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To describe quantal collective phenomena, it is useful to requantize the time-dependent mean-field
dynamics. We study the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory for the two-
level pairing Hamiltonian, and compare results of different quantization methods. The one construct-
ing microscopic wave functions, using the TDHFB trajectories fulfilling the Einstein-Brillouin-Keller
quantization condition, turns out to be the most accurate. The method is based on the stationary-
phase approximation to the path integral. We also examine the performance of the collective model
which assumes that the pairing gap parameter is the collective coordinate. The applicability of
the collective model is limited for the nuclear pairing with a small number of single-particle levels,
because the pairing gap parameter represents only a half of the pairing collective space.

I. INTRODUCTION

Pairing correlation plays a decisive role in a number
of nuclear phenomena, which is especially important in
open-shell nuclei. Many evidences of the pairing corre-
lation were observed in experiment, including odd-even
mass difference, moments of inertia of rotational bands,
and quasi-particle spectra in odd nuclei. Even in closed-
shell nuclei, the pairing dynamically plays an important
role in elementary modes of excitation, such as pair-
ing vibrations [1–3]. Properties of low-lying modes of
excitation in even-even nuclei are expected to be deter-
mined dominantly by interplay between the pairing and
the quadrupole correlations. However, the true nature
of the low-lying excitations is still unclear, especially for
excited Jπ = 0+ states [4, 5]. Understanding the pair-
ing dynamics is a key ingredient for solving mysteries of
excited 0+ states.
The ground states in many of even-even nuclei are

well described by the Bardeen-Cooper-Schrieffer (BCS)
and the Hartree-Fock-Bogoliubov (HFB) theories [2, 6].
Its time-dependent version, the time-dependent HFB
(TDHFB) theory [7, 8], is a natural extension of the
static HFB theory. Thanks to increasing computational
power, realistic applications of the TDHFB calculations
in real time become available for studies of linear re-
sponse properties [9–13] and of various nuclear dynam-
ics [14–19]. The small-amplitude limit of the TDHFB
is known to be the quasiparticle random phase approx-
imation (QRPA). The QRPA has been extensively uti-
lized and successfully describes properties of giant res-
onances. Recently, the QRPA calculations with mod-
ern energy density functionals for giant resonances in
deformed nuclei have become available [20–27]. In con-
trast, many of low-lying excited states cannot be well
reproduced by QRPA [8]. This may be due to their
slowly moving large-amplitude nature.
In principle, the TDHFB dynamics can be applica-

ble to large amplitude motion. The problem is that
it is not easy to determine quantum mechanical quan-

tities, such as energy eigenvalues and transition ma-
trix elements, from the TDHFB trajectories. In ad-
dition, the TDHFB lacks a part of quantum fluctua-
tion associated with low-energy large amplitude collec-
tive motion, which leads to difficulties in description of
the quantum tunneling processes, such as spontaneous
fission and sub-barrier fusion reaction. For this pur-
pose, since the TDHF(B) trajectory corresponds to a
stationary-phase limit of the path integral formulation,
the requantization of the mean-field dynamics was pro-
posed [28–33]. It recovers quantum fluctuations miss-
ing in the mean-field level, and possibly enables us to
describe large-amplitude collective tunneling phenom-
ena. The requantization of the TDHFB is particularly
feasible for integrable systems, because the system is
described by separable action-angle variables (Ik, φk),
leading to the Einstein-Brillouin-Keller (EBK) quanti-
zation condition. However, for nonintegrable systems
in general, it is difficult to find suitable periodic orbits
to quantize. A possible solution to this difficulty is to
find a decoupled collective subspace spanned by a single
coordinate and its conjugate momentum [8]. Since the
one-dimensional system is integrable, the quantization
is practicable.

Another somewhat phenomenological approach to nu-
clear collective dynamics is the collective model. In this
approach, the collective Hamiltonian is constructed by
choosing collective coordinates intuitively. The nuclear
energy density functional model is often used as a tool
for a microscopic derivation of the collective Hamilto-
nian [8]. The most well-known and successful model is
the Bohr model [1], which was introduced to describe
low-energy nuclear collective motion in quadrupole de-
grees of freedom with the deformation parameters (β, γ)
and the Euler angles (φ, θ, ψ). For the pairing motion,
the collective coordinates are analogously chosen as the
pair deformation (gap) ∆ and the gauge angle Φ [34].
Based on the pairing collective Hamiltonian, effects of
the pair motion on the quadrupole vibrations have been
discussed in literature [35, 36]. However, it is not trivial
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whether the pair deformation is really a suitable choice
for the collective coordinate, which should be investi-
gated in a microscopic approach based on the TDHFB
dynamics.

Our final goal is to study the role of large-amplitude
pairing dynamics and to reveal nature of the mysteri-
ous excited 0+ states. As the first step, toward this goal,
we investigate accuracy and applicability of the requan-
tized TDHFB model for a two-level pairing model with
equal degeneracy Ω [37], especially on the calculation of
two-particle-transfer matrix elements. In Ref. [38], the
two-particle-transfer matrix elements were evaluated as
Fourier components of the time-dependent mean val-
ues of the pair-creation operators, which demonstrates
nice agreement with the exact results at large Ω values
(Ω = 40). However, in realistic values of Ω, we will
show that the deviation is substantial. The collective
model of the pairing motion, which assumes the pair
deformation as the collective coordinate, has a similar
tendency, namely, applicability limited to large Ω cases
[34]. This deficiency is mainly due to the small collec-
tivity in the pairing motion in realistic situations. In
this paper, in order to improve the quantitative esti-
mate of the matrix elements, we construct microscopic
wave functions based on the EBK quantization for the
integrable systems. The wave functions are obtained
from the stationary-phase approximation for the path-
integral form [39]. Its superiority to the other methods
becomes more evident for smaller values of Ω.

The paper is organized as follows. In Sec. II, we
derive a TDHFB classical Hamiltonian for the pairing
model. In Sec. III, the requantization of the TDHFB is
performed using different methods, based on the canon-
ical and the EBK quantization. In Sec. IV, the nu-
merical results for the two-level model are shown and
compared with exact results. Properties of the pairing
collective coordinate is also discussed. We give a con-
clusion in Sec. V.

II. CLASSICAL FORM OF TDHFB

HAMILTONIAN

The Hamiltonian of the pairing model is given in
terms of single-particle energies ǫl and the pairing
strength g as

H =
∑

l

ǫlnl − g
∑

l,l′

S+
l S

−
l′

=
∑

l

ǫl(2S
0
l +Ωl)− gS+S−, (II.1)

where we use the SU(2) quasi-spin operators, S =
∑

l Sl, with

S0
l =

1

2
(
∑

m

a†lmalm − Ωl), (II.2)

S+
l =

∑

m>0

a†lma
†
lm, S−

l = S+†
l . (II.3)

Each single-particle energy ǫl possesses (2Ωl)-fold de-
generacy (Ωl = jl + 1/2) and

∑

m>0 indicates the sum-
mation over m = 1/2, 3/2, · · · , and Ωl − 1/2. The
occupation number of each level l is given by nl =
∑

m a†lmalm = 2S0
l +Ωl,. The quasi-spin operators sat-

isfy the commutation relations

[S0
l , S

±
l′ ] = ±δll′S±

l , [S+
l , S

−
l′ ] = 2δll′S

0
l . (II.4)

The magnitude of quasi-spin for each level is Sl =
1
2 (Ωl−

νl), where νl is the seniority quantum number, namely
the number of unpaired particle at each level l. In the
present study, we only consider seniority zero states with
ν =

∑

l νl = 0. The residual two-body interaction only
consists of monopole pairing interaction which couples
two particles to zero angular momentum. We obtain
exact solutions either by solving Richardson equation
[40–42] or by diagonalizing the Hamiltonian using the
quasi-spin symmetry.

A. Coherent-state representation of the TDHFB

Hamiltonian

The coherent state for the seniority ν = 0 states (Sl =
Ωl/2) is constructed as

|Z(t)〉 =
∏

l

(

1 + |Zl(t)|2
)−Ωl/2

exp[Zl(t)S
+
l ] |0〉 (II.5)

where |0〉 is the vacuum (zero particle) state, Zl(t) are
time-dependent complex variables which describe mo-
tion of the system. In the SU(2) quasi-spin represen-
tation, |0〉 =

∏

l |Sl,−Sl〉. The coherent state |Z(t)〉
is a superposition of states with different particle num-
bers without unpaired particles. In the present pair-
ing model, the coherent state is the same as the time-
dependent BCS wave function with Zl(t) = vl(t)/ul(t),
where (ul(t), vl(t)) are the time-dependent BCS u, v fac-
tors.

The TDHFB equation can be derived from the time-
dependent variational principle,

δS = 0, S ≡
∫

〈φ(t)|i ∂
∂t

−H |φ(t)〉 dt, (II.6)

where |φ(t)〉 is the time-dependent generalized Slater
determinant. In the present case, we adopt the coherent
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state of Eq. (II.5), |φ(t)〉 = |Z(t)〉. The action S is

S =

∫

L(t)dt

=

∫

dt

{

i

2

∑

l

Ωl

1 + |Zl|2
(Z∗

l Żl − ZlŻ∗
l )− 〈Z|H |Z〉

}

,

(II.7)

and

〈Z|H |Z〉 =
∑

l

ǫl
2Ωl|Zl|2
1 + |Zl|2

− g
∑

l

Ωl|Zl|2(Ωl + |Zl|2)
(1 + |Zl|2)2

− g
∑

l1 6=l2

Ωl1Zl1

1 + |Zl1 |2
Ωl2Z

∗
l2

1 + |Zl2 |2
. (II.8)

We transform the complex variables Zl into real vari-
ables (ql, χl) by Zl = tan θl

2 e
−iχl and ql = cos θl

(0 ≤ θ ≤ π). The Lagrangian L and the expectation
value of Hamiltonian become

L(t) =
∑

l

Ωl

2
(1− ql)χ̇l −H(Z,Z∗), (II.9)

H(Z,Z∗) ≡ 〈Z|H |Z〉
=

∑

l

ǫlΩl(1 − ql)−
g

4

∑

l

Ωl[Ωl(1− q2l ) + (1 − ql)
2]

−g
4

∑

l1 6=l2

Ωl1Ωl2

√

(1− q2l1)(1 − q2l2)e
−i(χl1

−χl2
).

(II.10)

Here, χl represents a kind of gauge angle of each level,
and ql are related to the occupation probability, ql =
|ul|2 − |vl|2. If we choose χl as canonical coordinates,
their conjugate momenta are given by pl ≡ ∂H/∂χ̇l =
Ωl(1−ql)/2. Since the Hamiltonian (II.10) depends only
on relative difference in the gauge angles, the “global”
gauge angles, Φ ∝ ∑

l χl, is a cyclic variable.

B. Two-level case

In a two-level system, it is convenient to define global
and relative gauge angles, Φ and φ, respectively.

Φ ≡ χ1 + χ2

2
, φ ≡ χ2 − χ1, (II.11)

whose ranges are 0 ≤ Φ ≤ 2π and −2π ≤ φ ≤ 2π. Their
conjugate momenta (J, j) are given by

J =
∂L
∂Φ̇

=
2

∑

l=1

Ωl

2
(1− ql),

j =
∂L
∂φ̇

=
Ω2(1− q2)− Ω1(1 − q1)

4
. (II.12)

By calculating the occupation number nl in the level l,
the physical meaning of these conjugate momenta be-
comes obvious

nl = 〈Z|nl|Z〉 = Ωl(1− ql). (II.13)

Therefore, J corresponds to the total particle number
N =

∑

l nl, while j corresponds to the difference of
occupation number between upper level and lower level

J =
N

2
, j =

n2 − n1

4
. (II.14)

The Hamiltonian in terms of these canonical variables
(φ, j; Φ, J) is given by

H(φ, j; J) =
∑

l=1,2

Ωlǫl(1− ql)

− g

4

∑

l=1,2

Ωl[Ωl(1 − q2l ) + (1− ql)
2]

− g

2
Ω1Ω2

√

(1− q21)(1− q22) cosφ (II.15)

with

ql =
Ωl − J − 2(−1)lj

Ωl
for l = 1, 2. (II.16)

Note that the Hamiltonian does not depend on the
global gauge angle Φ. This leads to the particle number
conservation, dN/dt = 0.
The TDHFB equation can be written in a form of the

classical equations of motion:

dΦ

dt
=
∂H
∂J

,
dJ

dt
= −∂H

∂Φ
, (II.17)

dφ

dt
=
∂H
∂j

,
dj

dt
= −∂H

∂φ
. (II.18)

Since the J = N/2 and the total energy E are constants
of motion, the TDHFB trajectories with given N and
E are determined in the two-dimensional phase space
(φ, j) with the condition

H(φ(t), j(t); J = N/2) = E. (II.19)

Examples of the classical trajectories in the phase space
(φ, j) are shown in Fig. 1. The figure shows contour lines
of energy for systems, which correspond to the TDHFB
trajectories, with Ω1 = Ω2 = 8 and N = 16 with differ-
ent values of g. The transition from normal to superfluid
phase takes place at g = ∆ǫ(2Ω)−1 with ∆ǫ = ǫ2 − ǫ1.
Using a dimensionless parameter x = 2gΩ/∆ǫ, at x < 1,
the ground state is normal with fully occupied lower
level n1 = N and empty upper level (n2 = 0). All the
TDHFB trajectories represent rotational behavior with
respect to the relative angle φ. Here, the “rotational
behavior” means that the motion spans the whole re-
gion of the angle φ, while we use “vibrational” for the
classical motion in a bound region of φ (−π < φ < π).
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FIG. 1: Energy contour plot for Ω1 = Ω2 = 8 and N = 16. The lines indicate the TDHFB trajectories fulfilling
the EBK quantization condition of Eq. (III.7).

At g = x = 0, the Hamiltonian becomes independent
from (Φ, φ), then, the occupation numbers, n1 and n2,
are constants of motion. At x > 1, the energy-minimum
point and the closed trajectories appear around j = j0
(−N/4 < j0 < N/4) and φ = 0, which suggests the
vibrational behavior for φ. At higher energies, the tra-
jectories become open (rotational-like), which suggests
a phase transition from super to normal phases as a
function of excitation energy.
In the single-j model, since the second term in the

Hamiltonian (II.15) is absent, the Hamiltonian is ex-
actly quadratic with respect to N , H(N) = H0 + (N −
N0)

2/(2J ). The moment of inertia for the pair rotation
is J = 2/g×Ω/(Ω− 1) ≈ 2/g at Ω → ∞. In the multi-
j case, the Hamiltonian contains higher-order terms in
general.

III. REQUANTIZATION OF TDHFB FOR THE

TWO-LEVEL PAIR MODEL

In order to determine energy eigenstates, we need to
requantize the TDHFB trajectories. Since the present
two-level model is integrable (Sec. II), it is feasible to ap-
ply the stationary-phase approximation to the path in-
tegral expression. In addition, we also study the canon-
ical quantization of the TDHFB Hamiltonian, and the
matrix elements extracted by the Fourier components
[38]. We show results of these different approaches to
the pairing model.

A. Stationary phase approximation to the path

integral

Starting an arbitrary state |ψ(0)〉 at time t = 0, the
time-dependent full quantum state can be written in the

path integral form

|ψ(t)〉 =e−iHt |ψ(0)〉

=

∫

dµ(Z ′′) |Z ′′〉
∫

dµ(Z ′)

×
∫ Z(t)=Z′′

Z(0)=Z′

Dµ[Z(τ)]eiS[Z(τ)]ψ(Z ′), (III.1)

where ψ(Z) ≡ 〈Z|ψ(0)〉 and the invariant measure
dµ(Z) is defined by the unity condition,

∫

dµ(Z) |Z〉 〈Z| = 1. (III.2)

In Eq. (III.1), S[Z(τ)] is the action (II.7) along a given
path Z(τ) with the initial coherent state |Z(0)〉 = |Z ′〉
and the final state |Z(t)〉 = |Z ′′〉, then, the integration
∫

Dµ[Z(τ)] is performed over all possible paths |Z(τ)〉
between them. Among all trajectories in the path inte-
gral, the lowest stationary-phase approximation selects
the TDHFB (classical) trajectories∗.

|ψ(t)〉 ≈
∫

dµ(Z ′) |Z ′
cl(t)〉 eiScl(Z

′

cl(t),Z
′)ψ(Z ′), (III.3)

where the TDHFB trajectory starting from |Z ′〉 ends at
|Z ′

cl(t)〉 at time t. The action Scl(Zf , Zi) is calculated
along this classical trajectory connecting Zi = Z ′

cl(0) =
Z ′ and Zf = Z ′

cl(t).

Scl(Z
′
cl(t), Z

′) ≡
∫ t

0

〈Zcl(t)|i
∂

∂t
−H |Zcl(t)〉 dt

= T [Zcl]−H(Z ′, Z ′∗)t, (III.4)

∗ In this formulation, the stationary-phase approximation agrees
with the TDHF(B) trajectories, while that to the auxiliary-field
path integral of Refs. [28, 29] leads to the TDH(B) without the
Fock potentials.
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with

T [Zcl] ≡
∫ t

0

〈Zcl(t)|i
∂

∂t
|Zcl(t)〉 dt

=

∫ Z′

cl(t)

Z′

i

2

∑

l

Ωl

1 + |Zl|2
(Z∗

l dZl − ZldZ
∗
l ).

(III.5)

In the last equation of Eq. (III.4), we used the
fact that the TDHFB trajectory conserves the energy,
H(Zcl(t), Z

∗
cl(t)) = H(Z ′, Z ′∗).

The energy eigenstates correspond to stationary
states, 〈Z|ψ(t)〉 ∝ 〈Z|ψ(0)〉 = ψ(Z), which can be con-
structed by superposing the coherent states along a pe-

riodic TDHFB trajectory Z
(k)
cl as [31, 32, 39]

|ψk〉 =
∮

dµ(Z
(k)
cl ) |Z(k)

cl 〉 eiT [Z
(k)
cl ]. (III.6)

The single-valuedness of the wave function leads to the
quantization condition (k: integer)

T◦[Z(k)
cl ] =

∮

i

2

∑

l

Ωl

1 + |Z(k)
l |2

×
(

Z
(k)∗
l dZ

(k)
l − Z

(k)
l dZ

(k)∗
l

)

=2kπ. (III.7)

The state evolves in time as |ψk(t)〉 = |ψk〉 e−iEkt,
with the energy of the k-th periodic trajectory, Ek =

H(Z
(k)
cl , Z

(k)∗
cl ).

Finding TDHFB trajectories satisfying the quantiza-
tion condition (III.7) is an extremely difficult task in
general. It is better founded and more practical if the
classical system is completely integrable. In integrable
systems, M complex variables Z(t) can be transformed
into the action-angle variables;

Z(t) = {Zl(t); l = 1, · · · ,M}
→ {E; v1, · · · , vM−1; θ1(t), · · · , θM (t)}, (III.8)

where the variables E and v define an invariant torus,
while θ(t) parameterize the coordinates on the torus.
The integration path of Eq. (III.7) is now taken as topo-
logically independent closed path on the torus, namely
the EBK quantization condition. There are M inde-
pendent closed paths and M quantum numbers, k =
(k1, · · · , kM ), to specify the stationary energy eigen-
state. These are associated with M invariant variables,

{Ek; v
(k)
1 , · · · , v(k)M−1}. Using the invariant measure

dµ(Z) = ρ(E, v, θ)dEdv1 · · · dvM−1dθ1 · · · dθM , (III.9)

the k-th semiclassical wave function can be calculated
as

|ψk〉 ∝
∮

dθ1 · · ·
∮

dθM ρ(Ek, v
(k), θ) |Ek, v

(k), θ〉

× eiT [Ek,v
(k),θ]. (III.10)

Here, we omit the integration with respect to the invari-
ant variables, E and v.
We apply semiclassical approach to the two-level pair-

ing model. The invariant measure in SU(2)⊗SU(2) is

dµ(Z) =
∏

l

Ωl + 1

π
(1 + |Zl|2)−2dReZldImZl (III.11)

=
∏

l

Ωl + 1

4π
d cos θldχl (III.12)

=





∏

l=1,2

1 + Ω−1
l

2π



 dΦdJdφdj. (III.13)

In the last equation, we transform the canonical coor-
dinates by Eqs. (II.11) and (II.12). Since the particle
number J = N/2 and the total energy E are invari-
ant, the two-level pairing model is integrable. Thus, we
can construct the semiclassical wave function using Eq.
(III.10). The action integral is given by

Tk(Φ, φ; J) = JΦ +

∫ φ

−π

j′dφ′ =
N

2
Φ +

∫ t

0

j(t′)
dφ

dt′
dt′

≡ TN,Ek
(Φ, t), (III.14)

where the integration
∫

jdφ is performed on the k-th
closed trajectory of Eq. (III.7), and the variables (φ, j)
are transformed into (t, E). The semiclassical wave
function fulfilling the EBK quantization condition be-
comes

|ψN
k 〉 ∝

∮

dΦ

∮

dteiTN,Ek
(Φ,t) |Φ, t〉N,Ek

(III.15)

∝
J
∑

m=0

C(Ek,J)
m |S1,−S1 +m;S2,−S2 + (J −m)〉 ,

(III.16)

with Sl = Ωl/2, J = N/2, and the coefficients

C(Ek,J)
m =

(

J

m

)∫ T

0

dt

× exp

(

i

∫ t

j(t′)φ̇(t′)dt′ − i(J/2−m)φ(t)

)

×A(q1, S1,m)A(q2, S2, J −m), (III.17)

A(q, S,m) =

(

1− q

2

)m/2 (
1 + q

2

)S−m/2
√

(2S)!m!

(2S −m)!
,

where T is the period of the closed trajectory. The
TDHFB-requantized wave functions (III.16) are eigen-
states of the total particle number. This is due to the
integration over the global gauge angle Φ, which makes
the particle number projection not only for the ground
state but also for excited states. See Appendix for de-
tailed derivation of Eq. (III.16).
Since we obtain the microscopic wave function of ev-

ery eigenstate, the expectation values and the transition
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matrix elements for any operator can be calculated in
a straightforward manner. In Sec. IV, we show those of
the pair-addition operator S+ which characterize prop-
erties of the pair condensates.
Before ending this section, let us note the periodic

conditions of the coordinates and the quantization con-
dition. Since the two original variables, (χ1, χ2), are
independent periodic variables of the period 2π, in addi-
tion to the trivial periodicity of 2π for Φ and of 4π for φ,
we have periodic conditions for (Φ, φ) → (Φ±π, φ±2π)
and (Φ, φ) → (Φ±π, φ∓2π). The former (latter) corre-
sponds to χ2±2π (χ1±2π) with χ1 (χ2) being fixed. For
open TDHFB trajectory (e.g., Fig. 1), the quantization
condition becomes

TN,Ek
(Φ± π, φ± 2π; J) = TN,Ek

(Φ, φ; J) + 2mπ

⇔ ±N
2
π +

∫ π

−π

jdφ = 2mπ. (III.18)

This leads to the following:

∫ π

−π

jdφ =

{

2kπ for N = 4n,

(2k + 1)π for N = 4n+ 2,
(III.19)

where m, k and n > 0 are integer numbers.

B. Canonical quantization

The most common approach to the quantization of
the nuclear collective model is the canonical quantiza-
tion [1]. In the pairing collective model, the canoni-
cal quantization was adopted in previous studies [34–
36]. Assuming magnitude and phase of the pairing gap
as collective coordinates, a collective Hamiltonian was
constructed in the second order in momenta. Then, the
Hamiltonian was quantized by the canonical quantiza-
tion with Pauli’s prescription. In this section, we apply
similar quantization method to the TDHFB Hamilto-
nian (II.15). The main difference is that the collective
canonical variables are not assumed in the present case,
but are obtained from the TDHFB dynamics itself.
It is not straightforward to apply Pauli’s prescription

to the present case, because the TDHFB Hamiltonian
(II.15) is not limited to the second order in momenta.
In the present study, we adopt a simple symmetrized
ordering, as

H(φ̂, ĵ, Ĵ) =
∑

l=1,2

Ωlǫl(1− ql)

− g

4

∑

l=1,2

Ωl(Ωl(1− q2l ) + (1 − ql)
2)

− g

4
Ω1Ω2

{

√

(1− q21)(1 − q22) cos φ̂

+cos φ̂
√

(1− q21)(1 − q22)

}

. (III.20)

As in Eq. (II.16), ql contain J and j which are replaced
by

Ĵ = −i ∂
∂Φ

, ĵ = −i ∂
∂φ
. (III.21)

Since Φ is a cyclic variable, we write the collective wave
function Ψ(Φ, φ) as eigenstates of the particle number
N in a separable form

Ψ
(N)
k (Φ, φ) =

1√
2π
ei

N
2 Φψ

(N)
k (φ). (III.22)

Then, the problem is reduced to the one-dimensional
Schrödinger equation for the motion in the relative angle
φ. the Schrödinger equation

H

(

φ,−i d
dφ

;
N

2

)

ψ
(N)
k (φ) = E

(N)
k ψ

(N)
k (φ), (III.23)

The wave function should have a periodic property
with respect to the variable φ; ψk(φ) = ψk(φ + 4π).
For the adopted simple ordering of Eq. (III.20), it is

convenient to use the eigenstates of ĵ as the basis to
diagonalize the Hamiltonian. They are

χj(φ) =
1√
4π
eiφj , with j: integer or half integer.

(III.24)
Since the Hamiltonian (III.20) contains only terms lin-
early proportional to e±iφ, the basis states χj with half-
integer difference in j are not coupled with each other.
Thus, the eigenstates of Eq. (III.23) can be expanded
as

ψ
(N)
k (φ) =

jmax
∑

j=jmin,jmin+1,···

c
(N)
k,j χ

(N)
j (φ). (III.25)

According to the relation j = (n2−n1)/4 = (N−2n1)/4
in Eq. (II.14), we adopt the (half-)integer values of j for
N = 4n (N = 4n+2) with integer n. This is consistent
with the quantization condition (III.19). The coupling
term with different j in Eq. (III.20) vanishes for nl = 0
and nl = 2Ωl, which restricts values of j in a finite range
of jmin ≤ j ≤ jmax.
In order to estimate the two-particle transfer matrix

elements, we construct the corresponding operators as
follows. The classical form of matrix elements are ob-
tained as

S+(Φ, J ;φ, j) = 〈Z|Ŝ+|Z〉

=
1

2

(

Ω1

√

1− q21e
−iφ/2 +Ω2

√

1− q22e
iφ/2

)

eiΦ

(III.26)

S−(Φ, J ;φ, j) = 〈Z|Ŝ−|Z〉

=
1

2

(

Ω1

√

1− q21e
iφ/2 +Ω2

√

1− q22e
−iφ/2

)

e−iΦ.

(III.27)

Again, we adopt a simple symmetrized ordering for the
quantization:
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S±(Φ̂, Ĵ ; φ̂, ĵ) =
1

4

(

Ω1

√

1− q21e
∓iφ̂/2 +Ω2

√

1− q22e
±iφ̂/2

)

e±iΦ̂ +
1

4
e±iΦ̂

(

e∓iφ̂/2Ω1

√

1− q21 + e±iφ̂/2Ω2

√

1− q22

)

.

(III.28)

The exponential factors e±iΦ change the total particle
number N → N ± 2, while e±iφ/2 change the relative

numbers, n2−n1 → n2−n1± 2. Using these operators,
the pair-addition transition strengths are calculated as

B(Pad; k → k′) = | 〈N ′, k′|S+(Φ̂, Ĵ ; φ̂, ĵ)|N, k〉 |2

=

∣

∣

∣

∣

1

2π

∫ 2π

0

dΦ

∫ 2π

−2π

dφψ
(N ′)∗
k′ (φ)e−iN′

2 ΦS+(Φ̂, Ĵ ; φ̂, ĵ)ψ
(N)
k (φ)ei

N
2 Φ

∣

∣

∣

∣

2

, (III.29)

which automatically vanishes for N ′ 6= N + 2.

C. Fourier decomposition of time-dependent

matrix elements

The requantization and calculation of the matrix ele-
ments can be also performed using the time-dependent
solutions of the TDHFB. It was proposed and applied to
the two-level pairing model [38], which we recapitulate
in this section.
The TDHFB provides a time-dependent solution Z(t)

starting from a given initial state Z(0). The energy
eigenvalues and the corresponding closed trajectories
are determined from the EBK quantization condition
(III.7). The pair transfer matrix elements are evaluated
as the Fourier components of the time-dependent mean
values S±(t) = S±(Z(t)), Eqs. (III.26) and (III.27).
Since the global gauge angle Φ is a cyclic variable, the
motion in the relative gauge angle φ is independent from
Φ. Thus, we calculate the time evolution of φ(t), and
find the period of the k-th closed trajectory T satisfying
Eq. (III.7). Then, the Fourier component,

S̃±(Ek;ω) =
1

T

∫ T

0

dteiωtS±(t), (III.30)

corresponds to the pair transfer matrix element from the
state k to k′ when ω = 2π(k′− k)/T . The pair-addition
transition strengths are calculated as

B(Pad; k → k′) =

∣

∣

∣

∣

S̃+

(

Ek;
2π

T
∆k

)∣

∣

∣

∣

2

, (III.31)

with ∆k = k′ − k. In this approach, the transition
between the ground states of neighboring nuclei (N →
N +2) corresponds to the stationary component (k = 0
and ∆k = 0), namely the expectation value in the BCS
approximation.

The derivation of Eq. (III.30) is based on the wave
packet in the classical limit [43]. The TDHFB state is
assumed to be a superposition of eigenstates |φNk 〉 in a
narrow range of energy Ek0 −∆E < Ek < Ek0 +∆E,

|Z(t)〉 =
∑

N

∑

k

cNk |φNk 〉 e−iEkt, (III.32)

where the eigenenergies are evenly spaced and the co-
efficients cNk slowly vary with respect to k and N . The
expectation value of S± is

S±(t) =
∑

N

∑

k,k′

cN+2∗
k′ cNk 〈φN+2

k′ |S±|φNk 〉 ei(Ek′−Ek)t.

(III.33)

The matrix element 〈φN+2
k′ |S±|φNk 〉 quickly disappears

as |k′−k| increases, while it stays almost constant for the
small change of k and N with |k′−k| being fixed. Thus,

we may approximate cN+2
k′ ≈ cNk , Ek′ −Ek ≈ ω0∆k, and

that 〈φN+2
k′ |S±|φNk 〉 ≈ 〈φN+2

k0+∆k|S±|φNk0
〉

S±(t) ≈
∑

N

∑

k

∣

∣cNk
∣

∣

2 ∑

∆k

〈φN+2
k0+∆k|S±|φNk0

〉 eiω0∆kt

=
∑

∆k

〈φN+2
k0+∆k|S±|φNk0

〉 eiω0∆kt, (III.34)

where k0 is a representative index value of the superpo-
sition in Eq. (III.32). From this classical wave packet
approximation, we obtain Eq. (III.30). It is not trivial
to justify the approximation for small values of Ω and
for transitions around the ground state.

IV. RESULTS

In this section, we study the seniority-zero states
(ν1 = ν2 = 0) in the two-level system with equal de-
generacy, Ω1 = Ω2 = Ω. Since all the properties are
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FIG. 2: Excitation energies of |0+2 〉, |0+3 〉 and |0+4 〉 for
Ω = 50 systems with (a) N = 50 and (b) N = 100 as
functions of the dimensionless parameter x of Eq.

(IV.1).

scaled with the ratio, g/∆ǫ, where ∆ǫ is the level spac-
ing ∆ǫ = ǫ2 − ǫ1, we define a dimensionless parameter
to control the strength of the pairing correlation

x = 2Ω
g

∆ǫ
. (IV.1)

For sub-shell-closed systems with N = 2Ω system, the
transition from normal (x < 1) to superfluid (x > 1)
states takes place at x = 1.†

We apply the requantization methods in Sec. III. In
the following, the stationary-phase approximation to the
path integral in Sec. III A is denoted as “SPA”, the
Fourier decomposition method (Sec. III C) as “FD”, and
the canonical quantization with periodic boundary con-
dition (Sec. III B) as “CQ”. Note that the SPA and the
FD produce the same eigenenergies which are based on
the EBK quantization rule.

† Strictly speaking, the phase transition takes place at x =
2Ω/(2Ω − 1).

A. Large-Ω cases

In the limit of Ω → ∞, we expect that the classical
approximation becomes exact. Here, we adopt Ω = 50
with N = 100 (closed-shell configuration) and N = 50
(mid-shell configuration).

Calculated excitation energies are shown in Fig. 2.
The results of SPA/FD and CQ are compared with the
exact values. At the weak pairing limit of x → 0, the
excitation energies are multiples of 2∆ǫ, which corre-
spond to pure 2n-particle-2n-hole excitations. Both the
weak and the strong pairing limits are nicely reproduced
by all the calculations, while the CQ method produces
excitation energies slightly lower than the exact values
in an intermediate region around x = 1. It is somewhat
surprising to see that the deviation is larger for the case
of the mid-shell configuration (N = 50) than the closed
shell (N = 100).

The deviation in the CQ method is mainly due to
the zero-point energy in the ground state. Since we
solve the collective Schrödinger equation (III.23) with
the quantized Hamiltonian of Eq. (III.20), the zero-
point energy ∆E > 0 is inevitable in the CQ method.
The ∆E is associated with the degree of localization
of the wave function. Thus, the magnitude of ∆E for
“bound” states are different from that for “unbound”
states. See Fig. 1. In the strong pairing limit, the po-
tential minimum is deep enough to bound both ground
and excited states. Conversely, all the states are un-
bound in the weak limit. In both limits, ∆E for ground
and excited states are similar, and they are canceled for
the excitation energy. However, near x = 1, the ground
state is bound, while the excited states are unbound.
In this case, ∆E is larger in the ground state than in
the excited states, which makes the excitation energy
smaller. This also explains the difference between the
mid-shell and closed-shell configurations. In the closed
shell, all the states are unbound for x < 1, while, in the
mid-shell, there is a region in x < 1 where the ground
state is bound but the excited state is unbound.

The obtained wave functions in the SPA and the CQ
can be decomposed in the 2n-particle-2n-hole compo-
nents in Fig. 3. In the SPA, it is done as Eq. (III.16)

and the normalized squared coefficients |C(Ek,J)
m |2 are

plotted in Fig. 3. For the CQ, |c(N)
k,j |2 in Eq. (III.25)

are shown. Here, m and j are related to each other,
2j = J − 2m. They show excellent agreement with the
exact results, not only for the ground state but for ex-
cited states. We find the SPA is even more precise than
the CQ.

Next, let us discuss the transition matrix elements.
In this paper, we discuss only k = 0 (ground state)
and k = 1 (1st excited ν = 0 state). The FD calcu-
lation is based on the time evolution of the expecta-
tion value S+(t) with fixed (J,Φ) in Eq. (III.30). For
(N, k) → (N + 2, k′) transitions, we basically adopt the
trajectories for the initial state, namely, the one with
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FIG. 3: Occupation probability in excited 0+ states as a function of j for Ω = 50 systems with (a) N = 50 and (b)
N = 100. The upper and lower panels display the results for x = 0.5 and x = 2, respectively. The three vertical

bars at each j from the left to the right represent the squared components of the wave functions from exact, SPA,
and CQ calculations, respectively. The left end of the horizontal axis at j = jmin corresponds to a component with

(n1, n2) = (N, 0). The next at j = jmin + 1 corresponds to the one with (n1, n2) = (N − 2, 2), and so on.

J = N/2 satisfying the k-th EBK quantization condi-
tion. The k → k (∆k = 0) transitions correspond to
the intraband transitions of the pair-rotational band,
when the state is deformed in the gauge space (pair de-
formation). For the ground-state band (k = 0), this is
nothing but the expectation value at the BCS wave func-
tion, with the constant value of S+. Since the constant
S+ provides only ∆k = 0 intraband transitions, for the
interband transition of (N, k = 0) → (N + 2, k = 1)
transitions, the trajectory satisfying the EBK condition
of k = 1 is used to perform the Fourier decomposition
(III.30) of ω = 2π/T .

The calculated pair-addition strengths B(Pad) are
shown in Fig. 4 for N = 48 → 50, and in Fig. 5
for N = 98 → 100. Near the closed-shell configura-
tion (N = 98 → 100), the pair-addition strengths for
the intraband transitions (∆k = 0) drastically increase
around x = 1. This reflects a character change from
the pair vibration (x . 1) to the pair rotation (x & 1).
The B(Pad; k → k) in the pair-rotational transitions
are about 20 times larger than those in the vibrational
transitions. The interband B(Pad; 0 → 1) are similar
to the B(Pad; 0 → 0) in the vibrational region (x . 1),
because they both change the number of pair-phonon

quanta by one unit. In contrast, B(Pad; 1 → 0), which
change the phonon quanta by three, are almost zero. In
the pair-rotational region (x ≫ 1), B(Pad; 1 → 0) and
B(Pad; 0 → 1) are roughly identical. This is because
both B(Pad; 1 → 0) and B(Pad; 0 → 1) correspond to
one-phonon excitation in “deformed” cases (x≫ 1).
In the mid-shell region (N = 48 → 50), the intraband

B(Pad; k → k) are smoothly increase as x increases.
Their values are larger than the interband strengths by
about one (two) order of magnitude at x ∼ 0 (x ∼ 2.5),
indicating the pair-rotational character. The interband
B(Pad; 0 → 1) show a gradual decrease as a function
of x, while B(Pad; 1 → 0) are negligibly small, even at
x ≫ 1. This presents a prominent difference from the
closed-shell case.
All the features of the pair-transfer strengths are

nicely reproduced in the SPA method, for both the
closed- and mid-shell configurations. The CQ method
qualitatively agrees with the exact calculation. For in-
stance, the order-of-magnitude difference between intra-
band and interband transitions. However, the precision
of the CQ method is not so good, especially around
x = 1. The FD method properly describes the main
features in the superfluid phase, while it fails for the
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FIG. 5: The same as Fig. 4 but for N = 98 → 100.

normal phase (x . 1). In the mid-shell configuration,
the ground state is always in the superfluid phase at
x > 0, while the k = 1 excited state corresponds to the
open (closed) trajectory at 0 < x . 1 (x & 1). For the
open trajectory, the FD produces wrong values. How-
ever, somewhat surprisingly, the SPA, which uses these
open trajectories for the construction of wave functions,
reproduces main features of the exact results.

B. Small-Ω cases

Next, we discuss systems with smaller degeneracy
Ω = 8. Again, we study systems near the closed-shell
and the mid-shell configurations.

1. Mid-shell configuration

The calculated excitation energies are shown in Fig. 6
for the N = 8 case. The SPA/FD reproduces the ex-
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FIG. 7: Occupation probability in excited 0+ states as
a function of j for Ω = N = 8 systems. The panels (a)

and (b) display the results for x = 0.5 and x = 2,
respectively. See also the caption of Fig. 3.

act calculation in the entire region of x, not only for the
lowest but also for higher excited states. The CQ repro-
duces the exact result in a weak pairing region (x . 1),
while it underestimates the excitation energies at x & 1.
Analogous to the case of Ω = 50, this is mainly due to
effect of the zero-point energy ∆E. The ground-state
energy in the CQ calculation is bound at x & 1. How-

ever, because of the weak collectivity with N = 8, the
first excited state stays unbound even at the maximum
x in Fig. 6. Therefore, the energy shift ∆E > 0 is larger
in the ground state, which makes the excitation energy
smaller.
The wave functions are plotted in Fig. 7. At the weak

pairing case of x = 0.5, both the SPA and the CQ repro-
duce the exact result. At x = 2, the squared coefficients
of the ground state has an asymmetric shape peaked at
the lowest j, which suggests that the state is not deeply
bound in the potential. It is in contrast to the sym-
metric shape in Fig. 3. The wave functions obtained by
the CQ method has noticeable deviation from the exact
results. On the other hand, the SPA wave functions are
almost identical to the exact ones.
The pair-addition transition strengths from N = 6

to N = 8 are shown in Fig. 8. The intraband k →
k transitions increase and the interband k = 0 → 1
transitions decrease as functions of x. Their relative
difference becomes more than one order of magnitude
at x & 2. Thus, even at relatively small Ω and N , the
intraband transitions in the pair rotation is qualitatively
different from the interband transitions.
We find the excellent agreement between the SPA and

the exact calculations. The first excited state corre-
sponds to the open trajectory which turns out to almost
perfectly reproduce the exact wave function. In con-
trast, this open trajectory produces results far from the
exact one in the FD method. It produces almost van-
ishing the intraband B(Pad; 1 → 1). The B(Pad; 0 → 0)
shows a qualitative agreement for its behavior, but is
significantly underestimated. The CQ method also un-
derestimates the intraband transitions.
For the mid-shell configurations, the SPA is domi-

nantly superior to the CQ and the FD methods.

2. Closed-shell configuration

In the closed shell with N = 16, the minimum-energy
trajectory changes at x = 1 from j = −4 (normal phase)
to the BCS minimum j > −4 and φ = 0 (superfluid
phase). At the transitional point (x = 1), the har-
monic approximation is known to collapse, namely to
produce zero excitation energy. In Fig. 9, this collaps-
ing is avoided in all the calculations (SPA/FD and CQ).
The behaviors of the lowest excitation agree with the
exact calculations, while the CQ method substantially
underestimates those for higher states. This is again due
to the difference in the zero-point energy in the ground
and the excited states. In the CQ calculation, the first
excited state is bound at x & 2, but the second excited
state is unbound for x . 3.2.
Near the transition point from the open to closed tra-

jectories, the wave functions calculated with the SPA
and CQ methods somewhat differ from the exact ones.
In Fig. 10, the wave functions at x = 0.5 and 2 are pre-
sented. They agree with exact calculation at x = 0.5.
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FIG. 8: The same as Fig. 4 but for N = 6 → 8 with Ω = 8.
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In contrast, we find some deviations for the first excited
state (k = 1) at x = 2. This is because the k = 1 trajec-
tory corresponding to the first excited state changes its
character from open to closed at x ≈ 1.8. Therefore, the
first excited wave function is difficult to reproduce in the
SPA, although the wave functions for the ground and
higher excited states show reasonable agreement. The
similar disagreement is observed for the ground state
near x = 1.
Singular behaviors near the transition points can be

also observed in the pair-addition transition strengths
(N = 14 → 16) shown in Fig. 11. At x = 1, the in-
traband B(Pad; 0 → 0) shows a kink in the SPA, and
B(Pad; 1 → 1) shows another kink at x ≈ 1.8. These
exactly correspond to the transition points from open
to closed trajectories. Nevertheless, the overall behav-
iors are well reproduced and the values at the weak and
strong pairing limit are reasonably reproduced in the
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FIG. 10: The same as Fig. 7 but for N = 2Ω = 16.

SPA. The CQ calculation also shows smoothed kink-
like behaviors near the transition points. However, it
underestimates the intraband B(Pad; k → k). The FD
method does not have a kink for B(Pad; 0 → 0), because
S+(t) is calculated for an N = 14 system. Both intra-
band and interband transitions in the FD calculations
reasonably agree with the exact results at x & 1.8. The
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FIG. 11: The same as Fig. 4 but for N = 14 → 16 with Ω = 8.

k = 1 state is not properly reproduced at x . 1.8 with
the open trajectory.
For the closed-shell configurations, the SPA and the

FD methods provide reasonable description for the pair-
transfer transition strengths.

C. Collective model treatment

The collective model has been proposed and uti-
lized for the nuclear pairing dynamics [34–36]. For
those studies, the pairing gap parameter (or equivalent
quantities) is assumed to be the collective coordinates.
This is analogous to the five-dimensional (5D) collec-
tive (Bohr) model, in which the collective coordinates
are assumed to be the quadrupole deformation parame-
ters, α2µ. The 5D collective model has been extensively
applied to analysis on numerous experimental data. On
the contrary, there have been very few applications of
the pairing collective model in comparison with experi-
mental data. In this section, we examine the validity of
the collective treatment of the pairing.
Although the global gauge angle Φ is arbitrary, the

deformation parameter α ≡ 〈Ŝ−〉 in the gauge space
is usually taken as a real value (Φ = 0). The energy
minimization with a fixed value of real α always leads
to φ = 0.

α(j, J) = 〈Z0|Ŝ−|Z0〉 =
Ω

2

(

√

1− q21 +
√

1− q22

)

.

(IV.2)

The parameter α is equivalent to the pairing gap ∆,
since the relation, ∆ = Gα, guarantees one-to-one cor-
respondence between α and ∆. In Sec. III B, we treat
φ as a collective coordinate and j as its conjugate mo-
mentum. The collective model treatment is based on

the opposite choice, j as a coordinate and φ as a mo-
mentum.

The problem is that there is no one-to-one correspon-
dence between j and α. The relation between j and α
are shown by dashed lines in Fig. 12 for Ω = 8 mid-shell
(a) and closed-shell (b) configurations. The deforma-
tion parameter α is largest at j = 0 (equal filling in
both levels), and smallest at the end points of j. The
constrained minimization with respect to α cannot pro-
duce the states corresponding to j > 0. Apparently, we
cannot map the entire region of j to α.

The collective model treatment requires the collective
wave functions to be well localized in the j < 0 region.
The potential energy, E(j) = H(φ = 0, j; J = N/2) of
Eq. (II.15), is also shown in Fig. 12. The restriction be-
comes more serious for the stronger pairing cases. For
instance, the potential with x = 3.2 in Fig. 12(a) has
only about 1 MeV depth at the minimum point, relative
to the value at the boundary point (j = 0) correspond-
ing to the maximum value of α (∆).

To simulate the result of the collective model, we ex-
pand the Hamiltonian (II.15) up to the second order in

φ, then, quantize it by φ̂ = i∂/∂j with the ordering
given by Pauli’s prescription. The range of the coordi-
nate j is restricted to jmin ≤ j ≤ 0 with the vanishing
boundary condition ψ(jmin) = ψ(0) = 0. Figure 13
shows two examples of the relationship between excita-
tion energies and the potential energy surface. In the
panel (a), we show the case of large Ω (Ω = 50, N = 50,
and x = 2.4), in which the excited 0+ states are bound
up to second excitation. From the collective model, the
energies of the ground and the first excited states are
well described, while the deviation becomes larger for
higher excited states. For very large degeneracy, the
pocket of energy surface is deep, hence the low-lying ex-
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FIG. 12: Energy surfaces as functions of j, Eq. (II.15)
with φ = 0, for x = 0.5, 2, and 3.2. Dashed line is the
pairing deformation parameter α of Eq. (IV.2) as a
function of j. (a) mid-shell (Ω = N = 8) and (b)

closed-shell (2Ω = N = 16).

cited states may be described by α. However, in the
small-Ω case (Ω = 8, N = 16, and x = 2.4) of the
panel (b), no excited states are bound by the potential
as a function of α. None of the excited 0+ states are
properly described in the collective model. This shal-
low potential is a consequence of the improper choice
of the collective coordinate α which represents only the
j < 0 region. Therefore, the collective model treatment
assuming α (∆) as the collective coordinate is not ap-
plicable to small-Ω and strong-pairing cases.
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FIG. 13: Potential energy surface as functions of α
with x = 2.4; (a) Ω = N = 50, (b) 2Ω = N = 16.

Horizontal lines indicate energy spectra. Black lines
are obtained from the potential energy surface, and

green lines are obtained with the CQ method
(Sec. III B).

V. CONCLUSION

The different methods of the requantization of the
TDHFB dynamics was studied for the two-level pair-
ing model; the stationary-phase approximation (SPA) of
the path integral, the canonical quantization (CQ), and
the Fourier decomposition (FD) of the time-dependent
observables. In this model, since the global gauge an-
gle Φ is a cyclic variable, the TDHFB dynamics can
be described by the integrable classical dynamics. Af-
ter the pair-rotation variables (Φ, J) are separated, the
remaining degrees of freedom, (φ, j), describe the pair-
vibrational motion.

In systems with large degeneracy Ω and number of
particles N , all the quantization methods reasonably
reproduce the results of the exact calculation for ex-
citation spectra. It is more difficult to reproduce the
two-particle transfer matrix elements. Nevertheless, for
the large Ω andN , we obtain qualitative agreement with
the exact results. These are ideal cases, but realistic sit-
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uations may have smaller Ω and N in the valence space.
In systems with relatively small Ω and N , the agree-

ment is less quantitative for the CQ and the FD, espe-
cially for the two-particle transfer matrix elements. In
contrast, the SPA keeps its accuracy in the entire range
of pairing strengths. One of the reasons of its success
is due to the inclusion of the off-diagonal parts of the
pair transfer operator, by the explicit construction of the
microscopic wave functions. The CQ and FD calculate
the pair transfer matrix elements using only the diago-
nal part (expectation value) of the operator Ŝ±, based
on Eqs. (III.26) and (III.27). This is a good approxima-
tion when the collectivity is so large that the diagonal
parts dominate. However, the pairing collectivity may
be too weak to justify this treatment.
We also investigated the conventional treatment of

the collective model which assumes that the collective
coordinate is the paring gap parameter. As we men-
tioned before, the present two-level pairing Hamiltonian
has only one pair of collective variables (φ, j), in addi-
tion to the pair-rotational variables (Φ, J). Even for
such a simple system, we find that it is difficult to jus-
tify the use of ∆ as the collective coordinate, especially
for relatively small-Ω cases. Basically, there is no one-
to-one correspondence between ∆ and j. The collective

wave functions are not necessarily bound in the region
where the variable ∆ can represent.

Among the different requantization methods, the SPA
is the most accurate tool for description of the pair-
ing large amplitude collective motion in realistic nuclear
systems. The weak point of this approach is that it is ap-
plicable only to the integrable TDHFB system. In order
to solve this problem, we plan to first extract the inte-
grable collective submanifold in the many-dimensional
TDHFB phase space. For this purpose, the adiabatic
self-consistent collective coordinate (ASCC) method [8]
is a promising tool. The combined study of the ASCC
and the SPA for multi-level systems is our next target
under progress.
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Appendix A: Derivation of semiclassical wave function

We give a derivation of the semiclassical wave function of Eq. (III.16). The explicit form of coherent state is

|Z〉 =
2
∏

l=1

(1 + |Zl|2)−Ωl/2eZlS
+
l |0〉

=
2
∏

l=1

(

1 + tan2
θl
2

)−Ωl/2
∑

k

1

k!

k
∑

m=0

(

k

m

)(

tan
θ1
2
e−iφ1S+

1

)m (

tan
θ2
2
e−iφ2S+

2

)k−m

|0〉

=
2
∏

l=1

(

1 + tan2
θl
2

)−Ωl/2
∑

k

1

k!

k
∑

m=0

(

k

m

)

tanm
θ1
2
tank−m θ2

2
e−ikΦe−i(k/2−m)φ(S+

1 )m(S+
2 )k−m |0〉 (A.1)

Inserting (A.1) into (III.15) under fixed N and Ek, it becomes

|ψN
k 〉 ∝

∮

dΦ

∮

dteiTN,Ek
(Φ,t) |Φ, t〉N,Ek

∝
∑

k

1

k!

k
∑

m=0

(

k

m

)∫ 2π

0

dΦei(N/2−k)Φ

∫ T

0

dtei
∫
π(t′)φ̇(t′)dt′−i(k/2−m)φ

×
{

2
∏

l=1

(

1 + tan2
θl
2

)−Ωl/2
}

tanm
θ1
2
tank−m θ2

2
(S+

1 )m(S+
2 )k−m |0〉

∝
N/2
∑

m=0

(

N/2

m

)∫ T

0

dt exp

(

i

∫

π(t′)φ̇(t′)dt′ − i(N/4−m)φ

)

×
{

2
∏

l=1

(

1 + tan2
θl
2

)−Ωl/2
}

tanm
θ1
2
tanN/2−m θ2

2
(S+

1 )m(S+
2 )N/2−m |0〉 . (A.2)
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We find that the integration over Φ is nothing but the number projection. In SU(2) quasi-spin representation, the
vacuum state is written as |0〉 = |S1,−S1;S2,−S2〉, which leads to

(S+
1 )m(S+

2 )N/2−m |0〉 =
√

(2S1)!m!

(2S1 −m)!

√

(2S2)!(N/2−m)!

[2S2 − (N/2−m)]!
|S1,−S1 +m;S2,−S2 + (N/2−m)〉 . (A.3)

For convenience, we define coefficients

A(q, S,m) ≡ tanm θ
2

(

1 + tan2 θ
2

)−S

√

(2S)!m!

(2S −m)!

=

(

1− q

2

)m/2 (
1 + q

2

)S−m/2
√

(2S)!m!

(2S −m)!
(A.4)

where q = cos θ. Inserting Eq. (A.4) into Eq. (A.2) with N/2 = J , we reach Eq. (III.16).
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