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1 Introduction

Supersymmetric field theories have attracted great attention because they provide a deep

insight about the non-perturbative physics [1–3] and have a close relation with the grav-

itational theory [4]. The lattice simulations are promising approaches to obtain a further

understanding of them. However, it is generally difficult to use the standard Monte Carlo

techniques for the lattice supersymmetric theories on account of the sign problem, and the

theories with the supersymmetry breaking may be the most difficult cases as suggested

from the vanishing Witten index [5]. In this paper, we apply the tensor network approach,

which is free of the sign problem, to the two-dimensional lattice N = 1 Wess-Zumino model

in order to make a breakthrough on the issue.

The two-dimensional N = 1 Wess-Zumino model is a supersymmetric theory in which

a real scalar interacts with a Majorana fermion via the Yukawa term originate from the
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superpotential [6]. The supersymmetry is spontaneously broken for the supersymmetric

φ4 theory in a finite volume [5], and the Witten index becomes zero because the fermion

Pfaffian has both the positive and negative signs. For the infinite volume case, the absence

of the non-renormalization theorem suggests that the breaking may occur even at the

perturbative level [7, 8], and the theory has a rich phase structure which should be clarified

by numerical methods free from the sign problem.

Although the lattice regularization generally breaks the N = 1 supersymmetry for

the interacting theories in contrast to the case of N = 2 model [9–13],1 it is known that

the breaking term caused by the lattice cut-off disappears in the continuum limit for an

appropriate lattice action at least in the perturbation theory [18]. In the action, the Wilson

terms are included in both the fermion and the boson sectors, so that the supersymmetry is

exactly realized in the free-theory limit. Some numerical studies have been already done in

the low-dimensional Wess-Zumino model [19–27]. In our study we use the tensor network

approach to investigate the N = 1 supersymmetric model much deeper.

The tensor renormalization group (TRG) is a coarse-graining algorithm for tensor net-

works, which is based on the singular value decomposition (SVD). The TRG was originally

introduced in a two-dimensional classical spin model [28]. Since the TRG was extended to

the Grassmann TRG for models including Grassmann variables [29, 30], some studies of

fermionic systems have been reported so far. In two-dimensional quantum field theories, it

was already applied to the lattice φ4 theory [31] and to the lattice Schwinger model [32, 33]

and the lattice Nf = 1 Gross-Neveu model [34], which are Dirac fermion systems. For the

lattice N = 1 Wess-Zumino model, we have to clarify a method to construct a tensor net-

work representation for the Majorana fermions with the Yukawa-type interaction and for

the case of next-nearest-neighbor interacting bosons which originate from the Wilson term.

In this paper, we show that the partition function of the lattice N = 1 Wess-Zumino

model can be expressed as a tensor network for any superpotential and any value of the

Wilson parameter r. Refining the known method for the Dirac fermions [34], we present

a way of making a tensor network representation for Majorana fermions. For the boson

action, we can change it to one with up to nearest-neighbor interactions by introducing

two auxiliary fields. Then we also show a tensor network representation for bosons with a

new discretization scheme. In order to test our formulation, we compute the Witten index

by using the Grassmann TRG. Although we give a method of constructing tensors for any

interacting case, in numerical test we devote ourselves to the free Wess-Zumino model,

which is the most suitable test bed for a tensor network representation. This is because

non-trivial structures of tensor arise from the hopping terms in the lattice action. This

point will be discussed along with the details of the tensor network representation in the

main part of this paper. The computation is done with r = 1/
√
2, so that one of the two

auxiliary fields is decoupled to reduce the computational cost.

This paper is organized as follows. We first recall the two-dimensional N = 1 Wess-

Zumino model and its lattice version with the detailed notations in section 2. In section 3,

tensor network representation for the fermion part and the boson part are individually

1Non-local formulations of the Wess-Zumino model have been studied in refs. [14–17].
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constructed. By combining those two results, the tensor network representation for the

total partition function is also given. Section 4 shows the numerical results for the free

case, and we compare them with the exact ones. A summary and a future outlook are

given in section 5.

2 Two-dimensional N = 1 Wess-Zumino model

2.1 Continuum theory

Two-dimensional N = 1 Wess-Zumino model is a supersymmetric theory that consists of

a real scalar field φ (x) and a Majorana fermion field ψ (x). In the Euclidean space-time,

the corresponding action is given by

Scont. =

∫

d2x

{

1

2
(∂µφ)

2 +
1

2
W ′ (φ)2 +

1

2
ψ̄
(

γµ∂µ +W ′′ (φ)
)

ψ

}

, (2.1)

where γµ is the gamma matrix which satisfies

{γµ, γν} = 2δµν , γµ = γ†µ. (2.2)

The Lorentz index µ takes two values 1 or 2, and the Einstein summation convention is

used throughout this paper. Showing the indices in the spinor space explicitly, γµ and ψ (x)

are written as (γµ)αβ and ψα (x) for α, β = 1, 2. The spinor index α and the space-time

coordinate x are often suppressed without notice. W (φ) is an arbitrary real function of

φ, which is referred to as the superpotential in the superfield formalism, and gives the

Yukawa- and φn-type interactions with common coupling constants. W ′ (φ) is the first

differential of W (φ) with respect to φ, that is, W ′ (φ) ≡ (d/dφ)W (φ).

The Majorana fermion ψ satisfies

ψ̄ = −ψTC−1, (2.3)

where C is the charge conjugation matrix which obeys

CT = −C, C† = C−1, C−1γµC = −γTµ . (2.4)

For any W (φ), the action in eq. (2.1) is invariant under the supersymmetry transformation

δφ (x) = ǭψ (x) , (2.5)

δψ (x) =
(

γµ∂µφ (x)−W ′ (φ (x))
)

ǫ, (2.6)

where ǫ is a global Grassmann parameter with two components and ǭ satisfies eq. (2.3).

2.2 Lattice theory

Let us consider a two-dimensional square lattice with the lattice spacing a and the volume

V = aN1 × aN2, where N1, N2 ∈ N. In this paper, a is set to unity, and the lattice sites

are simply expressed by integers:

Γ = { (n1, n2) | nµ = 1, 2, . . . , Nµ for µ = 1, 2 } . (2.7)
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All of the fields live on the lattice sites n ∈ Γ and satisfy the periodic boundary conditions

in both directions. The forward and the backward difference operators, ∂µ and ∂∗
µ, are

given by

∂µφn = φn+µ̂ − φn, (2.8)

∂∗
µφn = φn − φn−µ̂, (2.9)

where µ̂ is the unit vector along the µ-direction, and the symmetric difference operator is

given by ∂S
µ =

(

∂µ + ∂∗
µ

)

/2.

We define the lattice Wess-Zumino model according to ref. [18]:

S =
∑

n∈Γ

{

1

2

(

∂S
µφn

)2
+

1

2

(

W ′ (φn)−
r

2
∂µ∂

∗
µφn

)2
+

1

2
ψ̄nDψn

}

, (2.10)

where the lattice Dirac operator D which acts as Dψm = Dmnψn is given by

Dmn =
(

γµ∂
S
µ − r

2
∂µ∂

∗
µ

)

mn
+W ′′ (φn) δmn (2.11)

with the nonzero real Wilson parameter r. In the following, SB denotes the pure boson

part of the action:

SB =
∑

n∈Γ

{

1

2

(

∂S
µφn

)2
+

1

2

(

W ′ (φn)−
r

2
∂µ∂

∗
µφn

)2
}

. (2.12)

Note that the kinetic term of φ is given by the symmetric difference operator instead of

the forward one in the naive boson action

SB,naive =
∑

n∈Γ

{

1

2
(∂µφn)

2 +
1

2

(

W ′ (φn)
)2
}

, (2.13)

and an extra Wilson term is included in the boson sector. In this paper we refer to the

bosons with the Wilson term as the Wilson bosons in the same sense as the Wilson fermions.

While SB,naive has only the nearest-neighbor interactions, SB has the next-nearest-neighbor

ones that cause difficulties in constructing the tensor network representation of the partition

function. This point will be discussed later.

In the free theory with

W (φ) =
1

2
mφ2, (2.14)

the action in eq. (2.10) is invariant under a lattice version of the supersymmetry transfor-

mation

δφn = ǭψn, (2.15)

δψn =
{

γµ∂
S
µφn +

r

2

(

∂µ∂
∗
µφ
)

n
−W ′ (φn)

}

ǫ (2.16)

even at a finite lattice spacing because SB has the similar structure with the Wilson–Dirac

operator D in eq. (2.11) in contrast to the naive one. For the interacting cases, however, the
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invariance is explicitly broken owing to the lack of the Leibniz rule for the lattice difference

operators. The broken supersymmetry is shown to be restored in the continuum limit, at

least, at all orders of the perturbation [18].

The associated partition function is defined in the usual manner:

Z =

∫

DφDψe−S (2.17)

with the path integral measures
∫

Dφ ≡
∏

n∈Γ

∫ ∞

−∞

dφn√
2π

, (2.18)

∫

Dψ ≡
∏

n∈Γ

∫

dψn,1dψn,2. (2.19)

Here dψn,α is a measure of the Grassmann integral defined in the following. The Grassmann

variable ξi and its measure dξi (i = 1, . . . , I) satisfy

{ξi, ξj} = {ξi, dξj} = {dξi, dξj} = 0 for all i, j. (2.20)

The Grassmann integral is then defined by
∫

dξi1 = 0,

∫

dξiξi = 1 for i = 1, 2, . . . , I, (2.21)

which suggests that
∫

dξi is equivalent to ∂/∂ξi.

In the free theory, the boson and the fermion are decoupled from each other, and the

respective partition functions are given by

ZB,exact =
∏

p1,p2

1
√

∑2
µ=1 sin

2 pµ +
(

m+ 2r
∑2

µ=1 sin
2 (pµ/2)

)2
, (2.22)

ZF,exact =
sign {m (m+ 4r)}

ZB,exact
, (2.23)

where pµ = 2πn/Nµ (n = 0, 1, 2, . . . , Nµ − 1) and the product in eq. (2.22) is taken for all

possible momenta [35]. Note that ZB = ∞ (ZF = 0) for m = 0,−2r,−4r when Nµ is an

even integer because the first term and the second term in the square root in eq. (2.22)

simultaneously vanish for certain combinations of p1 and p2. Thus we find that the Witten

index, which is defined as the partition function with periodic boundary conditions in a

finite volume,

Zexact = sign {m (m+ 4r)} (2.24)

reproduces the continuum one, sign {m}, for |m| ≪ 1.

After integrating the fermion field, the partition function can also be written as

Z =

∫

Dφe−SBPf (C∗D) , (2.25)
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where the Pfaffian of a 2I × 2I anti-symmetric matrix A is defined by

Pf(A) =

∫

dξ1dξ2 · · · dξ2Ie−
1

2
ξiAijξj (2.26)

for Grassmann variables {ξi} and corresponding measures {dξi}. The fermion Pfaffian

Pf (C∗D) flips its sign depending on the scalar field in the interacting cases. To overcome

this sign problem we employ the TRG method, whose first step is to represent eq. (2.17)

as a network of uniform tensors, which is explained in the next section.

3 Tensor network representation of partition function

3.1 Fermion Pfaffian

We construct a tensor network representation for the fermion part of eq. (2.17)

ZF =

∫

Dψe−
1

2

∑
n∈Γ

ψ̄nDψn , (3.1)

which yields the Pfaffian after integrating the fermion field as found in eq. (2.25). The

basic idea follows from refs. [32, 34] which deal with the Dirac fermions. We describe the

procedure for the Majorana fermions with any value of the Wilson parameter r.

Now we use the following representations for γµ and C that satisfy eqs. (2.2) and (2.4):

γ1 = σ1, γ2 = σ3, C = −iσ2, (3.2)

where σi is the standard Pauli matrix. The method presented in this section is applicable

to any possible choice of γµ and C, and they just lead to different tensors. Then the

Majorana spinor takes the form

ψn =

(

ψn,1

ψn,2

)

, ψ̄n =
(

ψn,2, −ψn,1

)

, (3.3)

and we obtain

−1

2

∑

n∈Γ

ψ̄nDψn =
∑

n∈Γ

{(

1 + r

2

)

(

ψ̃n+1̂,2ψ̃n,1 + ψn+2̂,2ψn,1

)

(3.4)

+

(

1− r

2

)

(

ψ̃n+1̂,1ψ̃n,2 + ψn+2̂,1ψn,2

)

+
(

W ′′ (φn) + 2r
)

ψn,1ψn,2

}

,

where

ψ̃n,1 =
1√
2
(ψn,2 + ψn,1) , (3.5)

ψ̃n,2 =
1√
2
(ψn,2 − ψn,1) , (3.6)

which are local transformations of the field variable ψn. ψ̃n,α is introduced only to write

eq. (3.4) as simple as possible. Note that the second term in eq. (3.4) disappears for

– 6 –
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r = 1 because the hopping terms in eq. (2.11) are proportional to the projection operators,

(1± γµ) /2.

Let us expand the four types of hopping factors in eq. (3.1):

e−
1

2

∑
n∈Γ

ψ̄nDψn

=
∏

n∈Γ

{

1
∑

un=0

(

1 + r

2
ψ̃n+1̂,2ψ̃n,1

)un 1
∑

vn=0

(

1− r

2
ψ̃n+1̂,1ψ̃n,2

)vn

·
1
∑

pn=0

(

1 + r

2
ψn+2̂,2ψn,1

)pn 1
∑

qn=0

(

1− r

2
ψn+2̂,1ψn,2

)qn

e(W
′′(φn)+2r)ψn,1ψn,2

}

. (3.7)

We will see that un, vn, pn, qn, which take 0 or 1 because of the nilpotency of ψn,α (and

ψ̃n,α), are regarded as the indices of tensors. The four types of hopping factors have the

same structure as Ψn+µ̂Φn, where Ψn+µ̂ and Φn are single-component Grassmann numbers.

It is straightforward to show

Ψn+µ̂Φn =

∫

(

Ψn+µ̂dθ̄n+µ̂

)

(Φndθn)
(

θ̄n+µ̂θn
)

, (3.8)

where new independent Grassmann numbers θn, θ̄n+µ̂ and the corresponding measures dθn,

dθ̄n+µ̂ satisfy eqs. (2.20) and (2.21) with the periodic boundary conditions. By applying

this identity to each hopping factor in eq. (3.7) individually, one can make a tensor network

representation.

Then the fermion part of the partition function is represented as a product of tensors

ZF =
∑

{u,v,p,q}

∏

n∈Γ

TF (φn)unvnpnqnun−1̂
vn−1̂

pn−2̂
qn−2̂

·
∫

DΞuvpq

∏

n∈Γ

(

ξ̄n+1̂ξn
)un

(

χ̄n+1̂χn

)vn
(

η̄n+2̂ηn
)pn
(

ζ̄n+2̂ζn
)qn (3.9)

with

DΞuvpq =
∏

n∈Γ

dξun
n dχvn

n dηpnn dζqnn dξ̄
un−1̂
n dχ̄

vn−1̂
n dη̄

pn−2̂
n dζ̄

qn−2̂
n , (3.10)

where ξn, ξ̄n, χn, χ̄n, ηn, η̄n, ζn, ζ̄n, and those with bars are single-component Grassmann

numbers introduced in the manner of eq. (3.8), and
∑

{u,v,··· } means the summation of

all possible configurations of the indices:
∏

n∈Γ

(
∑1

un=0

∑1
vn=0 · · ·

)

. The new Grassmann

numbers and their corresponding measures satisfy the same anti-commutation relations

and boundary conditions as those of the original ones. The tensor TF is defined as

TF (φ)uvpqabcd =

∫

dΨdΦe(W
′′(φ)+2r)ΨΦ

{

ΨdΦcΨ̃bΦ̃aΦqΨpΦ̃vΨ̃u
}

·
(

√

1 + r

2

)u+p+a+c(√

1− r

2

)v+q+b+d

(3.11)
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for all possible indices with single-component Grassmann numbers Ψ, Φ, Ψ̃ = (Φ + Ψ) /
√
2,

Φ̃ = (Φ−Ψ) /
√
2. By integrating Ψ and Φ by hand, we can obtain the tensor elements. In

the case of r = 1, note that the indices vn and qn vanish and that the Grassmann fields χn

and ζn are decoupled because the second term in the r.h.s. of eq. (3.4) is absent. In that

case, the tensor network representation becomes much simpler:

ZF|r=1 =
∑

{u,p}

∏

n∈Γ

TF (φn)unpnun−1̂
pn−2̂

∫

dξun
n dηpnn dξ̄

un−1̂
n dη̄

pn−2̂
n

∏

n∈Γ

(

ξ̄n+1̂ξn
)un

(

η̄n+2̂ηn
)pn ,

(3.12)

where

TF (φ)ijkl =

∫

dΨdΦe(W
′′(φ)+2)ΨΦΦlΦ̃kΨjΨ̃i. (3.13)

It is rather straightforward to show that eq. (3.7) is reproduced from eq. (3.9) with

eqs. (3.10) and (3.11) and from the identity in eq. (3.8). We now note that the eight

Grassmann measures in the r.h.s. of eq. (3.10) should be in this order and that the set

of measures at the site n commutes with ones at different lattice sites because they are

Grassmann-even as a set for non-zero elements of the tensor given in eq. (3.11).

The indices xn ≡ (un, vn) and the Grassmann fields ξn, χn carry the information of the

hopping factors with µ = 1 as indicated by the last factors in eq. (3.9) while tn ≡ (pn, qn)

and ηn, ζn are related to the hopping with µ = 2. In this sense, xn, tn, xn−1̂, tn−2̂, which

are the indices of the tensor in eq. (3.9), can be interpreted as being defined on the four

links which stem from the site n. Since each index is shared by two tensors which are

placed on the nearest-neighbor lattice sites (see eq. (3.9)), we can find that the partition

function ZF is expressed as a network of the tensor TFxntnxn−1̂
tn−2̂

on the two-dimensional

square lattice Γ.

If one uses another representation of γµ and C, then the same partition function is

given by a different tensor. This means that the tensor network representation is not

uniquely determined.

3.2 Boson partition function

The tensor network representation is also constructed for the pure boson part of eq. (2.17)

ZB =

∫

Dφe−SB (3.14)

with SB in eq. (2.12). It is, however, not straightforward to construct a simple representa-

tion because SB has the next-nearest-neighbor interactions and φ is a non-compact field. A

popular way to avoid the former issue is to rewrite SB in a nearest-neighbor form with the

aid of auxiliary fields. For the latter, we employ a new method using a discretization for

the integrals of φ.2 After these procedures, we find that a discretized version of eq. (3.14)

can be expressed as a tensor network for arbitrary discretization schemes.

2A method for treating the non-compact field using a discretization is already proposed in the pioneering

work by Y. Shimizu [31]. We thank him for pointing out a new idea [36] presented in this paper.
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Since the formulation is actually irrelevant to the details of the scalar theory, we will

derive a tensor network for a general theory:

ZB =

∫

Dϕe−S̃B(ϕ), (3.15)

where
∫

Dϕ =
∫∞
−∞

∏

n∈Γ dϕn,1dϕn,2 · · · dϕn,N . We assume that S̃B(ϕ) is invariant under

the PT-transformation on a two-dimensional square lattice and has the interactions up to

the nearest-neighbor, and that ϕn is a non-compact real field with N components. As seen

in section 3.2.5, it is very easy to extend it to the non PT-symmetric case.

We will show that eq. (3.14) can be expressed in the form of eq. (3.15) with N = 3 in

section 3.2.1. After decomposing the hopping terms of S̃B in section 3.2.2 and introducing

a formal discretization for the integrals of ϕ in section 3.2.3, we give the tensor network

representation for a discretized version of eq. (3.15) in section 3.2.4.

3.2.1 Introduction of auxiliary fields

The boson action SB in eq. (2.12) is transformed into a nearest-neighbor form using two

real auxiliary fields G and H:

ZB =

∫

DφDGDHe−S̃B , (3.16)

where

S̃B = SB,naive +
1

2

∑

n∈Γ

{

G2
n +H2

n −
(

rW ′ (φn) + αGn + βHn

) (

φn+1̂ + φn−1̂ − 2φn

)

−
(

rW ′ (φn) + αGn − βHn

) (

φn+2̂ + φn−2̂ − 2φn

) }

(3.17)

with SB,naive given in eq. (2.13), α =
√

(1− 2r2)/2, and β = 1/
√
2. Note that α is real for

|r| ≤ 1/
√
2 but becomes a pure imaginary for |r| > 1/

√
2. The integral measures for Gn

and Hn are defined in exactly the same way as φn in eq. (2.18). Although, in general, two

auxiliary fields are necessary for the next-nearest-neighbor interactions in two directions,

it is somewhat surprising to find that G is decoupled from the other fields for particular

values r = ±1/
√
2, and the required auxiliary field turns out to be only H.

It is clear that S̃B has only the on-site and the nearest-neighbor interactions which are

invariant under the PT-transformation

φn, Hn, Gn → φ−n, H−n, G−n. (3.18)

Defining a three-component field variable

ϕn = (ϕn1, ϕn2, ϕn3) =

(

φn√
2π

,
Hn√
2π

,
Gn√
2π

)

, (3.19)

we find that eq. (3.16) is just eq. (3.15) with N = 3.
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3.2.2 Symmetric property of local Boltzmann weight

In the previous section 3.2.1, we found that eq. (3.14) is a special case of eq. (3.15).

Hereafter we will try to derive a tensor network representation of general one (3.15). Before

that, let us see the hopping structure of the local Boltzmann weight, which is an important

building block of the tensor as shown in following sections 3.2.3 and 3.2.4.

It can be easily shown that S̃B is expressed as

S̃B =
∑

n∈Γ

L1

(

ϕn, ϕn+1̂

)

+
∑

n∈Γ

L2

(

ϕn, ϕn+2̂

)

, (3.20)

where Lµ is symmetric in the sense that Lµ (ϕ,ϕ
′) = Lµ (ϕ

′, ϕ) which is a consequence of

the PT-invariance of the action.3 All of the hopping terms with respect to the µ-direction

are in Lµ (ϕn, ϕn+µ̂). This decomposition is actually not unique because the positions of

the on-site interactions and some constants are free to choose.

For our case in eq. (3.17), we find

Lµ (ϕn, ϕm) =
1

2
(φm − φn)

2 +
1

8

(

W ′ (φn)
2 +G2

n +H2
n +W ′ (φm)2 +G2

m +H2
m

)

− 1

2

(

rW ′ (φn) + αGn + (−1)δµ2 βHn

− rW ′ (φm)− αGm − (−1)δµ2 βHm

)

(φm − φn) .

(3.21)

Note that βHn and βHm have the different signs for µ = 2.

The Boltzmann factor e−S̃B can be written as

e−S̃B =
∏

n∈Γ

2
∏

µ=1

fµ (ϕn, ϕn+µ̂) (3.22)

with

fµ
(

ϕ,ϕ′
)

= e−Lµ(ϕ,ϕ′), (3.23)

which is symmetric in the same sense as that of Lµ. This symmetric property plays an

important role in the subsequent discussion.

3.2.3 Discretization of non-compact field

The non-compactness of the variable ϕ is cumbersome in extracting the tensor structure

from fµ (ϕn, ϕn+µ̂) in practice. There are several possible ways to make the indices of the

tensor. In our method, we first carry out a discretization of the variable ϕ itself, which

automatically makes the partition function in eq. (3.15) into a discretized form.

3We can express the action as S̃B =
∑

n∈Γ

∑
2

µ=1
Kµ (ϕn, ϕn+µ̂) using a trial choice of Kµ. Actu-

ally, Kµ (ϕn, ϕn+µ̂) transforms to Kµ (ϕ−n, ϕ−n−µ̂) by the PT-transformation, and the PT-invariance of

the action tells us that S̃B =
∑

n∈Γ

∑
2

µ=1
Kµ (ϕn+µ̂, ϕn). Thus the symmetric Lµ is always defined as

Lµ (ϕ,ϕ′) = (Kµ (ϕ,ϕ′) +Kµ (ϕ′, ϕ)) /2.
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To make the discussion of the discretization clearly understood, let us begin with a

one-dimensional integral

I =

∫ ∞

−∞
dxf (x) , (3.24)

which converges for a given function f (x). We can formally approximate this integral with

a discretized form

I (K) =
∑

x∈SK

(disc.)
f (x) , (3.25)

for which I = limK→∞ I (K) is simply assumed. K is a parameter to control the approx-

imation of the integral by the sum. Now we suppose that SK is a set containing K num-

bers, x1, x2, . . . , xK , which are given by a discretization scheme (disc.), and that
∑(disc.)

x∈SK

is a summation of x ∈ SK with some factors, for instance, (disc.)-dependent weights. A

multi-dimensional extension (SK → SN
K ) is straightforward by defining SN

K as a set of the

multi-dimensional discrete points.

The Gauss–Hermite quadrature gives a concrete example of this abstract definition.

The r.h.s. of eq. (3.25) is then defined as follows:

∑

x∈SK

(GH)
f (x) ≡

K
∑

i=1

wie
x2
i f (xi) . (3.26)

Here xi (i = 1, . . . ,K) is the i-th root of the K-th Hermite polynomial, and wi are the

weights given by the Hermite polynomial and xi. The r.h.s. of eq. (3.26) has an extra

exponential function because this quadrature is designed so that f(x) which has a damping

factor e−x2

is well approximated. In this case, we find that SK is a set of the roots and

the weight wie
x2
i is the ingredient of

∑(GH). For a well-behaved f (x), one can expect that

I = limK→∞ I (K).

With the prescriptions above, eq. (3.15) can be discretized as

ZB (K) =
∏

n∈Γ

(

1√
2π

)N
∑

ϕn∈SN
K

(disc.)
2
∏

µ=1

fµ (ϕn, ϕn+µ̂) (3.27)

by replacing the measures for ϕn by
∑(disc.)

ϕn∈SN
K

.4,5 Note that we use the same discretization

scheme for all components of ϕn. Here eq. (3.22) is also used, and K is the number of

discrete points. It is found that fµ (ϕn, ϕn+µ̂) is a matrix whose indices are ϕn and ϕn+µ̂

which take the KN discrete numbers in SN
K . In this way, we now consider fµ as a matrix,

and this fact provides a benefit for a numerical treatment; that is, one can use linear-algebra

techniques instead of the functional analysis. The indices of the tensor will be naturally

derived from this matrix structure of fµ as will be seen in section 3.2.4.

4Here a one-dimensional discretization is applied to each component of ϕn. We may also use a more

general scheme that cannot be written as the superposition of one-dimensional discretization.
5In general one can set different discrete points for each direction: Ki 6= Kj for i 6= j, although in the

following we assume a common K just for the simplicity.
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3.2.4 Construction of tensor

In order to derive the tensor network structure from eq. (3.27), one needs to separate ϕn

and ϕn+µ̂ in fµ. If this separation works, the original field ϕn can be traced out at each n.

Since fµ is a symmetric matrix with complex entries in general, which is found in the

previous sections 3.2.2 and 3.2.3, we carry out the Takagi factorization: for ϕ,ϕ′ ∈ SN
K ,

f1
(

ϕ,ϕ′
)

=
KN
∑

w=1

UϕwσwU
T
wϕ′ , (3.28)

f2
(

ϕ,ϕ′
)

=
KN
∑

s=1

VϕsρsV
T
sϕ′ , (3.29)

where U and V are unitary matrices, UT and V T are the transposes of U and V , re-

spectively, and σw and ρs are non-negative. Note that this factorization depends on the

discretization scheme, which determines the set SK . Instead of the Takagi factorization,

we can also use the SVD as seen in the next section.

We thus find that eq. (3.27) is written as

ZB (K) =
∑

{w,s}

∏

n∈Γ

TB (K)wnsnwn−1̂
sn−2̂

, (3.30)

where

TB (K)ijkl =

(

1√
2π

)N √
σiρjσkρl

∑

ϕ∈SN
K

(disc.)
UϕiVϕjUϕkVϕl (3.31)

for all indices. One can verify eq. (3.30) from eq. (3.27) by applying the factorization in

eqs. (3.28) and (3.29) to fµ (ϕn, ϕn+µ̂) for µ = 1, 2 with the local indices wn, sn. Then the

index wn (sn) can be interpreted as a variable defined on the link which connects n and

n+1̂ (n+2̂), so eq. (3.30) forms a tensor network on the two-dimensional lattice Γ as with

the case of the fermion partition function in eq. (3.9). Here one finds the correspondence

between the tensor indices and the hopping structure of the lattice action as in the fermion

part. From this one can see that the tensor network structure is originated from the kinetic

terms for both fermions and bosons.

We expect that, in the large K limit, ZB (K) converges to ZB with an exact tensor

network representation

ZB =
∑

{w,s}

∏

n∈Γ

TBwnsnwn−1̂
sn−2̂

(3.32)

if we can find a proper discretization scheme so that TB (K) converges to TB in K → ∞. In

practice one has to confirm that ZB (K) converges to ZB with increasing K in the choice

of a discretization scheme. We will see this point in section 4.3.
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3.2.5 Miscellaneous remarks

We give some miscellaneous remarks which may be important for future applications and

deeper understanding of the symmetry of the tensor network.

The tensor network representation in the form of eq. (3.32), which gives the boson

partition function in eq. (3.14), is not uniquely determined. Let F and G be regular K×K

matrices. We then find that eq. (3.32) also holds for another uniform tensor T̃B given by

T̃Bwsw′s′ = TBijklFiwGjsF
−1
kw′G

−1
ls′ (3.33)

for all indices. Furthermore, by using Fn and Gn that are regular matrices satisfy-

ing the periodic boundary conditions on the two-dimensional lattice Γ and transform-

ing TBwnsnwn−1̂
sn−2̂

by Fn, Gn, F
−1
n−1̂

, and G−1
n−2̂

, ZB can also be written in terms of the

non-uniform tensors. This means that the tensor network representation of the partition

function is invariant under the gauge transformations for tensors.

The expression of eq. (3.30) is rather general in the sense that we can always find it for

two-dimensional PT-invariant theories with the real scalars. It is very easy to generalize

this result to more complicated cases, non PT-invariant actions which, for example, have

only one of φ2
n+µ̂φn or φ2

n−µ̂φn terms or the theories with the complex scalars. For those

theories, although fµ is not symmetric in general, we can use the SVD instead of the Takagi

factorization. Then, UT and V T in eqs. (3.28) and (3.29) are replaced by other unitary

matrices, and we can express the partition function by a similar construction of the tensor

to eq. (3.31), where the second U and the second V are replaced with the other ones. An

extension to the higher-dimensional theories is also straightforward.

We have much simpler expressions for the cases of SB,naive given in eq. (2.13) because

the auxiliary fields are not needed (N = 1) and Lµ is isotropic and given by a single L:

L
(

φ, φ′
)

=
1

2

(

φ′ − φ
)2

+
1

8
W ′ (φ)2 +

1

8
W ′
(

φ′
)2

. (3.34)

Equation (3.31) then becomes

TB,naive (K)ijkl =
1√
2π

√
σiσjσkσl

∑

φ∈SK

(disc.)
UφiUφjUφkUφl (3.35)

because fµ ≡ f = e−L for µ = 1, 2 and because V = U and ρi = σi in eqs. (3.28) and (3.29).

In this case, instead of the Takagi factorization, we can use the SVD:

f
(

φ, φ′
)

=
K
∑

w=1

OφwσwP
T
wφ′ , (3.36)

where O and P are real symmetric matrices. Then we have

TB,naive (K)ijkl =
1√
2π

√
σiσjσkσl

∑

φ∈SK

(disc.)
OφiPφjOφkPφl. (3.37)
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3.3 Total tensor network

We have seen that the fermion and the boson partition functions can be expressed as the

tensor networks in the previous two sections. By combining these results, we can also

express the total partition function as a tensor network.

Before presenting the total tensor, let us introduce combined indices Xn, Tn. Xn is

defined as Xn = (un, vn, wn), where (un, vn) and wn are indices of the fermion and the

boson tensors, respectively. Tn is also defined as Tn = (pn, qn, sn), and the dimension of

Xn and Tn is 2× 2×KN .

The total tensor is made by replacing e−SB(φ) in eq. (3.14) with e−SB(φ)ZF (φ) and

repeating the same procedure for making the tensor network representation of the boson

partition function. Additional contributions by ZF do not give any complexity. We find that

the total tensor network representation is given by the boson one in eq. (3.30) multiplied

by ZF (φ) from the right:

Z (K) =
∑

{X,T}

∏

n∈Γ

T (K)XnTnXn−1̂
Tn−2̂

·
∫

DΞuvpq

∏

n∈Γ

(

ξ̄n+1̂ξn
)un

(

χ̄n+1̂χn

)vn
(

η̄n+2̂ηn
)pn
(

ζ̄n+2̂ζn
)qn (3.38)

with

T (K)XTX′T ′ =

(

1√
2π

)N √
σwρsσw′ρs′

∑

ϕ∈SN
K

(disc.)
UϕwVϕsUϕw′Vϕs′TF (φ)uvpqu′v′p′q′ , (3.39)

where U , V , σw, and ρs are given by eqs. (3.28) and (3.29). The measure DΞuvpq is given in

eq. (3.10), ξ, ξ̄, χ, χ̄, η, η̄, ζ, ζ̄ are one-component Grassmann numbers, and TF is the tensor

for the fermion part defined in eq. (3.11). Note that TF (φn) includes only φn which is a

component of ϕn. The total tensor T (K)XTX′T ′ is uniformly defined on the lattice.

Now the original partition function Z is expressed as a tensor network Z (K). We

have built it for a general superpotential by focusing on the hopping structure of the

lattice action. Introduction of local interaction terms does not change our formulation but

rather elements of tensor. Moreover, the same structure of the tensor network leads to the

same order of computational complexity.6 We will numerically verify that Z (K) indeed

converges to Z by using the TRG as a coarse-graining scheme for the tensor network in

the next section.

4 Numerical test in free theory

The partition function of the lattice N = 1 Wess–Zumino model has been expressed as

a tensor network in eq. (3.38). In this section, we test the expressions in the free theory

given by eq. (2.14) varying the mass for three lattice sizes V = 2× 2, 8× 8, 32× 32 with

the periodic boundary conditions. Numerical tests in the free theory are effective to study

6If the superpotential contains hopping terms, the hopping structure of the lattice action changes and

one has to slightly modify the derivation of the tensor network representation.
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whether the tensor is correctly given by our new formulation because the tensor network

structure is derived from the hopping terms in the action, i.e. the kinetic terms. The

computation is performed with the value of the Wilson parameter r = 1/
√
2 to reduce the

computational cost because the auxiliary field G is decoupled as seen in section 3.2.1.

4.1 Some details

In sections 4.2 and 4.3, we compute ZF and ZB individually using the (Grassmann) TRG

since they are independent with each other in the free theory. In section 4.3, the Witten

index given by the total partition function Z is computed by the Grassmann TRG. Since

the free theory is exactly solvable, we can compare an obtained result XTRG with the exact

solution Xexact by computing

δ(X) =

∣

∣

∣

∣

Xexact −XTRG

Xexact

∣

∣

∣

∣

. (4.1)

In what follows, we briefly describe the TRG while introducing Dcut which defines the

truncated dimension of tensors. The SVD allows us to express a tensor Tijkl (i, j, k, l =

1, 2, · · · , N) of which the tensor network representation of a partition function Z is made

as Tijkl =
∑N2

I=1 SijIσI(V
†)Ikl, where S and V are unitary matrices and σI is the singular

value of Tijkl. We assume that the singular values are sorted in descending order: σ1 ≥
σ2 ≥ σ3 ≥ · · ·σN2 ≥ 0.7 In the TRG, Tijkl is approximately decomposed:

Tijkl ≈
Dcut
∑

I=1

SijIσI(V
†)Ikl, (4.2)

where Dcut, which is fixed throughout a computation, is used to truncate the dimension

of the tensor indices if it is smaller than N2. If not so, the summation in eq. (4.2) is done

up to N2 without the truncation. A similar decomposition can be done with a different

combination of the indices:

Tijkl ≈
Dcut
∑

I=1

S′
liIσ

′
I(V

′†)Ijk. (4.3)

The coarse-grained tensor T new
IJKL with I, J,K,L = 1, . . . ,min{Dcut, N

2} is then given by

contracting the rank-three tensors
√
σS,

√
σ′S′,

√
σV,

√
σ′V ′ and forms a network again as

with Tijkl. We can compute the partition function Z by repeating this procedure. Since

the number of tensors decreases through the coarse-graining, Z is finally given by a single

tensor for which the indices are contracted: Z =
∑Dcut

I,J=1 T
new
IJIJ . More details are shown in

ref. [37], and appendix A is given for the Grassmann cases.

We employ the Gauss–Hermite quadrature (3.26) to discretize the integrals of φ and

H in (3.22):

ZB (K) =
∏

n∈Γ

(

1√
2π

)2
∑

φn∈SK

(GH) ∑

Hn∈SK

(GH)
2
∏

µ=1

fµ (φn, Hn, φn+µ̂, Hn+µ̂) , (4.4)

7Strictly speaking, S and V are matrices with respect to the row specified by i, j and the column I, and

σI is the singular values of the matrix Tijkl with the row i, j and the column k, l. In addition, S and V are

taken to be real symmetric ones when Tijkl ∈ R for all i, j, k, l.
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where

fµ (ϕn, ϕm) = exp

{

−1

2

(

1 +
m√
2

)

(φn − φm)2 − m2

8

(

φ2
n + φ2

m

)

− 1

8

(

H2
n +H2

m

)

− (−1)δµ2

2
√
2

(Hn −Hm) (φn − φm)

}

(4.5)

for eq. (2.14) and r = 1/
√
2. The two-dimensional variable ϕn = (ϕn,1, ϕn,2) =

(

φn/
√
2π,Hn/

√
2π
)

is again used for the notational simplicity. SK is a set of the roots of

the K-th Hermite polynomial. We use the SVD to decompose fµ, which are K2 ×K2 real

symmetric matrices, as

f1(ϕ,ϕ
′) =

K2
∑

w=1

OϕwσwPϕ′w, (4.6)

f2(ϕ,ϕ
′) =

K2
∑

s=1

SϕsρsTϕ′s, (4.7)

where σ1 ≥ σ2 ≥ . . . ≥ σK2 and ρ1 ≥ ρ2 ≥ . . . ≥ ρK2 . For reducing the memory usage

and the computational cost, we initially approximate the tensor network representation of

eq. (4.4) by Dinit ≤ K2:

ZB (K) ≈
∏

n∈Γ

Dinit
∑

wn=1

Dinit
∑

sn=1

TB (K)wnsnwn−1̂
sn−2̂

, (4.8)

where

TB (K)ijkl =
1

2π

√
σiρjσkρl

∑

φn∈SK

(GH) ∑

Hn∈SK

(GH)
OϕiSϕjPϕkTϕl. (4.9)

Note that Dinit defines the bond dimension of the initial tensor. We will simply take

Dinit = Dcut for evaluating ZB in section 4.3 and Dinit = Dcut/2 for the Witten index in

section 4.4 because the bond dimension does not change after the coarse-graining steps

under these choices.

Here we mention the computational costs for the coarse-graining of tensor networks

and for the construction of tensors. Both of them are mainly consists of the SVD and the

contraction of tensor indices. Since the cost of the numerical SVD for square matrices is

proportional to the third power of the matrix dimension, the computational effort required

for the numerical decomposition described in eq. (4.2) and in eqs. (4.6) and (4.7) are in

proportion to N6 and K6, respectively. A contraction of tensor indices are expressed as a

summation of them, so the cost of the contraction depends on the number of the tensor

indices. Then it is proportional to Dcut
6 when contracting the rank-three tensors described

around eqs. (4.2) and (4.3), and is proportional to K2 ×Dinit
4 when building the tensor in

eq. (4.9). For the coarse-graining step, one can find that the volume-dependence of the cost

is milder than Dcut-dependence as follows. Since the TRG is a coarse-graining of space-

time, one can reach a large space-time volume by simply iterating the same local blocking
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procedures. More directly, the computational cost of the TRG is proportional to the

logarithm of the space-time volume, i.e. the number of iterations. Summarizing the above,

the computational cost for the coarse-graining of tensor networks is proportional to Dcut
6×

lnV , and that for the construction of tensors is proportional to max
{

K6,K2 ×Dcut
4
}

,

where N = Dinit = Dcut is simply assumed.

4.2 Free Majorana-Wilson fermion

Figure 1 shows the logarithm of the fermion Pfaffian computed by the Grassmann TRG

with varying m for V = 2 × 2 (top), 8 × 8 (center), 32 × 32 (bottom). The green, blue,

and yellow symbols denote the results for three different bond dimensions: Dcut = 8, 12,

16, and the solid and open ones indicate the positive and negative sign of the Pfaffian,

respectively. The purple curves represent the exact solutions given by eq. (2.23). Three

negative peaks at m = 0, −
√
2, −2

√
2 correspond to the fermion zero modes, and the exact

Pfaffian has the negative sign for −2
√
2 < m < 0 as can be seen in eq. (2.23).

In the top plot of figure 1, the green symbols (Dcut = 8) around the peak at the center

are rather deviated from the exact solution, and they even have the opposite sign. The

deviation becomes smaller as Dcut increases, and the yellow symbols (Dcut = 16) have the

correct sign and agree well with the exact one even near the peak. The situation is further

improved by taking larger volumes even for the smallest Dcut, and the numerical results fit

well with the analytical curve in the center and the bottom figures.

These observation can also be clearly understood in figure 2, which shows the relative

errors δ (ln |ZF|) given by eq. (4.1). Note that the case for Dcut = 16 on V = 2 × 2 have

extremely small errors. This is because the maximal bond dimension of the coarse-grained

tensors on V = 2 × 2 lattice is less than or equal to Dcut. In other words, no truncation

occurs in the TRG steps. This striking feature is only found in the pure fermion case. In

contrast, the discretization error and the truncation error are inevitable in the boson case

since the approximation already enters in deriving the tensor network representation of the

boson partition function, and furthermore the tensor indices are truncated to carry out the

numerical evaluation as seen in previous section. For all volumes used in the computation,

the relative errors almost monotonically decreases as Dcut increases.

Thus we can conclude that the Pfaffian with the correct sign is reproduced from the

tensor network representation in eq. (3.9) with eq. (3.11) using the Grassmann TRG within

tiny errors O
(

10−3
)

for physically important parameters, |m| ≪ 1, and larger volumes.

4.3 Free Wilson boson

The boson partition function is given as a discretized form ZB (K) in eq. (4.4) by applying

the Gauss–Hermite quadrature to the integrals of φ and H. Then K is the number of

the discrete points. We prepare the initial tensor network approximately as eq. (4.8) and

compute it using the TRG for m > 0 because the adopted quadrature does not effectively

work for m < 0 (we will see this point later.). It is, however, sufficient to study the case

of m > 0 because the boson action does not depend on the sign of m, but on m2, in the

continuum theory.
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Figure 1. ln (|ZF|) of free Majorana-Wilson fermions with r = 1/
√
2 is plotted against m for

V = 2× 2 (top), 8× 8 (center), 32× 32 (bottom). The solid (open) symbols represent the positive

(negative) sign of ZF.

Figure 3 shows the logarithm of ZB (K) with fixed K = 64, and figure 4 shows the

corresponding relative errors defined by eq. (4.1). One can see that the TRG results are

consistent with the exact ones for large m in all of the lattice sizes and Dcut = 16, 24,
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Figure 2. Relative errors of ln (|ZF|) against m. The results are shown for V = 2 × 2 (top),

8× 8 (center), 32× 32 (bottom). The solid (open) symbols represent the positive (negative) signs

of ZF, respectively.

32. Figure 5 shows that the results are systematically improved by increasing Dcut as

one expects. The exponential improvement may be explained as follows. Usually the

singular values of the tensor are exponentially decaying; thus from a local point of view
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Figure 3. ln (ZB (K)) of free Wilson bosons with r = 1/
√
2 against m for V = 2 × 2 (top),

8× 8 (center), 32× 32 (bottom). The degree of the Hermite polynomial is fixed as K = 64.
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Figure 4. Relative errors of ln (ZB (K)) against m with fixed K = 64. Top, center, and bottom

figures show the results for V = 2× 2, 8× 8 and 32× 32, respectively.
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Figure 5. Dcut-dependence of relative errors of ln (ZB (K)) with K = 64.

the truncation error gets exponentially smaller by increasing Dcut. Since the free energy

consists of the local tensors, it is likely that its error shows such a behavior as well.

The growth of the errors is observed near m = 0. Roughly speaking, this is because

the massless theory has no damping factors in fµ of eq. (4.5). We can show that fµ is

expressed as

fµ
(

ϕ,ϕ′
)

= exp

{

−1

8

(

H + (−1)δµ2
√
2
(

φ− φ′
)

)2
− 1

8

(

H ′ − (−1)δµ2
√
2
(

φ− φ′
)

)2

− m2

16

(

φ+ φ′
)2 − m2

16

(

1 +
4
√
2

m

)

(

φ− φ′
)2

}

. (4.10)

One can see that the damping factors are actually provided for m > 0 with the damping

rate m2 but is not for −4
√
2 < m < 0 on the line φ = −φ′, so the quadrature does not work

for m < 0. For m > 0, we have to take K larger as m decreases so that the quadrature

retains effective. That structure is encoded in the initial tensor in eq. (4.9) via the matrices

O,P, S, T and the singular values σw, ρs in eqs. (4.6) and (4.7). The singular values of the

initial tensor have unclear hierarchies for small masses as seen in figure 6. Thus we find

that, if m approaches zero from the right, we have to take K and Dcut as large as possible

to obtain the precise result.8

The K-dependence of the relative errors is investigated in figure 7. In order to purely

see the discretization effect due to finite K, we set the maximum bond dimension of the

tensor K2 and choose the lattice size V = 2×2 that allows us to carry out a full contraction

for the computation of the partition function. Although there are no other systematic errors

except for finite K, the value of K is practically restricted up to 10. Figure 7 shows that

the errors decrease by increasing K. From this we can say that a simple discretization

8Such a bad behavior could go away once the φ4 interaction term is introduced into the action because

it provides the fast damping factor in fµ.

– 22 –



J
H
E
P
0
3
(
2
0
1
8
)
1
4
1

Figure 6. Hierarchy of the singular values of the initial boson tensor for several masses with

K = 64.

Figure 7. K-dependence of the relative errors of ln (ZB (K)) on V = 2× 2 lattice.

scheme such as the Gauss–Hermite quadrature well approximates the original integrals if

K is sufficiently large, and that the tensor network representation reproduces the correct

values of the boson partition function.

4.4 Witten index of the free N = 1 Wess-Zumino model

The Witten index computed by the Grassmann TRG is shown in figure 8. Figure 9 shows

the relative error of the Witten index. As discussed in section 2.2, the fermion and the

boson are decoupled from each other in the free case. In this section, however, we treat the

free Wess–Zumino model as a combined system of fermions and bosons; thus we perform the

Grassmann TRG for a single tensor network. One can see that the results tend to converge

to the exact values by increasing Dcut. The obtained indices with Dcut = 64 (yellow

symbols) take the values near one compared with those of Dcut = 32 (green symbols).
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Figure 8. The Witten index of the free Wess–Zumino model against m on V = 2 × 2 (top),

8× 8 (center), 32× 32 (bottom).
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Figure 9. Relative errors of the Witten index as a function of m on V = 2×2 (top), 8×8 (center),

32× 32 lattices (bottom).
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Thus we can conclude that eq. (3.38) gives a correct tensor network representation of

the two-dimensional lattice N = 1 Wess–Zumino model. ZF and ZB become extremely

large and extremely small, respectively, for large space-time volume. For instance, ZF are

of the order of O
(

10400
)

at m = 1 on V = 32× 32 lattice as seen in figure 1. Surprisingly,

O (1) values are obtained as the Witten index as seen in figure 8. Namely, the boson effect

balancing huge ZF is correctly reproduced using the Grassmann TRG for the total tensor.

So we can say that the TRG is a very promising approach to study the supersymmetric

field theories.

5 Summary and outlook

We have shown that the two-dimensional lattice N = 1 Wess-Zumino model is expressed

as a tensor network. The known techniques of making a tensor were refined in the fermion

sector and generalized in the boson sector in the sense that it is possible to define a

tensor for any way of discretizing the integrals for scalar fields. We have also tested our

formulation in the free theory by estimating the Witten index and comparing it with the

exact solution. The resulting indices reproduce the exact one as Dcut, the dimension of the

truncated tensor indices in the TRG, increases.

Now we are tackling the issue on the supersymmetry breaking by estimating correlation

functions from the tensor network. Before investigating the physical breaking effects, we

have to show that the artificial ones by the lattice cut-off disappears in the continuum

limit beyond the arguments of the perturbation theory. We will estimate the expectation

value of the action, the supersymmetric Ward-Takahashi identity, and the mass spectra

of fermions and bosons to show it. We will then see the supersymmetry breaking in the

model with the double-well potential by estimating several physical quantities and study

the phase structure in detail.

Although we have only dealt with the Wilson type discretization of derivatives, one may

use another way such as the domain wall discretization. In that case, partition functions

or Green’s functions will be represented as three dimensional tensor networks. For such

higher dimensional tensor networks, the higher order TRG was introduced in ref. [38], and

the Grassmann version was also proposed in ref. [39]. In this way one can in principle

go this direction; however, the computational cost could be severe. Therefore further

improvements of the algorithm might be needed for the actual computation in higher

dimensions.

We emphasize that the methodology of constructing the tensor is given for any su-

perpotential, that is, any interacting case, in this paper. Since the Wess-Zumino model

consists of various building blocks: the scalar field, the Majorana fermion, and their inter-

actions such as the Yukawa- and the φ4-interactions, we expect that our method could be

very useful in TRG studies of other theories.
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A Coarse-graining step in Grassmann TRG

In this appendix, we describe the coarse-graining step in the Grassmann TRG for the cur-

rent boson-fermion system. We basically follow ref. [34], which deals with a pure fermionic

model (the Nf = 1 Gross–Neveu model) and show the method in our notation making the

difference that comes from the boson part clear.

We begin with the partition function that initially takes the following form:9

Z =
∑

{X,T}

∏

n∈Γ

TXnTnXn−1̂
Tn−2̂

·
∫

∏

n∈Γ

dΞuvpq
n ·

∏

n∈Γ

(

ξ̄n+1̂ξn
)un

(

χ̄n+1̂χn

)vn
(

η̄n+2̂ηn
)pn
(

ζ̄n+2̂ζn
)qn , (A.1)

where the local measure of Grassmann variables is defined as

dΞuvpq
n = dξun

n dχvn
n dηpnn dζqnn dξ̄

un−1̂
n dχ̄

vn−1̂
n dη̄

pn−2̂
n dζ̄

qn−2̂
n , (A.2)

and the tensor elements are not zeros only when

(

un + vn + pn + qn + un−1̂ + vn−1̂ + pn−2̂ + qn−2̂

)

mod 2 = 0 (A.3)

holds. The tensor T is made of the fermionic one TF (φn)unvnpnqnun−1̂
vn−1̂

pn−2̂
qn−2̂

in

eq. (3.11) and the boson one TB (K)wnsnwn−1̂
sn−2̂

in eq. (3.31) as in eq. (3.39). The indices

un, vn, pn, qn take two values 0 or 1 while wn, sn run from 1 to Dinit as seen in section 4.1.

The total indices Xn and Tn are given by Xn = (un, vn, wn) and Tn = (pn, qn, sn), and they

run from 1 to 2 × 2 × Dinit. As mentioned in section 4.1, we set Dinit = Dcut/2 for the

actual computations.

The coarse-graining of a tensor network mainly consists of three steps: the SVD of

tensors, a decomposition of Grassmann measures, and a contraction of the indices and

taking the integrals of Grassmann variables defined on Γ. The SVD and the decomposition

for Grassmann measures are performed in a different manner for even and odd sites. We

will see that the coarse-grained tensors take the same form as (A.1) with v = q = 0 and

are defined on the coarse-grained lattice

Γ⋆ =

{

n+
1

2

(

1̂ + 2̂
)

∣

∣

∣

∣

n = (n1, n2) ∈ Γ, where n1 + n2 is an even integer.

}

. (A.4)

This means that Γ⋆ is a set of the center of the plaquette (n, n+ 1̂, n+ 1̂ + 2̂, n+ 2̂) with

even sites n. The unit vectors of Γ⋆ are 1̂⋆ = 1̂ + 2̂ and 2̂⋆ = 1̂ − 2̂. The correspondence

between n and n⋆ is shown in figure 10.

First, on even sites n ∈ Γ, we just take the truncated SVD of T like eq. (4.2):

TXnTnXn−1̂
Tn−2̂

≈
Dcut
∑

wn⋆−1̂⋆=1

U1
(XnTn)wn⋆−1̂⋆

σ13
wn⋆−1̂⋆

V 3†
w

n⋆−1̂⋆
(Xn−1̂

Tn−2̂
), (A.5)

9Although Z and T depends on K as eqs. (3.38) and (3.39), K is simply abbreviated here.
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Figure 10. Old and new lattice coordinates n and n⋆. The old tensor indices X,T and new ones

S, Y are also shown. The blue symbols represent the tensors in the r.h.s. of eq. (A.1), and the red

ones represent the decomposed rank-three tensors appear in the following paragraphs.

where

n⋆ = n+
1

2

(

1̂ + 2̂
)

∈ Γ⋆. (A.6)

The Grassmann measures are divided into two pieces as

dΞuvpq
n =

∫

(

Θ1
n,unvnpnqndξ̄

un⋆−1̂⋆

n⋆

)(

Θ3
n,un−1̂

vn−1̂
pn−2̂

qn−2̂
dξ

un⋆−1̂⋆

n⋆−1̂⋆

)

(

ξ̄n⋆ξn⋆−1̂⋆

)un⋆−1̂⋆ ,

(A.7)

where

Θ1
n,abcd = dξandχ

b
ndη

c
ndζ

d
n, (A.8)

Θ3
n,abcd = dξ̄andχ̄

b
ndη̄

c
ndζ̄

d
n, (A.9)

and the new index un⋆−1̂⋆ is defined as

un⋆−1̂⋆ ≡ (un + vn + pn + qn) mod 2. (A.10)

Note that each parenthesized factors on the r.h.s. of eq. (A.7) are Grassmann-even under

eqs. (A.3) and (A.10), and one can freely move them to make a new tensor. The tensor

in eq. (A.5) and the measures in eq. (A.7) have been decomposed into (XnTn)-part and

(Xn−1̂Tn−2̂)-part, and they are connected via the new indices (un⋆−1̂⋆ , wn⋆−1̂⋆).

For odd lattice sites n+ 2̂ next to even sites n, we take another decomposition:

TXn+2̂
Tn+2̂

Xn−1̂+2̂
Tn ≈

Dcut
∑

sn⋆−2̂⋆=1

U2
(TnXn+2̂

)sn⋆−2̂⋆
σ24
sn⋆−2̂⋆

V 4†
sn⋆−2̂⋆ (Tn+2̂

Xn−1̂+2̂
). (A.11)
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The Grassmann measure is also decomposed into (TnXn+2̂)-part and (Tn+2̂Xn−1̂+2̂)-part as

dΞuvpq

n+2̂
=

∫

(

Θ2
n+2̂,pnqnun+2̂

vn+2̂

dη̄
pn⋆−2̂⋆

n⋆

)(

Θ4
n+2̂,pn+2̂

qn+2̂
un−1̂+2̂

vn−1̂+2̂

dη
pn⋆−2̂⋆

n⋆−2̂⋆

)

·
(

η̄n⋆ηn⋆−2̂⋆

)pn⋆−2̂⋆ , (A.12)

where

Θ2
n,abcd = (−1)a+b dη̄andζ̄

b
ndξ

c
ndχ

d
n, (A.13)

Θ4
n,abcd = dηandζ

b
ndξ̄

c
ndχ̄

d
n, (A.14)

and pn⋆−2̂⋆ is defined by

pn⋆−2̂⋆ ≡
(

pn + qn + un+2̂ + vn+2̂

)

mod 2. (A.15)

Note that the extra sign in eq. (A.13) arise from the rearrangement of the Grassmann

measures.

We thus find that the partition function can be expressed in terms of coarse-grained

tensor:

Z ≈
∑

{Y,S}

∏

n⋆∈Γ⋆

T new
Yn⋆Sn⋆Y

n⋆−1̂⋆
S
n⋆−2̂⋆

·
∫

∏

n⋆∈Γ⋆

dΞup
n⋆

∏

n⋆∈Γ⋆

(

ξ̄n⋆+1̂⋆ξn⋆

)un⋆
(

η̄n⋆+2̂⋆ηn⋆

)pn⋆
(A.16)

with

dΞup
n⋆ = dξ

un⋆

n⋆ dη
pn⋆

n⋆ dξ̄
un⋆−1̂⋆

n⋆ dη̄
pn⋆−2̂⋆

n⋆ , (A.17)

where the coarse-grained tensor with new indices Yn⋆ = (un⋆ , wn⋆) and Sn⋆ = (pn⋆ , sn⋆) is

defined by

T new
Yn⋆Sn⋆Y

n⋆−1̂⋆
S
n⋆−2̂⋆

=
√

σ13
wn⋆

σ24
sn⋆

σ13
wn⋆−1̂⋆

σ24
sn⋆−2̂⋆

·
∑

Xn

∑

Tn

∑

Xn+2̂

∑

Tn+1̂

U1
(XnTn)wn⋆−1̂⋆

U2
(TnXn+2̂

)sn⋆−2̂⋆
V 3†
wn⋆ (Xn+2̂

Tn+1̂
)V

4†
sn⋆ (Tn+1̂

Xn)

·
∫

Θ2
n+2̂,pnqnun+2̂

vn+2̂

Θ1
n,unvnpnqnΘ

4
n+1̂,pn+1̂

qn+1̂
unvn

Θ3
n+1̂+2̂,un+2̂

vn+2̂
pn+1̂

qn+1̂

·
(

ξ̄n+1̂ξn
)un

(

χ̄n+1̂χn

)vn
(

η̄n+2̂ηn
)pn
(

ζ̄n+2̂ζn
)qn

·
(

ξ̄n+1̂+2̂ξn+2̂

)un+2̂
(

χ̄n+1̂+2̂χn+2̂

)vn+2̂
(

η̄n+1̂+2̂ηn+1̂

)pn+1̂
(

ζ̄n+1̂+2̂ζn+1̂

)qn+1̂

· δ(un+2̂
+vn+2̂

+pn+1̂
+qn+1̂

) mod 2,un⋆ δ(pn+1̂
+qn+1̂

+un+vn) mod 2,pn⋆

· δ(un+vn+pn+qn) mod 2,un⋆−1̂⋆
δ(pn+qn+un+2̂

+vn+2̂
) mod 2,pn⋆−2̂⋆

. (A.18)

The constraints described in eqs. (A.10) and (A.15) with eq. (A.3) are explicitly imposed

as Kronecker deltas.
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Owing to the similarity of the initial tensor and the resulting one, the procedure

described in this appendix can be simply iterated by setting eq. (A.18) as an initial tensor

for the next coarse-graining step.10 An important change is the absence of χ and ζ, so one

has to also set vn and qn to 0 for the following steps. Equation (A.18) and the initial tensor

have the different contents of indices, e.g. Xn = (un, vn, wn) reduces to Yn⋆ = (un⋆ , wn⋆)

after the coarse-graining step. This means that the dimension of the tensor indices changes

from 2× 2×Dinit to 2×Dcut. We take Dinit = Dcut/2 in section 4.4 to retain the size of

tensors for the sake of simplicity.

Note also that the definition of the unit vectors turns out to be proportional to original

ones after the next coarse-graining step, i.e. 1̂⋆⋆ = 1̂⋆ + 2̂⋆ = 2 · 1̂ and 2̂⋆⋆ = 1̂⋆ − 2̂⋆ = 2 · 2̂.
Although the coarse-grained lattice Γ⋆ is not isotropic and the boundary conditions are not

the same as original ones, this strange situation will recover after the next coarse-graining

step (see ref. [34]).
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