
A modified simplicial algorithm for convex maximization
based on an extension of ω-subdivision

Takahito Kuno

Graduate School of Systems and Information Engineering

University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.

March, 2017
Revised: January 30, 2018

Abstract

The simplicial algorithm is a popular branch-and-bound approach to the convex maxi-

mization problem with multiple local maxima. In this paper, we discuss some difficulties

revealed when implementing this algorithm under the ω-subdivision rule. To overcome

those, we modify the bounding process and extend the ω-subdivision rule. We also report

numerical results for the simplicial algorithm according to the new subdivision rule.

Key words: Global optimization, convex maximization, branch-and-bound, simplicial

algorithm, ω-subdivision.

1 Introduction

The convex maximization problem is hard to solve due to the existence of multiple local max-
ima, and known to be NP-hard from the viewpoint of computational complexity [5, 16]. To
solve the problem to global optimality, we need to enumerate all local maxima either explic-
itly or implicitly [7, 8, 13, 18]. A typical approach to doing this is branch-and-bound, which
locates a globally optimal solution by alternating two processes: branching and bounding.
While the former partitions a simple polyhedron enclosing the feasible set into a number of
subpolyhedra, the latter filters subproblems associated with those subpolyhedra by comparing
their upper bounds with a lower bound given by some feasible solution found so far. Accord-
ing to the shape of the polyhedron used in these processes, branch-and-bound algorithms are
classified into three classes: the conical algorithm [17], the simplicial algorithm [6], and the

The author was partly supported by a Grant-in-Aid for Scientific Research (C) 16K0028 from Japan Society
for the Promotion of Science. E-mail: takahito@cs.tsukuba.ac.jp

1

rectangular algorithm [3]. Of particular interest in this paper is the simplicial algorithm which
was proposed by Horst in 1976.

In the bounding process of the simplicial algorithm, the objective function is approximated
on a given simplex S into an affine function, which is maximized to obtain an upper bound
for the associated subproblem. Therefore, we need to solve a linear programming problem in
every execution of the bounding process. To reduce the time taken for this process, usually, the
linearized subproblem is solved by the simplex algorithm, starting from the optimal solution
of a problem solved in the preceding execution of the bounding process. If the difference
between the current and preceding problems is small, this reoptimization requires little effort.
However, for example, when the optimal solution of the preceding problem is infeasible for the
current problem, it can requires unexpectedly many simplex pivots to recover the optimality
for the current problem.

In this paper, we show that the computational efficiency of the simplicial algorithm is
considerably improved by dropping the constraint on the simplex S from the linearized sub-
problem. As a consequence of this modification, the optimal solution ωωω of the linearized
subproblem does not always lie in S. In that case, we cannot apply the ω-subdivision rule
in the branching process, despite its empirical efficiency [9, 10], since the rule is configured
to partition S radially around ωωω assumed to be in S. To cope with such a case, we develop
a new simplicial subdivision rule, named extended ω-subdivision, which uses ωωω to partition
S even if ωωω is not a point in S, and show that the simplicial algorithm works properly under
this subdivision rule. In Section 2, we give a formal definition of the convex maximization
problem, and illustrate how the simplicial algorithm behaves on the problem. In Section 3, we
modify the linearized subproblem, and discuss possible advantages and disadvantages of us-
ing the resulting problem in the algorithm. In Section 4, to overcome the major disadvantage
mentioned above, we develop the extended ω-subdivision rule, and examine the convergence
properties of the algorithm according to it. In Section 5, after summarizing the algorithm in-
corporating the new subdivision rule, we report some numerical results to compare it with the
usual simplicial algorithm. Lastly, we conclude the paper with some remarks in Section 6.

2 Convex maximization and the simplicial algorithm

Let f be a convex function defined on Rn, and consider a problem of maximizing it on a
polyhedron: ∣∣∣∣∣ maximize f (x)

subject to Ax≤ b,
(1)

where A ∈ Rm×n and b ∈ Rm. Let us denote the feasible set by

D = {x ∈ Rn | Ax≤ b}, (2)

2

and assume that D is nonempty and bounded. We also assume that an n-simplex S1 ⊂ Rn is
given as the convex hull of n+1 affinely independent points v1

1, . . . ,v
1
n+1 and satisfies

D⊂ S1 ⊂ int(dom f), (3)

where dom · and int · represent the effective domain and the interior, respectively. Under these
assumptions, the problem (1) has at least one optimal solution. However, there in general
coexist multiple locally optimal solutions, most of which are not globally optimal. To obtain a
globally optimal solution, we need to enumerate all locally optimal solutions, either explicitly
or implicitly, using techniques such as branch-and-bound. One of standard branch-and-bound
approaches is the simplicial algorithm, which is outlined below.

OUTLINE OF THE SIMPLICIAL ALGORITHM

As in other branch-and-bound algorithms, the following two processes play essential roles in
the simplicial algorithm.

Branching: Starting from i = 1, the n-simplex Si = conv{vi
1, . . . ,v

i
n+1} is subdivided radi-

ally around a point u ∈ Si into at most n+1 children:

Si
j = conv{vi

1, . . . ,v
i
j−1,u,v

i
j+1, . . . ,v

i
n+1}, j ∈ Ji, (4)

where Ji is an index set such that j ∈ Ji if v1, . . . ,vi
j−1,u,v

i
j+1, . . . ,v

i
n+1 are affinely indepen-

dent. We refer to u as the subdivision point of Si. Out of active descendants of S1 requiring
further examination, a simplex is chosen as the successor Si+1 to Si, and the same process is
repeated after incrementing i by one, until all active descendants turn out to contain no optimal
solution of (1).

Bounding: Except in the trivial case where D∩Si = /0, whether or not Si needs to be subdi-
vided is determined by comparing an upper bound β (Si) of f on D∩Si with the value α of f
at the best known feasible solution. The value of β (Si) is given by maximizing the concave
envelope gi of f , the pointwise infimum over all concave overestimators of f on Si. In our case
where f is a convex function, gi is an affine function which agrees with f at the vertices of Si.
Therefore, a maximum point ωωω i of g over D∩ Si can be obtained by linear programming. If
α ≥ β (Si) holds for β (Si) = gi(ωωω i), then Si contains no feasible solution of value better than
α and can be pruned from the set of active descendants of S1.

If the algorithm does not terminate in a finite amount of time, it generates an infinite

3

sequence of nested simplices:

S1 = Si1 ⊃ ·· · ⊃ Sik ⊃ Sik+1 ⊃ ·· · ,

where Sik+1 is a child of Sik created by subdividing Sik around some u ∈ Sik . The convergence
of the algorithm depends largely on how to subdivide Si in the branching process. If the
subdivision point u is placed at the midpoint on a longest edge of Si for each i, then Sik shrinks
to a single point as k→ ∞. Since ωωω ik belongs to Sik , we simultaneously have

liminf
k→∞

(
gik(ωωω ik)− f (ωωω ik)

)
= 0.

This guarantees the convergence of the algorithm to an optimal solution of (1) if the successor
Si+1 to Si is chosen in best-bound-first order, i.e., Si+1 is a simplex with the largest upper
bound among all active descendants of S1. In addition to this simple bisection, there are several
rules for subdividing Si which guarantee the convergence of the algorithm [9, 10, 11, 12].
Among others, the most poplar is the ω-subdivision rule, where u is placed at ωωω i for each i.
Empirically, it is known that the ω-subdivision rule runs the algorithm much more efficiently
than bisection [9]. Whichever rule is adopted, in order to make the algorithm converge to an
optimal solution of (1), the successor Si+1 to Si has to be chosen in best-bound-first order.

3 Reduction of effort in the bounding process

As seen in the previous section, for a given n-simplex S = conv{v1, . . . ,vn+1}⊂ S1, the bound-
ing process needs an upper bound β (S) for the subproblem of (1):∣∣∣∣∣ maximize f (x)

subject to x ∈ D∩S.
(5)

Assume that D∩S ̸= /0. If not, β (S) may be set to −∞. Replacing f with its concave envelope
g on S, the subproblem (5) is approximated into a linearized problem:

P(S)

∣∣∣∣∣ maximize g(x)
subject to x ∈ D∩S.

Although P(S) is certainly linear programming in Rn, to obtain its standard form, we have to
explicitly determine the function g and the constraint x ∈ S. Instead, to avoid those complica-
tions, the following equivalent problem in Rn+1 is commonly solved:

Π(S)

∣∣∣∣∣ maximize fλλλ
subject to AVλλλ ≤ b, eλλλ = 1, λλλ ≥ 0,

4

where e ∈ Rn+1 is the all-ones row vector, and

f = [f (v1), . . . , f (vn+1)] , V = [v1, . . . ,vn+1] .

Let λλλ ∗ be an optimal solution to Π(S). Then ωωω = Vλλλ ∗ solves P(S), and β (S) is given by the
optimal value g(ωωω) = fλλλ ∗ of P(S) and Π(S).

In the usual implementation of the simplicial algorithm, when Si+1 is given as the succes-
sor to the current simplex Si, problem Π(Si+1) is solved by performing a sequence of dual
and primal simplex pivots from an optimal solution of Π(Si). If Si+1 is a child of Si, then
Π(Si+1) differs from Π(Si) only in a column of the profit vector and constraint matrix, and
so this reoptimization needs few simplex pivots (see e.g., [2]). If not, however, it can require
a large number of simplex pivots because Π(Si) and Π(Si+1) are significantly different. An
easy way to reduce this effort is to choose the successor Si+1 in depth-first order. Then Si+1 is
always a child of Si except when Si is pruned from the set of active descendants of S1. While
this approach does not guarantee the convergence to a globally optimal solution of (1), for
any given tolerance ε > 0, the algorithm still terminates in finite time and returns a globally
ε-optimal solution xε ∈ D which satisfies

f (xε)≥ f (x)− ε, ∀x ∈ D.

In the following, we will conduct a more drastic revision of the simplicial algorithm.

ALTERNATIVE LINEARIZED SUBPROBLEM

As an alternative to Π(S), we propose to solve the following in the bounding process:

P′(S)

∣∣∣∣∣ maximize c′x+ c′0
subject to Ax≤ b.

The profit vector [c′,c′0] is a solution to the system of linear equations:

[c,c0]

[
V
e

]
= f. (6)

Therefore, the objective function of P′(S) is just the concave envelope of f over S. Since
D = {x ∈ Rn | Ax ≤ b} is assumed to be nonempty, P′(S) always has an optimal solution ωωω ′

in D, for which we have

g(ωωω ′) = c′ωωω ′+ c′0 ≥ g(ωωω)≥ f (x), ∀x ∈ D∩S. (7)

5

Therefore, g(ωωω ′) can be used as the upper bound β (S) for the subproblem (5). Furthermore,
whichever descendant of S1 is chosen as the successor Si+1 to Si, problem P′(Si+1) differs
from P′(Si) only in the profit vector, and can be reoptimized with only a few primal simplex
pivots. The substitution of P′(S) for Π(S), however, has three obvious disadvantages:

(a) the upper bound β (S) deteriorates in quality, as shown in (7);

(b) an additional effort is needed to solve the system (6); and

(c) the solution ωωω ′ cannot be the subdivision point of S if ωωω ′ ̸∈ S.

Among these weak points, (b) can be minor if the successor Si+1 to Si is chosen in depth-
first order. Let Si = conv{vi

1, . . . ,v
i
n+1} and Vi = [vi

1, . . . ,v
i
n+1]. Unless Si is pruned off, the

successor Si+1 is a child of Si, and hence the associated matrix Vi+1 differs from Vi only in
one column, say vi+1

j = u, which is the subdivision point of Si. We can update the inverse of
the coefficient matrix of (6) in time O(n2), using the Sherman-Morrison-Woodbury formula
(see for detail, e.g., [14]), as follows

Wi+1 =

(
I− 1

e jz
(
z− eTj

)
e j

)
Wi, (8)

where I ∈ R(n+1)×(n+1) is the identity matrix, e j ∈ Rn+1 is its jth row, and

Wi =

[
Vi

e

]−1

, z = Wi

[
u
1

]
.

Since the usual reoptimization procedure performs a single simplex pivot in time O(m2) using
a formula similar to (8), the computational burden for solving (6) would be offset by solving
P′(S) instead of Π(S), as long as n is not extremely larger than m.

SUBDIVISION OF THE SIMPLEX S USING ωωω ′

The weakness (c) in the use of P′(S) is naturally attributed to dropping the constraint on S
from P(S). Let us develop a way to exploit the optimal solution ωωω ′ of P′(S) to subdivide S
even in the case where ωωω ′ is not a point in S.

Once the system (6) has been solved, the following can be solved in µµµ with a little addi-
tional effort: [

V
e

]
µµµ =

[
ωωω ′

1

]
. (9)

6

Let µµµ ′ denote the solution to (9), and let J+ = { j | µ ′j > 0}. Then, by letting

λ ′j =

 µ ′j/ ∑
k∈J+

µ ′k if j ∈ J+

0 otherwise,
(10)

we have λλλ ′ ≥ 0 and eλλλ ′ = 1. Therefore, if we define u as follows, then it belongs to S without
fail, and can serve as the subdivision point of S:

u = Vλλλ ′. (11)

Since eµµµ ′ = 1 holds, J+ never vanishes, and hence u is well-defined through (9) – (11). How-
ever, if u falls in the vertex set {v1, . . . ,vn+1} of S, then S cannot be subdivided around u. In
that case, we can prune S from the set of active descendants of S1.

Proposition 3.1 Let u be defined through (9) – (11). If u ∈ {v1, . . . ,vn+1}, then f (ωωω ′)≥ f (x)
for any x ∈ D∩S.

Proof. Suppose u = vk. If λ ′k < 1, then we have

vk =
1

1−λ ′k
∑
j ̸=k

λ ′jv j,
1

1−λ ′k
∑
j ̸=k

λ ′j = 1,
1

1−λ ′k
λ ′j ≥ 0, j ̸= k,

which imply vk ∈ conv{v j | j ̸= k}. This contradicts the fact that S is an n-simplex. Therefore,
λ ′k = 1, J+ = {k}, and we have µ ′k ≥ 1 and µ ′j ≤ 0 for every j ̸= k.

If µ ′k = 1, then ωωω ′= vk, and hence f (ωωω ′)= g(ωωω ′)≥ g(x)≥ f (x) for any x∈D∩S. Assume
that µ ′k > 1. Let

y =
1

1−µ ′k
∑
j ̸=k

µ ′jv j.

Then y belongs to a facet conv{v j | j ̸= k} of S, since

1
1−µ ′k

∑
j ̸=k

µ ′j = 1,
1

1−µ ′k
µ ′j ≥ 0, j ̸= k.

Moreover, as is seen below, vk lies in the relative interior of the segment connecting y and ωωω ′:

vk = (1− 1
µ ′k

)y+
1
µ ′k

ωωω ′,
1
µ ′k
∈ (0,1).

7

If f (ωωω ′)< g(ωωω ′), we have

f (vk) = f
(
(1− 1

µ ′k
)y+

1
µ ′k

ωωω ′
)
≤ (1− 1

µ ′k
) f (y)+

1
µ ′k

f (ωωω ′)

< (1− 1
µ ′k

)g(y)+
1
µ ′k

g(ωωω ′)

= g
(
(1− 1

µ ′k
)y+

1
µ ′k

ωωω ′
)
= g(vk),

by noting f (y) ≤ g(y). This is a contradiction, because g agrees with f at vk. As a conse-
quence, we have f (ωωω ′)≥ g(ωωω ′)≥ g(x)≥ f (x) for any x ∈ D∩S.

4 New subdivision rule in the branching process

In the branching process, let us suppose that the successor Si+1 to Si is chosen in depth-first
order for each i. In that case, if the algorithm does not terminate, it generates an infinite
sequence of nested simplices:

S1 ⊃ S2 ⊃ ·· · ⊃ Si ⊃ Si+1 ⊃ ·· · , (12)

where Si+1 is a child of Si and shares n vertices with Si. Let ωωω i denote the optimal solution
of P′(Si). The following relationship is assumed between the values of f and its concave
envelope gi on Si:

gi(ωωω i)> f (ωωω i), i = 1,2, (13)

If the inequality does not hold for some i, we can terminate the generation of (12) because Si

and its successors contain no feasible solution of (1) better than ωωω i. Let S0 = ∩∞
i=1Si. It is

known that S0 is a simplex but the dimension can be less than n [1].
If there is a large variability in the edge lengths of Si, we cannot obtain stable solutions to

the systems (6) and (9). A simple way to avoid this is to occasionally apply the usual bisection
rule in (12) and shorten a longest edge of Si by half. In general, such a hybrid subdivision rule
with bisection enjoys some favorable property (see the textbook [18] for a proof):

Lemma 4.1 For each i, let xi be a point in Si. For the sequence (12), assume that

(i) for infinitely many i, simplex Si+1 is created by bisection of Si,

(ii) for all other i, simplex Si+1 is created by subdividing Si radially around xi.

Then at least one accumulation point of the sequence {xi} is a vertex of S0.

We also have the following, even without the assumptions (i) and (ii) in Lemma 4.1:

8

Lemma 4.2 For each i, let xi be a point in Si. If at least one accumulation point of the
sequence {xi} is a vertex of S0, then

liminf
i→∞

(
gi(xi)− f (xi)

)
= 0. (14)

Proof. Suppose a subsequence {xir} converges to x0, which is a vertex of S0. Let us abbreviate
the index ir to r. Since xr ∈ Sr, there exists some λλλ r ≥ 0 such that xr = Vrλλλ r and eλλλ r = 1.
Passing to a further subsequence if necessary, we have vr

j → v0
j for each j and λλλ r → λλλ 0, as

r→∞, for some v0
j ∈ S1 and λλλ 0 ≥ 0 such that eλλλ 0 = 1. Then S0 = conv{v0

j | j = 1, . . . ,n+1}
holds (see [1]). Taking the limits of both sides of xr = Vrλλλ r, we have x0 = V0λλλ 0, where
V0 = [v0

1, . . . ,v
0
n+1]. Since x0 is a vertex of S0, we see that v0

j = x0 if λ 0
j > 0. By the continuity

of f , we have

gr(xr) =
n+1

∑
j=1

f (vr
j)λ r

j →
n+1

∑
j=1

f (v0
j)λ 0

j = f (x0) (r→ ∞),

which implies (14) because gi(xi)≥ f (xi) for every i.

Let ui denote the subdivision point Si defined according to (9) – (11) with V = Vi and
ωωω ′=ωωω i. Since ui ∈ Si for each i, Lemmas 4.1 and 4.2 guarantee that there exists a subsequence
{uir} which converges to some vertex of S0 and satisfies

lim
r→∞

(
gir(uir)− f (uir)

)
= 0 (15)

if the sequence (12) is generated, e.g., in accordance with the following rule for a prescribed
positive integer N:

Extended ω-subdivision rule

(i) If i = k×N for some integer k, then Si is bisected at the midpoint of a longest edge into
two children, either of which is chosen as Si+1;

(ii) Otherwise, Si is subdivided radially around ui into at most n+1 children, one of which
is chosen as Si+1.

In addition to (15), we have a major consequence for the convergence of our algorithm under
this subdivision rule.

Theorem 4.3 If the sequence (12) is generated according to the extended ω-subdivision rule,
then

liminf
i→∞

(
gi(ωωω i)− f (ωωω i)

)
= 0. (16)

9

Proof. Let {uir} be a subsequence converging to u0, which is a vertex of S0, and abbreviate ir
to r. If ωωωr = ur for infinitely many r, then (15) immediately implies (16). Suppose ωωωr = ur for
only finitely many r. Let µµµr denote the solution to (9) with V=Vr and ωωω ′=ωωωr. By passing to
a further subsequence if necessary, we can assume that there exists a subset J+⊂{1, . . . ,n+1}
such that J+ = { j | µr

j > 0} and ∑ j∈J+ µr
j > 1 for every r. Let

yr =
1

∑ j ̸∈J+ µr
j

∑
j ̸∈J+

µr
j v

r
j.

Then we have
ωωωr = yr +θ r(ur−yr), θ r = ∑

j∈J+

µr
j > 1. (17)

Since {ωωωr} and {yr} are generated in compact sets, we can assume that they converge to some
ωωω0 ∈ D and y0 ∈ S1, respectively. There are two cases to consider.

Case 1: u0 ̸= y0. If {θ r} diverges, then {ωωωr} cannot be convergent. We can therefore
assume that {θ r} has a limit θ 0 ≥ 1. This simultaneously implies that {µµµr} converges to
some µµµ0 such that µ0

j ≥ 0 if j ∈ J+, and µ0
j ≤ 0 otherwise. First, let us assume that ωωω0 = u0.

Then θ 0 must be one, and µ0
j = 0 for each j ̸∈ J+. As r→ ∞, we have

|gr(ωωωr)− f (ur)| ≤ |gr(ωωωr)−gr(ur)|+ |gr(ur)− f (ur)|

= |(1− 1
θ r) ∑

j∈J+

µr
j f (vr

j)+ ∑
j ̸=J+

µr
j f (vr

j)|+ |gr(ur)− f (ur)| → 0,

by noting (15), and hence gr(ωωωr)→ f (u0) = f (ωωω0). Next, assume ωωω0 ̸= u0 and that, contrary
to (16), there exists some number σ > 0 such that gr(ωωωr)− f (ωωωr) > σ for sufficiently large
r. Since f is convex and gr(yr)≥ f (yr), we have

f (ur)≤ 1
θ r f (ωωωr)+(1− 1

θ r) f (yr)

<
1
θ r (g

r(ωωωr)−σ)+(1− 1
θ r)g

r(yr) = gr(ur)− σ
θ r ,

where the last equality holds in the view of the linearity of gr. Thus, we have

lim
r→∞

(gr(ur)− f (ur))≥ σ/θ 0 > 0,

which contradicts (15). As a result, we have (16) by noting (13).

10

Case 2: u0 = y0. For each r, let

τr = ∥ur−yr∥, dr =
1
τr (u

r−yr).

Then τr→ 0, as r→ ∞, and we can assume that dr→ d0 for some unit vector d0. Using {τr}
and {dr}, we see that

lim
r→∞

f (ur)− f (yr)

∥ur−yr∥
= lim

r→∞

f (yr + τrdr)− f (yr)

τr ≤ limsup
τ↘0
y→u0

d→d0

f (y+ τd)− f (y)
τ

. (18)

The last term of (18), called the semiderivative of f at u0 for d0, is known to be finite and
equal to the one-sided directional derivative f ′(u0;d0) when f is convex and u0 ∈ int(dom f)
(see Chapters 7 – 9 of [15]). From these facts and Lemma 4.2, we have

lim
r→∞

gr(ωωωr) = lim
r→∞

(
gr(yr)+∥ωωωr−yr∥gr(ur)−gr(yr)

∥ur−yr∥

)
= f (u0)+∥ωωω0−u0∥ lim

r→∞

f (ur)− f (yr)

∥ur−yr∥
≤ f (u0)+∥ωωω0−u0∥ f ′(u0;d0)≤ f (u0 +∥ωωω0−u0∥d0) = f (ωωω0),

which, together with (13), implies (16).

Corollary 4.4 Assume that the sequence (12) is generated according to the extended ω-
subdivision rule, and that D∩ S0 ̸= /0. Then there exists an accumulation point ωωω0 of the
sequence {ωωω i} in D such that f (ωωω0)≥ f (x) for any x ∈ D∩S0.

Proof. Let {uir} be a subsequence converging to some vertex of S0, and abbreviate ir to r.
Then we can assume that ωωωr→ ωωω0 ∈ D, and besides

lim
r→∞

(gr(ωωωr)− f (ωωωr)) = 0.

This implies that f (ωωω0)≥ f (x) for any x ∈ D∩S0, because gr(ωωωr)≥ f (x) for each r.

5 Simplicial algorithm with the new subdivision rule

Let us summarize our algorithm incorporating the extended ω-subdivision rule. Given a tol-
erance ε > 0 and an integer N > 0, it can be described as a recursive algorithm:

algorithm simpl bb(D, f ,ε,N)

determine n+1 affinely independent points v1, . . . ,vn+1 such that D⊂ conv{v1, . . . ,vn+1};

11

let α ←−∞, and assign a null to xε ;
call the procedure ext omega(1,v1, . . . ,vn+1) and update xε ;
return xε ;

end.

procedure ext omega(i,v1, . . . ,vn+1)

Si← conv{v1, . . . ,vn+1}; # bounding process
compute the solution [c′,c′0] to the system (6);
solve the linear program P′(Si) associated with [c′,c′0];
for an optimal solution ωωω i of P′(Si), let β (Si)← c′ωωω i + c′0;
if f (ωωω i)> α then

α ← f (ωωω i); xε ← ωωω i;
end if

if β (Si)−α > ε then

if i mod N ̸= 0 then # extended ω-subdivision (i)
compute the solution µµµ ′ to the system (9), and let J+←{ j | µ ′j > 0};
determine the subdivision point u of Si according to (10) and (11);

else # extended ω-subdivision (ii)
choose a longest edge vp-vq of Si, let u← (vp +vq)/2 and J+←{p,q};

end if

for each j ∈ J+ do # branching process
call the procedure ext omega(i+1,v1, . . . ,v j−1,u,v j+1, . . . ,vn+1);

end for

end if

end.

Theorem 5.1 If ε > 0, the algorithm simpl bb terminates with a globally ε-optimal solution
xε after finitely many calls of the procedure ext omega.

Proof. Suppose that simpl bb does not terminate. Then it generates an infinite sequence of
nested simplices, like (12). Let α i denote the value of α at the end of the bounding process in
the procedure ext omega(i,v1, . . . ,vn+1), and let β i = β (Si), which is identical to gi(ωωω i) if gi

denotes the concave envelope of f on Si. Also let U = max{ f (v1
j) | j = 1, . . . ,n+1}, where v1

j

is a vertex of S1. Since {α i} is nondecreasing and bounded from above by U , it converges to
some α0 ≤U . Passing to a suitable subsequence, we have β r→ β 0 and ωωωr→ ωωω0, as r→ ∞,
where r is an abbreviation of ir. From Theorem 4.3, we also see that β 0 = f (ωωω0) holds. How-
ever, f (ωωω i) ≤ α i ≤ β i for every i, and hence f (ωωωr) and β r both converge to α0. Therefore,
if ε > 0, the backtracking condition β (Si)−α ≤ ε holds for some i, say ik, and consequently
every nested sequence of simplices {Si} is finite. Since Sik is an n-dimensional simplex, the

12

algorithm simpl bb terminates after finitely many calls of ext omega and partitions S1 into
{Sik | k = 1, . . . ,K} for some finite number K. The backtracking condition guarantees the
ε-optimality of xε on termination of the algorithm.

NUMERICAL COMPARISON

In the rest of this section, we report on numerical results of comparison between the algorithm
simpl bb and the usual simplicial algorithm according to an ordinary ω-subdivision rule. The
test problem solved using those algorithms is a concave quadratic maximization problem of
the form: ∣∣∣∣∣ maximize f (x)+θdy

subject to Ax+By≤ b, [x,y]≥ 0,
(19)

where
f (x) =

1
2

xTQx+ cx.

To make the feasible set bounded, the vector b ∈ Rm was fixed to [1.0, . . . ,1.0,n]T and all
components of the last row of A ∈ Rm×q and B ∈ Rm×(n−q) were set to 1.0. Other entries of
A and B, together with those of c ∈Rq and d ∈Rn−q, were generated randomly in the interval
[−0.5,1.0], so that the percentages of zeros and negative numbers were about 20% and 10%,
respectively. The matrix Q ∈ Rq×q was symmetric, positive semidefinite, tridiagonal, and the
tridiagonal entries were random numbers in [0.0,1.0].

Note that the objective function of (19) can be linearized by replacing only the nonlinear
part f with its concave envelope over a simplex. Therefore, we may implement the branching
process in the x-space of dimension q≤ n, instead of in the whole space of dimension n. Based
on this decomposition principle [8], we coded the algorithm simpl bb in GNU Octave 4.0.0
[4]. Other than this, the program code differs from the above description in two points: (i) it
searches the children of Si in decreasing order of their values of β for each i, and (ii) it uses
the following as the backtracking condition, instead of β (Si)−α > ε ,

β (Si)− (1+ ε)α > 0, (20)

where ε was set to 10−5. The alteration (i) is just a heuristic aiming to improve the lower bound
α rapidly, and (ii) was made to prevent the magnitude of the optimal value from affecting the
convergence of the program code. The number N prescribing the frequency of bisection in
the extended ω-subdivision rule was fixed at 50. We also wrote the code for the revised
simplex algorithm to solve P′(Si), without using any optimization tools provided in Octave. To
compare the performance with other algorithms, we coded the standard simplicial algorithm
in two ways, one of which chooses the successor Si+1 to Si in best-bound-first order, referred
to as std bound, and the other in depth-first order, referred to as std depth. Both adopted the

13

Table 1: Comparison between simpl bb and std depth when θ = 5.0.

m×n q = 0.3n q = 0.4n q = 0.5n q = 0.6n

time # time # time # time

60×150 simpl bb 4.2 0.0332 36.5 0.1768 73.1 0.2736 542.5 5.355

std depth 3.6 0.1064 17.7 0.4364 39.3 0.9712 968.7 22.79

90×150 simpl bb 2.8 0.0628 29.5 0.2224 60.3 0.3048 350.7 4.179

std depth 2.8 0.1628 21.0 0.7812 40.4 1.5792 577.7 21.49

90×200 simpl bb 6.3 0.0808 15.2 0.1512 59.6 0.6672 289.7 4.604

std depth 6.2 0.3384 13.2 0.7788 46.5 2.779 259.9 15.28

120×200 simpl bb 2.5 0.1344 8.7 0.1616 17.4 0.2208 174.2 1.880

std depth 2.5 0.3700 8.8 0.8636 14.5 1.558 134.6 11.47

120×250 simpl bb 1.9 0.1644 3.5 0.1876 78.3 1.322 341.4 11.94

std depth 1.9 0.4000 3.5 0.6740 25.3 3.188 523.5 61.88

150×250 simpl bb 1.2 0.2640 33.0 0.6216 69.9 1.442 362.3 13.86

std depth 1.2 0.4940 31.6 4.877 49.1 8.103 342.8 58.06

regular ω-subdivision rule and the backtracking condition (20). As varying m,n,q and θ , we
solved ten instances of (19) and measured the average performance of each code for each set
of the parameters.

Figures 1 and 2 plot the changes in the average number of iterations and the average
CPU time in seconds, respectively, taken by each program code when the dimension q of
x was increased from 30 to 70 with (m,n,θ) fixed at (60,100,5.0). Note that the number
of iterations corresponds to the number of linear programs P′(S)’s, or Π(S)’s, solved before
termination of each program code. It behaves similarly for both simpl bb and std depth while
std bound requires much more iterations than those if q exceeds 40. When q = 70, the code
std bound took more than 1,000,000 iterations for most instances, and so we gave up trying to
measure its average performance. With respect to CPU time, simpl bb is superior to std depth

considerably as well as to std bound. This is considered because P′(S) is much easier to solve
than Π(S). Figures 3 and 4 show the results when the weight θ in the objective function
was varied between 2.0 and 10.0 with (m,n,q) = (60,100,30). When θ < 3.0, the average
performance of std bound could not be obtained for the same reason as before. From these
figures, we can again confirm the superiority of simpl bb to the other two codes, especially in
terms of CPU time.

The computational results for simpl bb and std depth on larger-scale instances are listed in
Table 1, where the column labeled ‘#’ gives the average number of iterations and the column

14

 1

 10

 100

 1000

 10000

 100000

 30 35 40 45 50 55 60 65 70

lo
g

(
#
 i

te
ra

ti
o
n
s)

nonlinear variables (q)

std_bound

simpl_bb
std_depth

Figure 1: Number of iterations when (m,n,θ) = (60,100,5.0).

 0.1

 1

 10

 100

 1000

 30 35 40 45 50 55 60 65 70

lo
g
(

C
P

U
 s

ec
o

n
d
s

)

nonlinear variables (q)

std_bound

simpl_bb
std_depth

Figure 2: CPU time in seconds when (m,n,θ) = (60,100,5.0).

15

 1

 10

 100

 1000

 10000

 100000

lo
g

(
#
 i

te
ra

ti
o
n
s)

Weight (θ)

 5.0 10.06.0 8.02.0 3.0 4.0

std_bound

simpl_bb
std_depth

Figure 3: Number of iterations when (m,n,q) = (60,100,30).

 0.1

 1

 10

 100

 1000

lo
g
(

C
P

U
 s

ec
o

n
d
s

)

Weight (θ)

 5.0 10.06.0 8.02.0 3.0 4.0

usual_best

extended_ω

usual_depth

Figure 4: CPU time in seconds when (m,n,q) = (60,100,30).

16

labeled ‘time’ the average CPU time in seconds when (m,n,q) ranged up to (150,250,150)
with θ fixed at 5.0. Although simpl bb might be a little inferior in the number of iterations, its
average CPU time is far less than that of std depth for every (m,n,q). This tendency is more
noticeable when the proportion of nonlinear variables q/n is larger.

6 Concluding remarks

In the usual simplicial algorithm, the linear program Π(S) is solved repeatedly for different
simplices S. We have proposed to simplify Π(S) into P′(S) whose feasible set does not depend
on S. As pointed out in Section 3, there are three obvious disadvantages (a), (b) and (c) in
adopting P′(S) instead of Π(S). We have shown that the second point (b) can be offset by
choosing the successor of S in depth-first order. To overcome the third point (c), we have
developed a new rule for subdividing S, named extended ω-subdivision, and shown that the
algorithm converges even under this subdivision rule. With regard to the first point (a), we
have not taken any measurements. However, our numerical results provided in Section 5
indicate that we need not worry much about (a). One possible reason may be that the lower
bound α given by the optimal solution ωωω ′ of P′(S) is strong enough to compensate for the
deterioration of the upper bound β (S). Since ωωω ′ is a vertex of the feasible set D, we could
further strengthen the lower bound α by evaluating the value of f at vertices of D adjacent
to ωωω ′. In the succeeding paper, we will discuss such local search procedures which can be
incorporated into the algorithm simpl bb.

Acknowledgment

The author would like to thank the anonymous referees for their valuable comments, which
significantly improved the readability of this article.

References

[1] Borovikov, V., “On the intersection of a sequence of simplices” (Russian), Uspekhi
Matematicheskikh Nauk 7 (1952), 179–180.

[2] Chvátal, V., Linear Programming, W.H. Freeman (New York, 1983).

[3] Falk, J.E., and R.M. Soland, “An algorithm for separable nonconvex programming prob-
lems”, Management Science 15 (1969), 550–569.

[4] GNU Octave, http://www.gnu.org/software/octave/.

[5] Guisewite, G.M., and P.M. Pardalos, “Minimum concave-cost network flow problems:
applications, complexity, and algorithms”, Annals of Operations Research 25 (1990),
75–100.

17

[6] Horst, R., “An algorithm for nonconvex programming problems”, Mathematical Pro-
gramming 10 (1976), 312–321.

[7] Horst, R., P.M. Pardalos, and N.V. Thoai, Introduction to Global Optimization, Springer-
Verlag (Berlin, 1995).

[8] Horst, R., and H. Tuy, Global Optimization: Deterministic Approaches, 3rd ed.,
Springer-Verlag (Berlin, 1996).

[9] Kuno, T., and P.E.K. Buckland, “A convergent simplicial algorithm with ω-subdivision
and ω-bisection strategies”, Journal of Global Optimization 52 (2012), 371–390.

[10] Kuno, T., and T. Ishihama, “A generalization of ω-subdivision ensuring convergence
of the simplicial algorithm”, Computational Optimization and Applications 64 (2016),
535–555.

[11] Locatelli, M., and U. Raber, “On convergence of the simplicial branch-and-bound algo-
rithm based on ω-subdivisions”, Journal of Optimization Theory and Applications 107
(2000), 69–79.

[12] Locatelli, M., and U. Raber, “Finiteness result for the simplicial branch-and-bound algo-
rithm based on ω-subdivisions”, Journal of Optimization Theory and Applications 107
(2000), 81–88.

[13] Locatelli, M., and F. Schoen, Global Optimization: Theory, Algorithms, and Applica-
tions, SIAM (PA, 2013).

[14] Martin, R.K., Large Scale Linear And Integer Optimization – A Unified Approach,
Kluwer (Dordrecht, 1999).

[15] Rockafellar, R.T., and R.J.-B. Wets, Variational Analysis, Springer-Verlag (Berlin,
1998).

[16] Sahni, S., “Computationally related problems”, SIAM Journal on computing 3 (1974),
262–279.

[17] Tuy, H., “Concave programming under linear constraints”, Soviet Mathematics 5 (1964),
1437–1440.

[18] Tuy, H., Convex Analysis and Global Optimization, Springer-Verlag (Berlin, 1998).

18

