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ABSTRACT

Neural stem and progenitor cells continue to generate new neurons in particular regions of the

brain during adulthood. One of these neurogenic regions is the dentate gyrus (DG) of the hippo-

campus, which plays an important role in cognition and emotion. By exploiting this innate neu-

ronal regeneration mechanism in the DG, new technologies have the potential to promote

resistance to or recovery from brain dysfunction or degeneration. However, a deeper under-

standing of how adult DG neurogenesis is regulated by factors such as sleep and epigenetic

modifications of gene expression could lead to further breakthroughs in the clinical application

of neural stem and progenitor cells. In this review, we discuss the functions of adult-born DG

neurons, describe the epigenetic regulation of adult DG neurogenesis, identify overlaps in how

sleep and epigenetic modifications impact adult DG neurogenesis and memory consolidation,

and suggest ways of using sleep or epigenetic interventions as therapies for neurodegenerative

and psychiatric disorders. By knitting together separate strands of the literature, we hope to

trigger new insights into how the functions of adult-generated neurons are directed by interac-

tions between sleep-related neural processes and epigenetic mechanisms to facilitate novel

approaches to preventing and treating brain disorders such as depression, post-traumatic stress

disorder, and Alzheimer’s disease. STEM CELLS 2018;36:969–976

SIGNIFICANCE STATEMENT

New technologies utilizing neural stem cells in the adult hippocampus could potentially be
used to promote innate resistance to or recovery from brain dysfunction or degeneration.
Accumulating evidence indicates that adult hippocampal neurogenesis contributes to cognitive
and emotional processing and is regulated by sleep and epigenetic modification of gene expres-
sion. Therefore, a richer understanding of how the interplay between sleep and epigenetics
impacts adult hippocampal neurogenesis and thereby influences hippocampal function can help
advance efforts to employ behavioral sleep interventions, epigenetic drugs, and novel neural
stem cell-based therapeutic strategies for preventing or treating neurodegenerative and psychi-
atric disorders.

INTRODUCTION

The discovery of neurogenesis in the adult
human brain [1] suggests the possibility of har-
nessing innate neuronal regeneration mecha-
nisms to promote resistance to or recovery
from brain dysfunction or degeneration across
the lifespan. However, compared with recent
advances in induced pluripotent stem cells and
cell implantation techniques [2], the potential
of utilizing intrinsic restorative mechanisms,
such as the birth of new neurons within par-
ticular regions in the brain, seems overlooked.
Thus, a deeper understanding of how adult
neurogenesis is regulated by factors such as

sleep and epigenetic modifications of gene
expression could prompt new insights and lead
to further breakthroughs in the translation of
basic research findings to clinical practice.
Here, we review the functions of adult-
generated neurons in the dentate gyrus (DG)
region of the hippocampus, describe the epi-
genetic regulation of adult DG neurogenesis,
and explore interactions between sleep and
epigenetic modifications that could impact
adult DG neurogenesis and thereby improve
cognitive and emotional function, with an
emphasis on memory consolidation. By synthe-
sizing this literature, we hope to inspire new
approaches to understanding and clinically
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applying the potential of adult-generated neurons to prevent
or treat neurodegenerative and psychiatric disorders.

FUNCTIONS OF ADULT DG NEUROGENESIS

Anatomically, the DG is the gate to a major hippocampal
pathway that originates from superficial layers of the entorhi-
nal cortex (EC) through the perforant path and projects
onward to the CA3, CA2, and CA1 hippocampal regions and
outward to the subiculum and deeper EC layers (Fig. 1A). The
principle cell layer of the DG is the granule cell layer, which is
made up of densely packed granule neurons. The neural stem
and progenitor cells (NSPCs) that give rise to DG neurons
home at the border of the granular cell layer and hilus, called
the subgranular zone (Fig. 1B). Intriguingly, these NSPCs not
only contribute to initial DG development but also continue
to produce new neurons throughout the lifespan in many
mammalian species, including rodents, insectivores, carni-
vores, ungulates, and primates [3]. Whereas the rate of DG
neurogenesis declines exponentially with age in most mam-
mals [4], humans appear to exhibit a more modest age-
related reduction in DG neurogenesis [5]. Evidence of adult
neurogenesis has also been observed in other regions of the
mammalian brain such as the subventricular zone, neocortex,
hypothalamus, amygdala, and striatum [6].

Early rodent studies provided evidence of a connection
between adult DG neurogenesis and cognition by showing
that exercise enhances both adult DG neurogenesis and
hippocampal-dependent learning and memory [7] and that
hippocampal-dependent learning itself enhances adult DG
neurogenesis [8]. Since then, additional evidence has indi-
cated that adult-born DG neurons functionally integrate into
hippocampal circuitry and play a special role in cognition dur-
ing a period of heightened excitability and synaptic plasticity
occurring 4–6 weeks after mitosis [9]. Moreover, recent stud-
ies employing sophisticated experimental techniques have
generated compelling evidence for a critical role of adult DG
neurogenesis in hippocampal-dependent cognitive function.
For instance, transgene-mediated ablation of adult-born DG
neurons [10] or optogenetic silencing of their activity [11]
after learning impairs contextual fear and spatial memories in
mice. Precisely how adult-born DG neurons contribute to cog-
nition, however, remains to be determined. Some current the-
ories are that adult-born DG neurons underlie the ability to
discriminate between similar representations (i.e., pattern
separation) [12], encode temporal information [13], allow the
clearance of memories to minimize proactive interference
[14], or promote cognitive flexibility [15]. Moreover, deficien-
cies in adult DG neurogenesis are linked to human disorders
associated with cognitive deficits, such as Alzheimer’s disease
and schizophrenia [9, 16].

Adult DG neurogenesis may also play a role in emotional
processing and mood disorders. For instance, rodent studies
show that adult DG neurogenesis is reduced in depression- or
anxiety-like states, is increased by antidepressive treatments,
and mediates some of the effects of antidepressant drugs
[17]. Consistently, postmortem studies report that human
patients with major depressive disorder (MDD) have fewer
NSPCs in the DG than non-MDD patients [18] and that
antidepressant-treated MDD patients have more NSPCs in the

DG than untreated MDD patients [19], although some studies
report conflicting evidence [17]. Deficits in adult DG neuro-
genesis might also contribute to post-traumatic stress disorder
(PTSD) by permitting the overgeneralization of fear via insuffi-
cient pattern separation [20]. This dual role of adult DG neu-
rogenesis in cognition and emotion may arise from
anatomical segregation of hippocampal function, with dorsal
adult-born neurons being more involved in cognition and ven-
tral adult-born neurons being more involved in emotion [21].

EPIGENETIC REGULATION OF ADULT DG NEUROGENESIS

Adult DG neurogenesis is regulated by a myriad of intrinsic and
extrinsic factors, including drugs, diet, inflammation, physical
activity, environmental enrichment, stress, and trauma [22].
Conceivably, many of these factors impact adult DG neurogene-
sis via dynamic epigenetic modifications that facilitate or sup-
press the expression of particular genes, including DNA
methylation, histone modifications, chromatin remodeling, and
non-coding RNAs [16, 23]. As an example, exposure to
extremely low-frequency electromagnetic fields increases the
proliferation and differentiation of adult-born DG neurons in
mice, which is accompanied by enhanced long-term potentia-
tion of perforant path-DG synapses and improved spatial learn-
ing and memory [24]. This increase in adult DG neurogenesis
may result from the transcription of pro-proliferative (i.e.,
Hes1) and neuronal determination (i.e., Mash1, Neurogenin1,
NeuroD1) genes in part through increased binding of CREB-
binding protein (CBP), a histone acetyltransferase (HAT), at
gene promoter regions [25]. In support of this possibility, direct
pharmacological activation of CBP promotes the differentiation
and dendritic branching of adult-born DG neurons and
improves spatial memory [26], whereas CBP deficiency blunts
the enhancing effects of environmental enrichment on adult
DG neurogenesis, spatial learning and memory, and pattern
separation [27]. Therefore, epigenetic mechanisms can mediate
the regulatory effects of a variety of factors on adult DG neuro-
genesis, thus impacting hippocampal function and contributing
to neurodegenerative and psychiatric disorders [16, 23].

ROLE OF SLEEP IN EPIGENETIC REGULATION OF ADULT DG

NEUROGENESIS

Due to several key associations among sleep, hippocampal
function, and factors that influence neurogenesis, sleep has
been proposed to regulate the generation of new DG neurons
during adulthood [28, 29]. We go one step further and pro-
pose that sleep regulates adult DG neurogenesis by inducing
or being affected by epigenetic modifications of gene expres-
sion. Below, we highlight overlaps in existing knowledge about
sleep, epigenetics, adult DG neurogenesis, and memory proc-
essing to help identify links between sleep and epigenetic
modifications that can be exploited to prevent or treat symp-
toms of neurodegenerative and psychiatric disorders.

Brief Overview of Sleep

Sleep is defined as a homeostatically regulated and rapidly
reversible state of immobility and low sensory responsiveness
observed in many but not all animals [30]. In mammals, sleep
consists of cycles of rapid eye movement (REM) and different
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stages of non-REM (NREM) sleep, with particular stage charac-
terized by distinct patterns of cortical activity as detected by
electroencephalography (EEG; Fig. 2). Certain patterns of coor-
dinated neural activity occurring during sleep are observed in
the hippocampus [31]. In rodents, sharp wave-ripples (SW-Rs)
occurring during NREM sleep arise from the synchronous dis-
charge of hippocampal CA3 pyramidal neurons, which causes
fast depolarization (“sharp wave”) and high-frequency oscilla-
tions (100–250 Hz “ripples”) resulting from interactions
between CA1 pyramidal neurons and inhibitory interneurons
[32]. Also, theta rhythm (6–9 Hz) during REM sleep is
observed throughout regions of the rodent hippocampus,
including the DG, and may be paced by subcortical nuclei
[33]. Interestingly, intracerebral EEG recordings from epileptic
patients show the presence of hippocampal SW-Rs during
NREM sleep but suggest that delta rhythm (0.5–4 Hz) may be
the human analog of rodent theta rhythm during REM sleep
[34]. Across species, however, the coordination of hippocam-
pal and extra-hippocampal oscillatory activity during sleep is
thought to promote the system-level consolidation of

memories formed during prior wakefulness, through which ini-
tially hippocampal-dependent memories become reorganized
across distributed cortical networks for long-term storage
[35].

Circadian Rhythms

The sleep-wake cycle is regulated by internal circadian clocks
controlled by a master clock in the suprachiasmatic nucleus
(SCN). Circadian clocks also regulate the homeostasis and func-
tion of stem cells, including adult NSPCs [36]. Core clock genes
such as mPer2 and mBmal1 are present in NSPCs in the adult
mouse subgranular zone and regulate adult DG neurogenesis
by controlling the timing of cell cycle events [37]. Indeed,
mBmal1 knock-out mice, which show arrhythmic locomotor
activity, exhibit abnormally high proliferation or survival of
adult-born DG neurons [37, 38] and poor performance in a
delayed nonmatching-to-place task [37], suggesting that this
clock gene promotes optimal cognition function by placing
restrictions on the rate of adult DG neurogenesis. A relation-
ship between clock gene expression and adult DG neurogenesis

Figure 1. DG circuitry and generation of new neurons. (A): The DG receives input from the perforant path of the EC and sends output
through mossy fibers to the CA3 region and additional longitudinal projections to the CA2. (B): NSPCs originate in the subgranular zone
of the DG and gradually migrate into the granule cell layer as they mature. Abbreviations: DG, dentate gyrus; EC, entorhinal cortex,
NSPCs, neural stem and progenitor cells.
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may also have implications for emotional processing. For
instance, SCN-specific mBmal1 knock-down mice exhibit
depression-like behaviors [39], whereas mice selectively bred
for high anxiety- and depression-like behavior show decreased
hippocampal mRNA levels of another clock gene, mCry2 [40],
and reduced survival and functional integration of adult-born
DG neurons [41]. Accumulating evidence indicates that the
transcription of circadian clock genes is epigenetically regulated
through changes in DNA methylation, histone modifications,
and structural chromatin alterations [42]. Therefore, epigenetic
modifications of clock genes could be targeted for the preven-
tion or treatment of neurodegenerative or psychiatric disorders
involving circadian disruptions.

Sleep Deprivation

Despite recommendations to sleep at least 7 hours each
night, over one-third of U.S. adults report regularly receiving
insufficient amounts of sleep [43]. In experimental studies
with human subjects, a single night of lost sleep has been
found to impact a wide range of cognitive and emotional
functions, including attention, working memory, processing of
rewards and aversive stimuli, and hippocampal-dependent
memory [44]. Neuroimaging studies show that acute sleep
deprivation reduces learning-related activity in the hippocam-
pus and functional coupling between the hippocampus and

cortical regions [44], consistent with the hypothesis that sleep
promotes system-level memory consolidation by promoting
interactions between the hippocampus and cortex [35]. More-
over, after several consecutive days of insufficient sleep, cogni-
tive deficits exhibit a protracted course of recovery, with
normal function not observed until after 3 or more nights of
recuperative sleep [45]. Thus, the sleep disruptions often expe-
rienced by healthy aged individuals as well as patients with Alz-
heimer’s disease have been proposed to contribute to declines
in hippocampal-dependent cognitive function [31, 44, 46].

The effects of chronic sleep deprivation on hippocampal
function have been extensively investigated using rodent
models. A large body of evidence indicates that chronic sleep
deprivation, sleep restriction, sleep fragmentation, or REM-
specific sleep deprivation reduces adult DG neurogenesis, dis-
turbs hippocampal signaling pathways, impairs hippocampal
synaptic plasticity, and disrupts the consolidation of
hippocampal-dependent memories [28, 47]. Although these
effects have been argued to be an indirect outcome of ele-
vated stress hormones, several studies report that the impact
of sleep deprivation on hippocampal function is independent
of the stress response [29]. For example, depriving adult rats
of sleep for 96 hours reduces the proliferation of DG neurons,
and this effect persists when rats are adrenalectomized
and given low-dose corticosterone, indicating that sleep

Figure 2. Basic features of sleep. (A): Hypnogram showing sleep architecture in rodents during a period of 6 hours. Sleep consists of
several cycles of REM and NREM sleep. (B): EEG trace showing a transition from NREM to REM sleep. NREM sleep is characterized by
high-amplitude and low-frequency waves in the cortex (0.5–4 Hz; green panel) and sudden bursts of high-frequency firing (100–250 Hz)
called SPW-Rs in the hippocampus. REM sleep is characterized by low-amplitude and high-frequency waves in the theta range in both
the cortex and hippocampus (6–9 Hz; pink panels). Abbreviations: W, wake; N, NREM sleep; R, REM sleep; SPW-R, sharp wave ripple.
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deprivation affects adult DG neurogenesis by mechanisms
other than an increase in stress hormones [48].

One route by which sleep deprivation could impact adult
DG neurogenesis and thereby affect hippocampal function is
through epigenetic modifications. Both acute and chronic
sleep deprivation produce broad changes in epigenetic
markers and patterns of gene transcription in rodents [49–52]
and humans [53, 54]. Of particular interest, depriving mice of
sleep for 3 days downregulates hippocampal CBP expression,
reduces hippocampal histone acetylation levels at Bdnf pro-
moter regions, and weakens spatial memory [49], suggesting
that sleep deprivation can impair cognition by disrupting hippo-
campal BDNF signaling, which is important for the maturation
and growth of adult-born DG neurons [55]. Also, genome-wide
analysis of blood samples from healthy individuals after 1 night
of sleep deprivation shows alterations in the methylation status
of genes involved in Notch and Wnt signaling pathways [54],
both of which play important roles in the regulation of adult
DG neurogenesis. Therefore, insufficient sleep could produce
epigenetic modifications that disrupt the generation of new DG
neurons and hence impact hippocampal function, suggesting
that epigenetic markers could be targeted to normalize adult
DG neurogenesis and restore cognitive function in people who
do not receive sufficient sleep.

Memory Replay During Sleep

In vivo neural recordings reveal that certain memories are
replayed in the hippocampus during sleep, which may allow
the further processing of memories during system-level consoli-
dation [56]. For instance, hippocampal place cells that fire
together while rats explore a spatial environment tend to also
fire together during subsequent sleep [57], and patterns of hip-
pocampal blood flow during virtual route learning in humans
are reinstated during later sleep [58]. Although some studies
have detected memory replay during REM sleep [59], memory
replay is usually observed during NREM sleep and is tied to
the occurrence of hippocampal SW-Rs [56]. Indeed, electro-
physiological suppression of sleep-related hippocampal SW-Rs
across several days of training in spatial tasks impairs task per-
formance in rats [60], providing evidence that the replay of
memories during NREM sleep promotes their consolidation.

In addition to spontaneous memory replay during sleep,
specific memories can be reactivated during NREM or REM
sleep via the covert presentation of an auditory or olfactory
stimulus associated with a previously acquired memory, a
phenomenon known as “cueing” or “targeted memory reac-
tivation” [61, 62]. For example, when a person is sleeping,
presenting an odor associated with a recent object-location
memory causes hippocampal activation and enhances recall of
that memory during subsequent wakefulness [63]. Whereas
some studies show that cueing during sleep enhances mem-
ory, others report that cueing during sleep impairs memory
(e.g., [64]). Therefore, additional research is needed to define
the parameters under which targeted memory reactivation
during sleep improves or impairs subsequent memory recall.

Although studies of targeted memory reactivation during
sleep point toward the hippocampus as an important neural
substrate [62], the underlying mechanisms are not yet clear.
Therefore, insights into the cellular and molecular basis of tar-
geted memory reactivation during sleep could come from stud-
ies of memory reactivation during wakefulness. Interestingly,

reactivation of a memory during wakefulness induces epige-
netic modifications in the hippocampus, including alterations in
histone acetylation and methylation, as well as DNA hydroxy-
methylation [65, 66]. For example, reactivation of a recent con-
textual fear memory in mice increases the abundance of H3K9/
14 acetylation at the promoter region of cFos [66], suggesting
that memory reactivation induces epigenetic changes that facil-
itate the transcription of plasticity-related genes. In parallel
with epigenetic modifications, reactivation of a memory during
wakefulness can also engage adult-born DG neurons. That is,
immature adult-born DG neurons expressing the plasticity-
related gene Egr1 are preferentially recruited for the
reactivation-mediated updating of an object recognition mem-
ory [67]. Taken together, these findings raise the possibility that
the targeted reactivation and replay of a memory during sleep
induces epigenetic modifications of gene expression in adult-
born DG neurons that promote further memory processing and
consolidation.

TARGETING SLEEP AND EPIGENETIC MARKERS AS TREATMENT

STRATEGIES

The existence of a regulatory pathway through which the
interplay of sleep and epigenetics impacts adult DG neurogen-
esis and thereby affects cognitive and emotional processing
(Fig. 3) invites new thinking about approaches to preventing
or treating neurodegenerative and psychiatric disorders.

As a most basic therapeutic strategy, it is important to
ensure that patients with neurodegenerative or psychiatric
disorders consistently receive sufficient amounts of high-
quality sleep to allow optimal cognitive and emotional proc-
essing of memories. This may involve carefully choosing phar-
macological treatments, such as those for depression [68] or
aging-related disorders [69], that do not negatively impact
sleep architecture. The timing of sleep may also be of strate-
gic importance, as sleep immediately following exposure ther-
apy can decrease fear in patients with phobia, presumably by
promoting the consolidation of new, non-fearful memories
[70]. On the other hand, restricting sleep can also be benefi-
cial in some cases. Acute sleep deprivation following a trau-
matic experience might prevent the development of PTSD by
disallowing the consolidation of traumatic memories [71],
whereas a partial or full night of sleep deprivation can allevi-
ate symptoms of depression or bipolar disorder [72], perhaps
by resetting circadian rhythms via epigenetic modification of
clock gene expression.

Targeted memory reactivation could also be employed as
a clinical tool for modulating memory processing during sleep.
Depending on factors such as the type of memory and the
sleep stage in which a memory is reactivated, cueing during
sleep can either enhance or impair later recall of a memory
[61, 62]. Therefore, targeted memory reactivation could be
used to bolster wanted memories in healthy or cognitively
impaired individuals or weaken unwanted memories in indi-
viduals with PTSD, anxiety, or depression [62].

In addition to behavioral sleep therapies, epigenetic drugs
such as DNA methylation inhibitors, histone deacetylase
(HDAC) inhibitors, and HAT activators could override epigenetic
modifications arising from life experiences or developmental
perturbations and thus be used to treat neurodegenerative
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and psychiatric disorders [73]. For example, by selectively
downregulating HDAC5, the antidepressant imipramine
increases histone acetylation at Bdnf promoter regions, upregu-
lates Bdnf expression, and alleviates depression-like behavior in
mice after social defeat [74], suggesting that HDAC inhibitors
can exert antidepressant effects by reversing environmentally-
induced epigenetic modifications. Given that depression also
involves sleep disruptions [75] and abnormalities in adult DG
neurogenesis [76], it is interesting to consider whether the
beneficial effects of epigenetic drugs on cognitive and emo-
tional processing could be mediated by improvements in sleep
and/or the generation of adult-born DG neurons.

In particular, Alzheimer’s disease might be well suited for
the employment of both sleep and epigenetic interventions
to alleviate cognitive impairment. Patients with Alzheimer’s
disease show altered levels of epigenetic markers in the hip-
pocampus [77]; various sleep disruptions including nighttime
sleep fragmentation, increased daytime napping, and less
time spent in slow wave and REM sleep stages [78]; and
impairments in DG neurogenesis [78]. These findings suggest
that cognitive deficits in Alzheimer’s disease could result in
part from disruptions in DG neurogenesis caused by both sub-
optimal epigenetic modification of gene expression and poor
sleep. Importantly, sleep disruptions often precede the clinical
onset of Alzheimer’s disease [46]. Therefore, the simultaneous
and coordinated use of epigenetic drugs and behavioral

therapies that restore circadian rhythms (i.e., through clock
gene transcription) and improve sleep duration and quality
could not only treat established cognitive deficits but also
delay the progression of cognitive decline in individuals at risk
for Alzheimer’s disease.

CONCLUSION

The literature discussed in this review hints at a complex
interplay among sleep, epigenetic modifications of gene
expression, adult DG neurogenesis, and cognitive and emo-
tional function, indicating the potential value of future studies
aimed at identifying and unraveling the interconnections
among these processes as well as the additional modulatory
influences of neurotransmitters, hormones (e.g., stress hor-
mones), and cytokines. Here, we propose that interactions
between sleep and epigenetics regulate the generation of
new DG neurons in adulthood and thereby affect cognitive
and emotional processing (Fig. 3). To advance our understand-
ing of this regulatory pathway, it is imperative to perform
deeper investigations into how adult-born DG neurons inte-
grate into the existing neural circuitry and contribute to
hippocampal-dependent function, which may soon be realized
through advances in technology and computing. For instance,
the activity of adult-born DG neurons in behaving mice can

Figure 3. The interplay between sleep and epigenetic modifications of gene expression impacts adult dentate gyrus neurogenesis and
thereby influences cognitive and emotional processing, suggesting new therapeutic avenues for preventing or treating neurodegenera-
tive and psychiatric disorders. Abbreviation: PTSD, post-traumatic stress disorder.
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now be monitored using two-photon calcium imaging [79].
Newly developed miniaturized fluorescence microscopes [80]
could be used to show the firing patterns of adult-born DG
neurons during different stages of sleep and their responses
to cueing during sleep. Also, new analysis methods can unveil
detailed and comprehensive maps of the connections (i.e.,
connectomes [81]) and functional dynamics (i.e., dynomes
[82]) between adult-born DG neurons and pre-existing neural
networks, which could aid in the targeted manipulation of
specific memories during sleep.

In addition to pointing toward avenues for further basic
research, our synthesis of the literature on adult DG neuro-
genesis and its regulation by sleep and epigenetic modifica-
tions suggests that future NSPC-based therapeutic strategies
should at least consider, if not directly exploit, factors that
control the process of adult DG neurogenesis with the aim of
maintaining or improving cognitive and emotional function.
By employing sleep interventions and epigenetic drugs along-
side other therapies that promote the optimal survival, proper
connectivity, and functionality of adult-born DG neurons, we
will move closer toward realizing the full potential of hippo-
campal NSPCs for preventing and treating neurodegenerative
and psychiatric disorders.
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