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Abstract

This paper presents the computation of a specific hexadecimal digit of π
by using a Bailey-Borwein-Plouffe (BBP)-type formula on a cluster of In-
tel Xeon Phi processors. The BBP-type formula can be computed using
modular exponentiation. We use Montgomery multiplication for the mod-
ular multiplication, which is the most time-consuming part of the modular
exponentiation. We vectorize multiple modular exponentiations and multi-
ple integer divisions by using Intel Advanced Vector Extensions 512 (Intel
AVX-512) instructions. A parallel implementation of the BBP-type formula
is presented. The 100 quadrillionth hexadecimal digit of π was computed on
a 512-node cluster of Intel Xeon Phi processors with an elapsed time of 641
hours 29 minutes that includes the time required for verification.

Keywords: BBP-type formula, modular exponentiation, cluster of Intel
Xeon Phi processors

1. Introduction

Many computations of mathematical constants (e.g., π and e) have been
performed with high precision [1, 2, 3, 4]. Mathematical constants are com-
puted from their series expansion, such as:

π = 16 arctan
1
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239
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=
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(−1)k

(2k + 1)q2k+1
. (1)
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Brent [5] and Salamin [6] independently discovered an algorithm to com-
pute π. This algorithm has quadratic convergence. Borweins discovered
cubic and higher order algorithms for π [7, 8].

In 2009, Bellard computed π up to about 2.7 trillion decimal digits in
about 131 days using the following Chudnovsky’s formula [9] and an Intel
Core i7 processor [1].

1

π
= 12

∞∑
k=0

(−1)k(6k)! (13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
. (2)

In 2013, Yee and Kondo computed π up to 12.1 trillion decimal digits
in about 94 days using Chudnovsky’s formula and dual Intel Xeon E5-2690
processors [3]. In 2016, Trueb computed π up to about 22.4 trillion decimal
digits in about 105 days using Yee’s program and quad Intel Xeon E7-8890
v3 processors [4].

An algorithm for the computation of a specific hexadecimal digit of π was
discovered by Bailey, Borwein, and Plouffe in 1995 (hereafter called the BBP
formula) [10, 11]. The BBP formula enables computation of a specific bit
in π without computing all the previous bits. PiHex [12] was a distributed
computing project that used Bellard’s BBP-type formula to compute the
quadrillionth bit of π. This required 250 CPU-years and used 1734 computers
from 56 different countries. Sze computed the two quadrillionth bit of π in 23
days using Bellard’s formula and a 1000-node cluster [13]. Karrels computed
the ten quadrillionth hexadecimal digit of π in 88 days using 51 machines
with GPUs [14].

Bailey et al. [15] stated that the main motivation for computing and
analyzing π and other mathematical constants is to explore whether and
why these sequences are random numbers. Even just storing the values of
100 quadrillion (= 1017) hexadecimal digits of π requires a storage capacity of
50 PB. As of November 2017, the total storage capacity of Sunway TaihuLight
[16], is ranked first in the TOP500 list [17], is 20 PB. Thus, in order to know
the 100 quadrillionth hexadecimal digit of π, we have no other choice than
to compute a few hexadecimal digits of π starting at position 1017 by using
the BBP-type formula.

The Intel Many Integrated Core Architecture (Intel MIC Architecture)
has emerged as an important computational accelerator in high-performance
computing systems. The Knights Landing processor [18] is the second-
generation Intel Xeon Phi product. To best of our knowledge, an imple-

2



mentation of the BBP-type formula on a cluster of Intel Xeon Phi processors
has not yet been reported. In this paper, we present the use of a BBP-
type formula on a cluster of Intel Xeon Phi processors to compute a specific
hexadecimal digit of π.

The remainder of this paper is organized as follows. Section 2 presents the
BBP-type formula that we use. Section 3 describes modular exponentiation
and Montgomery multiplication. In Section 4, we propose an implementa-
tion of the BBP-type formula on a cluster of Intel Xeon Phi processors. The
performance results are then presented in Section 5. Section 6 presents the
computation of the 100 quadrillionth hexadecimal digit of π on a 512-node
cluster of Intel Xeon Phi processors. Finally, Section 7 presents some con-
cluding remarks.

2. BBP-type Formula

The BBP formula [10, 11] is as follows:

π =
∞∑
k=0
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Bellard’s formula [19] is approximately 43% faster than the BBP formula,
and it is as follows:
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Consider computing a few hexadecimal digits of π starting at position
n + 1 for a positive integer n. Note that this is equivalent to computing
{16nπ}, where {·} denotes the fractional part [11].

From equation (4), we have

{16nπ} = {−{16nS(4, 1,−1)} − {16nS(4, 3,−6)}+ {16nS(10, 1, 2)}
− {16nS(10, 3, 0)} − {16nS(10, 5,−4)} − {16nS(10, 7,−4)}
+ {16nS(10, 9,−6)}} , (5)

where

S(m, j, l) =
∞∑
k=0

(−1)k 2l

210k(mk + j)
. (6)
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Algorithm 1 Left-to-right binary modular exponentiation for x = ae mod N
[20]

Input: a, e, N positive integers
Output: x = ae mod N
1: let (elel−1 . . . e1e0) be the binary representation of e, with el = 1
2: x← a
3: for i from l − 1 downto 0 do
4: x← x2 mod N
5: if ei = 1 then
6: x← ax mod N
7: return x.

We note that

{16nS(m, j, l)}

=




⌊(4n+l)/10⌋∑
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+
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(−1)k 2
4n+l−10k

mk + j

 . (7)

The BBP-type formula requires a bit complexity of O(n log nM(log n))
where M(d) is the complexity of multiplying d-bit integers [10].

3. Modular Exponentiation and Montgomery Multiplication

A key operation of the BBP-type formula is the modular exponentiation
24n+l−10k mod (mk + j) in the numerator of the first summation in equation
(7). Many algorithms for modular exponentiation have been proposed [21,
20]. Algorithm 1 shows the left-to-right binary modular exponentiation for
x = ae mod N [20]. This algorithm consists of the modular squaring x2 mod
N and the modular multiplication ax mod N . For evaluating the numerator
of the first summation in equation (7), we only have to consider the case of
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Algorithm 2 Left-to-right binary modular exponentiation for x = 2e mod N
Input: e, N positive integers
Output: x = 2e mod N
1: let (elel−1 . . . e1e0) be the binary representation of e, with el = 1
2: x← 2
3: for i from l − 1 downto 0 do
4: x← x2 mod N
5: if ei = 1 then
6: x← x≪ 1
7: if x ≥ N then
8: x← x−N
9: return x.

x = 2e mod N . In this case, the modular multiplication ax mod N in line 6
of Algorithm 1 can be replaced by the left shift x ≪ 1 and the conditional
subtraction x−N when x ≥ N . Algorithm 2 shows the left-to-right binary
modular exponentiation for x = 2e mod N . The m-ary method [21, 20] and
the sliding window method [20] are known to reduce the number of modular
multiplications for the modular exponentiation x = ae mod N . However, the
number of modular squaring operations for these methods is equal to that
for the left-to-right binary modular exponentiation. Thus, the left-to-right
binary modular exponentiation is sufficiently for computing x = 2e mod N
in Algorithm 2.

The modular exponentiation 24n+l−10k mod (mk+ j) in the numerator of
the first summation in equation (7) must be performed exactly. The upper
limit of the hexadecimal digit n is determined by (10⌊(4n+2)/10⌋+9)2 < 2113

when IEEE 754 128-bit floating-point arithmetic is used. In this case, the
upper limit of the hexadecimal digit n is ⌊

√
2 ·254⌋−1 ≈ 2.55×1016, and thus

it is not sufficiently precise for computing the 100 quadrillionth (= 1017-th)
hexadecimal digit of π. On the other hand, the upper limit of the hexadecimal
digit n is determined by (10⌊(4n+ 2)/10⌋+ 9)2 < 2128 when 64-bit × 64-bit
→ 128-bit unsigned integer multiplication is used. In this case, the upper
limit of the hexadecimal digit n is 262 − 3 ≈ 4.61 × 1018. Thus, we use the
64-bit × 64-bit → 128-bit unsigned integer multiplication in the modular
exponentiation.

The most time-consuming part in Algorithm 2 is the modular squaring
x2 mod N . It includes modulo operations, which are slow due to the integer
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Algorithm 3 Montgomery multiplication algorithm [22]

Input: A, B, N such that 0 ≤ A,B < N, β > N, gcd(β,N) = 1,
µ = −N−1 mod β

Output: C = ABβ−1 mod N such that 0 ≤ C < N
1: C ← AB
2: q ← µC mod β
3: C ← (C + qN)/β
4: if C ≥ N then
5: C ← C −N
6: return C.

division process. However, Montgomery multiplication [22], shown as Algo-
rithm 3, is known to avoid this. In Montgomery multiplication, it is necessary
that gcd(β,N) = 1. Here, since β is a positive power of two integer and all
denominators of equation (4) are odd numbers, we can use Montgomery mul-
tiplication in the modular exponentiation. We note that Sze [13] and Karrels
[23] also used Montgomery multiplication for the modular exponentiation
when using Bellard’s formula to compute the two quadrillionth bit of π and
the quadrillionth hexadecimal digit of π, respectively.

Let MontgomeryMul(A,B) be the Montgomery multiplication, as in
Algorithm 3. The result of a Montgomery multiplication
MontgomeryMul(A,B) is not AB mod N but rather ABβ−1 mod N [24].
To obtain a correct result at the end of the modular exponentiation, we
need to make a pre-multiplication MontgomeryMul(A, β2) and a post-
multiplicationMontgomeryMul(Ae, 1) [24]. The post-multiplication is equiv-
alent to computing Aeβ−1 mod N . The modular exponentiation x = 2e mod
N can be transformed into x = 2e−log2 ββ mod N when β is a positive power of
two integer. Thus, the post-multiplication can be avoided by replacing e with
e− log2 β for the modular exponentiation x = 2e mod N when e > log2 β.

In Algorithm 3, the modular multiplicative inverse µ = −N−1 mod β is
precomputed. Although the modular multiplicative inverse can be computed
by the extended Euclidean algorithm, Newton’s method is more efficient
when β is a power of two [20, 25]. Algorithm 4 shows Newton’s method for
the modular multiplicative inverse N−1 mod 264 [25]. Here, (3N) ⊕ 2 is the
correct multiplicative inverse modulo 25 (5 bits) [25], where ⊕ denotes the
exclusive or operation. Since Newton’s method has quadratic convergence,
four iterations are sufficient to obtain N−1 mod 264. Algorithm 5 shows the
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Algorithm 4 Newton’s method for the modular multiplicative inverse
N−1 mod 264 [25]

Input: N such that 0 < N < 264, 2 ∤ N
Output: µ = N−1 mod 264

1: µ← {(3N)⊕ 2} mod 264

2: for i from 1 to 4 do
3: µ← µ(2−Nµ) mod 264

4: return µ.

modular exponentiation for x = 2e mod N with the Montgomery multiplica-
tion on 64-bit processors.

4. Implementation of the BBP-type Formula on a Cluster of Intel
Xeon Phi Processors

Montgomery multiplication algorithms using vector instructions have been
proposed [26, 27]. Another approach is to use the SIMD instructions to com-
pute multiple Montgomery multiplications in parallel [27]. We vectorized
the multiple Montgomery squaring operations with Intel Advanced Vector
Extensions 512 (Intel AVX-512) instructions [28]. In this scheme, multiple
numerators in the first summation of equation (7) can be computed in par-
allel.

Although the x86 64 mulq instruction performs the 64-bit × 64-bit →
128-bit unsigned integer multiplication, the Intel AVX-512 instruction set
only supports vpmuludq instruction, which performs 32-bit × 32-bit→ 64-
bit unsigned integer multiplication. Thus, we use the radix-β interleaved
Montgomery multiplication algorithm [22, 27], which is shown as Algorithm
6. In the radix-232 interleaved Montgomery multiplication, there is some
overflow in the 64-bit unsigned integer addition. There are no carry bits for
the 512-bit wide SIMD registers (ZMM0–ZMM31) on the Intel AVX-512 [28].
Although it is possible to detect the overflow by using branches, there will be
performance degradation on processors that have SIMD instructions. Thus,
we use the radix β = 231 of Algorithm 6 to avoid overflow. In this case, the
upper limit of the hexadecimal digit n is 260 − 2 ≈ 1.15× 1018.

In lines 6 and 7 of Algorithm 6, the performance is also degraded by
the conditional subtraction C −N when C ≥ N . For multiple Montgomery
multiplications, such conditional subtractions can be vectorized with Intel
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Algorithm 5 Modular exponentiation for x = 2e mod N with Montgomery
multiplication on 64-bit processors

Input: e, N such that 0 < e < 264, 0 < N < 263, 2 ∤ N
Output: x = 2e mod N
1: if e < 65 then
2: x← 2e mod N
3: return x
4: e← e− 64
5: let (elel−1 . . . e1e0) be the binary representation of e, with el = 1
6: x← 265 mod N
7: for i from l − 1 downto 0 do
8: x←MontgomeryMul(x, x)
9: if ei = 1 then
10: x← x≪ 1
11: if x ≥ N then
12: x← x−N
13: return x.

AVX-512 vmovups, vpcmpuq, vmovdqu64, and vpsubq instructions by the
Intel C Compiler. On the other hand, min/max operations are effective
for avoiding branches. The conditional subtraction can be replaced by the
operation min(C,C − N) for 64-bit unsigned integer values C and N with
the wrap-around two’s complement arithmetic. Although the Intel Advanced
Vector Extensions 2 (AVX2) instruction set [29] does not support the min
instruction for 64-bit unsigned integers, the Intel AVX-512 instruction set
supports the vpminuq instruction for 64-bit unsigned integers. This scheme
is faster than conditional subtraction on Intel Xeon Phi processors.

Figure 1 shows the vectorized multiple Montgomery squaring operations
for 62-bit integers. This corresponds to A = B, β = 231, and m = 2 in
Algorithm 6. In Figure 1, #pragma ivdep instructs the compiler to ignore
assumed vector dependencies, and #pragma vector aligned instructs the
compiler to use aligned data movement instructions for all array references
when vectorizing. The performance of the vectorized multiple Montgomery
squaring operations in Figure 1 depends on the vector length. According
to preliminary experimental results, the vector length VLEN in Figure 1 is
determined to be equal to 40 on Intel Xeon Phi processors. In this case,
the vectorized multiple Montgomery squaring operations can be performed
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Algorithm 6 The radix-β interleaved Montgomery multiplication algorithm
[22, 27]

Input: A, B, N, µ such that A =
∑m−1

i=0 aiβ
i, 0 ≤ ai < β, 0 ≤ A,B < N,

βm−1 ≤ N < βm, gcd(β,N) = 1, µ = −N−1 mod β
Output: C = ABβ−m mod N such that 0 ≤ C < N
1: C ← 0
2: for i from 0 to m− 1 do
3: C ← C + aiB
4: q ← µC mod β
5: C ← (C + qN)/β
6: if C ≥ N then
7: C ← C −N
8: return C.

by using only the 512-bit wide SIMD registers except for memory access for
input/output arrays. The vectorized multiple Montgomery squaring opera-
tions can be further optimized using the Intel AVX-512 intrinsic functions
[30].

When vectorizing multiple modular exponentiations for x = 2e mod N ,
multiple modulo operations in line 6 of Algorithm 5 can be vectorized using
the mm512 rem epu64() intrinsic function in the Short Vector Math Library
(SVML) [30]. The number of iterations l in line 7 of Algorithm 5 may be
different for multiple exponents, such as e = (elel−1 . . . e1e0)2. The exponent
4n + l − 10k of the modular exponentiation in equation (7) monotonically
decreases. Thus, if the number of iterations l for the first element of the
exponent vector is greater than that for the last element of the exponent
vector, the scalar version of the modular exponentiation is performed. Since
the number of calls for the scalar version for the n-th hexadecimal digit of π
is O(log n) at most, the overhead for scalar processing is almost negligible.
In lines 9 and 10 of Algorithm 5, the statement “if ei = 1 then x← x≪ 1”
degrades the performance because it introduces a branch. However, because
ei is 0 or 1, this branch can be omitted by performing the left shift x← x≪
ei. Such multiple left shifts can be vectorized with Intel AVX-512 vpsllvq

instruction by the Intel C Compiler. Also, in lines 11 and 12 of Algorithm
5, the conditional subtraction x − N when x ≥ N can be replaced by the
operation min(x, x−N), similar to what was done for the vectorized multiple
Montgomery squaring operations shown in Figure 1.
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void vsqrmod(uint64_t *c, uint64_t *a, uint64_t *N, uint32_t *mu)

/* Compute c[:] = (a[:] * a[:] * 2^-62) mod N[:].

We need mu[:] = -N[:]^-1 mod 2^31. */

{

uint64_t t0, t1, t2;

uint32_t a0, a1, N0, N1, q;

int i;

#pragma ivdep

#pragma vector aligned

for (i = 0; i < VLEN; i++) {

a0 = a[i] & 0x7FFFFFFF;

a1 = a[i] >> 31;

N0 = N[i] & 0x7FFFFFFF;

N1 = N[i] >> 31;

t0 = (uint64_t) a0 * a0;

t1 = (uint64_t) a0 * a1;

t2 = (uint64_t) a1 * a1;

q = ((uint32_t) t0 * mu[i]) & 0x7FFFFFFF;

t0 = ((t0 + (uint64_t) q * N0) >> 31) + (t1 + (uint64_t) q * N1);

t1 += t0 & 0x7FFFFFFF;

t2 += t0 >> 31;

q = ((uint32_t) t1 * mu[i]) & 0x7FFFFFFF;

t1 = ((t1 + (uint64_t) q * N0) >> 31) + (t2 + (uint64_t) q * N1);

c[i] = min(t1, t1 - N[i]);

}

}

Figure 1: Vectorized multiple Montgomery squaring operations of 62-bit integers.

The range of the absolute value of each fraction in equation (7) is [0, 1).
Thus, the division and summation of equation (7) can be performed by using
fixed-point arithmetic. In our implementation, we used 128-bit unsigned
fixed-point arithmetic. According to the Q format [31], a UQ128 number
has 128 fractional bits, and its range is [0, 1 − 2−128]. UQ128 fixed-point
arithmetic can be implemented using 128-bit unsigned integer arithmetic.
Both GCC [32] and Clang [33] provide the uint128 t extension for 128-bit
unsigned integer arithmetic. Although the Intel C compiler also supports the
uint128 t extension, a statement which contains the uint128 t variables

cannot be automatically vectorized. Thus, the summation of equation (7)
is only performed with scalar processing. For negative values, we can use
the two’s complement representation. In this scheme, neither floating-point
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Algorithm 7 192-bit by 64-bit unsigned integer division based on the exact
division algorithm

Input: x, N, r, µ such that 0 ≤ x < N, 0 < N < 264, 2 ∤ N,
r = (2128 · x) mod N, µ = N−1 mod 264

Output: q = ⌊(2128 · x)/N⌋
1: if r = 0 then
2: return 0
3: q0 ← (−r · µ) mod 264

4: q1 ← [{(264 − 1)− umulh(N, q0)} · µ] mod 264

5: q ← q1 · 264 + q0
6: return q.

arithmetic nor the extraction of the fractional part of a floating-point number
is necessary. Also, it is not necessary to convert between the fraction and
its hexadecimal form [10]. Furthermore, when using 128-bit unsigned fixed-
point arithmetic, the result does not depend on the computation order. With
Bellard’s formula, it correctly yields the first 25 hexadecimal digits for the
ten quadrillionth hexadecimal digit of π.

For evaluating equation (7) with 128-bit unsigned fixed-point arithmetic,
we need to compute 192-bit by 64-bit unsigned integer division ⌊(2128 ·x)/N⌋,
where x = 2e mod N , and e, and N are positive integers such that 0 < N <
264. Since the x86 64 divq instruction performs 128-bit by 64-bit unsigned
integer division, the 192-bit by 64-bit unsigned integer division can be im-
plemented by the x86 64 divq instruction twice. However, the x86 64 divq

instruction is a slow operation, and the Intel AVX-512 instruction set does not
support 128-bit by 64-bit unsigned integer division. Although Karrels used
Newton’s method for 192-bit by 64-bit integer division, the division and sum-
mation of equation (7) dominated 24% of the runtime for the quadrillionth
hexadecimal digit of π [23].

If we know the remainder (2128 · x) mod N in advance, we can use the
exact division algorithm [34] for the 192-bit by 64-bit unsigned integer di-
vision. This remainder can be easily computed by replacing e with e + 128
for x = 2e mod N . Since the value of e is 4n + l − 10k in equation (7), the
additional cost for precomputing (2128 · x) mod N is almost negligible when
e is sufficiently large. Algorithm 7 shows 192-bit by 64-bit unsigned integer
division based on the exact division algorithm. In Algorithm 7, the modular
multiplicative inverse µ = N−1 mod 264 is precomputed. The modular mul-
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tiplicative inverse can be computed by using Algorithm 4. In Algorithm 7,
the function umulh returns the upper 64-bit half of the 64-bit × 64-bit →
128-bit unsigned integer multiplication. Multiple 192-bit by 64-bit unsigned
integer divisions based on the exact division algorithm can be vectorized by
using the Intel AVX-512 instructions. The 128-bit quotient of the 192-bit by
64-bit unsigned integer division is stored in a uint128 t datatype variable.
By using this scheme, the division and summation of equation (7) dominate
only about 7% of the runtime for the quadrillionth hexadecimal digit of π.
On the other hand, the modular exponentiation in the numerator of the
first summation in equation (7) dominates about 92% of the runtime for the
quadrillionth hexadecimal digit of π.

The BBP-type formula is embarrassingly parallel except for the final sum-
mation of results. Thus, it can be easily parallelized by using both OpenMP
and MPI. By using the OpenMP schedule(guided) clause for main loop
scheduling, the chunk sizes are initially large, and they then decrease in or-
der to better handle load imbalances between iterations. The partial sum of
each MPI process is computed using the OpenMP reduction clause. The
total sum is then computed using the MPI reduce operation in a block-cyclic
distribution.

5. Performance Results

In order to evaluate the implemented parallel computation of a specific
hexadecimal digit of π, we measured both the single-node performance and
the multi-node performance. We averaged the elapsed times obtained from
10 executions of the n-th hexadecimal digit of π by using Bellard’s formula.

5.1. Single-Node Performance

The performance was measured on an Intel Xeon E5-2690 v4, an Intel
Xeon Phi 5110P, and an Intel Xeon Phi 7250. Both scalar and vector versions
were implemented. The original programs were written in C with OpenMP.
The scalar version uses the Montgomery squaring routine with x86 64 in-
line assembly. The vector version uses a routine with multiple Montgomery
squaring operations with the Intel AVX2, Intel Initial Many Core Instruc-
tions (Intel IMCI) [35], and Intel AVX-512 intrinsic functions on the Intel
Xeon E5-2690 v4, the Intel Xeon Phi 5110P, and the Intel Xeon Phi 7250,
respectively. The specifications for these three platforms are shown in Table
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Table 1: Specification of the machines.
Intel Xeon processor Intel Xeon Phi coprocessor Intel Xeon Phi processor

Number of
cores

14 60 68

Number of
threads

28 240 272

CPU
Intel Xeon E5-2690 v4
Broadwell-EP 2.6 GHz

Intel Xeon Phi 5110P
Knights Corner 1.053 GHz

Intel Xeon Phi 7250
Knights Landing 1.4 GHz

L1 Cache
(per core)

I-Cache: 32 KB
D-Cache: 32 KB

I-Cache: 32 KB
D-Cache: 32 KB

I-Cache: 32 KB
D-Cache: 32 KB

L2 Cache 256 KB (per core) 512 KB (per core)
1 MB

(shared between two cores)
L3 Cache
(shared)

35 MB N/A N/A

Main
Memory

DDR4-2400 256 GB GDDR5 8 GB
MCDRAM 16 GB

+ DDR4-2400 96 GB

OS
Linux 3.10.0-327.36.3.

el7.x86 64
Linux 2.6.38.8+mpss3.6

Linux 3.10.0-327.22.2.el7.
xppsl 1.4.1.3272.x86 64

C compiler
Intel C Compiler
Version 17.0.1.132

Intel C Compiler
Version 17.0.1.132

Intel C Compiler
Version 17.0.1.132

1. We note that Hyper-Threading [36] was enabled on each of these three
platforms.

For the Intel Xeon E5-2690 v4, the Intel Xeon Phi 5110P, and the Intel
Xeon Phi 7250, the compiler options were icc -O3 -xHOST -qopenmp, icc
-O3 -mmic -qopenmp, and icc -O3 -xMIC-AVX512 -qopenmp, respectively.
The compiler option -O3 specifies to optimize for maximum speed and enable
more aggressive optimizations, and -xHOST specifies to generate instructions
for the highest instruction set and processor available on the compilation host
machine. The compiler option -mmic specifies to build an application that
runs natively on Intel MIC Architecture. The compiler option -xMIC-AVX512

specifies to generate Intel AVX-512 Foundation instructions, Intel AVX-512
Conflict Detection instructions, Intel AVX-512 Exponential and Reciprocal
instructions, and Intel AVX-512 Prefetch instructions. The compiler option
-qopenmp specifies to enable the compiler to generate multi-threaded code
based on the OpenMP directives. The executions on the Intel Xeon Phi
5110P were performed in “native mode”. The executions on the Intel Xeon
Phi 7250 were performed in “flat mode” and “quadrant mode”. On the
Intel Xeon Phi 5110P and the Intel Xeon Phi 7250, the environment variable
KMP AFFINITY=granularity=fine,balanced was specified.

Table 2 lists the single-node execution time required to compute the 108-
th hexadecimal digit of π on the Intel Xeon E5-2690 v4, the Intel Xeon
Phi 5150P, the Intel Xeon Phi 7250, and Karrels’s result using the NVIDIA
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Table 2: Execution time to compute the 108-th hexadecimal digit of π.

Theoretical peak performance Time
FP64 FP32 INT32 vector scalar

(TFlops) (TFlops) (Tops) (sec) (sec)

Intel Xeon E5-2690 v4 0.582 1.165 0.582 1.251 2.031

Intel Xeon Phi 5150P 1.011 2.022 1.011 2.224 8.690

Intel Xeon Phi 7250 3.046 6.093 3.046 0.344 1.707

NVIDIA GeForce GTX 680 0.129 3.090 0.515 1.57 [23]
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Figure 2: Speedup for computing the n-th hexadecimal digit of π (vector version) on the
Intel Xeon Phi 7250.

GeForce GTX 680 [23]. We note that the theoretical peak INT32 perfor-
mances in Table 2 are based on the multiply-add operation for 32-bit inte-
gers.

The theoretical peak performance of the Intel Xeon Phi 7250 is about
3.01 times faster than that of the Intel Xeon Phi 5150P. With the Intel Xeon
Phi 5150P, the Intel IMCI does not support the Intel AVX-512 vpaddq in-
struction for the 64-bit integer addition or the vpmuludq instruction for the
32-bit × 32-bit → 64-bit unsigned integer multiplication. The Intel C Com-
piler can vectorize the 64-bit integer addition with the IMCI vpadcd and
vpaddsetcd instructions. We implemented a wrapper function for the 32-
bit × 32-bit→ 64-bit unsigned integer multiplication by using the Intel IMCI
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Table 3: Specification of the Fujitsu PRIMERGY CX1640 M1 cluster.

Number of nodes 8208
CPU Intel Xeon Phi 7250 (68-core, 1.4 GHz)
Main memory MCDRAM 16 GB + DDR4-2400 96 GB
Theoretical peak performance 25.004 PFlops
Total main memory size 897.75 TB
Interconnect Intel Omni-Path Architecture
Network topology Fat-tree
OS Linux 3.10.0-327.22.2.el7.xppsl 1.4.1.3272.x86 64
C compiler Intel C Compiler Version 17.0.1.132
MPI library Intel MPI 5.1.3.258

mm512 mulhi epu32(), mm512 mullo epi32(), and mm512 mask shuffle epi32()

intrinsic functions. This is why the Intel Xeon Phi 7250 (vector version) is
about 6.47 times faster than the Intel Xeon Phi 5150P (vector version). Since
the scalar version uses the x86 64 mulq instruction, which performs the 64-
bit × 64-bit → 128-bit unsigned integer multiplication for the Montgomery
squaring, it has an advantage in that there is no need to use the interleaved
Montgomery multiplication in Algorithm 6. Nevertheless, on the Intel Xeon
Phi 7250, the vector version is about 4.96 times faster than the scalar version.

Figure 2 shows the speedup for computing the n-th hexadecimal digit of
π (vector version) on the Intel Xeon Phi 7250 when from 1 to 272 threads
are used. We note that the Intel Xeon Phi 7250 has 68 cores. The results
indicate that hyper-threading is effective for n ≥ 108.

5.2. Multi-Node Performance

The performance was measured on the Fujitsu PRIMERGY CX1640
M1 cluster at the Joint Center for Advanced High Performance Comput-
ing (JCAHPC), which the University of Tokyo and University of Tsukuba
jointly operate. The original program was written in C with OpenMP and
MPI. We used the vector version described in Subsection 5.1. The spec-
ification of the Fujitsu PRIMERGY CX1640 M1 cluster is shown in Ta-
ble 3. The experiments used from 1 to 512 nodes. The compiler options
were specified as mpiicc -O3 -xMIC-AVX512 -qopenmp. The executions on
the Intel Xeon Phi 7250 were performed using “flat mode” and “quadrant
mode”. With the Intel Xeon Phi 7250 cluster, each processor has 1 MPI
process, and 268 threads per processor were used. The environment variable
KMP AFFINITY=granularity=fine,balanced was specified.
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Figure 3: Execution time for computing the n-th hexadecimal digit of π on the Fujitsu
PRIMERGY CX1640 M1 cluster.

Figure 3 shows the average execution time required to compute the n-th
hexadecimal digit of π on the Fujitsu PRIMERGY CX1640 M1 cluster. For
n = 109 on 512 nodes, the parallelization overhead dominates the execution
time, as shown in Figure 3. On the other hand, we can see that the speedup
of the parallel implementation is nearly linear for n = 1011 on 512 nodes.

6. The computation of the 100 quadrillionth hexadecimal digit of
π

We have computed the 100 quadrillionth (= 1017-th) hexadecimal digit of
π by using Bellard’s formula on the Fujitsu PRIMERGY CX1640 M1 cluster
at the Joint Center for Advanced High Performance Computing (JCAHPC).
The computation was performed during the test operation period. The main
run and the verification run were each performed on 512 nodes. Due to
the runtime limit for jobs, the main run and the verification run were each
performed as 200 separate jobs. The elapsed times of the main run and
the verification run were 320 hours 31 minutes and 320 hours 57 minutes,
respectively.

The main run computed 32 hexadecimal digits of π starting at position
1017, and the verification run computed 32 hexadecimal digits of π starting at
position 1017−1. A comparison of these results showed that the hexadecimal
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Table 4: Computed hexadecimal digits of π.

Position
Hexadecimal digits starting at
this position

106 26C65E52CB459350050E4BB17

107 17AF5863EFED8DE97033CD0F6

108 ECB840E21926EC5AE0D2F3405

109 85895585A0428B564084E74A2

1010 921C73C6838FB2B6223630F51

1011 C9C381872D27596F81D0E48B9

1012 5B4466E8D215388C4E014CEC5

1013 A0F9FF371D17593E0D06D5892

1014 0D39BABA1B8FED53DD5F8BDE8

1015 [14] 8353CB3F7F0C9ACCFA9AA215F

1016 9077E0164B9C613FD6C7F170C

1017 A937EB59439E485E

digits of π from the 1017-th to the 1017 +22-nd digits were consistent. Table
4 shows the computed hexadecimal digits of π. Computation of the ten
quadrillionth (= 1016-th) hexadecimal digit of π by Karrels [37, 14] has been
verified with our computed 25 hexadecimal digits of π starting at position
1016.

7. Conclusion

This paper presented the use of a BBP-type formula on a cluster of In-
tel Xeon Phi processors to compute a specific hexadecimal digit of π. The
BBP-type formula can be computed using modular exponentiation. We used
Montgomery multiplication for the modular multiplication, which is the most
time-consuming part of the modular exponentiation. We vectorized the mul-
tiple modular exponentiations and the multiple integer divisions by using the
Intel AVX-512 instructions. The parallel implementation of the BBP-type
formula was presented. The 100 quadrillionth hexadecimal digit of π was
computed on a 512-node cluster of Intel Xeon Phi processors with an elapsed
time of 641 hours 29 minutes that includes the time required for verification.
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