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ABSTRACT
Providing initial conditions is an essential procedure for numerical simulations of galaxies.
The initial conditions for idealized individual galaxies in N-body simulations should resemble
observed galaxies and be dynamically stable for time-scales much longer than their character-
istic dynamical times. However, generating a galaxy model ab initio as a system in dynamical
equilibrium is a difficult task, since a galaxy contains several components, including a bulge,
disc, and halo. Moreover, it is desirable that the initial-condition generator be fast and easy
to use. We have now developed an initial-condition generator for galactic N-body simulations
that satisfies these requirements. The developed generator adopts a distribution-function-based
method, and it supports various kinds of density models, including custom-tabulated inputs
and the presence of more than one disc. We tested the dynamical stability of systems gener-
ated by our code, representing early- and late-type galaxies, with N = 2097 152 and 8388 608
particles, respectively, and we found that the model galaxies maintain their initial distributions
for at least 1 Gyr. The execution times required to generate the two models were 8.5 and 221.7
seconds, respectively, which is negligible compared to typical execution times for N-body
simulations. The code is provided as open-source software and is publicly and freely available
at https://bitbucket.org/ymiki/magi.
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1 IN T RO D U C T I O N

N-body simulations are powerful tools for investigating the dynam-
ical evolution of galaxies including, e.g. galactic mergers or the
development of spiral arms. In order to run N-body simulations,
it is important to set up appropriate initial conditions. The initial
system of N-body particles should be in dynamical equilibrium for
at least the longest dynamical time-scale in the problem. For ex-
ample, the longest dynamical time-scale may be the crossing time
of a satellite galaxy in a galactic minor merger, or it may be the
rotation time of a galactic disc in a simulation to follow the devel-
opment of spiral arms. However, producing a system in dynamical
equilibrium that represents a galaxy is difficult, since galaxies, in
general, consist of several components, e.g. bulge, disc, and halo.
The construction of initial conditions for N-body simulations is an
on-going research topic, and many earlier studies have tackled this
tough problem (Hernquist 1993; Kuijken & Dubinski 1995; Boily,
Kroupa & Peñarrubia-Garrido 2001; Widrow, Perrett & Suyu 2003;
Widrow & Dubinski 2005; McMillan & Dehnen 2007; Widrow,
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Pym & Dubinski 2008; Vasiliev 2013; Perret et al. 2014; Yurin &
Springel 2014; Vasiliev & Athanassoula 2015).

A model system of particles that represents an observed galaxy
is useful not only in providing initial conditions for N-body simu-
lations, but also in creating mock observations to fit observed data
sets. Recent progress with observatories like Gaia (Lindegren et al.
2016) demands ever-better models to study galactic dynamics in
much greater detail. Since Gaia provides observational data in a
six-dimensional phase space, direct comparisons between particle
models and the Gaia data can provide information about the phase-
space distribution function (hereafter, DF) of the Milky Way.

Various density-profile models have been proposed and employed
to cover the diversity of simulated and observed galaxies. For exam-
ple, the Navarro–Frenk–White (hereafter, NFW) profile (Navarro,
Frenk & White 1995, 1996), the Moore profile (Fukushige &
Makino 1997; Moore et al. 1998), and the Einasto profile (Einasto
1965; Navarro et al. 2004, 2010) are often used to represent the
density profiles for dark matter haloes in cosmological N-body sim-
ulations with � cold dark matter. For the bulge component, the
well-known de Vaucouleurs’s law (de Vaucouleurs 1948) and the
Sérsic profile (Sérsic 1963; Ciotti & Bertin 1999) – which is a
generalization of de Vaucouleurs’s law – are frequently employed
to fit the observed surface-density profiles. The Hernquist profile
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(Hernquist 1990), which resembles de Vaucouleurs’s law, has an
analytic DF. For the disc component, an exponential disc or a Sérsic
profile are often used to fit the surface-density profiles of observed
disc galaxies and to investigate their dynamical evolution in nu-
merical studies. The presence of more than one disc component
in a galaxy may be a general property of late-type galaxies. The
Milky Way has both a thin and a thick disc (Jurić et al. 2008),
and observations by Dalcanton & Bernstein (2002) and Yoachim
& Dalcanton (2006) have revealed multiple disc components (thin
and thick discs) in most edge-on, late-type galaxies.

Many earlier studies have been dedicated to developing initial
condition generators for N-body simulations; Hernquist (1993) pi-
oneered this research field. The approach by Hernquist (1993) ap-
proximates the velocity distribution by a local Maxwellian and
calculates the velocity dispersion using the Jeans equation. Boily
et al. (2001) generalized the approach for axisymmetric bulges and
haloes. Springel, Di Matteo & Hernquist (2005) also extended the
work by Hernquist (1993) to include a gaseous disc, and Perret et al.
(2014) provided implementation as the open-source software DICE.
However, Kazantzidis, Magorrian & Moore (2004) showed that
particle systems based on the local Maxwellian approximation are
not always in dynamic equilibrium, which may lead to inadequate
interpretations of results from N-body simulations that use such
initial conditions. Currently, the standard approach is to employ
DF-based implementations. A widely used example in the commu-
nity is the software GALACTICS (Kuijken & Dubinski 1995; Widrow
et al. 2003). This code generates a dynamically stable system that
employs a lowered Evans model (Kuijken & Dubinski 1994) for the
halo, a King model (Michie 1963; Michie & Bodenheimer 1963;
King 1966) for the bulge, and an exponential disc. Alternatively,
one can adopt orbit-based methods like the Schwarzschild method
or an iterative method by Rodionov, Athanassoula & Sotnikova
(2009) to generate self-consistent dynamical-equilibrium systems
of particles. Removing assumptions for DFs – e.g. spherical sym-
metry of the system and isotropy of velocity distribution – ex-
tends the scope of applications to non-axisymmetric systems and
makes the codes more flexible than DF-based implementations.
However, the execution time is much longer than for DF-based
methods. Vasiliev & Athanassoula (2015) reported that the execu-
tion time required to produce an axisymmetric disc galaxy model
with 106 particles reached an hour or much longer with both the
GALIC code (Yurin & Springel 2014) and the SMILE code (Vasiliev
2013; Vasiliev & Athanassoula 2015), whereas GALACTICS took only
a few minutes. In this study, we have accordingly adopted a DF-
based method rather than an orbit-based method to reduce the time-
to-solution.

To generate a model galaxy that resembles an observed galaxy,
the initial-condition generator needs to be flexible. The physical
properties of the components represented by the N-body particles
must be easily adjustable in order to facilitate investigations of the
dependence of physical processes on the mass, size, or profile of
a galaxy. For example, the particle system generated by GALACTICS

is dynamically stable and is useful for numerical investigations of
galactic dynamics. However, changing the particle system to rep-
resent accurately an observed galaxy is cumbersome. Some input
parameters in GALACTICS – e.g. the potential and the velocity dis-
persion at the centre – depend on the density profile of the system,
making it difficult for the user to control basic quantities such as the
total mass of the system. Furthermore, GALACTICS internally solves
Poisson’s equation and modifies the mass distribution towards a
dynamically stable system. Therefore, a trial-and-error procedure
is necessary to generate the desired particle system. Changing the

input parameters from kinematic ones (such as the value of po-
tential and the velocity dispersion) to structural ones (such as the
total mass and scalelength), and fixing the mass distributions of
the spherical components, would alleviate the burden on the user
performing these iterations.

The following are the key requirements we set for our initial-
condition generator: (1) dynamical stability of the particle system
generated, (2) ability to represent various kinds of density pro-
files, (3) ability to produce more than one disc component, and (4)
simplicity and convenience of use. We have realized these require-
ments in our initial-condition generator for N-body simulations,
called MAGI (MAny-component Galaxy Initializer). The generator
adopts a DF-based method, and it supports various kinds of density-
model inputs, including a machine-readable tabular format and the
presence of multiple disc components. The code is provided as open-
source software. The organization of this manuscript is as follows:
Section 2 introduces methods and assumptions adopted in MAGI.
The stability of the particle systems generated is tested in Section 3.
In Section 4, we examine the validity of some numerical treatments
and measure the execution time of MAGI. Section 5 summarizes our
work.

2 M E T H O D S

In this section, we describe the DF-based implementation of our
initial-condition generator, MAGI. Sections 2.1 and 2.2 describe how
to calculate the DF and discuss the further techniques required to
generate a spherical component for a given surface-density pro-
file. One of the strong points of MAGI is a high degree of freedom
in generating disc components. We describe the theories, assump-
tions, and numerical techniques employed for the disc components
in Section 2.3. Finally, Section 2.4 contains other implementation
details.

2.1 Eddington’s Formula

In this section, we derive the DF for a case in which the system
is spherically symmetric. Consider a system consisting of N com-
ponents with a volume-density profile ρ i(r), where the subscript
i specifies the ith component. If we assume an isotropic veloc-
ity distribution, Eddington’s formula (Eddington 1916; Binney &
Tremaine 2008) gives the DF fi of the ith component as

fi(E) = 1√
8π2

[∫ E

0
d�

1√E − �

d2ρi

d�2
+ 1√E

dρi

d�

∣∣∣∣
�=0

]
, (1)

where � =
N∑

i=1

�i, (2)

and where E and � are the relative energy per unit mass and the rel-
ative potential of the system, respectively. The last term in equation
(1) corresponds to the density gradient at infinity, which vanishes.
Now the second derivative of the mass density with respect to the
relative potential can be rewritten as

d2ρi

d�2
=

(
r2

GM(r)

)2 [
d2ρi

dr2
+ dρi

dr

(
2

r
− 4πr2

∑
i ρi(r)

M(r)

)]
, (3)

which is much easier to implement (Kazantzidis, Zentner &
Kravtsov 2006) compared to equation (1). We have calculated the
DF using equations (1) and (3) for cases in which the density pro-
file and its first and second derivatives are given for the individual
components. Since M(r) is the total mass enclosed within radius r,
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the mass distributions of all components, including the disc compo-
nents and the mass of the central massive black hole, must be given
before calculating the DF. The mass profiles of the disc components
are treated as spherically averaged profiles of the enclosed mass
(i.e. the zeroth order multipole approximation).

MAGI provides various density profiles for generating models
commonly adopted in astrophysics. The functional forms of the
volume-density profiles supported by MAGI, together with their first
and second derivatives with respect to radius, are summarized in
Appendix A. The supported density profiles that have a central
core are the Plummer profile (Plummer 1911), the Burkert profile
(Burkert 1995), the King profile (the profile and derivatives are de-
termined numerically using equations given in Appendix B), and
the King profile that is given in empirical form (King 1962). Density
profiles that have a central cusp are also implemented: the Hern-
quist profile, the NFW profile, the Moore profile, and the Einasto
profile. MAGI also supports two broken-power-law density profiles,
the double-power-law model (Hernquist 1990; Merritt et al. 2006)
given by equation (A26), and the triple-power-law model described
by equation (A29). If the system contains a central massive black
hole, the black hole particle is placed at the centre-of-mass of the
system with zero velocity.

MAGI also accepts density profiles given in machine-readable tab-
ular form. Since evaluating the first and second derivatives of the
profile by differencing the tabulated values can result in significant
loss of accuracy, especially when the profile has a central core, MAGI

interpolates the profile using a cubic-spline curve, which is then
used to compute tables of the derivatives. Once the density profile
and its derivatives are tabulated from the input density profile, the
subsequent steps are identical to the case for a predefined density
profile.

To generate systems of particles in dynamical equilibrium, in
some cases, we need to specify an explicit cut-off radius rc. If
a cut-off radius is specified, MAGI multiplies the profiles with a
complementary-error-function-based smoother of the form

1

2
erfc

(
r − rc

2�c

)
= 1

2

(
1 − 2√

π

∫ (r−rc)/2�c

0
dt e−t2

)
, (4)

where �c is the smoothing scale.

2.2 Abel transformation

In most cases, observations provide surface-density profiles rather
than the volume-density profiles discussed in Section 2.1. MAGI also
supports the input of a surface-density profile. De-projection from
the input surface-density profile �(R) to a volume-density profile
ρ(r) is performed by an Abel transformation (cf. Binney & Tremaine
2008):

ρ(r) = − 1

π

∫ ∞

r

dR
d�

dR

1√
R2 − r2

, (5)

if ρ(r) drops faster than r−1. MAGI constructs the volume-density
profile as a numerical table by applying the Abel transformation
numerically. The derivatives of the density profile are given by
cubic-spline interpolation, as in the case for which the input volume-
density profile is a machine-readable table. Once the density pro-
file and its derivatives are obtained in tabular form from the input
surface-density profile, the subsequent steps are the same as in the
case for which the input profile is a volume-density profile. MAGI

also supports the Sérsic profile described in Appendix C, which
includes de Vaucouleurs’s law, and the surface-density profiles for
this case are provided as machine-readable tables.

2.3 Disc components

The disc is one of the most important characteristics of a late-
type galaxy. Observations by Dalcanton & Bernstein (2002) and by
Yoachim & Dalcanton (2006) established that most edge-on, late-
type galaxies have multiple disc components (both thin and thick
discs). Our initial-condition generator must therefore be capable of
generating several disc components in dynamical equilibrium. MAGI

is the first initial-condition generator to support more than one disc
components.

We have extended the approach adopted in GALACTICS (Kuijken
& Dubinski 1995; Widrow et al. 2003) to provide particle distri-
butions that include multiple disc components. In GALACTICS, the
disc component is assumed to have an exponential surface-density
profile, with an isothermal profile in the vertical direction. The
potential–density pair is derived by solving Poisson’s equation us-
ing a spherical multipole expansion with a simple approximation
for high-order terms. MAGI supports Sérsic profiles (the exponential
profile corresponds to a Sérsic profile with Sérsic index unity), and
surface-density profiles are specified in machine-readable tabular
form for the disc components. Supporting Sérsic profiles having
various Sérsic indices is essential for representing a large variety
of observed disc components. For example, Kelvin et al. (2012)
reported that a typical Sérsic index is around 0.5–2 for disc com-
ponents obtained from the GAMA (Galaxy And Mass Assembly)
data base. We have also assumed that every disc component has an
isothermal profile in the vertical direction, given by

ρ(R, z) ∝ �(R) exp

(
− �(R, z) − �(R, 0)

�(R, zd) − �(R, 0)

)
, (6)

where zd is the scaleheight of the disc component. The vertical
profile of a disc component thus represents the density field as a
function of the potential field, whereas Poisson’s equation gives the
potential field as a function of the density field. Therefore, we derive
the potential–density pair for the superposition of all components
numerically by iterating the following two procedures until conver-
gence is obtained: (1) determine the vertical profile of the individual
disc components from the potential field, and (2) solve Poisson’s
equation to determine the potential field from the superposition of
the density fields of all components. We solve Poisson’s equation
using the BiCGSTAB method preconditioned with ILU(0) (van der
Vorst 1992; Itoh et al. 2012). We use a nested grid to discretize the
density and potential fields, and the number of levels – typically
ten – is automatically determined. The outer boundary condition at
R = Rmax or z = zmax for level L = 0 (the coarsest grid) is derived
from Binney & Tremaine (2008) by assuming a constant disc scale-
height. The outer boundary condition for level L > 0 is set by the
potential field in the coarser level L − 1. For the inner boundary
conditions (R = 0 or z = 0), �( ± R, ±z) = �(R, z) is set from
the symmetry about R = 0 and z = 0. The number of grid points
needed to determine the potential–density pair is 256 in the R di-
rection and 64 in the z direction, respectively. We adopted the full
multigrid method proposed by Press & Teukolsky (1991). In order
to determine the velocity structure, we adopted the Schwarzschild
DF (Schwarzschild & Villiger 1907; Binney & Tremaine 2008):

fSch(Lz, z) ∝ exp

[
−vR

2 + γ 2
{
vφ − vc(Rg)

}2

2σR
2(Lz)

− vz
2

2σz
2(Lz)

]
, (7)

where Lz is the z-component of the specific angular momentum,
and vR, vφ , and vz are the velocities in the horizontal, azimuthal,
and vertical directions, respectively. Also, Rg is the guiding-centre
radius, vc(R) = R� is the circular velocity, where � is the circular

MNRAS 475, 2269–2281 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/2/2269/4791573 by U
niversity of Tsukuba user on 13 Septem

ber 2018



2272 Y. Miki and M. Umemura

frequency, and σ R and σ z are, respectively, the velocity dispersions
in the horizontal and vertical directions. The remaining quantity,
γ , is defined as 2�g/κ , where �g is the circular frequency at the
guiding-centre radius, and κ is the epicycle frequency. The un-
derlying assumption behind the Schwarzschild DF is the epicycle
approximation, assuming small velocity dispersion.

The radial profile of the velocity dispersion in the horizontal
direction, σ R(R), is another problem. GALACTICS assumes an expo-
nential profile

σ 2
R(R) ∝ exp (−R/Rs), (8)

where Rs is the disc scalelength, even though GALACTICS adopts the
epicycle approximation, assuming that the orbit is nearly circular.
In MAGI, the velocity dispersion σ p in the azimuthal direction is
equal to min (σ z, fvc), where f is a scaling parameter. Then σ R(R)
becomes

σR(R) = γ σp (9)

under the epicycle approximation. The velocity dispersion is thus
smaller than that in GALACTICS, especially in the central region, en-
suring consistency with the epicycle approximation.

In GALACTICS, the circular velocity at the particle position is de-
termined by the derivative of the potential in the equatorial plane
of the disc component; in other words, the rotation velocities of the
particles do not depend on z, whereas the potential does. This results
in too fast a rotation to maintain the initial distribution, especially
in a thick disc at large z, and a relaxation phase is required before
dynamical stability is reached. MAGI improves on this by calculating
the circular velocity from the gradient of the potential at the particle
location.

Finally, in order to generate a realistic distribution, we need
a recipe for suppressing a needle-like structure that occasionally
forms near the rotation axis of the disc. When the scaleheight zd of
the disc is not sufficiently small, compared to the scalelength rsph

of the spherical components, the density decreases gradually in the
vertical direction for R � rsph. This produces a needle-like structure
near the rotation axis of the disc component (see Fig. 5b); it is an
artefact resulting from the isothermal profile assumed in the verti-
cal direction. We have introduced a new quantity h = h(R), which
satisfies

exp

(
−� (R, min (16zd, rc)) − �(R, 0)

�(R, h(R)) − �(R, 0)

)
= e−16, (10)

and we replace the scaleheight zd by zd(R) = min (zd, h(R)). This
ensures that the vertical density profile vanishes for |z| ≥ min (16zd,
rc) and damps the needle-like structure.

2.4 Configuration and implementation

In this subsection, we provide some details about the structure
and use of MAGI. As pointed out in Section 1, input parameters
such as the mass and scalelength are preferable to kinematic ones
such as the central potential or velocity dispersion. In MAGI, the
input parameter sets for each component are limited to the mass
M, the scalelength rs, and other dimensionless parameters that are
specific to the adopted models, such as the Sérsic index n or the
dimensionless King parameter W0.

LISTING 1. FORMAT OF THE INPUT FILE.
1 # SELECT THE SYSTEM OF UNITS

4 # NUMBER OF COMPONENTS

4 HALO.PARAM 0 0
1 BULGE.PARAM 0 0

1000 BH.PARAM 1 1
-1 DISC.PARAM 0 0
LISTING 2. FORMAT OF THE PARAMETER FILE (KING MODEL).
5.0E+10# MASS OF THE COMPONENT

1.0# SCALE RADIUS OF THE COMPONENT

5.0# MODEL SPECIFIC PARAMETER(S)
0# SET CUTOFF (1) OR NOT (0)
LISTING 3. FORMAT OF THE PARAMETER FILE (SÉRSIC DISC).
2.5E+10# MASS OF THE COMPONENT

5.0# SCALE RADIUS OF THE COMPONENT

2.0# SERSIC INDEX (ONLY FOR SERSIC DISC)
1.0# SCALE HEIGHT OF THE COMPONENT

-1.0 0.1 # PARAMETERS FOR VELOCITY DISPERSION

0.0# RETROGRADE FRACTION [0.0, 1.0]
1# SET CUTOFF (1) OR NOT (0)
50.0 5.0 # CUT OFF RADIUS AND WIDTH

Listings 1–3 are samples of the input files that show the expected
format and parameters. The texts following each ‘#’ symbol are
brief comments describing the parameters; they do not appear in
the actual input files. In Listing 1, the first two integers specify the
system of units to be used in the simulation and the number of com-
ponents. The configuration of each component follows: the index
of the model, the corresponding parameter file, whether to specify
the number of particles (1) or not (0), and the specified number of
particles. For the central massive black hole, the number of particles
must be unity. Also, the configurations of the disc components must
come after those of the spherical components.

In each parameter file, the mass M and scaleradius rs of the
components appear first. If the unit ID =1 (as specified in Listing
1), the units of mass and length are M� and kpc, respectively.
Since MAGI internally converts the system of units from astrophysical
units (like M�, kpc, and km s−1) to code units, users need not
perform unit conversions. For the spherical components, model-
specific parameters (if they exist) follow; for example, the non-
dimensional parameter W0 at the centre of the King model (Listing
2). In the case of the disc components (e.g. Listing 3), the scaleheight
zd is an additional key parameter. The following two parameters
pertain to the velocity-dispersion profile. The first sets the radial
velocity dispersion at the centre, σ R, 0, and the second sets the
scaling parameter f. A negative value of σ R, 0 indicates that the value
is identical to the vertical velocity-dispersion at the centre. The first
parameter is used only when the radial velocity-dispersion model
given by equation (8), which is that used in GALACTICS, is adopted.
By default, MAGI adopts the radial velocity-dispersion model given
by equation (9) in the previous subsection. The next parameter is
optional and allows the introduction of a retrograde component in
the disc. The remaining parameters are related to the explicit cut-off
of the density distribution. An integer indicates whether an explicit
cut-off of the density profile is required (1) or not (0). When a cut-
off is set (specified as 1), the cut-off radius rc and its smoothing
scale �c are passed to the software by specifying them in the next
line.

MAGI employs the inverse-function method and the rejection
method, respectively, to determine the particle positions and ve-
locities. Pseudo-random numbers are generated by a SIMD (single
instruction, multiple data)-oriented Fast Mersenne Twister of pe-
riod 219937 − 1 (SFMT1 1.5.1 by Saito & Matsumoto 2008) with a

1 http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/SFMT/
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jump function.2 The jump function guarantees the independence of
multiple series of random numbers generated in parallel, whereas
just changing the initial values of a random number generator can-
not strictly ensure independence. In the current version of MAGI, the
program is parallelized using OpenMP and shifts the initial state
for SFMT in each OpenMP thread by 10100 steps. The particles’ posi-
tions and velocities are shifted component-by-component to set the
centre-of-mass of the system at the origin of the coordinate system
and remove the bulk motion.

MAGI uses Gaussian quadrature for some numerical integrations,
employing GNU Scientific Library (GSL)3 2.4 for this purpose. The
output format of the particle data is a structure of arrays contained
in the HDF54 1.8.18 container or the TIPSY format,5 depending
on the user’s preference. The default configuration is the HDF5
container.

3 R ESULTS

This section examines the dynamical stability of particle distri-
butions generated by MAGI. Section 3.1 considers the stability of
a spherically symmetric system like an early-type galaxy or the
bulge of disc galaxy. Section 3.2 studies the stability of an axisym-
metric system having two disc components with different scale-
heights. The initial condition is generated on a workstation (Intel
Xeon E5-2640v3, 16 cores, 2.60 GHz, DDR4-2133, 64GB, gcc
4.8.5). The code is compiled with the following options for perfor-
mance optimization: -O3 -ffast-math -funroll-loops
-march=native -fopenmp. The code is run via the nu-
mactl command with the --localalloc option. Time evo-
lution is calculated using the octree code GOTHIC (Miki & Umemura
2017), which runs on NVIDIA GeForce GTX TITAN X with nvcc
8.0.44.

3.1 Stability of a spherically symmetric system

We first benchmark MAGI with a spherically symmetric model in
order to confirm the effectiveness of the Eddington formula. We
chose the mass ratios of the spherical components in our model
from well-established observed correlations. The Magorrian rela-
tion (Magorrian et al. 1998; Marconi & Hunt 2003) gives the cor-
respondence between the galactic bulge and central massive black
hole (MBH), where the BH mass is around 0.2 per cent of that
of the spheroidal component. A similar observational relation be-
tween the dark-matter halo and the central MBH (Ferrarese 2002)
implies that the mass of the central black hole is around 107 M�,
if the dark-matter halo mass is 1012 M�. In addition to the typ-
ical components of early-type galaxies, we added a stellar halo
resembling that of the Milky Way in the model galaxy. Recent
observations of the stellar halo of the Milky Way suggest that its
power-law index is around −3 at r � 50 kpc and −5 in the outer
halo (Keller et al. 2008; Akhter et al. 2012). The masses of the
stellar haloes of nearby disc galaxies with masses comparable to
that of the Milky Way are (1–6) × 109 M� (Harmsen et al. 2017).
In summary, the model galaxy is a superposition of an Einasto halo
(M = 1012 M�, rs = 10 kpc, α = 0.2, rc = 200 kpc, �c = 10 kpc)

2 http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/SFMT/JUMP/
index.html
3 https://www.gnu.org/software/gsl/
4 https://support.hdfgroup.org/HDF5/
5 https://github.com/N-BodyShop/tipsy/wiki/Tipsy

Figure 1. Volume-density profile (upper panel) and enclosed-mass profile
(lower panel) of a model galaxy that represents an early-type galaxy with
221 = 2097 152 particles. Symbols and curves show the profile at t = 1 Gyr
and the input profile, respectively. Every pair of symbols and curves repre-
sents different components of the model galaxy: the dark-matter halo with
an Einasto profile (the black filled circles and the solid curve), the stellar
halo with a triple-power-law profile (the blue filled squares and the dashed
curve), and the bulge with a profile obeying the de Vaucouleurs’s law (the
red open circles and the dotted curve).

with 2084 644 particles; a stellar halo given as a triple-power-law
model (M = 109 M�, rin = 3 kpc, rout = 50 kpc, α = 0, β = 1, γ = 3,
δ = 1, ε = 5, rc = 150 kpc, �c = 20 kpc) with 2084 particles; a stel-
lar component obeying the de Vaucouleurs’s law (M = 5 × 109 M�,
rs = 2 kpc, rc = 10 kpc, �c = 1 kpc) with 10 423 particles; and an
MBH particle with a mass of 107 M�. The elapsed time for MAGI to
generate this model galaxy was 8.5 s.

We have calculated the time evolution for this model galaxy
over 1 Gyr using GOTHIC with an accuracy-controlling parameter
�acc = 2−7 = 7.8125 × 10−3 and a Plummer softening length of
15.625 pc. The resulting radial profile is shown in Fig. 1. The figure
compares the volume–density profile and the enclosed-mass profile
for each component at t = 1 Gyr (symbols) with the input radial
profiles (curves). The figure clearly shows that the given density
profile is stable over the entire domain after an integration time
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Figure 2. Surface-density profile of a model galaxy that uses
223 = 8 388608 particles to represent a late-type galaxy. Symbols and curves
show the profile at t = 1 Gyr and the input profile, respectively. Each pair of
symbols and curves represents a different component of the model galaxy:
the dark-matter halo represented with an NFW profile (the black filled cir-
cles and the solid curve), the bulge as a King model (the red open circles
and the dotted curve), the thick disc with a Sérsic profile (the blue filled
squares and the dashed curve), and the thin disc as an exponential profile
(the magenta open squares and the dot–dashed curve).

of 1 Gyr, which is approximately 70 times the free-fall time at
r = 2 kpc. In other words, MAGI successfully generates the model
galaxy as a system in dynamical equilibrium.

3.2 Stability of Multiple Disc Components

The next test involves models of late-type galaxies. In contrast
to early-type galaxies, late-type galaxies often harbour multi-
ple discs (Dalcanton & Bernstein 2002; Yoachim & Dalcanton
2006). We constructed a late-type galaxy model with an NFW
halo (M = 1012 M�, rs = 20 kpc, rc = 250 kpc, �c = 20 kpc)
containing 8065 971 particles; a King bulge (M = 1010 M�,
rs = 0.7 kpc, W0 = 5) with 80 659 particles; a thick Sérsic disc
(M = 1.5 × 1010 M�, Rs = 3 kpc, n = 1.2, zd = 1 kpc, f = 0.125) with
120 989 particles; and a thin exponential disc (M = 1.5 × 1010 M�,
Rs = 3 kpc, zd = 0.5 kpc, f = 0.125) with 120 989 particles. Toomre’s
Q-values for the thick and the thin discs at Rs are, respectively, 1.6
and 2.2. The bulge-to-total ratio of the model galaxy is 0.25, which
is consistent with observed late-type galaxies (Oohama et al. 2009).
Other physical properties of the model galaxy are shown in Ap-
pendix D. The elapsed time required for MAGI to generate this model
galaxy was 221.7 seconds.

We calculated the time evolution of this model galaxy over 1 Gyr
using GOTHIC, with an accuracy-controlling parameter �acc = 2−8 =
3.90625 × 10−3 and a Plummer softening length of 15.625 pc. Fig. 2
compares the surface-density profile of each component at t = 1 Gyr
(symbols) with the corresponding input profile (curves). The figure
shows very satisfactory agreement between the imposed surface-
density profile and the surface-density profile at t = 1 Gyr, which
is around 220 times the free-fall time for the bulge component and
around 10 times the rotation periods of the discs at their scaleradii.

Figure 3. Radial profiles of disc thicknesses evaluated as the root-mean-
square of disc particle heights about the z = 0 plane. The black lines show
the thick-disc component, whereas the red lines correspond to the thin-disc
component. The bold and regular lines represent t = 1 Gyr and the initial
condition, respectively.

Maintaining the respective disc thicknesses is an essential require-
ment for the disc components. Fig. 3 compares the disc heights at
t = 1 Gyr (the bold lines) with those set in the initial conditions
(the regular lines), for the thin and thick discs separately (red and
black lines, respectively). The disc heights are evaluated as the root-
mean-square of the disc particle heights with respect to the z = 0
plane. Fig. 3 shows that the thicknesses of both discs are almost
unchanged after 1 Gyr (around ten-fold the rotation time at R = Rs).
The drop in the thickness of the thick-disc component towards the
centre is due to the scaleheight reduction prescribed by equation
(10) to remove the artificial needle-like structure (see also Fig. 5).
In a series of convergence tests, it has turned out that simulation
runs with a larger number of disc particles, Nd, result in almost iden-
tical distributions. On the other hand, runs with a smaller number
of halo particles, Nh, significantly thicken the disc thicknesses. We
found that Nh � 3 × 106 and Nd � 105 is a sufficient condition
to stabilize the disc components in a viewpoint of reducing disc
heating by halo particles. It is noteworthy that we were able to use
the output from MAGI directly as the initial condition for the N-body
simulation. In other words, for these tests, MAGI did not require any
relaxation procedure before starting the simulations.

4 D I SCUSSI ON

4.1 Accuracy of magi

To validate the accuracy of the numerically generated DFs, we
compared the DFs generated by MAGI with those given by analytic
formulas. Fig. 4 shows the DFs for Hernquist and Plummer spheres,
together with the differences originating from the input data format
for MAGI. Here, rout(E) are the radii satisfying the relation

�(r = rout) = E, (11)
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Figure 4. Comparison of DFs. Upper panel: DFs generated by MAGI using density profiles in functional form (the red dotted curves) or in machine-readable
tabular form (the black solid curves) are shown, together with analytic expressions for the DFs (the blue dashed curves). Lower panel: The relative errors in
the DFs based on tabular forms, as compared with the functional forms, are plotted as functions of the normalized apoapsis at the given energy. The left-hand
panels present the results for the Hernquist profile, whereas the right-hand panels correspond to the Plummer profile.

Table 1. Parameters of the compared density profiles.

Model Mtot (M�) rs (kpc) rc (kpc) �c (kpc)

Hernquist 1010 1 20 2
Plummer 109 2 20 2

which corresponds to the apocentre for a given specific energy E.
Table 1 lists the physical properties of the profiles. The tables of
density profiles have 128 bins equally spaced in the logarithm from
10−5rs to 50rs. Fig. 4 indicates that the DFs derived from the density
profiles in machine-readable tabular format match well with those
given by the functional form. The relative error is below ∼2 per cent
in most regions, irrespective of whether the central density profile is
a cusp or a core. That is to say, MAGI properly generates DFs for the
density profile given in machine-readable tabular form. Figs 4(a)
and 4(b) also compare the DFs from MAGI with analytic expressions
(equations A15 and A4). Since the DFs in MAGI have a density cut-off
at a finite radius, they drop sharply around rc, whereas the analytic
counterparts decrease continuously. The agreement between the
DFs, except near the cutoff radius, confirms that the DF generator
in MAGI works properly and with sufficient accuracy.

Figure 5. Removal of the artificial needle-like structure. The black, red,
and blue dots show the distributions of the N-body particles representing
the bulge, thick-disc, and thin-disc components, respectively. The left-hand
panel shows the particle distributions with the modification given by equa-
tion (10) and the right-hand panel shows the distributions without any mod-
ification.

Fig. 5 confirms that the additional treatment using equation (10)
removes the artificial needle-like structure protruding from the disc
(Fig. 5a). As shown in Fig. 5(b), the needle-like structure appears
only in the thick disc and not in the thin disc. The presence of
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Figure 6. Surface-density distribution maps of thick discs at t = 0 and 1 Gyr. The model galaxies are identical to the late-type galaxy model described in
Section 3.2, except for the scaleheight of the thick disc, which is varied from 0.3 to 6 kpc.

the needle-like structure is a natural result of the assumption of an
isothermal profile in the vertical direction. Because the thickness
of the thick-disc component is comparable to the scalelength of the
bulge component, the vertical density profile near the rotation axis
drops very slowly.

The upper limit to the scaleheights of disc components that work
properly in MAGI is another concern. Since the extension to thick
discs implemented in MAGI relies partly on the workaround de-
scribed in Section 2.3, there are limitations in the present method.
To examine these limits, we have tested the dynamical stability of
the thick-disc component by varying its scaleheight in the late-type
galaxy model described in Section 3.2 from Rs/10 = 0.3 kpc to
2Rs = 6 kpc. Fig. 6 displays surface-density distribution maps of
thick discs with various scaleheights at t = 0 and 1 Gyr. The figure
shows that the surface-density distribution is stable for 1 Gyr, even
when the scaleheight exceeds the scalelength Rs = 3 kpc. This in-
dicates that the thick disc is stable, at least for zd � 2Rs. We note
that the morphology of the thick disc is similar at zd � Rs = 3 kpc
because the scaleheight of the disc in the central region was re-
duced to rc/16 ∼ 3 kpc to remove the needle-like structure. If the
removal of this artefact is incomplete, then infalling components
from the needle-like structure generate a shell structure after having
been scattered by the bulge. The masses of the needle-like structure

and the resulting shell structure are negligibly small; however, nu-
merical artefacts should be explicitly removed by capping the disc
scaleheight according to equation (10).

4.2 Execution time

The execution time of the software is an important performance
metric. Fig. 7 plots the medians of 10 measurements of the ex-
ecution time required for MAGI to generate the late-type galaxy
model tested in Section 3.2. The problem size – that is, the num-
ber of N-body particles Ntot – is varied from 217 = 131 072 to
229 = 536 870 912. Above this limit, the problem size does not fit
into the DRAM in the measurement environment. The total ex-
ecution time is around 220–230 s for Ntot � 108. It increases for
Ntot � 108 and reaches 420 s for Ntot = 229. For all values of Ntot, the
dominant process is the preparation of the disc components (filled
squares), which includes the time required to generate the potential–
density pairs and calculate the spherically averaged density profiles,
circular velocity, and velocity dispersion in the vertical direction.
The execution time for this procedure is independent of Ntot and
is 212.0 s on average. If there are no disc components, the total
execution time is reduced to 10 s for Ntot � 107. The time required
to prepare the spherical components (filled circles) – which includes
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Figure 7. Execution time for the code as a function of the total number of
N-body particles. The crosses and solid line show the total running time for
the code (with the use of the jump function), whereas the other markers and
lines show the breakdown by different stages of the calculation. The filled
and open diamonds and solid lines are the times required to distribute the
N-body particles according to the prescribed DF and the time required to
dump the output file, respectively. The filled diamonds and dotted line also
show the execution time required to distribute the N-body particles, but for
the case without the jump function. The circles and dashed line, and the
squares and dot–dashed line, respectively, represent the time necessary to
calculate the DF for the spherical components and the disc components. The
triangles and solid line correspond to the time required to dump the files
(the DF, density distribution, and various profiles such as the enclosed mass
and potential).

setting the radial density profiles, integrating them and calculating
the DF using Eddington’s formula) – and the time required to write
miscellaneous files for further analysis (the open triangles) are also
independent of Ntot: They are about 3.4 and 4.6 seconds on aver-
age, respectively. On the other hand, the execution time required to
distribute the N-body particles (the filled diamonds and solid line)
and to write the particle data (the open diamonds and solid line)
increase with Ntot, as expected. Above Ntot ∼ 2 × 108, the writing
speed for particle data becomes slow. Protocol switching in HDF5
or the bandwidth of the file system (4 WD40EFRXs managed as
RAID 5 by mdadm v3.4 and XFS format) might be the reason, but
investigating this is beyond the scope of this study. In summary, the
measured performance results show that: (1) generating galaxies
with disc component(s) takes 4 min for Ntot � 108, (2) generating
galaxies without disc components takes 10 seconds for Ntot � 107,
and (3) the elapsed time increases for Ntot � 107. Since the most
time-consuming procedure in MAGI is the iterative calculation of the
potential–density pairs for the disc components, a more sophisti-
cated pre-conditioner than ILU(0), or performance optimizations of
sparse matrix-vector multiplication would accelerate this part.

In the default configuration of MAGI, pseudo random-numbers
are generated by SFMT using the jump function to obtain the bene-
fits of OpenMP thread parallelization. Without the jump function,
we observe approximately a ten-fold deceleration in the particle-
distribution process (the filled diamonds and dotted line in Fig. 7).
The speed-up rate delivered by the jump function reaches a factor
of 10 for Ntot � 108, which corresponds to a parallel efficiency of

63 per cent. GSL also provides a pseudo-random number generator
based on the Mersenne Twister of period 219937 − 1, and it can also
be used in MAGI. Since GSL does not provide an equivalent to the
jump function, the independence of multiple series of the random
numbers it generates is not strictly guaranteed, and OpenMP paral-
lelization must be switched off during the particle-distribution pro-
cess. The performance of the random numbers generator provided
in GSL is 4.6 times slower than SFMT, and the particle-distribution
process requires a ∼30 per cent longer execution time compared to
SFMT without the jump function.

The HDF5 container supports on-the-fly file compression with
Szip6 2.1, and the resulting file size of the particle data is 46 per cent
of the original. However, we have not employed Szip compression
in the default operation of MAGI, since it is 10–30 times slower than
without Szip compression in most cases.

4.3 Strengths and versatility of magi

Initial conditions for N-body simulations are also useful for fitting
observed data sets. Typically, when fitting an observed data set,
one must generate many mass distribution models and pick an op-
timal one. Three features of MAGI that makes this procedure very
efficient are (1) MAGI supports various kinds of density profiles in-
cluding machine-readable tables; (2) the input parameters adopted
in MAGI are structural ones (total mass and scalelength), which helps
users to adjust the generated mass-distribution models to reproduce
the observed data sets; and (3) the short execution time for MAGI

(10 seconds for early-type galaxy models and 4 min for late-type
galaxy models) enables users to produce many trial models to fit
the observed galaxies. Gaia provides six-dimensional phase-space
information about the Milky Way’s stellar component (Lindegren
et al. 2016), and direct comparisons between the Gaia data and
particle systems generated by MAGI will be useful for modelling the
Milky Way’s DF.

The flexibility of MAGI also enables one to use idealized simula-
tions to study any kind of physics in detail. Most initial-condition
generators are limited to astrophysical profiles such as the NFW
profile or de Vaucouleurs’s law. On the other hand, MAGI accom-
modates arbitrary spherically symmetric density profiles, so long
as the profile is twice differentiable. Among other things, this is
sometimes useful for testing predictions of analytic models. For
example, Michikoshi & Kokubo (2014, 2016) investigated the de-
velopment of stellar spirals in disc galaxies using linear analysis
and local N-body simulations, and they estimated the number of
spiral arms, assuming a constant ratio of disc mass to the total mass
of the galaxy. In order to verify their predictions, one would need
to carry out global N-body simulations with carefully controlled
initial conditions. The flexibility of MAGI facilitates the generation
of initial conditions for such highly idealized problems.

Hydrodynamic simulations based on a particle method (e.g.
smoothed particle hydrodynamics) are widely employed to investi-
gate in detail the formation and evolution processes of galaxies. Ex-
tensions to include gaseous components would be meaningful and
not difficult, if we assume hydrostatic equilibrium for the gaseous
component(s).

6 https://support.hdfgroup.org/doc_resource/SZIP/
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5 C O N C L U S I O N S

We have developed an initial-condition generator for N-body simu-
lations, called MAGI. The implementation relies on DFs to determine
the velocity distribution of the target system. In order to calculate
the DFs, we have exploited Eddington’s formula for spherically
symmetric components assuming an isotropic velocity distribution,
and the Schwarzschild DF with an isothermal profile in the vertical
direction for disc components. Since MAGI supports various kinds
of volume-density profiles and surface-density profiles including a
machine-readable tabular format, MAGI is very flexible in producing
model galaxies. One of the strong points of MAGI is that the software
can generate galaxy models including multiple disc components,
appropriate for late-type galaxies like the Milky Way. Input param-
eters for each component are limited to the scalelength, mass, and
other model-specific dimensionless parameters to control the output
intuitively.

We tested the dynamical stability of the generated particle sys-
tems using N-body simulations. The results show that the systems
retain the original distribution for at least 1 Gyr both early-type
and late-type galaxy models. The execution time required for MAGI

to build a late-type galaxy model is 4 min for N � 108. Further
acceleration can be achieved by improving the algorithm or by per-
formance optimization of the calculation for the potential–density
pair of the disc components. The code is provided as open-source
software and is publicly available.7
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APPENDI X A : VOLUME-DENSI TY PRO FILES

Here, we list the volume–density profiles provided by MAGI. In this
section, ρ0 is the scaledensity and rs is the scaleradius. Also, x is
defined as x ≡ r/rs. The following three models, each have a dense
core in their central region. For the Plummer sphere (Plummer
1911), the density profile and the first and second derivatives are,
respectively, given by

ρ(x) = ρ0

(
1 + x2

)−5/2
, (A1)

dρ(x)

dx
= − 5x

1 + x2
ρ(x), (A2)
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d2ρ(x)

dx2
= 5

6x2 − 1

(1 + x2)2
ρ(x). (A3)

The analytic DF for the Plummer sphere is given by Aarseth, Henon
& Wielen (1974) as

f (E) =
(

3

2πGρ0r2
s

)5 √
2ρ0

7π2
(−E)7/2, (A4)

E = v2

2
− GMtot√

r2 + r2
s

, (A5)

where the total mass Mtot is 4πρ0r
3
s /3. The density profile and the

derivatives for the Burkert sphere (Burkert 1995) are

ρ(x) = ρ0

(1 + x)(1 + x2)
, (A6)

dρ(x)

dx
= − 1 + x(2 + 3x)

(1 + x)(1 + x2)
ρ(x), (A7)

d2ρ(x)

dx2
= 4x2 4x + 3

(
1 + x2

)
(1 + x)2(1 + x2)2

ρ(x). (A8)

For the King profile, the comparable results are given in the empir-
ical forms (King 1962)

ρ(x) = ρ0

{(
1 + x2

)−1/2 − C
}2

, C ≡
{

1 +
(

rt

rs

)2
}−1/2

,

(A9)

dρ(x)

dx
= −2ρ0x

(
1 + x2

)−3/2
{(

1 + x2
)−1/2 − C

}
, (A10)

d2ρ(x)

dx2
= 2ρ0

3x2 − 1 + C(1 + x2)1/2(1 − 2x2)

(1 + x2)3
, (A11)

where rt is the tidal radius. The four models below each have a cen-
tral cusp in their density profiles. For the Hernquist model (Hern-
quist 1990), the volume–density profile and its derivatives are

ρ(x) = ρ0

x(1 + x)3
, (A12)

dρ(x)

dx
= − 1 + 4x

x(1 + x)
ρ(x), (A13)

d2ρ(x)

dx2
= 2

1 + 5x(1 + 2x)

x2(1 + x)2
ρ(x), (A14)

and the analytic DF is given by Hernquist (1990) as

f (E) = (
2πGρ0r

2
s

)−3/2 ρ0

25/2π2

(
1 − q2

)−5/2

×
{

3 arcsin q + q
√

1 − q2(1 − 2q2)(8q4 − 8q2 − 3)
}

,

(A15)

q ≡
√

−E

2πGρ0r2
s

, E = v2

2
− GMtot

r + rs
, (A16)

where the total mass Mtot is 2πρ0r
3
s . For the NFW profile (Navarro

et al. 1995), the density profile and the derivatives are

ρ(x) = ρ0

x(1 + x)2
, (A17)

dρ(x)

dx
= − 1 + 3x

x(1 + x)
ρ(x), (A18)

d2ρ(x)

dx2
= 2

1 + 2x(2 + 3x)

x2(1 + x)2
ρ(x), (A19)

wheras those of the Moore profile (Fukushige & Makino 1997;
Moore et al. 1998) are

ρ(x) = ρ0

x3/2(1 + x)3/2
, (A20)

dρ(x)

dx
= −3

2

1 + 2x

x(1 + x)
ρ(x), (A21)

d2ρ(x)

dx2
= 3

4

5 + 16x(1 + x)

x2(1 + x)2
ρ(x), (A22)

and those of the Einasto profile (Einasto 1965; Navarro et al. 2004,
2010) are

ρ(x) = ρ0e
2(1−xα )/α, (A23)

dρ(x)

dx
= −2xα−1ρ(x), (A24)

d2ρ(x)

dx2
= 2xα−2 (2xα + 1 − α) ρ(x), (A25)

where α is a parameter that determines the degree of steepness of
the transition about the density slope.

The two remaining models are broken-power-law profiles. For the
double-power-law model, the so-called (α, β, γ ) model (Hernquist
1990; Merritt et al. 2006), the density profile and the derivatives
are

ρ(x) = ρ0x
−α

(
1 + xβ

)(α−γ )/β
, (A26)

dρ(x)

dx
= − α + γ xβ

x(1 + xβ )
ρ(x), (A27)

d2ρ(x)

dx2

= (α + γ xβ ){1 + α + (1 + β + γ )xβ} − βγ (1 + xβ )xβ

x2(1 + xβ )2
ρ(x),

(A28)

where β determines the sharpness of the transition from the inner-
power-law slope α to the outer-power-law slope γ . The last, the
triple-power-law profile, is a natural extension of equation (A26).
The density profile is defined as

ρ(x) = ρ0x
−α

(
1 + xβ

)(α−γ )/β
S(x), (A29)

S(x) ≡ (1 + y(x))(γ−ε)/δ , y(x) ≡
(

rin

rout
x

)δ

, (A30)

where x = r/rin, rin is the inner scaleradius and rout is the outer
scaleradius. Additional parameters (rout, δ, ε) are introduced to set
another density slope at the outskirts of the profile. The first and
the second derivatives are calculated by using the chain rule with
the derivatives of the double-power-law profile, i.e. equations (A27)
and (A28), and

dS(x)

dx
= (γ − ε)

y(x)

x (1 + y(x))
S(x), (A31)

d2S(x)

dx2
= δ − 1 + (γ − ε − 1)y(x)

x (1 + y(x))

dS(x)

dx
. (A32)
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A P P E N D I X B: D E S C R I P T I O N O F TH E K I N G
M O D E L

The DF for the King model (also called the lowered isothermal
model) is given by

f (E) =
{

ρ1

(2πσ 2)3/2

(
eE/σ 2 − 1

)
, (E > 0)

0, (E ≤ 0)
, (B1)

where ρ1 is the scaledensity, and σ is a parameter having the dimen-
sion of velocity (but it is not the velocity dispersion). Integrating
equation (B1) over velocity space gives the density profile:

ρ = ρ1

{
eW erf

(√
W

)
−

√
4W

π

(
1 + 2W

3

)}
, (B2)

where W ≡ �/σ 2 is the dimensionless potential. It is determined
by numerically solving Poisson’s equation

d

dx

(
x2 dW

dx

)
= −9ρ1x

2

ρ0

{
eW erf

(√
W

)
− 2

√
W

3
√

π
(3 + 2W )

}
,

(B3)

where x denotes the radius normalized by the King radius r0. When
solving equation (B3), two boundary conditions are necessary to
specify the solution: the non-dimensional King parameter W0 at the
centre and the requirement of a central core ( dW

dx
= 0 at the centre).

Using the central density ρ0, the King radius r0 is given by

r0 =
√

9σ 2

4πGρ0
. (B4)

The first and second derivatives of the density profile can then be
expressed as

dρ

dr
= ρ1

r0

[
eW erf

(√
W

)
− 2

√
W√
π

]
dW

dx
, (B5)

d2ρ

dr2
= ρ1

r0
2

[{
eW erf

(√
W

)
− 2

√
W√
π

}
d2W

dx2
+ eW erf

×
(√

W
) (

dW

dx

)2
]

. (B6)

Here, we already have dW
dx

from the solution of equation (B3), and
d2W
dx2 is obtained by solving the differential equation

d2W

dx2
= −9ρ1

ρ0

[
eW erf

(√
W

)
− 2

√
W

3
√

π
(3 + 2W )

]
− 2

x

dW

dx
.

(B7)

APPENDIX C : SURFAC E-DENSITY PRO FILES

In this section, we list the surface-density profiles provided by MAGI.
Here, X is defined as X ≡ R/Rs, where Rs is the scalelength. The
surface-density profile for the Sérsic model (Sérsic 1963) is given
by

�(X) = �0 exp
(−bnX

1/n
)
, (C1)

where n is the Sérsic index and bn is a dimensionless scale fac-
tor. The scalefactor bn is internally calculated using an asymptotic
formula by Ciotti & Bertin (1999) that works well, at least in the
range 1 ≤ n ≤ 10. Sérsic profiles with n = 1 and 4 correspond to

an exponential profile and de Vaucouleurs’s law (de Vaucouleurs
1948), respectively.

APPENDI X D : RADI AL PROFI LES OF DIS C
C O M P O N E N T S

In this section, we show radial profiles of the late-type galaxy model
investigated in Section 3.2. Fig. D1 shows the rotation curve of the
model galaxy. Fig. D2 exhibits the radial profiles of Toomre’s Q-
value for the disc components. Since the velocity dispersion of
the disc components is capped in the central region to ensure that

Figure D1. Rotation curve for the late-type galaxy model of Section 3.2.
The black solid, blue dot–dashed, magenta dotted, and green dashed curves
show the contributions from the dark-matter halo, bulge, thick disc, and thin
disc, respectively. The solid red curve is the sum of all components.

Figure D2. Radial profiles of Toomre’s Q-value for the disc components.
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Figure D3. Radial profiles of the velocity dispersion for the disc compo-
nents. Symbols and curves show the profile at t = 1 Gyr and the input profile,
respectively. The black symbols and lines show the thick-disc component,
whereas the red ones correspond to the thin-disc component. The circles and
solid curves represent the velocity dispersion in the R direction, whereas the
squares and dotted curves correspond to the velocity dispersion in the z
direction.

the epicycle approximation remains valid, the Q-value decreases to-
wards the centre and becomes smaller than unity. Fig. D3 compares
the radial profiles of the velocity dispersion for the disc components
at t = 1 Gyr (symbols) with the input radial profiles (curves). The
figure shows that the given profiles of σ z are stable over the entire
domain after an integration time of 1 Gyr. On the other hand, the
radial profiles of σ R evolve, especially in the central region. This in-
dicates that the epicycle approximation is not satisfied in the central
regions of late-type galaxies. The σ R-profile of the thin-disc com-
ponent has better stability in other domains, which suggests that the
thin disc is more consistent with the epicycle approximation than
the thick-disc component.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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