetrate the barrier between QD and ring and reach the ring

part. Therefore the weak confinement leads to the small energy spacing between the hole

levels, for instance, the energy spacing between lowest hole states with (lh = 0, nh = 1)

and (lh = 0, nh = 2) is 5.6 meV. Accordingly, the low-energy pair states (le = 0, ne =

1; lh = 0, nh = 1) and (le = 0, ne = 1; lh = 0, nh = 2) was mixed by the Coulomb

interaction. Meanwhile, the lowest exciton with L = 1 has the main contribution from the

charge-separated pair states, and consequently has a small binding energy. The difference

between the binding energies of the lowest excitons with L = 0 and L = 1 led to large

energy difference between these two exciton states and the occurrence of the L transition

was suppressed.

By increasing the applied electric field, the electrons and holes are separated along

the radial direction into the QD and ring parts, which can be seen from their average

radius as shown in Fig 6.11(a). The applied electric field pushes the hole towards the

edge of the QD-in-Ring with strong confinement, thus the energy spacing between the

pair states increases. On the other hand, the binding energy of the exciton ground state

was decreased due to the charge separation. When E = 100 kV/cm the binding energy

could be smaller than the pair state energy intervals, which avoids the Coulomb mixing.

The movement of weakly-bound electrons and holes will lead to an area difference between

their trajectories. The magnetic flux through this area difference leads to the A-B effect.

Figure 6.11(b) showed the squared overlap integral of the lowest exciton with L = 0,

which is a bright exciton corresponding to the dipole allowed transition. The increasing

magnetic field induces a potential proportional to r2, which pushes both the electron and

hole towards the center of the nanostructure. This effect of the magnetic field enhances the

overlap between electron and hole wave functions for E = 0. With a non-zero electric field,

the squared overlap integral is smaller than that for E = 0 due to the charge separation.

The electric field prevents the holes from moving toward the electrons, which is opposite

to the effect of the magnetic field. The wave function of single particle state is sensitive to

the mutual influence of the electric field and magnetic field. With the increasing magnetic

field, the wave function of the electron with large kinetic energy concentrate towards the

center of the structure, but the hole with small kinetic energy can not tunnel from the

ring to the QD due to the mutual influence of the electric field and the confinement.

Accordingly, the squared overlap integral shows a very small decreasing behavior rather

than the increasing tendency as a function of the magnetic field as shown in Fig 6.11(b).

For B = 10 T where the L transition takes place for the exciton ground state with

E = 100 kV/cm, the transition from bright exciton to a dark one may be detected in the

PL measurement.

Because the magnetic field has the influence on the electron and hole distribution

along the radial direction in a QD-ring coupled nanostructure, the electric field along

radial direction in QD-in-Ring cancels the effect of magnetic field more serious than the

electric field in the QD-on-Ring along the growth direction. Therefore, the QD-on-Ring

is supposed to be more desirable for the occurrence of a clear A-B effect.
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6.4 Conclusion

By the first-order perturbation theory and the configuration interaction method, we

derived the magnetic-field dependence of both the non-interacting electron-hole pair-state

energy and the exciton energy in a two-dimensional quantum ring. We showed that the

Coulomb interaction between the electron and hole mixes the wave functions of pair states

with the same total angular momentum, which modifies the magnetic-field dependence of

the exciton energy and results in the disappearance of the excitonic Aharonov-Bohm (A-B)

effect.

To avoid this situation and observe a clear excitonic A-B effect, we proposed the

use of the QD-Ring coupled nanostructures, composed of a quantum dot located on the

top of a quantum ring (QD-on-Ring) or in the center of a quantum ring (QD-in-Ring),

which were recently reported by the experimental studies. We showed that by applying a

static electric voltage along the alignment direction of the quantum dot and the ring we

can simultaneously achieve the partial separation of the electron and hole wave functions

to reduce the Coulomb mixing and the control of the average radius of their trajectories

to enhance the A-B effect. We showed that we can observe the excitonic A-B effect with

moderate experimental conditions, and our proposal is supposed to be verified by the

measurement of the change of the emission spectrum intensity.
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Chapter 7:

Exciton complex in quantum dots and quan-

tum rings

7.1 Introduction

As mentioned in Chapter 6, in order to reveal the influence of the Coulomb inter-

action on the A-B effect, many theoretical studies concentrate on the A-B effect of the

exciton state in quantum rings. We also discuss the importance of the Coulomb interaction

on the vanishing excitonic A-B effect in quantum rings. On the other hand, the number of

theoretical investigations is limited for the A-B effect of the trion and the biexciton states

that have more complicated Coulomb interaction among particles. In 2003, the influence

of the magnetic field on the exciton and the trion in a quantum ring was reported for the

first time by the observation of PL spectra [60]. Oscillation feature of A-B effect was found

for the lowest emission peak energy of trion, but did not occur for the exciton, which was

attributed to its neutral charge. L. Porras et al. studied the exciton and the positive trion

in a quantum ring confined with infinitely high barrier potential, and the radius of the ring

is assumed to be much larger than the exciton Bohr radius [153]. With the assumption

of a small ring cross section (in the growth and radial directions), their model could be

reduced to a simple 1D ring with the adiabatic approximation [154]. Ground state energy

oscillation was not observed for the exciton and the trion due to the strong electrostatic

attraction.

The assumption of the 1D ring model and the infinite barrier height overestimate

the Coulomb energy that is important for the A-B effect. On the other hand, these

assumptions decrease the difference between the trajectory radius of electron and hole,

which leads to the difficulty for the observation of A-B effect as we mentioned in Chapter

6. In this chapter, we assumed a three-dimensional (3D) quantum ring with the radius

comparable to the exciton Bohr radius and took a finite barrier height into consideration.

We calculated the magnetic response of the exciton and the trion state by the CI method

and clarified the influence of Coulomb interaction on the occurrence of the A-B effect.

7.2 Theory and model

We focused our study on the electron and the hole states near the band edge, thus the

effective mass approximation was applied for the calculation of the single particle states.

The trion states in a spherical QD were calculated and compared with the published data

to confirm the correctness and the accuracy of our calculation. The exciton and the trion

states in both the spherical QD and the quantum ring were calculated in the cylindrical
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Figure 7.1: Cross section of the model used for the calculation of the electronic structure
of a GaAs ring of the cylindrical symmetry. The GaAs quantum ring was assumed to be
embedded in the barrier layer of Al0.3Ga0.7As. The following parameters were assumed
for the ring: r1 = 10 nm, r2 = 16 nm, h1 = 2 nm, h2 = 4 nm.

coordinates.

A 3D model of the quantum ring was assumed with the cylindrical symmetry, whose

cross-section is shown in Fig. 7.1. The uniform magnetic field was assumed to be applied

along the growth direction (z-direction). The symmetric gauge was applied to the magnetic

vector potential. The corresponding components of the vector potential are Aθ = Br/2,

Ar = 0 and Az = 0 in the cylindrical coordinates.

The radius of the ring is chosen to be comparable to the bulk GaAs exciton Bohr ra-

dius of 15.5 nm [95]. The quantum ring is not in the strong confinement regime. Therefore,

the Coulomb energy is important for its exciton and trion state. In our model, the central

hole does not penetrate the ring according to the atomic force microscope measurements

of the GaAs ring prepared by droplet epitaxy technique [63].

In the present study, the band offset of the conduction band (CB) and the valence

band (VB) are assumed to be 0.252 eV and 0.147 eV [152]. The parameters of effective

masses and dielectric constant are the same as those in Chapter 6.

The single particle states were characterized by the angular momentum quantum

number l and radial quantum number n. To obtain the energies and the wave functions

of the single particle states, the single band Schrödinger equation was numerically solved

by using the finite element method.

We take the negatively charged exciton (negative trion) as an example and ex-

press the equations for our calculation of the trion state energy by the CI method. The

Schrödinger equation for the negative trion is

HΨ = (H1 +H2)Ψ = EΨ (7.1)
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where H1 is the summation of the single particles Hamiltonians of their kinetic energy,

and H2 is the two-body interaction part given by

H2 = −Ve1h(re1, rh)− Ve2h(re2, rh) + Ve1e2(re1, re2) (7.2)

where the re1, re2, rh are the coordinates of two electrons and one hole, respectively. The

wave function of trion is expressed as a linear combination of the 3-body basis states

composed of the wave functions of two electrons and one heavy hole

Ψ =
∑
i

ai[ψe1(re1)ψe2(re2)ψh1(rh)]i (7.3)

where i denotes the set of quantum numbers (le1, ne1, le2, ne2, lh, nh) for the 3-body basis

state. By multiplying ψ∗
e3(re1)ψ

∗
e4(re2)ψ

∗
h2(rh) to the Schrödinger equation and taking the

integral, the matrix elements of the two-body interaction Hamiltonian can be expressed

as

⟨e3 e4 h2 |H2| e1 e2 h1⟩
= − δe2,e4⟨e3 h2 |Ve1,h| e1 h1⟩

− δe1,e3⟨e4 h2 |Ve2,h| e2 h1⟩
+ δh1,h2⟨e3 e4 |Ve1,e2| e1 e2⟩ (7.4)

In the cylindrical coordinates, the wave function of a single particle state was as-

sumed as

ψ(r) = ψnl(r) = exp(ilθ)fnl(r, z)/
√
2π (7.5)

where fnl is the radial component of the single particle wave function. The matrix elements

for one electron and one hole, e.g. ⟨e3, h2|Vc|e1, h1⟩ is

⟨e3h2|Vc|e1h1⟩ =
1

2π
δ(le3+lh2),(le1+lh1)

×
∫ ∫ ∫ ∫ ∫

f∗e3(re, ze)f
∗
h2(rh, zh)fe1(re, ze)fh1(rh, zh)

× cos[(le1 − le3)θ−]Vcdzedzhredrerhdrh (7.6)

where θ− = θe − θh, and Vc is express in Eq. 6.2. The matrix elements for two electrons

have the similar expression. The average distance between an electron and a hole of a

trion was calculated by

⟨
e1h1|

√
(re − rh)

2|e1h1
⟩
. Because the two-body interaction term

is invariable by the rotation around the z-axis, total angular momentum L = le1+ le2+ lh1
is a good quantum number for a negative trion.

The equation of Coulomb matrix element is a multi-dimension integral that can be

numerically calculated by the Monte Carlo method. The advantage of the Monte Carlo

method was introduced in Chapter 2. As we mentioned before, one of the strategies

to improve the slow convergence of the Monte Carlo method is the application of the

importance sampling method. For the study of the spherical QD in this section, the wave

functions of single particles barely penetrate into the barrier layer for deeply confined

76



electronic states. For this case, the calculation of the Coulomb matrix element can be

accelerated with importance sampling method that increases the number of sampling

points in the QD region with a Gaussian distribution function.

When the spin configuration is considered for the trion (3-body system), the com-

bination of the spin of each particle leads to eight states. Classified by the eigen value s

of the total spin operator S = S1 + S2 + S3, these eight states can be divided into three

groups: two groups of doublet states with s = 1/2 and one group of quadruplet states

with s = 3/2. For the quadruplet states or doublet states, we need to calculate six or ten

Coulomb terms, respectively. As we mentioned in Chapter 2, the exchange interaction was

not considered in our calculation of GaAs nanostructures due to its small contribution.

7.3 Binding energy of exciton complex in spherical quantum

dots

The single particle state energy of a spherical QD can be easily solved by a semi-

analytical method according to many textbooks. In the present study, the energy and

the wave functions of single particle states were numerically calculated with finite element

method. The numerical results of cylindrical coordinates showed a good agreement with

the semi-analytical calculation.

To verify the validity of our calculation of the trion states by the CI method, we re-

peated the calculation of trion binding energy in a spherical QD conducted by the quantum

Monte Carlo method in Ref. [155]. Figure 7.2(a) shows the exciton energy and the ground

state binding energy of a spherical QD as a function of the QD radius. The definition of the

binding energy is EX
b = Ee+Eh−EX for the exciton and E

Tn(Tp)
b = Ee(h)+EX−ETn(Tp) for

the negative trion (Tn) and the positive trion (Tp), where Ee, Eh, EX , ETn(Tp) correspond

to the energy of the electron, the hole, the exciton and the trion state, respectively. Our

numerical results of the exciton ground state energy showed a good agreement with the

published data. Our calculation reproduced the increasing binding energy as a function of

the decreasing QD radius due to the enhanced overlap between the electron and the hole

wave functions. More importantly, a small binding energy for the QD with a radius of 2

nm was also found in our calculation that is attributed to the decreasing wave function

overlap between the electron and the hole due to the delocalization of the electron wave

functions out of the small QD.

It is worth noting that, the difference in the dielectric constant of QD and out-

side space was not taken into consideration in our calculation. Considering the outside

space with smaller dielectric constant, our calculation may underestimate the Coulomb

interaction, as shown in Fig. 7.2(a). With decreasing QD radius, larger part of electron

wave function penetrates out of the QD, which leads to more serious underestimation of

Coulomb binding energy. Meanwhile, in smaller QD, more high-energy electron states

have kinetic energy larger than the confinement potential energy and their wave function

totally delocalized. Because these delocalized states are involved in our CI calculation,

they also contribute to the deviation of binding energy estimation. For our calculation of

quantum ring in the next section, all the involved states are strongly confined due to the
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Figure 7.2: Comparison of our configuration interaction (CI) calculation to the published
results in Ref. [155] for (a) the energy of the exciton ground state (open circles)and its
binding energy (open diamonds) as well as (b) the binding energy of trion states (de-
noted with the open triangles and the squares for the negative and the positive trion,
respectively.) as a function of the radius of a spherical GaAs quantum dot.
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large size of quantum ring. Therefore, the underestimation of Coulomb binding energy is

small similar to the results of QD with radius of 6 nm in Fig. 7.2.

Figure 7.2(b) shows the comparison of our calculation of the trion binding energy

with the published data as a function of the QD radius. Our results correctly reproduced

the size dependence of the negative trion binding energy as a function of the decreasing

QD radius and showed an agreement with the quantum Monte Carlo calculation results.

In a positive trion, the wave functions of the holes concentrate closer to the center of the

QD than the electrons due to their small kinetic energy. On the other hand, by decreasing

the QD radius, the electron wave functions partially delocalize out of the QD into the

barrier layer. With the decreasing QD radius, when the repulsion between holes becomes

the dominant interaction in a small QD, the negative binding energy can be found for

the positive trion. This feature was correctly reproduced by our calculation, and the size

dependence of its binding energy also showed a qualitative agreement with the quantum

Monte Carlo calculation. These agreements in the above comparison showed that our CI

calculation for the trion state is valid.

Because the CI calculation can take the full correlation interaction into consider-

ation, our present calculation can be extended to include the spin configuration for the

study of the exchange interaction.

7.4 Aharonov-Bohm effect of exciton complex in quantum

rings

By using the same numerical method, the exciton and the negative trion states

were calculated for the GaAs quantum ring. Figure 7.3(a) shows the energy of the non-

interacting electron-hole pair states with a different combination of angular momentum

(le, lh) in a quantum ring. The energy oscillation and the transition of the total angular

momentum from L = 0 to L = 1 (L = le + lh for two-body system) are found for the

lowest pair state. When B = 20 T, the lowest pair state (L = 1) crosses with the second

lowest pair states with L = 0 (le = −1, lh = 1). The different kinetic energies between

the electron and the hole lead to the different radius of trajectories when they are both

confined in a quantum ring. The magnetic flux piercing through the area between their

trajectories introduces the A-B effect that showed a phenomenon of energy oscillation for

the ground state.

Figure 7.3(b) shows the energy of the exciton states as a function of the magnetic

field. Within the range of magnetic field up to 40 T in the present study, neither the

energy oscillation nor the L transition is found for the exciton ground state. Similar

to our previous discussion on the vanishing A-B effect in a 2D ring, the reason for the

disappearance of the excitonic A-B effect is the strong Coulomb interaction that mixes

the low-energy pair states with the same L. Consequently, the B dependence of the lowest

pair state energy varied, and the A-B effect observed for the non-interacting pair states

did not occur for the exciton ground state.

Figure 7.4(a) shows the energy of the non-interacting 3-body basis states as a func-

tion of the magnetic field. The total angular momentum of this 3-body basis state is
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Figure 7.3: The energy of (a) the non-interacting electron-hole pair states and (b) the
exciton states in a quantum ring as a function of the magnetic field. The results with total
angular momentum L = le + lh = 0, 1,−1 are denoted with black squares, blue dots, and
red triangles, respectively. For each L, the lowest-energy state is plotted with a solid line,
and the excited states are plotted with dashed lines. The combination of the electron and
the hole angular momentum quantum number (le and lh) is denoted for low-energy pair
states.
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Figure 7.4: The energy of (a) the non-interacting 3-body basis states and (b) the negative
trion states in a quantum ring as a function of the magnetic field. The results with total
angular momentum L = le1 + le2 + lh = 0, 1,−1 are denoted with black squares, blue
dots and red triangles, respectively. For each L, the lowest-energy state is plotted with a
solid line, and the excited states are plotted with dashed lines. The combination of the
electron and the hole angular momentum quantum number (le1, le2 and lh) is denoted
for low-energy 3-body basis states. The inset shows the energy of a single electron as a
function of the magnetic field in a quantum ring.
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Figure 7.5: The average distances for the electron-electron and the electron-hole in a
negative trion with L = 0 as a function of the magnetic field.

defined as L = le1 + le2 + lh. The energy oscillation and the L transition are found for the

lowest state.

Figure 7.4(b) shows the energy of the negative trion states as a function of the

magnetic field. By analyzing the main contributing 3-body basis states for low-energy

trions, Coulomb mixing was found. Although the Coulomb mixing between the 3-body

basis states is found, a clear energy oscillation can be observed for the trion ground state.

When B ≥ 30 T, the main contribution to the lowest trion state with L = 0 varies from

the basis with (le1 = 0, le2 = 0, lh = 0) to that with (le1 = −1, le2 = 0, lh = +1) and

(le1 = 0, le2 = −1, lh = +1). Similarly when B ≥ 20 T, the main contribution to the

lowest trion state with L = −1 varies from the basis with (le1 = 0, le2 = 0, lh = −1) to

that with (le1 = −1, le2 = −1, lh = +1). The L transition of the trion state takes place

at B = 15 T, but the le transition of the lowest electron state occurs at B = 20 T as

shown in the inset of Fig. 7.4(b). Considering a dipole-allowed transition between the

electron and the hole states with angular momentum le + lh = 0, the oscillation behavior

can be expected for the emission photon energy. So the disappearance of excitonic A-B

effect and the occurrence of the A-B effect for the trion ground state can be verified by

the measurement of emission spectra.

Figure 7.5 shows the average distances among the three particles of a negative trion

in the quantum ring as a function of the magnetic field. The two electrons and one hole are

denoted as e1, e2 and h in this figure, respectively. As we expected, the results for e1-h and

e2-h are nearly the same that showed the accuracy of our calculation. Also, the distance

between e1-e2 (repulsion) is larger than that for electron-hole attraction as we expected.

By increasing the magnetic field from 0 to 20 T, the distances for both the electron-electron

and the electron-hole decrease because the magnetic field introduced potential pushes the

electrons and the hole towards the center of the system that leads to the increasing wave

function overlap between the particles. Between B = 20 T and 30 T, the average distances
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increase because of the Coulomb mixing between the 3-body basis. The main contributing

3-body basis state of the lowest exciton with L = 0 varies from (le1 = 0, le2 = 0, lh = 0)

to (le1 = −1, le2 = 0, lh = +1) and (le1 = 0, le2 = −1, lh = +1). The wave functions of the

electron and the hole with nonzero le and lh distribute further from the center than that

for le = 0 and lh = 0. Therefore, the change of the main contributing 3-body basis state

leads to larger inter-particle distance. The increasing behavior of the average distance as

a function of the magnetic field is an evidence of the existence of the Coulomb mixing in

the negative trion state.

7.5 Conclusion

With the configuration interaction method, we calculated the size-dependent bind-

ing energy of the exciton states and the trion states of a spherical quantum dot in the

cylindrical coordinates. Our calculation results showed a good agreement with the re-

ported results calculated by the quantum Monte Carlo method that verified the validity

of our calculation method.

Using the same method, we calculated the influence of the magnetic field on the ex-

citon states and the negative trion (composed of two CB electrons and one VB hole) states

in a quantum ring. The A-B effect was not found for the exciton ground state because

the Coulomb interaction mixed the pair states with the same total angular momentum

and changed the magnetic field dependence of their energy. On the other hand, even with

the Coulomb mixing, the A-B effect was found for the negative trion ground state. This

observation indicates the fact that the magnetic field response of a negative trion is simi-

lar to the negatively charged particle (electron) in a quantum ring. The emitted photon

energy of the negative trion ground state can show an oscillation behavior as a function of

the magnetic field, which can be verified by the measurement of emission spectra. To the

best of our knowledge, our study is the first theoretical investigation of the influence of the

magnetic field on the trion states in a 3D quantum ring model. The present study can be

extended to the trion and the biexciton systems in the nanostructures with complicated

geometries.
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Chapter 8:

Dirac cones in the Brillouin-zone center of

periodically modulated quantum wells

8.1 Background: Dirac cones in photonic crystals

The formation of Dirac-cone in the photonic crystal was revealed on the Γ point

(Brillouin-zone center) [85–89]. The essence of the photonic Dirac-cone formation by

accidental degeneracy of two modes is the particular combination of the spatial symmetry

of their wave functions [87–89]. Its general proof for arbitrary periodic optical media was

given by the k · p perturbation theory combined with the group theory [87, 88]. We can

expect novel phenomena that are peculiar to photonic Dirac cones like the continuous

control of the propagation direction of Dirac-cone modes in photonic crystal slabs by the

polarization of the incident wave [89].

Because the presence of the photonic Dirac cone on the Γ point is purely a conse-

quence of particular combinations of mode symmetries, Dirac cones are expected to be

materialized not only in photonic structures but also in any wave systems including elec-

tron, phonon, and exciton systems. In this chapter, we demonstrated that by introducing

periodic external potentials into a quantum well system, the Dirac cone formation can

be realized on the Γ point of the electron band structure. For the Schrödinger equation

with a scalar electron wave function, the formulations are similar to those of photonic

Dirac cones. Our numerical calculation confirm the prediction of the Dirac cones and

double Dirac cones in the modulated quantum well with square and triangular lattices,

respectively.

8.2 k · p perturbation theory for Dirac cones in modulated

quantum wells

We apply the k·p perturbation theory and the group theory to the problem of the for-

mation of Dirac cones in the Brillouin-zone center of the electronic bands of quantum wells

by accidental degeneracy of two subbands. To clearly demonstrate the principle of Dirac-

cone formation, we deal with the simplest case in this paper, that is, we assume that the

electronic system can be described by the time-independent one-component Schrödinger

equation:

Ĥψkn ≡
(
− h̄2

2m
▽2 +U

)
ψkn = Eknψkn, (8.1)
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Figure 8.1: (a) Side view of a periodically modulated quantum well composed of GaAs and
AlGaAs layers with a cylindrical bump in each unit structure. Top view of the quantum
wells with the (b) square and (c) triangular structural modulations [156].
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wherem is the electron effective mass, k is the wave vector in the two-dimensional Brillouin

zone, n is the band index, and U is the confinement potential in the periodically modulated

quantum well. So, we assume

U(r+ ai) = U(r) (i = 1, 2), (8.2)

where ai is the two-dimensional elementary lattice vector of the periodical modulation

(See Fig. 8.1). From the Bloch theorem, ψkn is

ψkn(r) = eik·rukn(r), (8.3)

where ukn(r) is a periodic function:

ukn(r+ ai) = ukn(r). (8.4)

We normalize the eigen functions as

⟨ψkn|ψk′n′⟩ ≡ 1

V

∫
V
drψkn(r)

∗ψk′n′(r) = δkk′δnn′ , (8.5)

where V is the volume on which we impose the periodic boundary condition and δ is

Kronecker‘s delta. Then ukn is an eigen function of operator Ĥk defined by

Ĥk ≡ e−ik·rĤeik·r, (8.6)

which is a Hermitian operator in the Hilbert space of complex functions with the lattice-

translation symmetry. So, {ukn| n = 1, 2, · · ·} is a complete set for each k. We normalize

them as

⟨ukn|ukn′⟩0 ≡
1

V0

∫
V0

dru∗kn(r)·ukn′(r) = δnn′ , (8.7)

where V0 denotes the volume of the unit cell defined by a1 and a2. Thus, in particular,

for k = 0,

{u0n| n = 1, 2, · · ·} (8.8)

is an orthonormal complete set. Therefore, we can express any eigen function ukl of

operator Ĥk by a linear combination of eigen functions {u0n} of operator Ĥ0. Thus, for

small k in the vicinity of the Γ point, we can calculate Ekl perturbatively using {u0n} as

a basis set. Because we are interested only in the presence or absence of terms linear in

k, we neglect the quadratic term of the perturbation operator:

∆Ĥk ≡ Ĥk − Ĥ0 ≈
h̄

m
k · p̂, (8.9)

where p̂ is the momentum operator. We assume according to the situation of our problem

that {u0l| l = 1, 2, · · · ,M} are degenerate and denote their eigenvalue by E0. By the

degenerate perturbation theory, the first-order solution for ukl (l = 1, 2, · · · ,M) is obtained
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by diagonalizing the matrix whose ij(1 ≤ i, j ≤M) element is given by

C
(k)
ij ≡ ⟨u0i|∆Ĥk|u0j⟩0 =

h̄

m
k · pij , (8.10)

which can bring about eigenvalue corrections linear in k. Thus, our problem on the creation

of Dirac cones is reduced to examining whether the eigenvalues of matrix C(k) = (C
(k)
ij )

are non-zero. If all of its eigenvalues are equal to zero, the energy correction starts with

terms of the second order of k, so the Dirac cone does not exist.

For this purpose, we examine C(k) using the spatial symmetry of {u0l}. We assume

that the periodic structure that we deal with is invariant by symmetry operations of point

group G. We denote the symmetry operation and its matrix representation by R and R,

respectively. First, we should note that

Rt = R−1 and detR = ±1 (8.11)

since R is an orthogonal matrix. Second, we can easily prove that the momentum operator

commutes with R:

Rp̂R−1 = p̂. (8.12)

Next, by introducing three pairs of R−1R (= identity operator) to the definition of C
(k)
ij ,

we obtain

C
(k)
ij =

h̄k

mV0
·
∫
V0

drR−1Ru∗0i(r)R−1Rp̂R−1Ru0j(r)

=
h̄k

mV0
·
∫
V0

drR−1[Ru∗0i](r)p̂[Ru0j ](r)

=
h̄k

mV0
· R−1

∫
V0

d(Rr)[Ru∗0i](Rr)p̂′[Ru0j ](Rr)

=
h̄(Rk)

mV0
·
∫
V0

dr′[Ru∗0i](r′)p̂′[Ru0j ](r′)

=
h̄

m
(Rk) · ⟨Ru0i|p̂|Ru0j⟩0, (8.13)

where the prime denotes r′ = Rr and by definition,

[Ru0i](r) ≡ u0i(R
−1r). (8.14)

In Eq. (8.13), we used the fact that R does not change the size of the volume element,

since it is an orthogonal matrix.

So, unless the product of k, u0i, and u0j contains a term invariant for all R ∈ G,
C

(k)
ij vanishes. In this case, the linear term is absent in the dispersion curve around

the Γ point, so Dirac cones do not exist. Therefore, the presence of an invariant term,

or the totally symmetric representation, in the above-mentioned product is a distinct

necessary condition for the Dirac cone. In addition, we can derive many relations among

different matrix elements by using Eq. (8.13). These relations determine the structure of

matrix C(k) nearly uniquely, from which we can obtain the shapes of the dispersion curves
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Table 8.1: Types of dispersion curves generated by accidental degeneracy of two modes
(Mode 1 and Mode 2). Only those symmetry combinations which generate Dirac cones are
listed. Shapes of the dispersion curves are given in the right column, where D, DD, and Q
denote Dirac cone, double Dirac cones, and quadratic dispersion surface, respectively [156].

Lattice symmetry Mode 1 Mode 2 Dispersion

C4v E A1, A2, B1, B2 D + Q

C6v E1 E2 DD

E1 A1, A2 D + Q

E2 B1, B2 D + Q

analytically. We examine two examples in the following.

First, we examine the case of the square array of the cylindrical bumps (Fig. 8.1(b)).

The system has the C4v symmetry, so u0l are irreducible representations of the C4v point

group. We can easily verify that wave vector k, which is a linear combination of unit

vectors in the x and y directions, is transformed as an E representation of the C4v group

by symmetry operations. From the standard reduction procedure [117], we can conclude

that only a limited number of the combinations of the mode symmetries contains a totally

symmetric representation and lead to non-zero C(k). Those combinations are listed in

Table I.

According to Ref. [88], for the combination of an E mode and an A1 mode, matrix

C(k) has the following structure:

C(k) =

 0 0 bkx
0 0 bky

b∗kx b∗ky 0

 , (8.15)

where the first and the second rows/columns are relevant to the E mode and the third

row/column are relevant to the A1 mode. Without loss of generality, we assumed that

the two wave functions (u
(1)
E and u

(2)
E ) of the E mode were transformed like the x and y

coordinates by symmetry operations, respectively [117]. In Eq. (8.15),

b =
h̄

m
⟨u(1)E |p̂x|uA1⟩. (8.16)

Similar to Eq. (8.13), we have the following relation,

h̄

m
⟨u(1)E |p̂|uA1⟩ =

h̄

m

∫
V0

drR−1
C4

RC4u
(1)
E (r)R−1

C4
RC4p̂R−1

C4
RC4uA1(r)

=
h̄

m
R−1

C4

∫
V0

dr′[u
(2)
E ](r′)p̂′[uA1](r

′)
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Figure 8.2: (a) Energy bands on the Γ point of the periodically modulated GaAs/AlGaAs
quantum well (square lattice, a = 30 nm, t = 15 nm, h = 6 nm) as a function of the
diameter of the cylindrical bump. The accidental degeneracy is marked with a red circle.
(b) Magnified energy band structure around the degeneracy point in the left figure with a
red circle. The electron wave functions (in xy-plane) of the involved bands are also plotted
before and after the accidental degeneracy.

=
h̄

m
R−1

C4
⟨u(2)E |p̂|uA1⟩. (8.17)

Furthermore, we have,
h̄

m
⟨u(1)E |p̂x|uA1⟩ =

h̄

m
⟨u(2)E |p̂y|uA1⟩. (8.18)

By solving the secular equation, we can obtain the energy correction, ∆E:

∆E = ±|b|k, 0. (8.19)

where k =
√
kx

2 + ky
2. Therefore, two of the three dispersion curves compose an isotropic

Dirac cone. For the third mode, the linear term is absent, so the dispersion curve starts

with a quadratic term. For other mode combinations listed in Table 8.1, we can also prove

that the dispersion relation consists of an isotropic Dirac cone and an auxiliary quadratic

dispersion surface.

To check the analytical result, we calculated the band structure by the finite element

method. A 3D model was built according to one unit cell of the present periodic structure.

As shown in Fig. 8.2(a), the energy bands on the Γ point of the periodically modulated

quantum well of the square lattice were plotted as a function of the diameter of the
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(a) (b)

Figure 8.3: Energy bands of the periodically modulated GaAs/AlGaAs quantum well. (a)
Square lattice with |ai| ≡ a = 30 nm, t = 15 nm, h = 6 nm, and d = 22.8 nm. (b)
Triangular lattice with a = 30 nm, t = 15 nm, h = 6 nm, and d = 20.55 nm. The vertical
axis is the electron energy measured from the bottom of the GaAs conduction band. The
horizontal axis is the wave vector in the two-dimensional Brillouin zone, where X = (π/a, 0)
and M = (π/a, π/a) for the square lattice and K = (4π/(3a), 0) and M = (π/a,−π/(

√
3a))

for the triangular lattice. X/5, for example, means that the horizontal axis is magnified
by five times [156].
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cylindrical bump (d). By tuning d, an accidental degeneracy of bands was found as

marked with a red circle. By examining the electron wave function of the involved bands

before and after the accidental degeneracy, we can assign the involved three bands to an

A1 mode and a doubly degenerated E mode. For the case of the accidental degeneracy of

an E mode and an A1 mode, which was materialized with structural parameters listed in

the caption of Fig. 8.3(a), we confirmed the formation of a Dirac cone with a quadratic

dispersion surface.

Next, we examine the two-dimensional triangular lattice of the C6v symmetry (Fig.

8.1(c)). The symmetry combinations that generate non-zero C(k) for this case are also

listed in Table I. One particular feature of the C6v point group is that it has two different

doubly degenerate eigenmodes, E1 and E2. By the accidental degeneracy, they materialize

double Dirac cones. For the C6v symmetry, the wave vector k is transformed as an E1

representation.

Without loss of generality, we can assume that the two eigen functions of the E1

mode (u
(1)
E1

, u
(2)
E1

) are transformed like the x and y coordinates, whereas those of the E2

mode (u
(1)
E2

, u
(2)
E2

) are transformed like 2xy and x2 − y2 [117]. According to Ref. [88], we

can prove that the C(k) has the following form.

C(k) =


0 0 −bky −bkx
0 0 −bkx bky

−b∗ky −b∗kx 0 0

−b∗kx b∗ky 0 0

 , (8.20)

where

b =
h̄

m
⟨u(2)

E1
|p̂y|u(2)

E2
⟩ (8.21)

The secular equation can be solved easily and its solutions are given by

∆E = ±|b|k (double roots). (8.22)

So, we have isotropic double Dirac cones with the same slope. This analytical result

can also be confirmed by numerical calculation. In Fig. 8.4(a), the energy bands on the

Γ point of the periodically modulated quantum well of the triangular lattice were plotted

as a function of the diameter of the cylindrical bump (d). By tuning d, an accidental

degeneracy of bands was found as marked with a red circle. By examine the electron wave

function of the four involved bands in this area before and after the accidental degeneracy,

we can assign these bands to the doubly degenerated E1 and E2 modes. As shown in

Fig. 8.3(b), the ranges of the electron energy and the wave vector where the linear k

dependence is observed are much limited compared with Fig. 8.3(a), since there is a dense

distribution of other electronic bands above and below the double Dirac cones, which bring

about complicated mutual repulsion among the electronic bands to yield deformation from

the linear k dependence easily.

When we compare Eq. (8.13) with Eq. (22) of Ref. [88], we notice that the transfor-
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Figure 8.4: (a) Energy bands at Γ point of the periodically modulated GaAs/AlGaAs
quantum well (triangular lattice, a = 30 nm, t = 15 nm, h = 6 nm) as a function of
the diameter of the cylindrical bump. The accidental degeneracy was marked with a red
circle. (b) Magnified energy band structure around the degeneracy point in the left figure
with a red circle. The electron wave functions (in xy-plane) of the involved bands are
also plotted before and after the accidental degeneracy. The degeneracy of the bands is
denoted by numbers in red color.
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mation property of the first-order perturbation matrix is the same for the present problem

of the electronic bands and the electromagnetic dispersion curves. Thus the combina-

tion of mode symmetries that materialize the Dirac cones are also the same, which was

confirmed by analytical and numerical calculations in this chapter. We can extend this

observation to all other harmonic waves. So we can materialize Dirac cones on the Γ point

for any harmonic wave systems by accidental degeneracy.

In the actual specimen fabrication, however, the probability of exact degeneracy

by adjusting the specimen parameters is negligibly small, so there is always an energy

mismatch between the two states, although it may be small. When we denote the energy

mismatch by α and place it in the (3, 3) element of C(k) in Eq. (8.15), we obtain the

following energy correction.

∆E =
α±

√
a2 + 4|b|2k2
2

. (8.23)

This more realistic energy dispersion brings about a small effective mass m∗, which is

obtained by the second derivative of ∆E with respect to k:

m∗ =
|α|h̄2

2|b|2
. (8.24)

So, the effective mass vanishes when the energy mismatch becomes infinitesimally small.

This phenomenon further brings about a large electron mobility, which is inversely pro-

portional to the effective mass, if the introduction of the periodic modulation does not

affect the electron relaxation time.

8.3 Conclusion

We applied the k ·p perturbation and group theory to the problem of the formation

of Dirac cones by accidental degeneracy on the Γ point of periodically modulated quantum

wells. The structure of the perturbation matrix that gave the first-order energy correction

was determined by the symmetry of the relevant electronic states, which enabled us to

obtain the energy dispersion by analytical calculation. We found the formation of Dirac

cones for the square lattice and Dirac cones and double Dirac cones for the triangular

lattice, which was also confirmed by numerical calculation by the finite element method.
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Chapter 9:

Conclusion and outlook

With the developing synthesis technologies, new nanostructures with complex ge-

ometries have been successfully fabricated. Their electronic and optical properties are

critically influenced by the geometries and may become new platforms for the fundamen-

tal studies and application fields. To explain the experimental observation and predict the

electronic properties of these nanostructures, we calculated the electronic and excitonic

structures by combining the analytical and numerical calculation methods. The finite el-

ement method was used for an efficient approach to the complex geometries. The exciton

states of the nanostructure and corresponding heterostructure were systematically investi-

gated by the configuration interaction method. The influence of the external electric and

magnetic fields on the exciton states and the trion states was investigated as well. The

main findings were summarized as follows:

(1) In the present thesis, the tetrapod-shaped nanostructures consist of a central

core and four branches at tetrahedral angles. By using the group theory, we found that

the low-energy single particle states and the exciton states of the tetrapod-shaped nanos-

tructures have A1 and T2 symmetry. Because the lowest spin-singlet excitons have A1

symmetry, they are optically active and luminescent. Even when it is of T2 symmetry, be-

cause the energy difference between the lowest T2 exciton and A1 exciton is much smaller

than the room-temperature thermal energy, we suppose that the tetrapod-shaped nanos-

tructures can be luminescent. We investigated the influence of geometrical parameters,

materials and the crystal structure of the branches on the low-energy exciton states and

the absorption spectra. We predicted the size effect on the energy of the absorption peaks,

which showed a good agreement with the available experimental data. For the tetrapods

with large branch width, the lowest absorption peaks with small intensity were revealed,

which is difficult to be observed in the experimental study.

(2) The core-shell tetrapod-shaped heterostructures have shells covering the lateral

surface of the branches (arms) of a tetrapod. Those heterostructures composed of a CdTe

tetrapod and CdS shells possess type-II band structure. We analyzed the symmetry of

their electronic states and investigated the influence of strain on the exciton states. Our

results showed a good agreement with the energy of the photoluminescence peaks observed

in the experiment. We found that the strain promotes the type-II band structure of the

CdTe/CdS tetrapod-shaped heterostructures. With increasing shell thickness, electrons

and holes were confined in the non-adjacent regions of the core-shell tetrapod-shaped

heterostructure. Accordingly, a more efficient charge separation is realized compared

with the type-II spherical core-shell QD. The core-shell tetrapod-shaped heterostructures

with broken symmetry were also investigated. We revealed that electrons and holes were

confined in the same or different branches by manipulating the randomness. Consequently,
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we found the charge separation induced by the randomness, which is unique to branched

core-shell heterostructures. Since the low-energy electron and hole are mainly localized

in the “arm+shell” regions, the lowest absorption peak of the broken-symmetry structure

can be represented by the sum of spectra of individual “arm+shell” regions.

(3) Ring-shaped nanostructures offer a new platform to investigate the Aharonov-

Bohm effect (A-B effect) using spectroscopic techniques. But the oscillation signature of

the excitonic A-B effect in the single quantum rings is not significant in both the experi-

mental and theoretical results. To clarify the reason for this weak A-B effect, we initially

investigated the excitonic A-B effect of a single GaAs quantum ring. With the perturba-

tion theory, the analytical solution of the single particle state was obtained, which showed

a good agreement with the numerical calculation with the finite element method and con-

firmed the validity of our numerical model with cylindrical symmetry. The influence of

the magnetic field on the exciton state and negatively charged exciton state (trion) was

calculated with the configuration interaction method. The vanishing excitonic A-B ef-

fect in the single quantum rings was ascribed to the Coulomb interaction that mixes the

wave functions of the low-energy pair states with the same total angular momentum and

modifies the magnetic-field dependence of the exciton energy. With the strong Coulomb

interaction, the excitonic A-B effect is not significant for the exciton ground state, but it

can be found obviously for the trion ground state because of the non-zero total charge of

the trion. To the best of our knowledge, our study is the first investigation of the trion

A-B effect in a 3D quantum ring. To observe a clear A-B effect, we proposed to use the

QD-ring coupled nanostructures with applied electric field along the alignment direction of

the components. With the applied electric field, we can simultaneously achieve the partial

separation of the electron and hole wave functions to reduce the Coulomb mixing and the

control of the average radius of their trajectories to enhance the A-B effect. According

to our calculation results, an obvious excitonic A-B effect can be observed with moderate

experimental conditions and supposed to be verified by the experimental measurement of

the change of the emission spectrum intensity.

(4) The Dirac cones in the photonic crystal were characterized by their isotropic

linear dispersion. Recent theoretical investigations revealed the nature of photonic Dirac

cone formation. In addition to the photonic crystal, the Dirac cones can be expected for

other wave systems according to the same rule of wave function symmetry. By using the

k · p perturbation theory and the group theory, we judged the formation of Dirac cones

in the vicinity of the Γ point for periodically modulated quantum wells. The necessary

combinations of wave function symmetry were revealed for quantum wells with the square-

lattice and triangular-lattice modulation. The prediction of Dirac cone formation in these

two kinds of quantum wells was confirmed by numerical calculation by the finite element

method.

By combining the group theory and configuration interaction method, we revealed

the influence of shape symmetry of II-VI and III-V nanostructures on their electronic

and optical properties. The quantum size effect of our calculation results showed a good

agreement with the published experimental data, thus they can be used to explain the

experimental observation. Moreover, our calculation predicted the electronic and opti-

95



cal properties of new nanostructures such as the excitonic A-B effect in the ring-shaped

coupled nanostructure and the Dirac cones in the periodically modulated quantum wells.

These results offer guidelines and reference information for the future experimental inves-

tigations.

Since we are mainly interested in the lowest transition energy in the present studies,

we concentrate on the single-band calculation of the conduction band electrons and valence

band heavy holes. When the influence of the light hole is non-negligible, multi-band

calculation is necessary. We are accumulating the experience of multi-band calculation

from simple 2D nanostructures (published recently as: N.N. Schlenskaya, Y. Yao et al.

Chem. Mater. vol.29, pp.579-586, 2017) and valence band hole states mixing of a GaAs

quantum ring in a magnetic field. Because the multi-band calculation is basically a group

of partial differential equations, our present study can be extended to the multi-band

calculation for the nanostructures with complicated geometries.
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Appendix A: calculation of the single particle state in a ring-shaped structure

A.1 Single particle state in a 2D ring

In the polar coordinates (r, θ), the conventional single particle wave function can

be assumed as φnl = eilθfnl(r)/
√
2π for B = 0 with the angular momentum quantum

number l and the radial quantum number n. f(r) is the radial component of the single

particle wave function. The radial-direction Schrödinger equation of a single particle state

confined to a 2D ring with the inner radius (R1) and outer radius (R2) is:{
− h̄2

2m∗

[
1

r

∂

∂r

(
1

r

∂

∂r

)
−
(
l

r

)2
]
+ V (r)− Enl

}
fnl(r) = 0, (A.1)

where Enl is the energy of the single particle state, m∗ is the effective mass, which is

different for the ring (m∗
1) and the barrier layer (m∗

2). The solution of the differential

equation in Eq.(A.1) is given by [157]:

fnl(r) =


C3I|l|(λ2r) r < R1

C1J|l|(λ1r) + C2Y|l|(λ1r) R1 ≤ r ≤ R2

C4K|l|(λ2r) R2 ≤ r

(A.2)

where C1, C2, C3, C4 are the normalization coefficients. λ1 =
√
2m∗Enl/h̄, λ2 =

√
2m∗(V (r)− Enl)/h̄.

J|l| and Y|l| are the Bessel function of the first and second kind. I|l| andK|l| are the modified

Bessel function of the first and second kind.

By using the boundary condition of the continuity of the wave function and its first-

order derivative at R1 and R2, the eigen energy and the wave function can be obtained

by solving a secular equation |G| = 0. G is given by

G =


J|l|(λ1R1) Y|l|(λ1R1) −I|l|(λ2R1) 0

(λ1/m
∗
1)J

′

|l|(λ1R1) (λ1/m
∗
1)Y

′

|l|(λ1R1) −(λ2/m
∗
2)I

′

|l|(λ2R1) 0

J|l|(λ1R2) Y|l|(λ1R2) 0 −K|l|(λ2R2)

(λ1/m
∗
1)J

′

|l|(λ1R2) (λ1/m
∗
1)Y

′

|l|(λ1R2) 0 −(λ2/m
∗
2)K

′

|l|(λ2R2)


(A.3)

A.2 2D QD-in-Ring in the magnetic field

As shown in Fig. 6.9 in Chapter 6, the dimensions of a QD-in-Ring have large

difference in the growth direction and the plane perpendicular to it. The adiabatic ap-

proximation can be applied to separate the motion in the strong confinement direction

from other directions [153]. In the present section, we focus on the motion of the electron

and hole in the plane perpendicular to the z direction and apply a 2D QD-in-Ring model

in the polar coordinates (r, θ) for this study. As shown in Fig. A.1, in the radial direction,
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Figure A.1: Illustration of the confinement potential in a QD-in-Ring nanostructure with
cylindrical symmetry in the radial direction.

the radius of QD, the inner and outer boundary of ring were denoted as R1, R2 and R3,

respectively.

Because we are interested in the electronic states near the band edge, effective mass

approximation was applied in the present study. In the polar coordinate, the Hamiltonian

of single particle state with the magnetic field (B) is:

H = − h̄2

2m∗

[
1

r

∂

∂r
(
1

r

∂

∂r
) +

1

r2
∂2

∂θ2
− iqB

h̄

∂

∂θ
− (qBr)2

4h̄2

]
+ V (r) (A.4)

where q = −e and q = e for the charge of electrons and holes, respectively, and e is the

elementary charge. B is the magnetic field. The symmetric gauge was applied to the

vector potential in the present calculation, which leads to the components of Aθ = Br/2

and Ar = 0 in the polar coordinate. V (r) is the confinement potential energy which is

equal to zero and the band offset for the regions in and out of QD-in-Ring, respectively.

The mismatch of the effective mass between the QD-in-Ring (m∗
1) and the barrier layer

(m∗
2) was considered. Due to the cylindrical symmetry, the z-projection of the single

particle angular momentum is a good quantum number. With the angular quantum

number le(h) and radial quantum number ne(h), the single particle wave function was

assumed as ϕnl = eilθfnl (r) /
√
2π, where fnl (r) is the wave function component in the

radial direction.

By replacing r with x = kr2 = qBr2

2h̄ and substitute the single particle wave function

into Eq.(A.4), the Schrödinger equation can be expressed as [145]{
x
∂2

∂x2
+

∂

∂x
− l2

4x
− x

4
+ β

}
fnl(x) = 0, (A.5)

where

β = −qBl
4kh̄

− m∗(V − E)

2kh̄2
(A.6)

Following the method in Landau’s book [145], as x → ∞ the required function

behaves as e−
x
2 , and for x→ 0 as x

|l|
2 . The radial component of the wave function can be
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express as

fnl(x) = x
|l|
2 e−

x
2 u(x) (A.7)

Substitue Eq.(A.7) into Eq.(A.5), the Schrödinger equation became a confluent hy-

pergeometric differential equation with the solution [157]

fnl(x) =



x
|l|
2 e−

x
2C1M(a1, b, x) r ≤ R1

x
|l|
2 e−

x
2 [C2M(a2, b, x) + C3U(a2, b, x) R1 < r < R2

x
|l|
2 e−

x
2 [C4M(a1, b, x) + C5U(a1, b, x) R2 ≤ r ≤ R3

x
|l|
2 e−

x
2C6U(a2, b, x) R3 < r

where Cn(n = 1 ∼ 6) are the normalization coefficients. M(a, b, x) and U(a, b, x) are the

confluent hypergeometric function of the first and second kind. a1,2 = −β + |l|
2 + 1

2 for

different effective massm∗
1 andm

∗
2 of QD-in-Ring and barrier layer, respectively. b = |l|+1,

x = qBr2

2h̄ .

By using the continuous boundary condition of the wave function at R1, R2 and

R3 as well as the normalization condition, the eigen energy and wave function of single

particle states can be solved.

f Inl(R1) = f IInl (R1), f
′I
nl(R1)/m

∗
1 = f

′II
nl (R1)/m

∗
2,

f IInl (R2) = f IIInl (R2), f
′II
nl (R2)/m

∗
2 = f

′III
nl (R2)/m

∗
1,

f IIInl (R3) = f IVnl (R3), f
′III
nl (R3)/m

∗
1 = f

′IV
nl (R3)/m

∗
2

In the following equations, if the confluent hypergeometric functions are denoted as

M(a1(2), b, x) =Ma1(2)(r
2)

U(a1(2), b, x) = Ua1(2)(r
2)

(A.8)

and
P1(a1(2), r) = ( |l|

2kr2
− 1

2)Ma1(2)(r
2) + 2krM

′
a1(2)

(r2)

P2(a1(2), r) = ( |l|
2kr2

− 1
2)Ua1(2)(r

2) + 2krU
′
a1(2)

(r2)
(A.9)

are defined for the first derivative of radial wave functions, the eigen energy and wave func-

tion of the single particle states can be numerically derived by solving a secular equation

|G| = 0. The definition of G is in the following equation:

G =



Ma1(R
2
1) −Ma2(R

2
1) −Ua2(R

2
1) 0 0 0

m∗
2

m∗
1
P1(a1, R1) −P1(a2, R1) −P2(a2, R1) 0 0 0

0 Ma2(R
2
2) Ua2(R

2
2) −Ma1(R

2
2) −Ua1(R

2
1) 0

0
m∗

1
m∗

2
P1(a2, R2)

m∗
1

m∗
2
P2(a2, R2) −P1(a1, R2) −P2(a1, R2) 0

0 0 0 Ma1(R
2
3) Ua1(R

2
3) −Ua2(R

2
3)

0 0 0
m∗

2
m∗

1
P1(a1, R3)

m∗
2

m∗
1
P2(a1, R3) −P2(a2, R3)


(A.10)

In Fig. A.2, the electron energy as a function of the magnetic field is shown, which

99



Figure A.2: Comparison of the numerical calculation results of electron energy in a QD-
in-Ring nanostructure for different angular momentum le and radial quantum number
n.

is calculated with the above semi-analytical method for a QD-in-Ring with the QD radius

R1= 4 nm, ring width W = R3 − R2 = 5 nm and ring radius Rr = (R2 + R3)/2 = 16.5

nm (the barrier width between QD and ring and out of the ring are assumed to be 10

nm and 15 nm, respectively). The comparison between the semi-analytical results and

the numerical results of a finite element method calculation showed a good agreement.

When B = 15 T, the lowest electron state with le = 0 has anti-crossing behavior with the

second lowest electron state due to their same angular symmetry (le = 0). When B = 0,

the lowest and the second lowest electron states are localized in the ring and QD part,

respectively, which leads to the different response to the magnetic field. After the anti-

crossing, the main feature of their wave function was exchanged and the lowest electron

is in the QD part.

It is worthy to point out that the above equations can be easily modified for other

nanostructures with cylindrical symmetry, for instance, quantum disk, concentric dou-

ble quantum rings. The difference in their calculation is the number of the boundary

conditions.
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