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A B S T R A C T

Large forecast errors (forecast busts) for surface solar radiation (SSR) and therefore photovoltaic power generation
may lead to either a shortage of power supply or production of excessive surplus power. Ensemble forecasting with
numerical weather prediction (NWP) models has been developed to reduce forecast errors by taking the average of
individual forecasts and to consider forecast uncertainty and reliability by generating a probabilistic forecast of
meteorological fields. A multi-center grand ensemble (MCGE) is recognized as a useful technique for further redu-
cing the uncertainty of a weather forecast. An ensemble mean of MCGE (EMg) has smaller forecast error than an
ensemble mean of a single NWP center (EM). Moreover, the lognormal ensemble spread of MCGE (LNESg) and
single-NWP-center ensembles (LNES) relate to the forecast error, and can be used as a predictor of reliability for the
weather forecast. 1- to 6-day ensemble forecasts at four leading NWP centers (European Centre for Medium-Range
Weather Forecasts: ECMWF, Japan Meteorological Agency: JMA, National Centers for Environmental Prediction:
NCEP, and the UK Met Office: UKMO) were used to detect the forecast busts of daily SSR over the Kanto Plain in
central Japan in a day-ahead regional forecast operated by the Japan Meteorological Agency (JMA-MSM).

The magnitude of the forecast error of the EMg was found to be comparable with that of the JMA-MSM. The
correlations between the forecast error coefficient (Fc) and LNESg in winter season were higher than summer
season. In the top 10%, 5% and 1% forecast busts in five winter months, the Receiver Operating Characteristic
(ROC) scores of the MCGE in 1- to 6-day ahead forecast indicated statistical significance. The LNESg can
therefore be a valuable predictor for detection of forecast busts in the regional forecast.

1. Introduction

Weather forecasting is an important technology for energy man-
agement. Prediction of surface solar radiation (SSR) using numerical
weather prediction (NWP) models achieves better forecast accuracy
than statistical models for forecast lead time in the range of several
hours to several days (Diagne et al., 2013). One- to several-day forecasts
are important in planning for an appropriate reserve capacity (e.g., unit
commitment, pumped storage generation, and battery management).

Energy management using information from weather forecasts is
vulnerable to the risks of both shortage of power supply and production
of excessive surplus power owing to forecasts with large errors (forecast
busts) of NWP models (e.g., Lorenz et al., 2011; Ohtake et al., 2016).
Mean bias error (MBE) and root mean square error (RMSE) are com-
monly used to evaluate the forecast error. However, there are few ex-
amples in the literature of the assessment of forecast busts. Prediction of

forecast busts is important for energy management systems.
Regional forecasts use global forecasts as initial and lateral

boundary conditions. In previous studies, regional forecasts have been
used to forecast SSR and grid-connected photovoltaic power generation,
with machine learning and model output statistics (MOS) used to per-
form post-processing (Cornaro et al., 2015; Fonseca et al., 2012). It is
well-recognized that post-processing reduces the forecast error from
weather forecast models (e.g., Pelland et al., 2013; Sperati et al., 2016).
Pierro et al. (2016) indicated the benefits of multi-center grand en-
sembles (MCGE) for a day-ahead forecasts. They used the Integrated
Forecast System (IFS) model and the Weather Research and Forecast
(WRF) model. The propagation of errors from the global (IFS model) to
regional (WRF model) forecast occurs because the regional forecast
model uses global forecast data as the initial and boundary conditions.
Global forecast errors propagate to each subsequent step in, for in-
stance, regional forecasts using a regional NWP model (dynamical
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downscaling) and point forecasts using statistical models (statistical
downscaling). The physical model, such as the regional NWP model,
statistical models, the machine learning method or MOS use the global
forecast as their input data. Then the forecast accuracy of the physical
or statistical models used for regional and point forecasts is affected by
the weather conditions of the global forecast.

The forecast error and uncertainty are caused by the incompleteness
of the NWP models, errors in initial and lateral conditions, and a
chaotic atmosphere (Lorenz, 1963). The forecast error is amplified with
increasing forecast lead time (Lorenz et al., 2016), and varies with the
physical variables and forecast lead time (Garcia-Moya et al., 2011;
Stensrud et al., 2000). The error is influenced by the physical schemes
of the model and initial and lateral boundary conditions (Clark et al.,
2008; Liu et al., 2016). Moreover, the error is related to reproducibility
of weather conditions in NWP model (e.g., Ohtake et al., 2015; Ohba
et al., 2016).

Global ensemble forecasts are produced by several NWP centers to
reduce weather forecast uncertainty and for evaluating risk assessment
(Matsueda et al., 2007; Palmer, 2002). The benefits of ensemble fore-
casts are: (1) the ensemble mean (EM) reduces forecast error and un-
certainty; (2) the ensemble spread (ES) provides information on the
predictability and reliability of the forecast. Note that the EM indicates
the mean value of all ensemble members in a single-NWP center en-
semble forecast, ES indicates the standard deviation of the ensemble
members, and ensemble member refers to an individual forecast in the
overall ensemble of forecasts. Previous studies have shown that there is
a high correlation between the ES and forecast skill (Grimit and Mass,
2007; Whitaker and Loughe, 1998). Thorey et al. (2015) demonstrated
the benefits of an ensemble forecast using an MCGE for solar radiation.
The RMSE of the EM of MCGE (EMg) of the averaged SSR between 0600
and 1200 UTC was found to be lower than that of the EM from single-
NWP centers for a six-hour forecast in the European region. These re-
sults indicate the usefulness of the MCGE for renewable energy fields.
However, the availability of the ES of an MCGE (ESg) for predicting SSR
has not been discussed sufficiently in previous studies.

The purpose of this study is to evaluate the reliability and predict-
ability of using ES and ESg in Japan for short- to medium-range fore-
casts. In particular, we developed the prediction of forecast busts in
regional deterministic forecasts using the ES and ESg. The method for
predicting the daily forecast error from one to several days is evaluated.
The proposed detection method of forecast busts may be useful for the
management of the auxiliary power supply and the battery when
forecast error is expected.

2. Data and method

Short-range (1- to 3-day ahead) to medium-range (4- to 6-day
ahead) forecasts are evaluated in this study. Fig. 1 shows the domain of

the regional forecast model and the location of the Kanto Plain in
Japan. The area-averaged daily (24-h average) SSR around the Kanto
Plain (Fig. 1b) was used for the evaluation of forecast data. The 1- (6-)
days ahead forecast of SSR is the value averaged from 00 (120) to 24
(144) hours of the forecast lead time. The evaluation period is for
2014–2016. The period covers from January 1 (6) to December 31 (26)
for the 1- (6-) day ahead forecast. In this study, we mainly show as a
specific example of the results in 2015. Missing values are defined when
there are gaps in the observations or forecast data corresponding to
20% of the total evaluation period. Two forecast data sets were used,
one regional and one global.

2.1. Regional deterministic forecast

The regional forecast is from the Japan Meteorological Agency
(JMA) using a non-hydrostatic model (NHM) (Saito et al., 2006), and is
referred to in this study as the meso-scale model (hereafter JMA-MSM).
The forecast lead time of the JMA-MSM ranges from 1 h up to 39 h. The
model domain is about 20–50°N and 100–160°E (see Fig. 1a). The
horizontal resolution of the JMA-MSM is 5 km. A 24-h (day-ahead)
forecast is used in this study. The SSR on a land surface grid is calcu-
lated as the area-averaged SSR of the Kanto Plain.

2.2. Global ensemble forecast

Global ensemble forecasts from four leading NWP centers were used
to provide SSR forecasts. The data set has been archived by TIGGE (The
International Grand Global Ensemble) project (Swinbank et al., 2016).
TIGGE archives the ensemble forecasts for global forecast models from
10 NWP centers with a delay of 2 days, so the data set is mainly valu-
able for several-day forecasts. The four leading NWP centers are as
follows: the ECMWF (European Centre for Medium-Range Weather
Forecasts, Europe), the JMA, the NCEP (National Centers for Environ-
mental Prediction, United States of America), and the UKMO (Met Of-
fice, United Kingdom). The JMA global ensemble forecast archived by
TIGGE is the Global Spectral Model (Kanamitsu et al., 1983) (hereafter,
JMA-GSM).

The leading four NWP centers provide the SSR forecast data for
more than one week starting from the same initial forecast time. The
SSR forecast data are archived as 6-h accumulated values. The area-
averaged SSR of the ensemble forecast in Kanto Plain is calculated from
six grid point values (see the plus symbols in Fig. 1b). We eliminate the
other NWP centers because of their different initial forecast time or un-
archived SSR forecast data. Moreover, several NWP centers have large
RMSE on the SSR forecast in the European region (Thorey et al., 2015).

The global ensemble forecast models of the different NWP centers
have different configurations. Table 1 shows an overview of the forecast
models from the four forecast providers. Note that the ensemble size

Nomenclature

ECMWF European Centre for Medium-Range Weather Forecasts
EM ensemble mean
EMg grand ensemble mean
ES ensemble spread
ESg grand ensemble spread
Fc forecast error coefficient
IFS Integrated Forecast System
JMA Japan Meteorological Agency
JMA-GSMGlobal Spectral Model by JMA
JMA-MSMmeso-scale model by JMA
LNES lognormal ensemble spread
LNESg lognormal grand ensemble spread
MBE mean bias error

MCGE multi-center grand ensemble
MOS model output statistics
NCEP National Centers for Environmental Prediction
NES normalized daily ES
NHM non-hydrostatic model
NWP numerical weather prediction
RMSE root mean square error
ROC Receiver Operating Characteristic
RRTM rapid radiation transfer model
SS skill score
SSR surface solar radiation
SV singular vector
UKMO Met Office
WRF Weather Research and Forecast
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indicates the number of ensemble members, made up of one determi-
nistic (unperturbed) and all the perturbed forecasts. The spatial re-
solution of ECMWF, NCEP and UKMO were interpolated to the same
resolution as JMA-GSM (1.25°). The model physical processes and in-
itial perturbation methods also vary between NWP centers. Note that
the ensemble size of UKMO changed 24–12 in November. And JMA-
GSM had been beginning to archive form February 25, 2014.

2.3. Validation data

The SSR data from surface observations are used as the reference
data (see squares in Fig. 1b). The observational data are from six JMA
operational observation sites (closed squares) and one temporary site
(see Fig. 1b open square) at Kumagaya (Ohtake et al., 2013, 2015).
Additionally, the SSR data from the ERA-Interim (Dee et al., 2011) and
JRA-55 (Kobayashi et al., 2015) reanalysis were used to evaluate the
bias at each of the NWP centers. The SSR of the reanalysis data has
homogeneous spatial and temporal accuracy.

3. Method

3.1. Forecast error coefficient

The forecast error coefficient (Fc) of the SSR for the regional fore-
cast is defined below. Fc is the normalized forecast error of the daily
average SSR for the JMA-MSM, and is calculated as

=
−

Fc
I I
ext

,f o

(1)

where If is area-averaged SSR of the JMA-MSM, Io is averaged SSR at
the seven stations, and ext is extra-terrestrial radiation (Badescu, 2014).
The ext is used as a normalizing parameter for removing seasonal

variations of the forecast errors of daily SSR.

3.2. Multi-center grand ensemble means and spreads

The grand ensemble quantities EMg and ESg are often computed as a
weighted average as a function of decreasing model bias and un-
certainty. In previous studies the weights were determined by the
forecast model (Jonson and Swinbank, 2009) or weather pattern
(Greybush et al., 2008). However, the EMg in this study was evaluated
as an un-weighted average (the reason for this is explained in Section
4.1). The EMg is calculated as follows:

∑= =
=

EM
N

EM N1 4.
k

N

kg
1 (2)

Here, EMk is EM at each of the NWP centers, and N is the number of
NWP centers.

Next, for bias correction, ESg is weighted by each month and for
each NWP center:

∑= =
=
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where

=NES ES
ES

,k
k

m k, (4)

here, m is the month, NESk is normalized daily ES, and NESm k, is the
normalized monthly NESk. The ES and ESg follow the well-known
lognormal distribution. The lognormal ES and ESg (hereafter, LNES and
LNESg) are predictors of the forecast skill (Whitaker and Loughe, 1998).
The LNESg is calculated as follows:

=LNES ESln( ).gg (5)

3.3. Evaluation methods of forecast error and skill

There are several statistics that are often utilized for evaluating the
forecast skill of a prediction system (e.g., Grimit and Mass, 2007). This
study uses MBE and RMSE. The forecast error is the difference between
the forecast value (yk) and observed value (ok) of SSR,

Table 1
Overview of model configuration of NWP centers.

ECMWF JMA-GSM NCEP UKMO

Spatial
resolution
[km], (°)

40, (0.3× 0.3) 140,
(1.25× 1.25)

110,
(1.0× 1.0)

40, (0.3× 0.45)

Ensemble size 51 27 21 12 (24)

100˚ 120˚ 140˚ 160˚
10˚

20˚

30˚

40˚

50˚

JMA−MSM domain

Kanto

a)

139˚ 140˚ 141˚

35˚

36˚

37˚

0 50
km

b) Kanto

Fig. 1. Domain of the regional forecast model (a) and location of Kanto Plain (b). The solid squares indicate the locations of six JMA stations, and the open square is the temporary station
(Kumagaya station); plus symbols are the central coordinates of interpolated global forecast data. The contour indicates the orography drawn at a 250m interval.
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and

∑= −
=

N
y oRMSE 1 ( )

k

N
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1

2

(7)

where N is the total number of samples, yk is the area-averaged daily
SSR on Kanto Plain forecast by JMA-MSM and each NWP center. Here
also, ok indicates average daily SSR at the seven observation sites on
Kanto Plain (see Fig. 1b).

Murphy (1988) suggested the forecast skill score (SS) using the MBE
of the forecast to be evaluated and of the reference forecast. We used
the persistence model as the reference forecast. The persistence model
assumes that the conditions at the time of the forecast will not change.
In this study, the smart persistence model assumes that the clear sky
index (I I/o clear) on the next day is the same as the current day. The Iclear
is clear sky radiation on the ground using Kumar model (Gueymard,
2012). Coimbra et al. (2013) also suggest a SS using the RMSE,
SS=1− RMSEf/RMSEp, where RMSEf and RMSEp are the RMSE of the
NWP and persistence forecasts, respectively.

3.4. Verification method of detectability of forecast busts

We evaluated the Receiver Operating Characteristic (ROC) curve
and score (Wilks, 2005) to verify the detectability of forecast busts
using LNES and LNESg. The ROC curve is shown as a set of pairs of hit
rate and false alarm rate. The hit rate (T/X) in this study is the number
of detected forecast busts (T) relative to the total number of forecast
busts that occur (X). The false alarm rate (F/N) in this study is also a
relative frequency. F is the number of times the forecast bust event was
forecast but did not occur, and N is the total number of times the bust
did not occur. The ROC score is the area under the ROC curve. The
predictor has no forecast skill when the ROC score is less than 0.5 (the
ROC curve located the right side of a diagonal line). A perfect forecast
has ROC score= 1.0. We used the T-test for evaluating the significance
level (P-value) of the ROC scores.

4. Results

4.1. Bias of numerical weather prediction models

The SSR of each NWP model has an individual bias. We evaluated
the biases of area-averaged SSR in the JMA-MSM domain (see Fig. 1a).
Fig. 2 shows the seasonal variation of the monthly SSR for the four NWP
models (colored circles). Additionally, we illustrate the monthly SSR
from the ERA-Interim and JRA-55 reanalysis data (solid and dashed

lines). The NCEP SSR forecast value was larger, and the UKMO smaller,
than the others. The JMA-GSM and ECMWF were in agreement with
ERA-Interim. We evaluated the difference in the monthly SSR forecast
between ERA-interim and each NWP center. The percentage differences
relative to the ERA-interim monthly average for ECMWF, JMA-GSM,
NCEP, and UKMO were less than 5%, 5%, 15%, and 8%, respectively.
The differences had no clear seasonal variation (figure not shown). The
NCEP was closer to JRA-55 than to ERA-interim. It was not possible to
determine whether the NCEP had a positive bias. These results indicate
that it is difficult to evaluate the weight for calculating weighted
average of multi-center grand ensemble. Therefore, EMg was calculated
as a simple averaged (un-weighted) SSR for this study.

The errors in regional forecasts arise from three effects. First, the
regional forecast error is affected by the forecast accuracy of the global
forecast model used for the initial and boundary conditions. Second, the
regional forecast model provides an additional error derived from the
model uncertainty (e.g., iizumi et al., 2012). Third, the regional forecast
model decreases the forecast error of the global forecast, because the
regional forecast model can resolve smaller scale meteorological phe-
nomena than the global forecast model. The disagreement in forecast
busts between the regional and global forecasts is thought to be caused
by the second and third effects.

4.2. Forecast error of ensemble mean

We evaluated the monthly forecast error for EMg (Fig. 3). Fig. 3
shows the monthly RMSE for the day-ahead forecast using JMA-MSM
and 1- to 6-day ahead forecasts from the four NWP centers. The JMA-
MSM produced high forecast error in the summer season. The RMSE of
EMg increased consistently with the forecast lead time. In June and
July, the RMSE of EMg in 1- and 2-day forecasts was smaller than that of
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Fig. 2. Seasonal variation of daily SSR over the JMA-MSM domain in 2015. Colored
circles (see key) indicate the EM of each NWP center. The black solid (dashed) line is the
SSR from ERA-interim (JRA-55) reanalysis data. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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JMA-MSM in a day-ahead forecast. This is caused by the large negative
bias of the JMA-MSM in summer (Fig. 3b). The MBE of the JMA-MSM
had negative (positive) values in winter (summer). The MBE of the EMg

had positive biases in April, July, August and September, and negative
biases in other months. The MBE of JMA-MSM and EMg had different
seasonal variations. The seasonal variation of the JMA-MSM MBE is
thought to be caused by the regional forecast model (JMA-NHM), be-
cause the MBE in the global forecast of the JMA-GSM has a similar
seasonal variation to the EMg (figure not shown).

Fig. 4 shows the annual forecast error for the 1- to 6-day ahead
forecasts. The broken lines indicate the forecast error of the JMA-MSM
for the day-ahead forecasts. The gray lines indicate the persistence
forecast error for the day-ahead forecast. We mainly discuss the forecast
errors for the day-ahead forecast. The RMSE (Fig. 4a) and MBE (Fig. 4b)
in JMA-MSM are 28.6Wm−2 and−1.5Wm−2, respectively. In Fig. 4a,
the EM from the ECMWF and EMg were close to the JMA-MSM forecast,
with values of 27.5Wm−2 and 27.6Wm−2, respectively. In Fig. 4b, the
MBE of the JMA-GSM EM was 0.9Wm−2, smaller than that of JMA-

MSM. The MBE of EMg and EM from the ECMWF, UKMO and NCEP
were −3.18, −11.1, −16.6, and 16.9Wm−2, respectively. The MBE
had different biases (positive/negative) for each of the NWP centers.
ECMWF has the lowest RMSE, but JMA-GSM has the lowest MBE. The
forecast error in EMg is little different from these centers. The SS of
JMA-MSM, EMg, ECMWF, JMA-GSM, NCEP, and UKMO were 56.7%,
58.3%, 58.3%, 52.8%, 41.0%, and 51.8%, respectively.

The impact of forecast lead time on the RMSE is small in the EMg

and EM. The RMSE of the EM from the NCEP had a higher value than
the other NWP centers, and all NWP centers had a similar increase in
RMSE with forecast lead time. Conversely, there were differences in the
increase of MBE with forecast lead time between the NWP centers. The
increases between the 1- and 6-day ahead forecasts from NCEP, UKMO,
ECMWF, JMA-GSM, and for the EMg were 7.2, 2.9, 1.1, 0.4, and
1.5Wm−2, respectively.

4.3. Details of forecast busts

In the forecast busts in 2015, the regional forecast from the JMA-
MSM was not comparable with the EMg and EM from each NWP center.
Table 2 shows the observed, estimated, and predicted results of area-
averaged SSR for the worst five overestimated and underestimated
values of JMA-MSM in the Kanto Plain. Note that the NCEP forecast was
not available on December 17th, 2015. The observed SSR agreed with
the EM for the 10 cases. The highest forecast bust occurred on October
10th, 2015, when the SSR from the JMA-MSM was 197Wm−2 and Fc
was 0.28, while the observed SSR were 110Wm−2. However, EMg

predicted 86Wm−2, a higher forecast accuracy than JMA-MSM. In the
10 cases in Table 2, all EMs and EMg were better than JMA-MSM. It is
well known that the monthly and annual forecast accuracy of the EMg is
higher than that of individual EMs and the deterministic forecast
(Thorey et al., 2015). However, the daily forecast accuracy of EMg was
not always higher than that of the EMs.

Fig. 5 shows the frequency of the absolute values of Fc (hereafter
|Fc|) in 2015. In this study, the forecast busts are defined as the top
10% of |Fc| (see gray bars in Fig. 5), with a further classification into
the top 10%, 5% and 1% of |Fc|. There is little difference in the
frequency distribution of |Fc| in three years. We investigate the de-
tectability of the forecast busts at the three threshold of |Fc| in the
Section 5.2.

4.4. Ensemble spread of forecast busts

The ES is related to the forecast error and the reproducibility of the
meteorological phenomena in the NWP model (Whitaker and Loughe,
1998). We investigate the relationship of ES and Fc in October, the
month with the largest forecast bust in 2015, with Fc= 0.28 (see
Overestimate in Table 2). Fig. 6 illustrates the time series of |Fc| for the
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persistence forecast. Symbols as in Fig. 3 but without JMA-MSM.

Table 2
Observed, estimated, and predicted SSR for the top five forecast busts (over- and under-estimates) in 2015.

Observation [Wm−2] Forecast [Wm−2]

Month Day Fc ext [Wm−2] Surface JMA-MSM ECMWF JMA-GSM NCEP UKMO EMg

Overestimate
10 10 0.28 307 110 197 93 111 73 67 86
10 31 0.27 254 88 156 87 125 103 84 100
3 15 0.22 339 138 213 141 165 142 123 143
12 2 0.22 196 61 104 54 77 61 51 61
12 17 0.21 186 73 111 75 90 – 80 82

Underestimate
7 24 −0.26 465 230 110 223 212 256 164 214
5 31 −0.22 476 298 194 244 236 282 231 248
1 14 −0.19 201 132 94 176 182 192 153 176
7 18 −0.19 471 173 84 105 105 113 90 103
8 18 −0.19 429 174 93 200 202 267 193 216
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JMA-MSM (Fig. 6a), the LNES from each NWP center and the LNESg for
1-, 3-, and 5-day ahead forecasts (Fig. 6b–d) in October 2015. The LNES
from each NWP center and the LNESg from the MCGE were consistent

with |Fc|. The correlation coefficients (R) between LNESg and |Fc| for
the 1-, 3-, and 5-day ahead forecasts were 0.68, 0.63, and 0.45, re-
spectively. Note that the absolute value of Fc was used to evaluate the
correlation, with no distinction between the positive and negative
cases.

The |Fc| and LNESg were found to be consistent. For instance, on the
5th, 10th, 16th, 21st, and 23rd, the |Fc| was larger than 0.1 and LNESg
was also relatively high, although the magnitude of LNES and LNESg
did not always agree with that of |Fc|. The relationship was not con-
sistent on the 1st, 22nd, 30th, and 31st. However, for the individual
NWP centers, the LNES from the ECMWF (NCEP) had a large value on
the 22nd (31st), and the relationship between LNES and |Fc| was
consistent. Furthermore, the LNES for one or several NWP centers
agrees with |Fc| over several days, if LNESg did not agree with |Fc|. The
results imply the utility of multi-NWP-centers for the SSR forecast.

In the forecast busts on the 5th, 10th, and 16th, LNESg values re-
main high for the 1- to 5-day ahead forecasts. This shows that LNESg
was a valuable predictor for the detection of forecast busts for several
days ahead. Conversely, the LNESg value on the 23rd day is small in the
5-days ahead forecast, and increased with shortening forecast lead time.
This forecast bust is difficult to detect in forecasts several days ahead.

The LNES and LNESg for short-range forecasts did not always have
stronger relationships with |Fc| than those for the medium-range
forecasts for individual cases. The LNESg for 3- and 5-day forecasts were
higher than that for day-ahead forecasts for the forecast bust on October
10th, 2015. Naturally, the monthly and annual R is higher for short-
range forecasts.

5. Discussion

5.1. Seasonal variation in sensitivity of ensemble spread for forecast busts

The LNES and LNESg have high positive correlation with |Fc| in
October 2015. The seasonal variation of correlation between LNESg and
|Fc| is shown in Fig. 7. The R was higher in winter than in summer,
regardless of forecast lead time. However, the R in May was comparable
with the winter months. Many months showed 95% or 90% statistical
significance. Ten (seven) months achieved a 95% statistical significance
for 1- (6-) day-ahead forecasts. The R from the UKMO was lower than
the others for day-ahead forecasts (Fig. 7a). The small ensemble size in
the UKMO is thought to be one of the causes of low R values. The
seasonal variations of correlation coefficient show the same tendency in
three years.

The annual R values for the LNESg for 1- to 6-day ahead forecasts
are 0.40, 0.39, 0.38, 0.35, and 0.32, respectively. The seasonal varia-
tion of R values decreased as the forecast lead time increased from 1 to
6 days.

5.2. Detectability of forecast busts

The relationship between ensemble spread and |Fc| is statistically
significant in winter seasons for the day-ahead forecast. Fig. 8 shows
the ROC curve of LNES and LNESg for the day-ahead forecast for three
years. The ROC curve in the top of 10%, 5%, and 1% forecast busts was
evaluated using the all months in three years (Fig. 8a–c). The sample
sizes were 108, 64, and 9 days, respectively. Inversely, the bottom
figures (Fig. 8d–f) were used 5months for evaluating ROC curve. These
months were the top 5months with high correlation coefficient be-
tween |Fc| and LNESg. The sample sizes were 45, 23, and 5 days, re-
spectively. The ROC scores in 5months larger than that of all months in
the forecast busts of 3 thresholds. For instance, The ROC score of MCGE
of 5months in the top of 10%, 5% and 1% were 0.69, 0.73, and 0.73,
respectively. Otherwise, The ROC score of MCGE of all months were
0.60, 0.65, and 0.67, respectively.

We evaluated the ROC scores of MCGE and each NWP center for 1-
to 6-day ahead forecast in the 5months with high correlation
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coefficient between |Fc| and LNESg. (Fig. 9). The open (close) circle
indicated the 99 (95)% statistical significance. In several cases, the ROC
scores of single NWP center indicated the highest values (Fig. 9a–c).
However, the ROC score of MCGE were higher than that of single NWP

center in many cases. The difference of ROC scores each NWP centers in
1% forecast busts (Fig. 9c) were larger than the 10% and 5% forecast
busts. The ROC scores of MCGE in the forecast busts of three thresholds
were 99% or 95% statistical significance in 1- to 6-days ahead forecast.
The magnitude of the 95% confidence interval of the ROC score in
MCGE did not depend on the forecast lead time or the threshold of
forecast busts (10%, 5%, and 1%). The average 95% confidence interval
of MCGE was±0.04 in the 1- to 6-day ahead forecast and forecast
busts of 3 threshold.

Matsueda and Nakazawa (2015) reported that the MCGE provides
more reliable forecasts than single NWP center ensembles on the severe
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weather event. In Section 4.2, there was no clear superiority of EMg

over single NWP center EMs. However, the ROC scores in MCGE were
higher than single NWP center ensemble. The results indicate the value
of MCGE. Also, the LNESg is a valuable predictor of forecast busts on an
area-averaged daily SSR over a broad area (e.g., Kanto Plain). There-
fore, LNESg in global ensemble forecasts can detect the forecast un-
certainty for regional forecasts (e.g., JMA-MSM).

This proposed detection method is highly likely to detect forecast
busts several times a year. The LNES and LNESg for global ensemble
forecasts are valuable predictors of the forecast uncertainty and forecast
error for regional forecasts. However, the method cannot be adopted
directly in an energy management system because the false alert rate is
not small enough. Moreover, the number of samples for evaluating the
detectability is small. We need to increase the number of samples, for
instance by extending the study period by several years.

6. Conclusions

This study shows the applicability of single-NWP center ensemble
forecasts and the MCGE to a SSR forecast. We focus on the detectability
of forecast busts for a regional forecast using the LNES and LNESg. The
results showed the following:

1. The EMg values for area-averaged daily SSR evaluated by global
ensemble forecasts have a comparable forecast accuracy to a re-
gional forecast in the Kanto Plain area (about 400 km2) for 1- and 2-
day ahead forecasts.

2. LNES and LNESg were highly correlated with |Fc| in 1- to 6-day
ahead forecasts.

3. LNES and LNESg were statistically significant in several months,
particularly in winter.

4. ROC score of MCGE showed 99% or 95% statistical significance for
all forecast lead time in the top of 10%, 5%, and 1% forecast busts.

The area-averaged SSR over a broad area is more important than the
SSR over a local area for energy management systems. Monthly and
annual forecast errors (RMSE and MBE) in SSR showed little difference
between global and regional forecasts for 1- and 2-day ahead forecasts.

The ensemble spreads in global forecasts was highly correlated with
the forecast error of regional forecasts. Moreover, the LNESg has high
ROC score in forecast busts. The uncertainty and forecast error of global
forecasts propagate into the regional forecast. LNES and LNESg are
valuable as predictors for evaluating the reliability and forecast skill of
the regional forecast. The predictor has worldwide availability since it
makes use of the global ensemble forecast.

We need to assess whether the predictor can apply to several-hour
ahead forecasts, because this study only evaluated the index using daily
SSR. It is likely that it will be difficult to detect precipitous changes of
SSR (called “ramp” events) on diurnal variations (Zhang et al., 2015a,
2015b).

In the renewable energy field, ensemble forecasts, particularly
MCGE, have not yet been widely used for constructing probabilistic
forecasts. Introducing MCGE approaches into the field would be useful
for more stable electricity provision.
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