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In T cells, T cell receptor (TCR) signaling initiates downstream transcriptional mecha-
nisms for T cell activation and differentiation. Foxp3-expressing regulatory T cells (Treg) 
require TCR signals for their suppressive function and maintenance in the periphery. It is, 
however, unclear how TCR signaling controls the transcriptional program of Treg. Since 
most of studies identified the transcriptional features of Treg in comparison to naïve 
T cells, the relationship between Treg and non-naïve T cells including memory-pheno-
type T cells (Tmem) and effector T cells (Teff) is not well understood. Here, we dissect the 
transcriptomes of various T cell subsets from independent datasets using the multidi-
mensional analysis method canonical correspondence analysis (CCA). We show that at 
the cell population level, resting Treg share gene modules for activation with Tmem and 
Teff. Importantly, Tmem activate the distinct transcriptional modules for T cell activation, 
which are uniquely repressed in Treg. The activation signature of Treg is dependent on 
TCR signals and is more actively operating in activated Treg. Furthermore, by using 
a new CCA-based method, single-cell combinatorial CCA, we analyzed unannotated 
single-cell RNA-seq data from tumor-infiltrating T cells, and revealed that FOXP3 expres-
sion occurs predominantly in activated T cells. Moreover, we identified FOXP3-driven 
and T follicular helper-like differentiation pathways in tumor microenvironments, and their 
bifurcation point, which is enriched with recently activated T cells. Collectively, our study 
reveals the activation mechanisms downstream of TCR signals for the bifurcation of Treg 
and Teff differentiation and their maturation processes.

Keywords: regulatory T  cells, single-cell analysis, gene expression, T  cell receptor signaling, canonical 
correspondence analysis

inTrODUcTiOn

T cell receptor (TCR) signaling activates NFAT, AP-1, and NF-κB (1), which induces the transcription 
of interleukin (IL)-2 and IL-2 receptor (R) α-chain (Il2ra, CD25). IL-2 signaling induces further T cell 
activation, proliferation, and differentiation (2). In addition, IL-2 signaling has key roles in immu-
nological tolerance (2). This is partly mediated through CD25-expressing regulatory T cells (Treg), 
which constitutively express FoxP3, the lineage-specific transcription factor of Treg (3), and suppress 
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the activities of other T cells (4). Intriguingly, TCR signaling also 
induces the transient expression of FoxP3 in any T cells in humans 
(5) and in mice in the presence of IL-2 and TGF-β (6). These suggest 
that FoxP3 can be actively induced as a negative feedback mecha-
nism for the T cell activation process, especially in inflammatory 
conditions in tissues (7). Thus, the T cell activation processes may 
dynamically control Treg phenotype and function during immune 
response and homeostasis.

In fact, TCR signaling plays a critical role in Treg. Studies 
using TCR transgenic mice showed that Treg require TCR activa-
tion for in vitro suppression (8). The binding of Foxp3 protein to 
chromatin occurs mainly in the enhancer regions that have been 
opened by TCR signals (9). In fact, continuous TCR signals are 
required for Treg function, because the conditional deletion of 
the TCR-α chain in Treg abrogates the suppressive activity of Treg 
and eliminates their activated or effector-Treg (eTreg) phenotype 
(10, 11). It is, however, unclear how TCR signals contribute to the 
Treg-type transcriptional program, and whether TCR signals are 
operating in all Treg cells or whether these are required only when 
Treg suppress the activity of other T cells.

The majority of Treg have a unique memory phenotype including 
CD45RBlow, while some of them have relatively a naïve phenotype. 
Previously, our theoretical study showed the potential relationship 
between Treg and memory-like T cells (memory-phenotype T cells; 
Tmem) (7), and intriguingly, the surface phenotype of Tmem is 
CD44highCD45RBlowCD25− (12), which is similar to CD25− Treg, 
apart from Foxp3 expression and suppressive activity (13, 14). 
Tmem may include both antigen-experienced memory T cells (15) 
and self-reactive T cells (16). In fact, CD44highCD45RBlow Tmem 
do not develop in TCR transgenic mice with the Rag deficient 
background, indicating that they require agonistic TCR signals 
in the thymus (17). In addition, a study using a fate-mapping 
approach showed that a minority of Treg naturally lose Foxp3 
expression and join the Tmem fraction (18). These suggest that, 
upon encountering cognate self-antigens, self-reactive T  cells, 
which include Tmem and Treg, express and sustain Foxp3 
expression as a negative feedback mechanism for strong TCR 
signals (7). In addition, Treg share some features with effector 
T cells (Teff) as well: Teff express CD25 and CTLA-4 (19), the 
latter of which is also known as a Treg marker (20). Thus, Treg 
have a close relationship with Tmem and Teff, which indicates 
the possibility that many known features of Treg may be in fact 
shared with Tmem and Teff, since the experimental evidence for 
these features were obtained by using naïve T cells (Tnaïve) as the 
control for Treg.

In order to understand these interrelated CD4+ T cell subsets, 
the following two approaches are required. First, it is critical to 
understand the common and distinct features of these subsets 
including Treg, naïve T cells, and other non-naïve T cells, which 
are composed of Teff and Tmem. The analysis of transcriptomes 
from these subsets using multidimensional analysis will objec-
tively disentangle the relationship between these interrelated 
T cell populations. Second, in order to understand the heteroge-
neity within each T cell population and the regulations of lineage 
commitment and plasticity in individual cells and across different 
populations, the analysis of single-cell transcriptomes is expected 
to provide useful insights.

Heterogeneity within the Treg population has been previously 
addressed through further classifying Treg into subpopulations, 
according to the origin [thymic Treg, peripheral Treg, visceral 
adipose tissue Treg (21)], the transcription factor expression and 
ability to control inflammation [Th1-Treg (22) and Th2-Treg 
(23), and T follicular regulatory T cells (24)], and their activation 
status [activated Treg (aTreg)/eTreg, resting Treg (rTreg), and 
memory-type Treg (mTreg) (25)]. Among these Treg subpopula-
tions, of interest is eTreg, which are activated and functionally 
mature Treg. Murine eTreg can be identified by memory/activa-
tion markers such as CD44, CD62L, and GITR (25, 26), and their 
differentiation is controlled by the transcription factors Blimp-1, 
IRF4, and Myb (27, 28). Human Treg can be classified into naïve 
Treg (CD25+ CD45RA+ Foxp3+) and eTreg (CD25+ CD45RA− 
Foxp3+) (29). However, such classifications are based on manual 
gating, which cannot fully use the power of multidimensional 
data, and computational clustering may be more effective for 
understanding flow cytometric data from heterogeneous T cells 
(30). Furthermore, given the recent advancement of single-cell 
technologies, single-cell transcriptome analysis of Treg together 
with non-naïve T cells (Teff and/or Tmem) is expected to reveal 
the dynamic changes in the activation and differentiation statuses 
in individual T cells and thereby provide new insights into the 
heterogeneity of Treg.

Multidimensional analysis is an effective approach to 
disentangle the relationship of closely related multiple T  cell 
populations, allowing to systematically investigate the relation-
ships between more than two cell populations (31). Commonly 
used multidimensional methods include principal component 
analysis (PCA), correspondence analysis (CA) (32), and mul-
tidimensional scaling (33). These methods intend to measure 
distances (e.g., similarities) between samples and/or genes, 
and thereby visualize the relationships between samples and/
or genes in a reduced dimension, typically either in 2D or 3D 
space, providing means to explore and investigate data (31). 
However, these multidimensional methods are often not suf-
ficiently powerful for hypothesis-driven research, and our pre-
vious studies developed a transcriptome analysis method using 
a variant of CA, canonical correspondence analysis (CCA) for 
microarray data (31) and RNA-seq data (34), which allows to 
quantitatively analyze the activities of certain immunological 
processes in T  cell subsets by analyzing the dataset that have 
analyzed T cells subsets (main dataset) and another dataset that 
represents the immunological processes of interest (explanatory 
variables).

In this study, we investigate the features of Treg in comparison 
to other CD4+ T cell populations including Teff, Tmem, and naïve 
T cells at cell population and single-cell levels. Here, we aim to 
identify the differential regulation of transcriptional modules for 
T cell activation and differentiation in these populations by ana-
lyzing multidimensional datasets and to understand the feature 
of these T cell subsets at the cell population level. Furthermore, 
we have extended the application of CCA to single-cell analysis 
of unannotated cells [single-cell combinatorial CCA (SC4A)] 
and revealed the dynamic regulation of T cell activation-induced 
differentiation processes in tumor-infiltrating T  cells at the 
single-cell level.
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MaTerials anD MeThODs

conventional cca  
(gene-Oriented analysis)
In the application of CCA to transcriptome data, the same genes 
must be used in both transcriptome dataset matrices. Genes 
are treated as the “sites” of measurements, and the expression 
of each gene is considered to occur in each sample, providing 
gene expression as variable. In other words, gene expression is 
defined as the amounts of transcripts that occur at each site in 
the genome (i.e., gene) (rows), producing the gene expression 
for each sample as variable (column). Thus, explanatory variable 
represents the inclination to differentiation/activation process 
at each site in the genome, which corresponds to environmental 
gradients in the analysis of ecological data by ter Braak (34). The 
CCA will identify the part of main data that can be interpreted by 
explanatory variables (constrained space) using linear regression, 
and subsequently, the regressed data will be analyzed by CA, pro-
ducing new CCA sample and gene spaces, in which the distance 
represents similarities between cells (and between genes). Finally, 
the correlation coefficients between explanatory variables and the 
new gene space will be determined for the visualization of the 
immunological processes (Figure 1A).

Mathematically, RNA-seq data X ∈ Rp × m is the measurement 
of m cell samples for the expression of p genes. The j-th column 
xj  =  (x1j, x2j, …, xpj)T is the expression data of the j-th sample 
with the expression of p genes, where T indicates transposed 
vector. Meanwhile, the explanatory data Z will be obtained to 
provide k explanatory variables, i.e., Z ∈ Rp × k. Z is scaled and 
standardized (i.e., mean = 0 and variance = 1). For optimizing 
the measurement of similarities by distance, X is standardized 
in the χ2 metrics, using the sums of transcripts in each sample 
(i.e., column sums, c), the sums of transcripts in each gene 
(i.e., row sums, r), and the grand total of transcripts in X (n), 
the abundance matrix P is defined: P = 1/n X′ − r cT, and the 
standardized matrix S D P D= r c

− −1 2 1 2/ / , where Dr and Dc are the 
diagonal matrices of r and c [i.e., Dr = diag(r), Dc = diag(c)]. 
Next, S is projected onto Z by linear regression while weighting by 
the sums of transcripts in each gene, using the projection matrix 
Q D Z Z D Z Z Dr r r= / − /1 2 T 1 T 1 2 ,( )  and thus, the constrained space 
S* = Q S (35). Next, CCA performs singular value decomposi-
tion (SVD) of S* = U Dα VT, where UT U = VT V = I, and Dα 
is the diagonal matrix of singular values in descending order 
(α1 ≥ α2 ≥ …). Note that eigenvalue λj = αj

2 (j = 1, …, J), and 
J is the minimum value of p-1, m-1, and k. Thus, CCA analyses 
the constrained space and provides new axes where the disper-
sion of samples and that of genes are maximized. Sample (cell) 
scores are defined as D V D D Vr r

− /
α

/1 2 1 2or  (when explanatory 
variable is only one). Because U becomes a linear combination of 
explanatory variables (36), weighted average scores (WA scores) 
Gwa (37) are used as gene score and are obtained by projecting the 
abundance matrix P onto sample scores while weighting by row 
sums (i.e., transcript abundance): Gwa

1 1= − −D P V Dr αα  (or D P Vr
−1 , 

when explanatory variable is only one).
In order to visualize the relationship between explanatory 

variables and T  cells in the CCA solution, the explanatory 

variables Z will be linearly regressed to each axis of U. Suppose 
Z′ = [d1, …, dk] is weighted explanatory variables by the tran-
script abundance (i.e., Dr), and the n-th column of Z′ is a vector 
with the length p, dn = (d1n, d2n, …, dpn)T, the biplot values will be 
obtained by the correlation coefficient ρ = cov(dn, uj)/σ(dn)σ(uj)
(n = 1, …, k; j = b), where b = min(p-1, m-1, k). In the 1D CCA 
solution, the single biplot value can either be +1 or −1, indicat-
ing the direction (increasing/decreasing) of correlated genes 
in the explanatory variable against that in the main dataset. In 
order to use the 1D solution as a scoring system, the CCA score 
(i.e., Axis 1 score) is multiplied by the single biplot value, which 
indicates positive or negative correlation to Axis 1, ensuring that 
cells and genes with high scores have high-positive correlations 
to the explanatory variable.

The map approach enables the comparison of two or more 
explanatory variables, while the regression process in CCA 
allows the analysis across two different experiments (34). 
Explanatory variables (biplot values) are shown by arrows on 
the CCA map. CCA provides a map that shows the correlations 
between samples of interest, explanatory variables, and genes. 
Highly correlated components are closely positioned on the 
map. Since CCA is based on linear operations only, the inter-
pretation of CCA solution is relatively straightforward using 
CCA biplot, which allows to directly compare the cell and gene 
spaces (34).

Importantly, the CCA in this article is different from a more 
commonly used multivariate method, canonical correlation 
analysis, which aims to identify shared correlation structures 
by maximizing the correlations between the two datasets using 
cross-covariance matrices, and thereby map samples from two 
datasets in the same sample space (38).

explanatory Variables  
for conventional cca
Explanatory variables for CCA were prepared as follows. 
Differentially expressed genes were selected by a moderated 
t-test result using the Bioconductor package, limma. The 
top-ranked differentially expressed genes (according to their 
p-values) were used for making the explanatory variables. The 
T  cell activation explanatory variable (Tact) was defined by 
the difference in gene expression between anti-CD3/CD28-
stimulated (17  h) CD4+ T  cells and untreated naïve CD4+ 
T cells from GSE42276 (39). Precisely, genes were selected by 
FDR < 0.01 and log2 fold change (> 1 or < −1) in the compari-
son of the gene expression profile of the activated and resting 
T cells. For the 1D CCA of T cell populations, the expression 
data of GSE15907 (40) were regressed onto gene values in Tact 
representing the change in gene expression following T  cell 
activation, and CA was performed for the regressed data and 
the correlation analysis was done between the new axis and the 
explanatory variable. For the 2D CCA of T cell populations the 
expression data of GSE15907 (40) were regressed onto Tact, in 
combination with Foxp3 and Runx1 explanatory variables rep-
resenting the effects of Foxp3 and Runx1 expression on CD4+ 
T cells [GSE6939; (41)]. Foxp3 explanatory variable is the log2 
fold change of Foxp3-transduced naïve CD4+ T cells and empty 
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FigUre 1 | Conventional canonical correspondence analysis (CCA) and single-cell combinatorial CCA (SC4A). (a) Schematic representation of conventional CCA 
for the cross-level analysis of T cell populations (cells), immunological processes, and genes. (B) Overview of SC4A. Individual key genes are selected to represent 
processes of interest (differentiation/activation) and used as explanatory variables. CCA is performed to visualize the relationship between these key genes, 
single-cell samples, and all other genes in the single-cell samples. (1) Preliminary analysis by conventional CCA to identify correlations of single cells with genes 
representing differentiation/activation processes. (2) Procedures in combinatorial CCA to identify combinations of key top-ranked genes that represent the entire 
biological process of interest (differentiation/activation) as explanatory variables. (3) The final output of SC4A solution. Single-cell samples are analyzed by 
conventional CCA using top-ranked genes by the combinatorial CCA. The solution is visualized to model the entire single-cell transcriptomes for the biological 
processes of interest.
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vector-transduced CD4+ T cells. Runx1 explanatory variable is 
the log2 fold change of Runx1-transduced naïve CD4+ T cells 
and empty vector-transduced CD4+ T cells. Subsequently, CA 

was applied to the regressed data and the correlation analysis 
was performed between the new axes and the explanatory 
variables.
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single-cell Data Pre-Processing  
for cca and sc4a
RNA-seq expression data of GSE72056 were obtained from 
single-cell suspension of tumor cells with unknown activation 
and differentiation statuses (42). Genes with low variances and 
low maximal values were excluded. In order to identify CD4+ 
T  cells, single-cell data were filtered by the expression of CD4 
and CD3E to obtain only the CD4+ CD3E+ single cells, and also 
by k-means clustering of PCA gene plot to exclude outlier cells 
(30) for subsequent analysis.

single-cell combinatorial cca
Single-cell combinatorial CCA is a composite approach to 
understand non-annotated single-cell data by identifying dis-
tinct populations of cells and the differentiation processes that 
are correlated with these populations. Since a T cell population 
is usually identified by a single lineage specification factor, in 
the application of SC4A, such a factor will represent the cell 
population and their differentiation process (Figure  1B). The 
advantage of this approach is that SC4A uses the gene expression 
data of a part of the dataset analyzed, and thus the regression 
analysis of CCA becomes more efficient because of the absence 
of between-experimental variation, which is usually significant in 
cross-dataset analysis (34).

Single-cell combinatorial CCA is performed by the following 
three steps: (1) identification of putative cell populations and 
 candidate genes for explanatory variables by conventional CCA, 
(2) combinatorial CCA to identify the top-ranked genes to be 
used as explanatory variables, and (3) the final CCA solution 
using the selected genes as explanatory variables.

Importantly, SC4A uses the same single cells as samples 
(rows), rather than genes, and analyzes the expression of genes 
as variables (columns), in order to cross-analyze main data and 
the explanatory variables (i.e., selected genes). In other words, 
gene expression in each single cell is cross-analyzed between two 
sets of genes in SC4A, while the expression of each gene is cross-
analyzed between two sets of cell samples in conventional CCA.

Preliminary Analysis
The aim of the preliminary analysis is to identify the putative 
cell populations and candidate genes for explanatory variables, 
and conventional CCA is a useful method to do this, because 
candidate genes can be identified by their correlation to each 
putative cell population. Considering that the final output is 
most effectively understood by visualization using 2D (showing 
correlation between explanatory variable and either samples or 
genes) or 3D (showing correlation between explanatory variable, 
samples, and genes) plot, up to 4 cell populations will be identi-
fied, and up to 5–10 genes for each population will be identified 
by their correlation to the population (Figure 1B).

Combinatorial CCA
Here, SC4A aims to identify a set of genes that make the dispersion 
of cell populations maximum in the CCA solution. To achieve 
this, all the combinations of genes will be used as explanatory 
variables and tested for discriminating each two populations 
using CCA. During each combinatorial cycle, two genes are 

chosen from the total selected genes for all defined single-cell 
populations in the main dataset and tested for their correlations 
to one defined cell population vs all other T cells.

Correlation can be visualized as the degree angle measured 
between the explanatory variable (gene) and the centroid of the 
defined cell population. Out of the two genes, the gene with the 
smallest angle to the defined cell population is the most corre-
lated. All selected genes are tested in this pairwise manner against 
all defined cell populations vs all other T cells to identify the gene 
that is most highly and uniquely correlated to each defined cell 
population. At each combinatorial CCA, the most correlated 
gene to each cell population is identified using vector multiplica-
tion (Figure  1B). The top-ranked genes are determined by F1 
score (the harmonic mean of precision and sensitivity) and the 
correlation to the population of interest. When the top-ranked 
gene is different between F1 score and the correlation, the most 
immunologically meaningful gene can be chosen.

Single-Cell Combinatorial CCA
Finally, CCA is performed using the genes that are selected by 
the combinatorial CCA to be used as explanatory variables. Thus, 
the single-cell dataset will be explained by the expression of the 
set of chosen genes, each of which uniquely correlates with a cell 
population and represents the differentiation process of the cell 
population (Figure 1B).

Mathematically, SC4A is defined as follows. Single-cell RNA-
seq data X ∈ Rp × m is the measurement of m genes from p single 
cells. The j-th column xj = (x1j, x2j, …, xpj)T is the expression data 
of the j-th gene from p single cells, where T indicates transposed 
vector. In SC4A, by choosing a set of k genes for explanatory 
variable, X′ ∈ Rp × (m − k) will be analyzed by CCA using Z ∈ Rp × k 
as explanatory variables. As in the algorithm for CCA, using the 
sums of transcripts for each gene (i.e., column sums, c), and the 
sums of transcripts in each single cell (i.e., row sums, r), and the 
grand total of transcripts of X (n), the abundance matrix P = 1/n 
X′ − r cT, and the standardized matrix S D P D= r c

− −1 2 1 2/ / , where 
Dr and Dc are the diagonal matrices of r and c, respectively. 
Meanwhile, explanatory data are scaled and standardized (i.e., 
mean = 0 and variance = 1) to obtain Z. S is linearly regressed 
onto Z by the projection matrix Q D Zr r= / − /1 2 T

r

1 T 1 2Z D Z Z D ,( )  
and the constrained space S*  =  Q S. Next, SVD is applied to 
S* = U Dα VT, where UT U = VT V = I, and Dα is the diagonal 
matrix of singular values in descending order (α1 ≥ α2 ≥ …). 
Gene scores are defined as D V D D Vr r

− / /1 2 1 2or .αα  Weighted aver-
age scores (WA scores) Gwa are used as single-cell scores (see 
Conventional CCA (Gene-Oriented Analysis)) and are obtained 
by projecting P onto sample scores while weighting by row sums 
(i.e., transcript amounts in each single cell): Gwa

1 1= − −D P V Dr αα  or 
D P Vr

−1 . Biplot values will be obtained by calculating the correla-
tion coefficient of weighted explanatory variables Z = [d1, …, dk] 
(Z is weighted by Dr) and U = (u1, … uk), that is, ρ = cov(dn, uj)/σ
(dn)σ(uj)(n = 1, …, k; j = b), where b = min(p-1, m-1, k).

choice of explanatory Variables by sc4a
Single-cell combinatorial CCA aims to identify a set of genes that 
make the dispersion of cell populations maximum in the CCA 
solution. To achieve this, all the combinations of genes will be 
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used as explanatory variables and tested for discriminating each 
two populations using CCA. During each combinatorial cycle, 
two genes are chosen from the total selected genes for all defined 
single-cell populations in the main dataset and tested for their 
correlations to one defined cell population vs all other T  cells. 
In the analysis of tumor-infiltrating lymphocytes, the following 
two cell populations were analyzed by the combinatorial CCA: (1) 
activated T cells vs resting T cells; (2) FOXP3+ cells vs FOXP3− 
cells; (3) BCL6+ cells [as T follicular helper (Tfh)-like T  cells] 
vs BCL6− cells. The most correlated gene to each population 
(activated T cells, resting T cells, FOXP3+ cells, or BCL6+ cells) 
was identified, and these four genes were used as explanatory 
variables in the final output of SC4A.

Data Pre-Processing and Other statistical 
Methods
All microarray datasets were downloaded from GEO site, and 
normalized, where appropriate using the Bioconductor package 
Affy. Data were arranged into an expression matrix where each 
row corresponds with gene expression for each gene and each 
column corresponds with cell phonotype (sample). Data were 
log2-transformed and values above log2(10) were used for analy-
sis. Differentially expressed genes (DEG) the TCR KO dataset and 
the aTreg dataset were identified by moderated t-statistics. DEG for 
activated CD44hi and resting CD44lo Treg were combined. The 
CRAN package vegan was used for the computation of CCA. 
Gene scores used the wa scores of the CCA output by vegan. The 
Bioconductor package limma was used to perform a moderated 
t-test. RNA-seq data were preprocessed, normalized, and log-
transformed using standard techniques (34).

Heatmaps were generated using the CRAN package gplots. 
Venn diagram was generated using the R code, overLapper.R, 
which was downloaded from the Girke lab at Institute for 
Integrative Genome Biology (http://faculty.ucr.edu/~tgirke/
Documents/R_BioCond/My_R_Scripts/overLapper.R). Gene lists 
were compared for enriched pathways in the REACTOME path-
way database using the Bioconductor packages ReactomePA and 
clusterProfiler. Violin plots show kernel density plots (outside) 
and the median and interquartile range (inside) of the original 
gene expression data and were generated by the Bioconductor 
package ggplot2. The lineage curve was constructed by clustering 
SC4A/CCA sample scores using an expectation–maximization 
algorithm (43), and the nodes of these clusters were identified by 
constructing a minimum spanning tree using the Bioconductor 
package Slingshot (44).

resUlTs

identification of the Foxp3-independent 
activation signature in Treg and  
Memory-Phenotype T cells
Firstly, we investigated how T  cell activation-related genes are 
differentially regulated in rTreg and other CD4+ T cell popula-
tions including Tmem and Teff. To address this multidimensional 
problem, we applied CCA to the microarray dataset of various 
CD4+ T cells using the explanatory variable for the T cell activation 

process, which was obtained from the microarray dataset that 
analyzed resting and activated conventional T cells (“T cell subset 
data” and “T cell activation data” in Table 1). Thus, we aimed to 
visualize the cross-level relationships between genes, the T cell 
populations, and the T cell activation process (Figure 1A). Using 
the single explanatory variable, the T  cell activation process, 
the solution of CCA is 1D, and the cell sample scores of CCA 
(represented by Axis 1) provide “T  cell activation score” (see 
Materials and Methods), indicating the level of activation in each 
cell population relative to the prototype signature of T cell activa-
tion, as defined by the explanatory variable Tact. All the naïve 
T  cell populations had low Axis 1 values [i.e., Foxp3− T naïve 
cells (Tnaive); Tnaive, and non-draining lymph node T cells from 
BDC TCR transgenic (Tg) mice, which develop type I diabetes]. 
In contrast, Foxp3+ Treg, Tmem, and tissue-infiltrating Teff in the 
pancreas from BDC Tg mice (i.e., with inflammation in the islets) 
had high scores (Figure 2). These CCA results indicate that Treg 
are as “activated” as Tmem and tissue-infiltrating activated Teff at 
the transcriptomic level.

Next, we addressed whether the highly “activated” status of 
Treg is dependent on Foxp3. Since Foxp3 suppresses Runx1-
mediated transcriptional activities (41), we investigated the same 
T  cell population dataset using the following three explanatory 
variables: T  cell activation (Tact), retroviral Foxp3 transduc-
tion (Foxp3), and Runx1 transduction (Runx1) (see Materials 
and Methods). The CCA solution was 3D, while the first two 
axes explained the majority of variance (98.8%, Figure  3A). 
As expected, Tmem, tissue-infiltrating Teff, and Treg had high 
negative values and showed high correlations to T cell activation 
(Tact) in Axis 1, whereas only Treg had high correlations with the 
Foxp3 variable in Axis 2, while Tmem and Teff were correlated 
with the Runx1 variable in Axis 2 (Figure 3A). By analyzing the 
gene space of the CCA solution, genes in the lower left quadrant 
(i.e., negative in both Axes 1 and 2) were enriched with the genes 
that are involved in T cell activation, effector functions, and Tfh 
cells, including Cxcr5, Pdcd1 (PD-1) Il21, Ifng, Tbx21 (T-bet), 
and Mki67 (Ki-67) (Figure 3B). On the other hand, genes in the 
upper left quadrant (i.e., negative in Axis 1 and positive in Axis 2)  
were enriched with Treg-associated genes including Ctla4, Il2ra 
(CD25), Itgae (CD103), Tnfrsf9 (4-1BB), and Tnfrsf4 (OX40) 
(Figure 3B). These results indicate that a set of activation genes are 
operating in all the three non-naïve T cell populations (i.e., Treg, 
Teff, and Tmem), while some of them are more specific to Treg.

The Treg Transcriptome is characterized 
by the repression of a Part of the 
activation genes for Tmem
Next, we investigated the modules of genes that are differentially 
regulated between Treg and Tmem, in order to understand the 
multidimensional identity of Treg and Tmem transcriptomes 
(i.e., how these populations can be defined in comparison to all 
relevant populations). Specifically, we asked if Axis 2 captured the 
differential transcriptional regulations between Tmem and Treg. 
Importantly, Axis 2 represents Foxp3-driven and Runx1-driven 
transcriptional effects, which are correlated with Treg and Tmem/
Teff, respectively (Figure 4A). This suggests that Axis 2 provides 
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TaBle 1 | Datasets used in this study.

accession 
number

short 
description

reference Description of animal models Timing of 
cell harvest

cell purification strategy  
and sorting markers

Tissue origin Figures

GSE15907 T cell subsets Immunological 
Genome  

Project (40)

Primary cells from multiple immune  
lineages are isolated ex vivo, primarily  
from young adult B6 male mice  
(WT, Foxp3GFP, or BDC Tg mice),  
and double-sorted to >99% purity

6 weeks Flow cytometric sorting
Treg (spleen): Foxp3GFP+ CD25+ 
CD4+

Tmem [subcutaneous (sc)LN, 
spleen]: TCRβ+ CD44high CD122lo 
CD25− CD4+

CD44hiCD62Llo Tmem (scLN, spleen): 
Foxp3GFP− TCRβ+ CD44hi CD62Llo 
CD4+

Naïve CD4 (scLN): CD25− CD62Lhi 
CD44lo CD4+

Naïve CD4 (mesenteric (m) LN):  
CD25− CD62Lhi CD44lo CD4+

Naïve CD4 (Peyer’s patches):  
TCRβ+ CD44lo CD62Lhi CD4+

Naïve CD4 (spleen):  
CD25− CD62Lhi CD44lo CD4+

Foxp3− Tnaive (spleen):  
Foxp3GFP− CD44lo CD4+

Non-draining lymph node (dLN),  
BDC (scLN): BDC+ CD4+

dLN BDC (pancreatic LN): CD4+ 
BDC+

Tissue-Teff, BDC (pancreas): BDC+ 
CD4+

*Exclusion markers include PI, CD8, 
CD11b, CD11c, CD19, CD49b, Gr-1, 
Ter119

Spleen, 
subcutaneous 
LNs, 
mesenteric 
LN, Peyer’s 
patches, 
pancreatic 
LN, pancreas

Figure 2
Figure 3
Figure 4

GSE83315 Activated Treg 
(aTreg) data

(25) Mixed bone marrow (BM) chimeras  
were generated with 90% Foxp3GFP-DTR/10%  
Foxp3-GFP-CRE-ERT2 Rosa26YFP BM. Diphtheria  
toxin (DT) was administered at day 0 to these chimeric mice in order to deplete 
Foxp3GFP-DTR  
Treg cells and induce expansion/activation  
of effector CD4+ T cells and Treg, thereby  
inducing inflammation. Subsequently, tamoxifen  
was administered at days 3 and 4 to irreversibly  
label Foxp3-expressing Foxp3-GFP-CRE-ERT2  
Rosa26YFP T cells with YFP. Resting Treg (rTreg), aTreg, and ‘memory’ Treg 
(mTreg) were isolated at day 0, 11, and 60, respectively, based on the dynamics 
of inflammation (CD4+ T cell number is normalized by day 60)

Day 0 (rTreg),  
day 11 
(aTreg), day 
60 (mTreg) 
after DT  
treatment

Flow cytometric sorting
rTreg: CD4, Foxp3− GFP
aTreg and mTreg: CD4,  
Foxp3− GFP, YFP

Spleen and 
peripheral LN

Figures 6c,D

GSE61077 T cell receptor 
(TCR) KO data

(10) 8- to 10-week-old mice from  
Tracflox/WT × Foxp3ERT2-Cre tamoxifen-inducible  
deletion of TCRα in Treg. Tamoxifen was  
administered on days 0, 1, and 3

Day 14 after 
the first 
tamoxifen 
administration

Flow cytometric sorting
TCRβ+ CD4+ Foxp3+ CD44high/low  
CD62Llow/high

LN

(Continued)
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accession 
number

short 
description

reference Description of animal models Timing of 
cell harvest

cell purification strategy  
and sorting markers

Tissue origin Figures

GSE42276 T cell 
activation 

(39) Conventional CD4+ T cells from C57BL/6J  
male mice were stimulated by anti-CD3 and  
anti-CD28 for 20 and 48 h and data were pooled
0 h unstimulated samples were used as control

8 weeks Flow cytometric sorting
DAPI− CD45R− CD8a− CD11b/c− 
CD4+ GFP+

Spleen, LN Figure 2
Figure 3
Figure 4
Figure 6

GSE6939 RV-transduced 
T cells

(41) Cells: T cells from LN and spleen of  
8 week-old BALB/c mice and purified  
into CD4+ naive T cells (GITRlowCD25−CD4+),  
which were subsequently activated by anti-CD3  
and antigen-presenting cells [mitomycin-treated Thy1(−) splenocytes] in the 
presence of interleukin (IL)-2. On the following day, T cells were retrovirally gene 
transduced with Runx1 (AML1), wild type Foxp3, and empty vector as control

60 h after 
transfection

Flow cytometric sorting
CD4, GFP
Exclusion marker: PI

Spleen, LN Figure 3
Figure 4

GSE72056 Single-cell 
analysis of 
tumor-
infiltrating 
T cells

(42) Single-cell RNA-seq analysis of human  
melanoma tumor samples
Freshly resected samples were  
disaggregated to generate single-cell  
suspensions of mixed cells of unknown identities
Individual viable immune (CD45+) and nonimmune (CD45−) cells (including 
malignant and stromal cells) were recovered from the single-cell suspension by 
flow cytometry
Single cells were profiled by single-cell RNA-seq

Single cells 
were obtained 
within 45 min 
of tumor 
resection

Flow cytometric sorting
CD45

Human 
melanoma 
tissues

Figure 8
Figure 9
Figure 10

GSE15390 Human 
activated and 
resting T cells

(45) Resting T cells (CD25− CD4+ T cells; GSM386262, GSM386264, and 
GSM386266) were obtained  
from whole blood of healthy human donors
Activated T cells (GSM777695) were prepared by stimulating CD25− CD4+ 
T cells for 24 h with CD3 and IL-2

Freshly 
sorted from 
buffy coat; or 
cultured for 
24 h

Magnetic and flow cytometric  
sorting
CD4, CD25, CD127

Human 
PBMC

Figure 8
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FigUre 2 | Identification of the activation signature in Treg and Tmem  
by canonical correspondence analysis (CCA) of T cell populations.  
The microarray dataset of peripheral CD4+ T cells, including naïve, effector, 
and memory phenotype from various sites (GSE15907), was analyzed using 
the T cell activation variable, which was obtained from the microarray dataset 
of conventional activated CD4+ T cells (GSE42276). CCA was applied to  
the T cell population data using an explanatory variable for T cell activation, 
which was obtained as fold change between activated and resting 
conventional CD4+ T cells. The CCA solution is thus 1D, and is used as 
“T cell activation score” (see Materials and Methods).
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a “scoring system” for regulatory vs effector functions. Thus, the 
genes in Axis 1-low (precisely, genes above the 25th percentile 
for positive correlations with Tact) were identified as Tact genes. 
These genes were subsequently classified into Axis 2-positive (i.e., 
positive correlations with Foxp3 and Treg) (designated as “Tact-
Foxp3 genes”; top left quadrant of CCA gene space in Figure 3B) 
and Axis 2-negative genes (i.e., positive correlations with Runx1 
and Tmem/Teff) (designated as “Tact-Runx1 genes”; bottom 
left quadrant of CCA gene space in Figure  3B) (Figure  4A). 
Tact-Runx1 genes contain genes linked to T cell activation (e.g., 
Mki67), effector functions (e.g., Tbx21), and Tfh differentiation 
(e.g., Bcl6, Pdcd1), while Tact-Foxp3 genes contain “Treg mark-
ers” such as Il2ra (CD25) and Tnfrsf18 (GITR) (Figure 3B).

Intriguingly, heatmap analysis showed that both Treg and 
Tmem expressed Tact-Foxp3 genes at high levels, compared 
to naïve and effector T  cells (Figure  4B). On the other hand, 
Tact-Runx1 genes were selectively downregulated in Treg, while 
their expressions were sustained in Tmem (Figure 4C). In other 
words, the repression of Tact-Runx1 genes was the major feature 
of Treg in comparison to Tmem, and Tact-Foxp3 genes are the 
activation genes, the expression of which is induced by T  cell 
activation in both Treg and Tmem, and is sustained or enhanced 
even in the presence of Foxp3. Interestingly, comparable selective 
downregulation of Tact-Runx1 genes was observed in Teff as well 
(Figure 4C). This suggests that the set of activation genes operat-
ing in Teff is different from the ones in Tmem, and that Tmem and 
Treg share more activation genes than Treg–Teff and Tmem–Teff 

(Figures 4B,C). These results collectively indicate that the Treg-
ness is composed of the induction of the Treg–Tmem shared 
activation genes (i.e., Tact-Foxp3 genes) and the Foxp3-mediated 
repression of Tmem-specific genes (i.e., Tact-Runx1 genes), 
defining the multidimensional identity of Treg.

While the overall activation levels of Treg and Tmem are 
similar to the ones of the tissue-infiltrating Teff at transcriptional 
level (Figure 2), when explained by the prototype signature of 
activation in CD4+ T  cells (i.e., the explanatory variable Tact), 
the compositions of the activation genes are different between 
Treg, Tmem, and Teff (Figures 4B,C). Importantly, many of these 
activation genes are shared between Treg and Tmem, but not with 
Teff. The closer similarity between rTreg and Tmem, compared 
to Teff, is not surprising, considering that both rTreg and Tmem 
are at the resting state, while Teff are more recently activated and 
executing effector functions. In addition, the distinct features 
of Teff may also include their capacity of tissue infiltration and 
the effects of the microenvironment. These features were not 
captured by standard t-test analysis (Figure S1 in Supplementary 
Material).

Tact-Foxp3 genes included the transcription factors Nfat5, 
Runx2, and Ahr, which were expressed by most of Tmem cells 
as well (Figure 4D). The Treg-associated markers, Il2ra (CD25), 
Itgae (CD103), and Tnfrsf18 (GITR) were expressed not only by 
Treg but also by Tmem at moderate to high levels. Notably, the 
expression of Ctla4, Ccr4, and Lag3 was high in Treg and Tmem 
cells, but it was repressed in Teff (Figure 4D). This suggests that 
Treg and Tmem are in later stages of T  cell activation, when 
the expression of CTLA-4 is induced as a negative feedback 
mechanism (46), while it is not induced in tissue-infiltrating Teff, 
presumably because they are more recently activated and actively 
proliferating.

Tact-Runx1 genes included many cell cycle-related genes (e.g., 
Ccna2, Cdca2, and Chek2), suggesting that these cells are in cell 
cycle and proliferating (Figure  4E). The higher expression of 
Mki67 and Fos in Tmem suggests that these cells had been acti-
vated by TCR signals in vivo before the analysis. Tact-Runx1 genes 
also included the transcription factors Tbx21, Maf, Hif1a, and 
Bcl6, which have roles in Th1, Th2, Th17, and Tfh differentiation, 
respectively (47–49). In accordance with this, the Tfh markers 
Cxcr5 and Pdcd1 were specifically expressed by Tmem, suggesting 
that Tmem are heterogeneous populations and composed of Th 
and Tfh cells. These results are compatible with the model that 
Treg and Tmem constitute the self-reactive T cell population that 
have a constitutive activation status (7), and that the major func-
tion of Foxp3 is to modify the constitutive activation processes by 
repressing a part of the activation gene modules (i.e., Tact-Runx1 
genes) (Figure 5).

The activated status of Treg is Tcr signal 
Dependent
We next asked whether the constitutively “activated” status of Treg 
is dependent on TCR signals. We applied CCA to the microarray 
data of CD44hiCD62Llo aTreg (CD44hi aTreg) and CD44loCD62Lhi 
naïve-like Treg (CD44lo naïve Treg) from inducible Tcra KO or 
WT mice (TCR KO data, Table 1; Figure 6A) using the T cell 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 3 | Identification of the Foxp3-independent activation signature in Treg by canonical correspondence analysis (CCA) of T cell populations. The microarray 
dataset of peripheral CD4+ T cells (GSE15907) was analyzed using the T cell activation variable and the variables for retroviral Foxp3 transduction and Runx1 
transduction as explanatory variables. (a) The CCA solution was visualized by a biplot where CD4+ T cell samples are shown by closed circles (see legend) and the 
explanatory variables are shown by blue arrows. Percentage indicates that of the variance accounted for by the inertia of the axes (i.e., the amount of information 
[eigenvalue] retained in each axis). (B) Gene biplot of the 2D CCA solution in (a) showing the relationships between genes (gray circles) and the explanatory 
variables (blue arrows). Selected key genes are annotated.
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activation variable as explanatory variable. The CCA result 
showed that CD44hi aTreg from WT mice only showed high acti-
vation scores, compared with all the other groups. Interestingly, 
Tcra KO CD44lo naïve Treg showed the lowest scores, and these 
scores were lower than WT CD44lo naïve Treg (Figure 6B). These 
results indicate that TCR signaling is required for the constitutive 
activation status of Treg, especially CD44hi aTreg, and suggest that 
these aTreg are more enriched with the cells that received TCR 
signals recently, compared to CD44lo naïve Treg.

In order to further address whether the TCR signal-dependent 
activation signature of Treg is constitutively maintained or spe-
cifically induced by in vivo activation events [presumably as tonic 
TCR signals (7)], we analyzed the RNA-seq dataset of in vivo aTreg 
(25) (Table 1). The dataset was generated by depleting a part of 
Treg by diphtheria toxin (DT) using bone marrow chimera of 
Foxp3GFPCreERT2:Rosa26YFP and Foxp3GFP DTR (25). The DT treatment 
depletes DT receptor (DTR)-expressing Treg from Foxp3GFP DTR,  
and thus induces a transient inflammation through the reduction 
of Treg. Foxp3GFPCreERT2 allows to label Foxp3-expressing cells by 
YFP at the moment of tamoxifen administration. van der Veeken 
et al. thus analyzed rTreg from untreated mice (rTreg), aTreg from 
mice with recent depletion (11  days before the analysis) in an 
inflammatory condition (aTreg), and ‘memory’ Treg from mice 

with a distant depletion (60 days before the analysis) (Figure 6C). 
As expected, the CCA analysis using the T cell activation variable 
showed that aTreg had higher activation scores than both rTreg 
and mTreg (Figure 6D). This indicates that the activation mecha-
nisms are more actively operating in aTreg in an inflammatory 
environment.

In order to further dissect the activation signature of Treg, 
we obtained the lists of differentially expressed genes (DEG) 
between WT Treg vs Tcra KO Treg (designated as TCR-dependent 
genes), and between aTreg and rTreg (designated as aTreg-specific 
genes, see Materials and Methods). Interestingly, 94/286 genes of 
Tact-Runx1 genes (Tmem-specific activation genes, repressed in 
rTreg) are also used during the activation of Treg (Figure 7A), 
while only 8/119 of Tact-Foxp3 genes (used by Tmem and 
rTreg) are induced during the activation of Treg (Figure  7B). 
This indicates that the activation of Treg does not enhance the 
genes that are used in rTreg, but induces the expression of the 
Tmem-specific genes that are suppressed in rTreg. On the other 
hand, 51/286 of Tact-Runx1 and 19/119 of Tact-Foxp3 genes are 
regulated by TCR signaling (Figures 7A,B), suggesting that the 
activation status of rTreg and Tmem may be sustained by TCR 
signals. Pathway analysis showed that Tact-Runx1 and aTreg-
specific genes were enriched for cell cycle-related pathways. In 
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FigUre 4 | Differential regulations of transcriptional modules for activation in Treg and Tmem by Foxp3 and Runx1. (a) Definition of Tact-Foxp3 genes and 
Tact-Runx1 genes. In the gene plot of the canonical correspondence analysis (CCA) solution in Figure 3B, Axis 1-low genes (25th percentile low) were designated  
as activation genes, and further classified into Tact-Foxp3 genes and Tact-Runx1 genes by Axis 2, which have high correlations to Treg and Tmem samples, 
respectively, in the CCA cell space (Figure 3a). (B) Heatmap analysis of all the Tact-Foxp3 genes. (c) Heatmap analysis of all the Tact-Runx1 genes.  
(D) Heatmap analysis of selected Tact-Foxp3 genes. (e) Heatmap analysis of selected Tact-Runx1 genes.
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contrast, Tact-Foxp3 genes were enriched for pathways related 
to signal transduction only (Figure 7C). Collectively, the results 
above suggest that rTreg are maintained by TCR and cytokine 

signaling, and that the activation of Treg induces the transcrip-
tional activities of a part of Tact-Runx1 genes, which promote 
proliferation and cell division.
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FigUre 5 | A model for the differential regulation of activation genes in  
Treg and Tmem. The proposed differential regulations of T cell receptor (TCR) 
signal downstream genes in Treg and Tmem. Since both naturally arising Treg 
and Tmem are self-reactive T cells, they may frequently receive tonic TCR 
signals by recognizing their cognate antigens in the periphery. This results in 
the full activation of both the Tact-Foxp3 and Tact-Runx1 gene modules in 
Tmem. However, in Treg, Foxp3 represses Tact-Runx1 genes and sustains 
the expression of Tact-Foxp3 genes, producing the characteristic Treg 
transcriptome.
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FOXP3 expression More Frequently 
Occurs in activated T cells Than resting 
cells by single-cell cca
The analyses above showed that Treg are on average more acti-
vated than naïve T cells and that the activation status of Treg can 
be variable. However, it is still unclear whether individual Treg are 
more activated than any naïve T cells at the single-cell level. The 
alternative hypothesis is that Treg are enriched with the T cells that 
have recognized their cognate antigens and have been activated. 
In order to determine this and thereby understand the dynamics 
of T cell regulation in vivo, we investigated the single-cell RNA-
seq data of tumor-infiltrating T cells from human patients (42) 
(Table 1), and further enquired how the activation mechanisms 
are operating in Treg at the single-cell level.

First, we in  silico-sorted FOXP3+ and FOXP3− CD4+ CD3+ 
T cells from unannotated single-cell data from tumors, the tis-
sues of which were dispersed and CD45+ cells were sorted by 
flow cytometry without the use of any other lymphocyte markers 
(GSE72056, Table  1). Thus, the identities of individual single 
cells were needed to be identified in a data-oriented manner, 
and Treg and non-Treg cells in these tumor tissues had unknown 
activation and differentiation statuses. Thus, we applied CCA to 
the in  silico-sorted single-cell T cell data using the explanatory 
variables of human activated conventional CD4+ T  cells (Tact) 
and resting T cells (Trest; GSE15390, Table 1), aiming to define 
individual single cells according to their level of activation by 
their correlations to these two variables (Figure 8A). Here, we 
used these two variables, Tact and Trest, in order to generate a 
2D CCA solution, instead of a single explanatory variable that 

represents T cell activation by the log2 fold change in gene expres-
sion between activated and resting CD4+ T cells (c.f. Figures 2 and 
6), which produces a 1D CCA solution visualized as a single axis, 
because we aimed to identify any additional major differentiation 
process(es) in the Axis 2. The explanatory variables Tact and Trest 
are both captured by Axis 1 because they represent two poles of 
one continuum—the spectrum of activation—ranging from 
“resting” to “activated” cell state. Thus, the CCA aimed to sort the 
single cells according to their individual levels of activation along 
the spectrum of activation, capturing the heterogeneity in activa-
tion levels in single cells. Remarkably, in the cell sample space of 
the CCA solution, the majority of FOXP3+ T cells were positively 
correlated with the T  cell activation variable Tact (Figure  8B), 
and thus had negative scores in the Axis 1 (Figure  8B). Here, 
CCA Axis 1 ×  (−1) score is designated as the T cell activation 
score. Thus, using the activation score and FOXP3 expression, the 
following four subpopulations were defined: “activated FOXP3+,” 
“resting FOXP3+,” “activated FOXP3−,” and “resting FOXP3−” 
(Figure 8B).

Next, we aimed to determine whether individual activated 
FOXP3+ Treg are more activated than activated FOXP3− non-
Treg at the single-cell level. According to the T cell activation score 
established by the CCA solution in Figure 8B, FOXP3+ Treg had 
significantly higher T  cell activation scores than FOXP3− non-
Treg on average, as indicated by the higher median in the violin 
plots and greater density of samples with higher T cell activation 
scores (Figure 8C), confirming the results by bulk cell analysis 
(Figure 2). Using the CCA definition of activated and rTreg and 
non-Treg established in Figure  8B, the T  cell activation score 
neatly captured the activated status of single cells, allocating high 
positive and negative scores to activated and resting cells, respec-
tively (Figure 8D). Importantly, there was no significant differ-
ence between activated FOXP3+ and activated FOXP3− cells and 
between resting FOXP3+ and resting FOXP3− cells (Figure 8D), 
indicating that in the tumor microenvironment, Treg cells are as 
activated as non-Treg CD4+ T cells, which may be enriched with 
Teff. Strikingly, 32.5% of activated T cells expressed FOXP3, while 
only 8.2% of resting T cells expressed FOXP3 in Figure 8B. In other 
words, FOXP3 expression occurred more frequently in activated 
T cells. Given that the activation signature of Treg is dependent 
on TCR signals (Figure  6), these results suggest that FOXP3 
expression occurs predominantly in the activated T  cells that 
have recognized the tumor antigens and received TCR signals, as 
a negative feedback mechanism to suppress the effector response 
against the tumor antigens (7). Alternatively, but not exclusively, 
FOXP3+ T cells may have high-affinity TCRs to self-MHC and/or 
tumor antigens and be more prone to activation (10).

In the gene space of the CCA solution, genes with strong cor-
relations to activated FOXP3+ T cells included FOXP3 itself and 
common Treg markers such as CTLA4 and IL2RA (CD25), which 
were found in the upper left quadrant (Axis 1-negative Axis 
2-positive). Interestingly, the lower left quadrant (Axis 1-negative 
Axis 2-negative) contained more Tfh-like or effector-like mole-
cules PDCD1 (PD-1), BCL6, IL21, and IFNG. The chemokine 
receptor CCR2 had negative scores in Axis 1 (i.e., correlated with 
Tact), while CCR7 had a high positive score in Axis 1 (i.e., cor-
related with Trest) (Figure 8E).
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FigUre 6 | The activation signature of Treg is dependent on T cell receptor (TCR) signaling. (a) The experimental design for the TCR dataset. CD44hi activated Treg 
(aTreg) and CD44lo naïve Treg were obtained from Tcra KO or WT mice and analyzed by transcriptome analysis. (B) Canonical correspondence analysis (CCA) was 
applied to the transcriptome data of CD44loCD62hi naïve and CD44hiCD62lo aTreg cell populations from inducible Tcra KO or WT (from the TCR KO data, 
GSE61077), using the T cell activation variable as the explanatory variable. This produces a 1D CCA solution, and the sample score was plotted (representing “T cell 
activation score”). (c) The experimental design for the aTreg dataset. Bone marrow (BM) cells were obtained from Foxp3GFPCreERT2:Rosa26YFP mice (YFP mice), and 
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activation variable as explanatory variable.
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identification of Tfh-like Differentiation 
and Foxp3-Driven Processes and  
the common activation Process  
in Tumor-infiltrating T cells
Next, we aimed to identify major differentiation and activation 
processes in the single-cell transcriptomes above. To this end, 
we have developed a new CCA approach for single-cell analysis 
(SC4A), which aims to visualize major differentiation/activation 
processes and the underlying gene regulations (Figure  9A, see 
Materials and Methods; Figure  1B). First, we classified single 

cells into the four populations (activated and resting cells, and 
FOXP3+ Treg and FOXP3− non-Treg; Figure  8B), and thereby 
identified the following four processes as putative differen-
tiation and activation processes in the dataset: T cell activation 
(activated cells), and naïve-ness (resting cells), FOXP3-driven 
process (activated FOXP3+), and Tfh-like process (activated 
FOXP3−) (Figure 8). Second, based on their high scores in the 
CCA solution (i.e., either high positive or high negative scores 
in either Axis 1 or 2 in Figure 8E) and abundant expressions in 
FOXP3+ and FOXP3− cells (data not shown), we selected 12 genes 
(CCR7, CCR5, CCR4, IL2RA, IL2RB, CTLA4, ICOS, TNFRSF4, 
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FigUre 7 | The comparative analysis of Tmem-specific and Treg-Tmem shared activation genes and T cell receptor (TCR)-dependent and activated Treg 
(aTreg)-specific genes. Venn diagram analysis was used to obtain intersects of TCR-dependent genes (DEG between Tcra KO and WT Treg), aTreg-specific 
genes (DEG between aTreg and resting Treg), and Tact-Foxp3 and Tact-Runx1 genes (see Figure 4). (a) Pie chart showing the number of genes in the 
intersects between aTreg-specific genes, TCR-dependent genes, and Tact-Runx1 genes. (B) Pie chart showing the number of genes in the intersects between 
aTreg-specific genes, TCR-dependent genes, and Tact-Foxp3 genes. (c) Pathway analysis of Tact-Foxp3 genes, Tact-Runx1 genes, and aTreg-specific genes 
showing enriched pathways in these gene lists.
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TNFRSF9, FOXP3, BCL6, and PDCD1) as the candidate genes 
for the four processes. From these genes, we identified the most 
positively correlated gene to each of the four processes using the 
combinatorial CCA, which tests all the combinations of variables 
by CCA and obtains the most correlated gene for each population 
(see Materials and Methods). Thus, PDCD1, FOXP3, CTLA4, and 
CCR7 were identified as the most correlated genes for activated 
FOXP3−, activated FOXP3+, activated T cells, and resting T cells, 
respectively (Figure S2 in Supplementary Material), which 
represent the four immunological processes (see above). Finally, 
using these four genes as explanatory variables, we applied CCA 
to the single-cell transcriptomes, obtaining the solution of the 
SC4A approach.

The single-cell space of the SC4A solution showed that 
activated and resting T cells had negative and positive scores, 
respectively (Figure 9B). This indicates that Axis 1 represents 
T cell activation vs naïve-ness. Single cells were successfully clus-
tered into activated FOXP3+ Treg, activated FOXP3− non-Treg, 
and resting T cells. Resting FOXP3+ Treg and resting FOXP3− 
T cells were mostly overlapped (Figure 9B), indicating that the 
major features in the dataset dominated the difference between 
these two resting T  cell groups. Importantly, the explanatory 
variable CTLA4, which represents the T cell activation process, 
was highly correlated with both activated FOXP3+ Treg and 
activated FOXP3− non-Treg at the middle, indicating its neu-
tral position in terms of Tfh and Treg activation processes. As 
expected, the variable CCR7, which represents naïve-ness, was 
correlated with both resting FOXP3+ Treg and resting FOXP3− 
T cells. The explanatory variable PDCD1, which represents the 

Tfh-like process, was highly correlated with activated FOXP3− 
non-Treg cells, while the variable FOXP3 was correlated with 
activated FOXP3+ Treg. Thus, the single-cell transcriptomes 
were modeled by the correlations between gene expression, 
single cells, and the expression of the four key genes, which 
 represent the four immunological processes (Figures  9B,C). 
PCA and t-distributed stochastic neighbor embedding (t-SNE) 
did not provide insights into such cross-level relationships or 
clear separations of the populations (Figure S3 in Supplementary 
Material).

Next, in order to understand the relationship between the 
T  cell activation signature and FOXP3-driven and Tfh-like 
processes (Figures  9B), we aimed to identify and chara cterize 
genes with high correlations to these processes, which were 
represented by CTLA4, FOXP3, and PDCD1 explanatory 
variables, by analyzing the gene space of the final output of SC4A 
(Figure  9C; see Materials and Methods). As expected, the Tfh 
genes, IL21 and BCL6 (50), were highly correlated with PDCD1 
explanatory variable. IL2RA (CD25) is a Treg marker (51) and 
was highly correlated with FOXP3 explanatory variable. IL7R and 
BACH2 are known to be associated with naïve T cells (52, 53) 
and were positively correlated with CCR7 explanatory variable, 
which represents the naïve-ness (Figure 9C). Thus, we defined 
FOXP3-driven Treg genes (magenta circles) and Tfh-like genes 
(blue circles) according to their high correlation to the FOXP3 
and the PDCD1 explanatory variables, respectively, while we 
designated as activation genes (red circles) the genes that have 
high correlations with the CTLA4 variable, including LAG3 and 
CCR5, which were positioned around 0 in Axis 2 (Figure 9C).
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FigUre 8 | Single-cell canonical correspondence analysis (CCA) of melanoma-infiltrating T cells determines the activation status of individual T cells and identifies  
a putative T follicular helper-like process. (a) Schematic representation of CCA of CD4+ T cell single-cell transcriptomes analyzed by two explanatory variables: 
activated naïve T cells (Tact) and resting naïve T cells (Trest). (B) CCA biplot showing the relationships between Treg and non-Treg T cells (sample scores) and the 
explanatory variables (Tact and Trest). Axis 1 represents the difference between Tact and Trest, and thus, activated T cells and resting T cells were defined by the 
CCA Axis 1 score, and these cells were further classified into Treg and non-Treg by their FOXP3 expression (see legend). Percentage indicates that of the variance 
(inertia) accounted for by the axis. (c) Violin plot showing the CCA activation scores (Axis 1 score × −1) of FOXP3− and FOXP3+ cell groups. Asterisk indicates 
statistical significance by Mann–Whitney test. (D) Violin plot showing the CCA activation scores of activated (Act.) and resting (Rest.) FOXP3− and FOXP3+ cell 
groups. Asterisks indicate the values of post hoc Dunn’s test following a Kruskal–Wallis test. ***p < 0.005. (e) Gene biplot of the CCA solution in (B) showing the 
relationships between genes (gray circles) and the Tact and Trest explanatory variables (blue arrows). Genes are shown by gray circles, and well-known genes that 
are key for T cell activation processes are annotated.
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identification of the Bifurcation Point of 
activated T cells That leads to Tfh-like 
and Treg Differentiation in Tumor-
infiltrating T cells
The analyses above strongly suggested that there are two major 
differentiation pathways for those tumor-infiltrating T  cells, 

which are regulated by FOXP3-driven and Tfh-like processes. 
In order to identify these lineages, we applied an unsuper-
vised clustering algorithm to the sample space of the SC4A/
CCA result (Figure  9B), and identified six clusters, to which 
a pseudotime method (54) was applied, constructing “lineage 
curves” (Figure 9D; see Materials and Methods). Importantly, 
the lineage curves had a bifurcation point at Cluster II, which 
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leads to the two distinct differentiation pathways, Tfh-like 
and FOXP3-driven differentiation. Since cells may change 
and mature their phenotypes in different dynamics between 
these two lineages, we designated Tfh-like-associated and 

FOXP3-associated pseudotime as Tfh-pseudotime and FOXP3-
pseudotime (Figure 9D).

In fact, the expression of activation genes was progressively 
increased in the shared clusters (i.e., Clusters I and II) for the two 
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FigUre 9 | Single-cell combinatorial CCA (SC4A) identifies the bifurcation point of activated T cells that leads to T follicular helper (Tfh)-like and Treg differentiation in 
tumor-infiltrating T cells. SC4A was applied to the single-cell data of tumor-infiltrating T cells, and four genes (CTLA-4, CCR7, FOXP3, and PDCD1) were chosen as 
explanatory variables to represent the T cell activation, resting, FOXP3-driven process, and Tfh-like process. (a) The design of the analysis. The single-cell data from 
the melanoma samples were analyzed by SC4A to identify the most effective combinations of explanatory variables for dispersing the four T cell populations 
identified in Figure 8. These genes were used as explanatory variables to analyze the rest of the single-cell data as main dataset. Thus, the single-cell level 
dynamics of T cell differentiation and activation are modeled by the key biological processes that are represented by the T cell populations and explanatory variables. 
(B) Single-cell sample space of the final SC4A output showing correlations between single-cell samples and the explanatory variables. (c) Gene space  
of the final SC4A output showing correlations between genes and the explanatory variables. The genes that showed high correlations to the PDCD1, CTLA4, and 
FOXP3 variables were identified as Tfh-like genes, activation genes, and FOXP3-driven genes, respectively. (D) The identification of two differentiation processes  
as lineages and a bifurcation point. The cells in the sample space of the SC4A output (B) were classified into six clusters by an unsupervised clustering algorithm. 
These clusters were further analyzed for pseudotime inference. (e–g) The average gene expression was plotted against each pseudotime (upper: FOXP3-
pseudotime; lower: Tfh-pseudotime). The bifurcation point (Cluster II) is emphasized by broken lines. The numbers in circle indicate the cluster number. Gene 
expression was standardized, and the sum of the standardized expression was obtained for (e) Activation genes, (F) FOXP3-driven genes, and (g) Tfh-like genes 
(c). (h–M) The expression of key genes was plotted against each pseudotime.
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pseudotimes, and throughout the rest of the FOXP3-pseudotime 
and the early phase of Tfh-like differentiation (i.e., Cluster III) in 
Tfh-pseudotime, while it was suppressed toward the end of Tfh-
like differentiation (Cluster IV; Figure  9E) in Tfh-pseudotime. 
Given that Tfh-pseudotime is correlated with PDCD1 expression 
(Figure 9C), this suggests that PDCD1 expression and the Tfh-
effector process are induced during the earlier phases of effector 
T  cell activity, and that the activation processes in PDCD1high 
T cells are suppressed, presumably through PD1–PDL1 interac-
tions in the tumor environment (55). Interestingly, FOXP3-driven 
genes had similar dynamics to activation genes in both FOXP3-
pseudotime and Tfh-pseudotime (Figure  9F). By contrast, 
Tfh-like genes were mostly suppressed throughout FOXP3-
pseudotime, while they were progressively induced throughout 
Tfh-pseudotime (Figure  9G). These differential regulations 
of two gene modules resonate with those of Tact-Foxp3 genes 
(which are expressed by both Treg and Tmem) and Tact-Runx1 
genes (which are expressed specifically in Tmem, and repressed 
in Treg) (Figure 4). In fact, FOXP3 expression is weakly induced 
in some cells in the bifurcating Cluster II and the early phase 
of Tfh-like differentiation (Cluster III) in Tfh-pseudotime and 
is progressively increased at and beyond Cluster V in FOXP3-
pseudotime (Figure 9H).

RUNX1 is highly expressed in the common Clusters I and II 
and is downregulated in the transition from Clusters II to III in 
Tfh-pseudotime, and from Clusters II to V in FOXP3-pseudotime 
(Figure  9I), which is compatible with the known dynamics 
of RUNX1 expression: Runx1 is downregulated when naïve 

CD4+ T cells differentiate into activated/effector cells following 
TCR signaling (56). By analyzing other key genes used as CCA 
explanatory variables, CTLA4 was induced at the bifurcating 
point, Cluster II, and onward in both of the lineages at equivalent 
expression levels (Figure  9J), reflecting the activated status of 
both effector Tfh-type cells and Treg. Importantly, CTLA4 is a 
marker of Treg as well as activated effector T cells, where it acts 
as a negative regulator of T cell proliferation (57).

PDCD1 expression was also induced at the bifurcating point, 
and throughout Tfh-pseudotime, but specifically suppressed in 
the early phase of FOXP3-pseudotime (Figure  9K), which is 
compatible with the known dynamics that PDCD1 is transiently 
upregulated in activated CD4+ T  cells as a negative regulatory 
mechanism to restrain proinflammatory immune responses 
and maintain peripheral tolerance (58). Further supporting this 
dynamic perspective, IL2 expression occurs mainly in Cluster 
II, indicating that these cells are enriched with the T cells that 
recently recognized antigens (59) (Figure 9L). Consistently, the 
expression of the naïve T cell marker CCR7 was the highest in 
the cells with a relatively naïve phenotype in shared Cluster I and 
was moderately downregulated in the early and late phase of Tfh-
pseudotime, and suppressed in most Treg in FOXP3-pseudotime 
(Figure 9M).

These results collectively support the model that constant 
activation processes in the tumor microenvironment promote 
terminal differentiation of the Treg- and Tfh-like lineages in 
both previously committed and non-committed lineages of 
T cells. Interestingly, Cluster II is the bifurcation point, in which 
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T cells show moderate activation and together with simultaneous 
expression of FOXP3 and Tfh-like genes, as well as RUNX1 and 
PDCD1 expression. These cells are most probably engaged in 
decision-making about their cell fate and the cell type-specific 
usage of these genes—whether their transcriptional mechanisms 
would be used to generate a proinflamamtory or regulatory 
response. This understanding was possible because SC4A effec-
tively annotated genes and cells, and thereby allowed to identify 
new cell populations.

identification of Markers for the 
Differential regulation of Tfh-like and 
Treg Differentiation in activated T cells
Lastly, we aimed to demonstrate the utility of the current approach 
by discovering exemplary marker genes that distinguish cells in 
FOXP3− and Tfh-pseudotime (i.e., the FOXP3-driven pathway 
I–II–V–VI, and the Tfh-like pathway I–II–III–IV) (Figure 10A), 
and to identify the T  cell subpopulations by a flow cytometric 
visualization of single-cell data. Since activation genes (Figure 9C) 
are shared by early phases of Tfh-like and FOXP3-driven differen-
tiation (Figure 9E), we took the intersect of these genes and the 
Tact-Foxp3 genes, which were expressed by both resting Tmem 
and rTreg in mice (Figure  4). DUSP4 and NFAT5 were such 
genes and were in fact induced in cells at the activated bifurcating 
Cluster II and onward in both lineages (Figure 10B). Similarly, 
in order to identify a marker to distinguish Treg- and Tfh-like 
cells, firstly, we identified CCR8 and IL2RA in the intersect of 
FOXP3-driven genes (Figure  9C) and the Tact-Foxp3 genes, 
which were induced highly and progressively in Treg-lineage 
cells throughout FOXP3-pseudotime, while mostly suppressed 
across Tfh-pseudotime (Figure  10C). By contrast, BCL6 and 
KCNK5 [found in the intersect of Tfh-like genes (Figure  9C) 
and the Tact-Runx1 genes, which are expressed in resting Tmem 
but suppressed in rTreg (Figure 4)] were progressively induced 
across Tfh-pseudotime, while suppressed in FOXP3-pseudotime 
(Figure 10D).

Lastly, in order to make the newly obtained knowledge easily 
accessible to experimental immunologists, we showed the expres-
sion of NFAT5, IL2RA, CCR8, BCL6, and KCNK5 in the tumor-
infiltrating T cells in a flow cytometric format (Figure 10E). The 
common activation gene NFAT5 in fact captured the majority of 
Treg-lineage cells (i.e., cells in the Clusters V and VI) and Tfh-
like-lineage cells (i.e., cells in the Clusters III and IV). The expres-
sion of the Treg-specific genes IL2RA and CCR8 occurred in the 
majority of FOXP3+ Treg-lineage cells, whether NFAT5-positive 
or negative, but not in most of Tfh-like-lineage cells. By contrast, 
the Tfh-like-specific genes BCL6 and KCNK5 were expressed by 
the majority of Tfh-like-lineage cells but were not expressed in 
Treg-lineage cells (Figure 10E).

Collectively, these results indicate that the SC4A analysis suc-
cessfully decomposed the gene regulations for T cell activation 
and Treg and effector T cell differentiation, identifying new cell 
populations, which include activated cells at the bifurcation point, 
early and late phases of Treg and Tfh-like differentiation, and their 
feature genes. In addition, although there must be considerable 
differences between resting T  cells in the secondary lymphoid 

organs and between humans and mice, our study successfully 
identified the shared activation processes and the conserved genes 
that are differentially used between the Treg- and the Teff-lineage 
cells. We thus identified a shared systems-level mechanism for the 
differential regulation of activation and differentiation processes 
in CD4+ T cell populations.

DiscUssiOn

Resting Treg showed an activated status, comparable to that of 
Teff and Tmem at the population level (Figure 2), which is con-
sistent with the previous reports that Treg receive TCR signals 
more frequently than other T  cells (60) and their epigenomic 
features are similar to the ones of Tact (9). The activation sig-
nature of Treg was more remarkable in CD44hiCD62Llo aTreg 
than CD44loCD62Lhi naïve Treg. CD44hiCD62Llo Treg are also 
identified as eTreg, which may have enhanced immunosuppres-
sive activities (61). The eTreg fraction includes the GITRhiPD-
1hiCD25hi “Triple-high” eTreg that have high CD5 and Nur77 
expressions, which indicates that they have received strong 
TCR signals (26). In humans, CD25hiCD45RA−FOXP3hi eTreg 
highly express Ki67 (62), indicating that these cells were recently 
activated. Given that TCRs of Treg have higher affinities to self-
antigens (63), these eTreg may have the most self-reactive TCRs 
during homeostasis. Alternatively, the eTreg subset may have 
recently received strong TCR signals and upregulated activation 
markers, and such cells may enter a resting state at later time 
points. Future investigations by TCR repertoire analysis will 
answer this question.

Our study revealed the heterogeneity of FOXP3+ Treg at the 
single-cell level and showed that tumor-infiltrating Treg include 
FOXP3+ T cells with various levels of activation (Figures 8 and 
9). It is plausible that, in the physiological polyclonal settings, the 
variations in the activated status of individual Treg may be due to 
the TCR affinity to its cognate antigen, the availability of cognate 
antigen, and the strength and duration of TCR signals. Our SC4A 
analysis identified the FOXP3-driven genes, which are specific to 
activated FOXP3+ cells and include IL-2 and common gamma 
chain cytokine receptors (i.e., IL2RA, IL2RB, IL15RA, IL4R, and 
IL2RG), DNA replication licensing factors (e.g., MCM2), and 
transcription factors such as PRDM1 (BLIMP1) and IRF4 [which 
control the differentiation and function of eTreg (28)]. These gene 
modules are distinct from the Tfh-like genes and the activation 
genes (Figure  9) and may be controlled specifically by FOXP3 
under strong TCR signals. The expression of these genes is vari-
able within the FOXP3+ T cells, suggesting that the transcriptional 
activities of these genes are dynamically regulated over time in 
tumor-infiltrating Treg. Thus, single-cell level analysis is becom-
ing a key technology to address the heterogeneity of Treg. This 
study is one of the first single-cell analyses of Treg transcriptomes 
[during the review process of this manuscript, two studies that 
report the single cell transcriptomes of Treg were published (64) 
or deposited at a preprint-server (65)].

The shared activation genes between activated FOXP3+ Treg 
and FOXP3− non-Treg contain apoptosis-related genes (e.g., 
CASP3, BAD), which may be differentially controlled between 
Treg and non-Treg at the protein level. For example, activated 
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FigUre 10 | Identification of the conserved genes for the differential regulation of T follicular helper (Tfh)-like and Treg differentiation in activated T cells.  
(a) The identified lineage curves and the bifurcation point in the tumor-infiltrating T cells. The number in circle indicates the cluster number in Figure 9D.  
(B–D) The expression of selected feature genes was plotted against each pseudotime. Genes are from the intersect of (B) activation genes (Figure 9c) and 
Tact-Foxp3 genes (Figure 4), (c) FOXP3-driven genes (Figure 9c) and Tact-Foxp3 genes, and (D) Tfh-like genes (Figure 9c) and Tact-Runx1 genes (Figure 4).  
(e) The expression of selected genes in the tumor-infiltrating T cells was shown by a 2D plot in a flow cytometric style. Data from Treg-lineage cells (Clusters V and 
VI, upper panels) and Tfh-like lineage cells (Clusters III and IV, lower panels). The gene in x-axis (NFAT5) is from the activation gene group (B), while y-axis shows 
genes from either the FOXP3-Treg group (c) or the Tfh-like/Tmem group (D). Thresholds and quadrant gates were determined in an empirical manner using density 
plot.
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FOXP3− non-Treg express DUSP6 (Figure 10B), which is a nega-
tive regulator of JNK-induced apoptosis through BIM activation, 
while FOXP3 suppresses DUSP6 expression and promotes the 
apoptosis mechanism (66). In addition, the activation genes 
include transcription factors such as TBX21 (T-bet) and BATF. 
Although TBX21 is sometimes thought to be a Th1-specific gene, 
it is upregulated immediately after T cell activation (67). BATF 
was identified as a critical factor for the differentiation and accu-
mulation of tissue-infiltrating Treg (68). These activation genes 
may be required when T cells are activated and differentiate into 
either Treg or Teff. Further studies are required to investigate the 
temporal sequences of these differentiation events in vivo.

Although the effects of TCR signals on Tmem were not directly 
examined, considering that Tmem are self-reactive and their dif-
ferentiation is dependent on the recognition of cognate antigens 
in the thymus (7), these results collectively suggest that the acti-
vation signature of Tmem is also dependent on TCR signals, as is 
the activation signature in Treg (Figure 6B). Intriguingly, some 
Treg may lose their Foxp3 expression and become ex-Treg, which 
are enriched in CD44hi effector T cells or Tmem (18). By con-
trast, a Tmem population (precisely, Foxp3−CD44hiCD73hiFR4hi 
T  cells) efficiently express Foxp3 during lymphopenia (69). 
These findings support the feedback control model that Foxp3 
expression can be induced in Tmem and sustained in Treg as a 
regulatory feedback mechanism for TCR signals (7). Given the 
variations in the activated status in individual Treg and Tmem, 
single-cell analysis will be required to address this problem. 
For example, although Samstein et al. showed that DNA hyper-
sensitivity sites in Treg are similar to those in activated T cells 
(9), it is possible that DNA hypersensitivity sites are variable 
between individual Treg, and that Tmem may have a similar  
chromatin structure to Treg.

Importantly, our analysis showed that Tmem express the 
same activated genes as Treg, while the additional Tmem-specific 
activation-induced genes (i.e., Tact-Runx1 genes) are uniquely 
repressed in Treg (Figure 4), which supports that Treg and Tmem 
are closely related populations (7). For example, fate-mapping 
experiments show that T  cells that transiently express Foxp3 
contribute to the memory-like Foxp3−CD44hi T cell population 
(18). Also, a memory-like T cell more efficiently generates Foxp3+ 
Treg than naïve T cells. Our findings (Figure 4B), together with 
these previous reports, are in accordance with the feedback con-
trol perspective proposed by Ono and Tanaka, whereby Treg and 
memory-like T cells are in a dynamic equilibrium and can change 
their phenotype to each other in order to fill the antigen niche and 
maintain CD4+ T cell homeostasis (7).

The repression is likely to be mediated by the interaction 
between Foxp3 and other transcription factors that regulate the 

expression of the Tmem-specific activation genes (Figure  4C). 
Interestingly, Runx1 was associated with these Tmem-specific 
genes. In fact, Foxp3 interacts with Runx1 and thereby represses 
IL-2 transcription and controls the regulatory function of Treg 
(41), and a significant part of the Foxp3-binding to active enhanc-
ers occurs through the Foxp3–Runx1 interaction (9). These sug-
gest that Runx1 may have a unique role in the differentiation and 
maintenance of Tmem.

While CTLA-4 is commonly recognized as a Treg marker, 
it is upregulated in all activated T cells, thus CTLA-4 is also a 
marker of activated T cells (46). CTLA-4 is in fact expressed by 
only a  subset of rTreg (70), which may be more activated and 
proliferating in vivo (71). In fact, our study shows that CTLA-4 
is expressed by non-Treg activated T  cells including resting 
Tmem (Figure 4D) and FOXP3− Tfh-like effector T cells in the 
tumor microenvironment (Figure  9J). These findings support 
that CTLA-4 is primarily a marker for general T cell activation, 
rather than Treg-specific marker, and that Treg are highly acti-
vated T cells with FOXP3 and CTLA-4 expression. Importantly, 
although both FOXP3+ and FOXP3− cells had the same relative 
level of activation (Figure 8D), the absolute number of FOXP3+ 
cells expressing CTLA4 was lower than that of Tfh-type cells 
(Figure  9J), which suggests that therapeutic anti-CTLA4 anti-
bodies (e.g., Ipilimumab) primarily target activated Tfh-like 
effector cells and thereby directly enhance their activities in 
tumor microenvironments. Future studies are required to experi-
mentally investigate the in vivo dynamics of CTLA-4 expression 
in mice and humans.

By contrast, the expression of PDCD1 was consistently high 
in all Tfh-like cells, while it was sparse among FOXP3+ cells 
(Figure 9K). The coexpression of BCL6 and IL21 in some of these 
PD-1+ cells indicates that Tfh differentiation occurs in the tumor 
microenvironment, presumably through the repeated and chronic 
exposure to quasi-self antigens (i.e., tumor antigens). Interestingly, 
the Tfh signature has been identified in type-I diabetes in both 
mice and humans (72). Intriguingly, the Tfh-like genes include 
cell cycle-related genes (e.g., CDK6), immediate early transcrip-
tion factors (NFATC1, EGR2/3), and RNA-processing genes (e.g., 
DICER1). The significance of these gene modules should be 
addressed in future studies. However, the high PDCD1 expres-
sion in Tfh-like cells may make them vulnerable to the negative 
immunoregulatory effect of PD-1 in tumor microenvironments 
(55). In fact, the most mature PDCD1high Tfh-like cells (Cluster 
VI, Figure  9K) moderately decrease the expression levels of 
activation genes (Figure  9E), suggesting that these cells may 
have started to be regulated by PD1 ligands. Further experimental 
investigations are required to reveal how dynamically PD1 regu-
lates T cells during the immune response.
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Interestingly, RUNX1 is completely repressed in the early 
phase of FOXP3-pseudotime (Cluster V) but re-expressed in 
the late phase of FOXP3-pseudotime (Cluster VI) (Figure 9I). 
Similar to RUNX1, some cells appear to be expressing PDCD1 in 
the later phase of FOXP3-pseudotime in Treg-lineage cells. The 
reappearance of effector phenotype genes RUNX1 and PDCD1 in 
FOXP3high cells may indicate that these Treg are highly activated 
eTreg, which are actively participating in neutralizing the activi-
ties of effector T cells and Tfh. In addition, these FOXP3high cells 
may include ambivalent cells with both regulatory and effector 
features, or alternatively, be at the point of conversion to Tmem 
(Figure 9K). In bulk rTreg, Pdcd1 was expressed at low levels in 
some Treg (Figure 4E) as well as PD-L2-encoding gene Pdcd1lg2 
(Figure  4D). Future studies are required to reveal the role of 
these cells.

This study has shown that SC4A and CCA results can be 
further analyzed by the lineage analysis using pseudotime, reveal-
ing the differentiation dynamics of tumor-infiltrating T cells as a 
function of arbitrary time. The CCA-pseudotime approach in this 
study has shown single-cell level heterogeneity of CD4+ T cells 
including Treg and effector T cells, identifying the differentially 
regulated gene modules and the bifurcation point for T cell fates. 
Biologically, however, it should be emphasized that, because 
pseudotime is not a direct measurement of the time-dependent 
events, but rather is that of similarities between samples (73), 
future studies are required to analyze time-dependent events 
in vivo, ideally with a new experimental system to directly address 
the temporal dynamics.

Nevertheless, this study demonstrated the power of the SC4A/
CCA approach to extract biological meaning from unannotated 
single-cell RNA-seq data, identifying the unique features of 
each T cell population and visualizing the relationships between 
T cell populations and genes without using annotation database. 
This has been made possible by the unique ability of CCA to 
add interpretable axes on the low dimensional plot of RNA-seq 
data. While a conventional dimension reduction method such 
as PCA requires an arbitrary interpretation of axes, CCA can 
thus improve the analysis of multidimensional RNA-seq data. 
In addition, SC4A has been shown to be effective in identify-
ing distinct clusters of T cells and the correlated genes to each 
cluster, and thereby to reveal characteristic cell groups and 
their active gene modules, while retaining the single-cell level 
variations. While the conventional CCA approach requires an 
explanatory dataset that represents the biological process of 
interest to be generated or identified, SC4A uses a single-cell 
dataset to select explanatory variables in the dataset according 
to their correlations to cell clusters. Although this step has 
been partially automated, the current SC4A method requires to 
pre-select ~20 candidate genes for explanatory variables due to 
the computational limitation (i.e., this process requires several 
hours for each analysis using a standard desktop). Potentially, 

this process can be further improved and automated by combin-
ing SC4A with other algorithms (e.g., machine learning) and/
or the use of annotation databases to identify the biologically 
meaningful genes that can model the entire single-cell data. 
In addition, further mathematical investigation of the method 
and the implementation of the computational algorithm using 
a low-level language may be beneficial. Although there is room 
for future improvements, our current study has shown that mul-
tidimensional data (i.e., data with many cell populations) and 
single-cell data can be better analyzed with the use of SC4A and 
CCA, allowing both hypothesis-driven investigation and explo-
ration, and that the in-depth knowledge of immunology and 
gene regulation is useful for data analysis, in the same manner 
as it is required for experimental investigations. Thus, it is hoped 
that these tools will be widely used by experimental immunolo-
gists with a sound understanding of the biological significance 
of the results, as well as adequate competence in computational 
analysis, which will enable to ask questions involving multidi-
mensional problems such as multiple T cell subsets.
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