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Abstract 

Solid solutions of C60-C70 fullerene needle-like crystals were synthesized by liquid-

liquid interfacial precipitation using toluene and 2-propanol as solvents, which were bent 

until fracture using focused ion beam scanning electron microscope for the measurements 

of their mechanical properties. The C60-C70 fullerene needle-like crystals were found to 

show the tensile strength of 58−71 MPa and the fracture toughness of 1.1−1.3 MPa m
1
2, 

where the tensile strength is much higher than that of the C60 fullerene needle-like crystals 

and the specific strength is slightly larger than that of alumina. Moreover, it is possible to 

change the plasticity and fracture toughness of the C60-C70 fullerene needle-like crystals 

by solvent. Thus, the C60-C70 fullerene needle-like crystals are suggested to be applied 

for materials such as electrodes, anchors as brittle materials, and electric feeder lines as 

ductile materials. 
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Introduction 

Carbon atoms can be bonded together by covalent binding to form some carbon 

allotropes such as fullerenes. A C60 fullerene, which is truncated icosahedron molecule, 

was first observed by Kroto et al. [1]. Fullerenes have been well characterized [2] and 

reported to exhibit low toxicity [3] with a low cost fabrication [4] to be applied in multiple 

ways.  

One species of the fullerene compounds, molecular fullerene needle-like crystals can 

be dissolved in organic solvents to recover fullerene molecules [5, 6]. The electrical 

conductivity of the fullerene needle-like crystals is affected by their diameters, exposure 

to oxygen, and solvents [7–10]. Thus, these crystals show a potential for the application of 

field-effect transistors, solar cells, fuel cells, and surface enhanced Raman scattering 

sensors (SERS) [11–15]. As for the mechanical properties, it has been reported that the C60 

needle-like crystals have a density of 1.73 g cm−3 [16] and a Young’s moduli ranging from 

32 to 54 GPa [17] which decreases with increasing the crystal diameter and depends on the 

synthesis conditions [18, 19]. Also, the C60 needle-like crystals in air have been reported to 

be underwent brittle fracture during the bending and the buckling [19–21]. 

Fullerene needle-like crystals can contain two species of fullerene molecules to form a 

solid solution with solution hardening. Since substitutional solid solutions can be formed 

from two species of atoms or molecules which are close in size, we use C60 and C70 

molecules in order to obtain a solid solution in this study. C60-C70 needle-like crystals 

consisting of a C60 mother phase doped with 11 wt% C70 molecules have been analyzed 

to exhibit the light absorption band of both C60 and C70 and a Young’s modulus of 60–

100 GPa even when the crystal diameter exceeds 1000 nm [22, 23]. Although the C60-C70 

needle-like crystals are expected to be useful with low density, a high Young’s modulus, 

a wide absorption band, and various electrical conductivities, the mechanical properties 

of such crystals have not yet been clarified. The understanding of the mechanical 

properties of the C60-C70 needle-like crystals is indispensable to their application as 



electric feeder lines, electrode materials, and anchor materials. In this paper, C60-C70 

needle-like crystals with a diameter of 20–40 µm were synthesized using toluene and 2-

propanol as solvents. The crystals were fractured by bending using focused ion beam-

scanning electron microscopy (FIB-SEM) to determine their tensile strength, fracture 

toughness, plastic deformation, and inner structure. The C60-C70 fullerene needle-like 

crystals were found to be brittle materials with the tensile strength much higher than that 

of C60 fullerene needle-like crystals and the specific strength larger than that of alumina. 

 

2. Experimental 

The C60-C70 fullerene needle-like crystals were synthesized by a liquid-liquid 

interfacial precipitation method [24]. Fullerene powders (C60 99.5% and C70 98+%, both 

from MTR Ltd.) were dissolved in toluene (JIS special grade; Wako Pure Chemical 

Industries Ltd.) using an ultrasonic agitator (Iuchi VS-150; As-One Ltd.). The saturated 

solutions of C60 and C70 in toluene were respectively filtered using 450-nm pore filters 

(Whatman 25 mm GD/X; GE Healthcare UK Ltd.) and mixed using an agitator to give a 

C60-C70 solution containing C70 with 45 wt% in toluene as the mother solution. 

The mother solution (10 mL) was added to a glass bottle (30 mL, No. 6; As-One Ltd.) 

and held at 15 °C in a water bath. Then, 2-propanol (10 mL) was slowly layered along 

the inside wall of the bottle to form a liquid–liquid interface. After mixing the solution by 

shaking 30 times to promote a homogeneous reaction, the bottle was stored at 15 °C for 

5 days to grow needle-like crystals. After replacing the supernatant with 2-propanol, 

filtration (5B-21; Kiriyama Glass Inc.) under reduced pressure and vacuum drying (VO-

300; As-One Ltd.) at room temperature for 120 min were conducted to obtain C60-C70 

fullerene needle-like crystals. 

To fracture the C60-C70 fullerene needle-like crystals, the crystals were fixed to a 

silicon substrate by tungsten deposition, cleaved by gallium ion sputtering, and then bent 



using a molybdenum probe until fracture, as outlined in Fig. 1. The fracture surfaces were 

observed using FIB-SEM (NB5000; Hitachi High-Technologies). 

 

3. Results and Discussion 

Fig. 2 shows an SEM image of a representative C60-C70 fullerene needle-like crystal.  

The mean length and mean diameter of the C60-C70 fullerene needle-like crystals were 

obtained to be 168±43 µm and 21±7 µm, respectively.  

Figs. 3(a) and (b) depict the SEM images of the fracture surfaces of the C60-C70 

fullerene needle-like crystals. The fracture surfaces were mostly smooth with some 

porous structures and contained a small amount of particles and fibrous surfaces. The 

magnified SEM images of the smooth surfaces with porous structure are presented in Figs. 

3(c) and (d). Fullerene needle-like crystals with a porous structure have been reported 

previously [25]. The porous structure was attributed to rapid evaporation of solvent 

molecules. The smooth fracture surfaces of the C60-C70 fullerene needle-like crystals 

have been considered to result from brittle fracture [26–27] because the smooth fracture 

surfaces have been observed for C60 fullerene needle-like crystals [19–21]. The brittle 

fracture of fullerene needle-like crystals has been considered to originate from a stress 

concentration at the end of the cracks composed of continuous pores [28]. The stress 

distribution around the end of a crack can be evaluated by the stress intensity factor (K) 

of three-point bending, schematic of which is shown in Fig. 4, using the following 

equations [29]: 

K = F (ξ) σben √π 𝑎𝑎, ξ = 𝑎𝑎
𝑊𝑊

, F (ξ) = � 2
π ξ

 tan 𝜋𝜋 ξ
2

 
0.923+0.199 {1− sinπ ξ

2 }4

cosπ ξ
2

, (1) 

where σben is the bending stress, a is the length of crack on one side, and W is the thickness 

of bending samples. σben can be calculated using the following equations when a 

cantilever is applied to a load [30]: 

𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏= 𝑀𝑀
𝑍𝑍

 , Z =𝑏𝑏ℎ2

6
 ,𝑀𝑀 = 𝑃𝑃𝑃𝑃, (2) 



where M is the bending moment, Z is the section modulus of a rectangular cross section, 

P is the load, b is the length of the cross section perpendicular to P, h is the length of the 

cross section parallel to P, and x is the distance between the points of the effort and the 

load. The flexure  𝛿𝛿 can be expressed using the P as follows [31]: 

𝛿𝛿 = 𝑃𝑃𝑙𝑙3

3𝐸𝐸𝐸𝐸
, I = 𝑏𝑏ℎ

3

12
, (3) 

where E is the Young’s modulus, I is the second moment of the area on a rectangular cross 

section, and l is the distance between the points of effort and fulcrum. Eq. (4) is derived 

from Eqs. (2) and (3): 

𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏= 3ℎ𝑥𝑥𝑥𝑥𝐸𝐸
2𝑙𝑙3

. (4) 

According to Figs. 5 (b) and (c), the parameters h = 6.5 µm, l = 46 µm and x = 18 µm 

or h = 2.1 µm, l = 46 µm and x = 20 µm were obtained for the 1st or 2nd C60-C70 fullerene 

needle-like crystal using the experimental setup in the present study, respectively. It was 

assumed that the C60-C70 fullerene needle-like crystals were flexed before fracture as 

shown in Figs. 6(a)−(c), and the 𝛿𝛿 just before fracture was estimated to be 0.50 µm for 

the 1st crystal or 1.1 µm for the 2nd crystal using Figs. 6(d) and (e), respectively. When 

the E was supposed to be 80 GPa, as in the case for the C60-C70 fullerene needle-like 

crystals with a diameter of more than 1000 nm [23], the maximum value of the σben, that is 

the tensile strength, was calculated to be 71 MPa for the 1st crystal or 58 MPa for the 2nd 

crystal. These values are approximately six times larger than the tensile strength of the 

C60 fullerene needle-like crystals (11.5 MPa) calculated using the maximum buckling 

force of 230 nN and the diameter of 160 nm [17]. Therefore, we demonstrate that the C60-

C70 fullerene needle-like crystals have larger specific strength, which means the tensile 

strength per unit density, than that of alumina using the density of the C60-C70 fullerene 

needle-like crystals of 1.7 g cm−3 and alumina of 3.95 g cm−3. 

According to Figs. 5 (b) and (c), the parameters a = 14 µm and W = 20 µm or a = 7.9 

µm and W = 10 µm were obtained for the 1st or 2nd C60-C70 fullerene needle-like crystal 



using the experimental setup in the present study, respectively. When σben = 58−71 MPa, 

the K was calculated to be 1.1−1.3 MPa m
1
2  using Eq. (1). Therefore, the fracture 

toughness of the C60-C70 fullerene needle-like crystals is lower than that of alumina 

(1.5−1.9 MPa m
1
2) [32]. This means that the C60-C70 fullerene needle-like crystals tend to 

undergo brittle fracture because of their porous structure. Therefore, the C60-C70 fullerene 

needle-like crystals can be applied for materials of electrodes and anchors as brittle 

materials. 

The magnified SEM images of the particle structures are depicted in Figs. 7(a) and 

(b). The particles are thought to be composed of the solvated C60 molecules. It has been 

reported that the C60 fullerene needle-like crystals with a diameter of less than 1 µm 

contain toluene with 1 wt% even after vacuum drying at room temperature for 120 min [33]. 

Therefore, it is possible that the C60-C70 fullerene needle-like crystals in this work, which 

had a diameter of 20−40 µm, contain toluene with more than 1 wt%. The magnified SEM 

images of the fibrous surfaces are presented in Figs. 7(c) and (d). The fibrous surfaces 

have been reported to result from ductile fractures [26–27]. Thus, the fibrous surfaces are 

thought to occur when solvated fullerene molecules expanded and were subjected to strain 

in the present study. We can obtain ductile solvated C60-C70 fullerene needle-like crystals 

which exhibit lower tensile strength and higher fracture toughness than the C60-C70 

fullerene needle-like crystals in order to apply them for strained materials such as electric 

feeder lines. 

 

4. Conclusion 

The C60-C70 fullerene needle-like crystals were bent until the fracture and then 

observed using FIB-SEM, which exhibited a porous structure and brittleness caused by 

the stress concentration at pores. We demonstrate that the C60-C70 fullerene needle-like 

crystals have the tensile strength of 58−71 MPa, which is approximately six times larger 

than that of the C60 fullerene needle-like crystals. This tensile strength makes the specific 



strength of the C60-C70 fullerene needle-like crystals larger than that of alumina. 

Moreover, the C60-C70 fullerene needle-like crystals exhibit the fracture toughness of 

1.1−1.3 MPa m
1
2, which is approximately one eighth of that of alumina. Therefore, the 

C60-C70 fullerene needle-like crystals are useful for materials of electrodes and anchors 

as brittle materials. 

The C60-C70 fullerene needle-like crystals contain a small amount of solvent, which 

led to partial ductility. Thus, we can improve the fracture toughness of the C60-C70 

fullerene needle-like crystals and can change their plasticity from brittle to ductile by 

solvent in order to apply them for strained materials such as electric feeder lines. 
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Fig. 1. Outline of the process to fracture a C60-C70 fullerene needle-like crystal. (a) Side 

surface formation, (b) fixture to a substrate, (c) slit formation, (d) bending, and (e) fracture. 
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Fig. 2. The SEM image of a C60-C70 fullerene needle-like crystal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a),(b) The SEM images of the fracture surfaces of the C60-C70 fullerene needle-

like crystals. (c),(d) The SEM images of the smooth fracture surfaces of the C60-C70 

fullerene needle-like crystals.  
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Fig. 4. Schematic of bending in this study. Here, a is the length of the crack on one side, 

W is the thickness of bending samples and σben is the bending stress. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. (a) The definitions for the respective lengths. (b),(c) SEM images of C60-C70 

fullerene needle-like crystal with the respective lengths. Here, l is the distance between 

the points of effort and fulcrum, h is the length of the cross section parallel to the load, x 

is the distance between the points of the effort and the load, a is the length of crack on 

one side, and W is the thickness of bending samples. 
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Fig. 6. Schematics of a C60-C70 fullerene needle-like crystal (a) with no load, (b) just 

before fracture, and (c) just after fracture. (d),(e) The SEM images of C60-C70 fullerene 

needle-like crystals just after fracture. 
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Fig. 7. (a),(b) The SEM images of the particle structures at the fracture surfaces of a C60-

C70 fullerene needle-like crystal. (c),(d) The SEM images of the fibrous structure at the 

fracture surfaces of a C60-C70 fullerene needle-like crystal.  
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