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Abstract

This paper addresses an upper bound derived by Kitahara and Mizuno [10] on the number
of basic feasible solutions of a linear program generated with the simplex algorithm. Their
bound includes two parameters δ and γ , which are respectively the minimum and the
maximum values of positive components in all basic feasible solutions. We show that δ is
NP-hard to determine while γ can be computed in polynomial time. We also report some
numerical results using alternative parameters for δ and γ .

Key words: Linear programming, simplex algorithm, number of iterations, basic feasible
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1 Introduction

While over thirty years have passed since the first two polynomial-time algorithms were pub-
lished [7,9], it is still an open question whether linear programming generally admits a strongly
polynomial-time algorithm whose number of iterations depends only on the number of vari-
ables n and the number of constraints m. At present, the simplex algorithm is conjectured
to serve as a strongly polynomial-time algorithm, by devising an ingenious pivot selection
rule [1]. As if to support this, Ye proved in 2011 [16] that the simplex algorithm solves a lin-
ear program derived from the Markov decision problem with a fixed discount rate in strongly
polynomial time, even under the usual Dantzig’s pivot selection rule. The simplex algorithm
applied to the Markov decision problem is also dealt with in [5, 12]. In 2013, Kitahara and
Mizuno [10] extended Ye’s result to general linear programs and showed that the number of
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different basic feasible solutions generated before the simplex algorithm terminates is bounded
from above by n⌈(mγ/δ ) log(mγ/δ )⌉, where δ and γ are respectively the minimum and the
maximum values of positive components in all basic feasible solutions of the problem. In the
case of the Markov decision problem with discount rate θ , we have δ ≥ 1 and γ ≤ m/(1−θ),
and hence Kitahara-Mizuno’s upper bound is strongly polynomial in m and n. So, what kind
of size is this upper bound for general linear programs? The purpose of this paper is to clarify
this simple question.

In Section 2, after outlining the behavior of the simplex algorithm, we introduce Kitahara-
Mizuno’s analysis on the simplex algorithm in some detail. In Section 3, to make actual
measurements of δ and γ , we discuss how to obtain these parameters. We then show that δ is
NP-hard to determine while γ can be computed in polynomial time. In Section 4, we introduce
easily computable substitutes for δ and γ , and report the numerical results using those for 20
instances selected from the Netlib collection [14].

2 Theoretical behavior of the simplex algorithm

The problem considered in this paper is a linear program of the standard form:∣∣∣∣ minimize cx
subject to Ax = b, x ≥ 0,

(1)

where A = [a1, . . . ,an] ∈ Rm×n is full row-rank, b ∈ Rm and cT ∈ Rn. For simplicity, let us
assume that the feasible set is nonempty and bounded. Then (1) has an optimal basic solution
x∗ with value z∗ = cx∗. The dual problem of (1) is written as∣∣∣∣ maximize bTy

subject to ATy+ s = cT, s ≥ 0,
(2)

where s ∈ Rn is a vector of slack variables. By the duality theorem (see e.g., [2, 4]), this
problem also has an optimal solution (y∗,s∗) with value bTy∗ = z∗.

OVERVIEW OF THE SIMPLEX ALGORITHM

Let B ∈ Rm×m be a submatrix of A such that B is invertible and B−1b ≥ 0, and let N ∈
Rm×(n−m) denote the remaining part of A. Also let B and N denote their column index sets.
After swapping some columns of the matrix and vectors as follows

A = [B,N], c = [cB,cN ], xT = [xT
B,x

T
N ],

we have a linear system, called a dictionary of (1):∣∣∣∣ xB = B−1b−B−1NxN

z = cBB−1b− cNxN ,
(3)
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where cN = cN − cBB−1N. Usually, xB and xN are referred to as the vectors of basic and
nonbasic variables, respectively. Since B−1b ≥ 0, the pair (xB,xN) = (B−1b,0) gives a basic
feasible solution to (1). If cN ≤ 0, the pair is an optimal solution to (1). Otherwise, there
exists a positive component, say cs, in cN . If the value of variable xs increases from zero to
v ≥ 0, the objective function value z decreases accordingly by csv. Once some row, say xr,
of xB = B−1 −B−1asv reaches zero, the columns ar of B and as of N are swapped and the
dictionary (3) is updated. The simplex algorithm repeats these steps and generates a sequence
of basic feasible solutions x1, . . . ,xk, . . . of (1), starting from an initial basic feasible solution
x0, until cN ≤ 0 holds.

The step of swapping ar and as is referred to as pivoting. If there are multiple positive
components in cN , we need to select an appropriate one from among them to perform pivoting.
Many selection rules have been proposed so far (see [15]), and among others, the largest
coefficient rule, also known as Dantzig’s rule, and the largest improvement rule are the two
most popular selection rules. The former suggested by Dantzig [4] simply chooses as cs the
largest component in cN . The latter first calculates

v j = min{bi/ai j | ai j > 0, i ∈ B}

for each j ∈ N such that c j > 0; and then it adopts c j with the largest c jv j as cs. There-
fore, while it requires more computational effort, the largest improvement rule can reduce
the objective function value z more than the largest coefficient rule does for each pivoting
step. Hereafter, the simplex algorithm is assumed to follow either the largest coefficient or the
largest improvement rule.

THE ANALYSIS OF KITAHARA-MIZUNO [10]

Let δ and γ respectively denote the minimum and the maximum values of positive components
in all basic feasible solutions of (1). Namely, each basic feasible solution xk encountered in
the simplex algorithm satisfies

δ ≤ xk
j ≤ γ if xk

j ̸= 0. (4)

Suppose that (3) is the dictionary corresponding to xk, and that xk ̸= x∗. Naturally, x∗ and z∗

still satisfy the system (3). Hence, by noting that x∗ has at most m positive components, we
have

z∗ = cBB−1b− cNx∗N ≥ cxk − csex∗N ≥ cxk − csmγ (5)

if cs is chosen by the largest coefficient rule, where e ∈ Rn−m is the all-ones vector. The
dictionary (3) is updated by increasing the value of variable xs to xk+1

s while keeping other
nonbasic variables equal to zero. This, together with (5), implies

cxk − cxk+1 = csxk+1
s ≥ csδ ≥ δ

mγ
(cxk − z∗)

3



as long as xk+1
s ̸= 0. Note that the right-hand-side of the last inequality is also a lower bound on

the decrement of the objective function value when the largest improvement rule is adopted.
Thus we have the first key result (Theorem 1 in [10]):

Lemma 2.1 If xk ̸= xk+1, then

cxk+1 − z∗ ≤
(

1− δ
mγ

)
(cxk − z∗).

From the feasibility of xk and (y∗,s∗), we have

cxk − z∗ = cxk −bTy∗ = (ATy∗+ s∗)Txk − (Axk)Ty∗ = ∑
j∈B

s∗jx
k
j, (6)

by noting that xk
j = 0 for each j ∈ N. Since s∗jx

k
j ≥ 0 for each j ∈ B, there exists an index

t ∈ B such that s∗t xk
t ≥ (cxk − z∗)/m. In a way similar to (6), we have cxi − z∗ ≥ s∗t xi

t for each
i. These imply the second key result (Lemma 2 in [10]):

Lemma 2.2 If xk ̸= x∗, then there exists an index t ∈ B such that

xk
t > 0, s∗t ≥

1
mxk

t
(cxk − z∗).

Moreover, for each i, the basic feasible solution xi satisfies

xi
t ≤ m

cxi − z∗

cxk − z∗
xk

t .

Let k denote the number of different basic feasible solutions in {x0,x1, . . . ,xk}. We see
from Lemma 2.2 that there exists a basic variable xt in x0 such that x0

t > 0 and

xk
t ≤ m

cxk − z∗

cx0 − z∗
x0

t .

We also see from Lemma 2.1 that

cxk − z∗ ≤
(

1− δ
mγ

)k

(cx0 − z∗).

These inequalities, together with (4), imply

xk
t ≤ m

(
1− δ

mγ

)k

x0
t ≤ mγ

(
1− δ

mγ

)k

.

The right-hand-side of the second inequality is less than δ if

k > m
γ
δ

log
(

m
γ
δ

)
,
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because log(1− x)≤−x holds in general if x < 1. For such a k, we have xk
t < δ , i.e., xk

t = 0,
and the variable xt remains zero after the kth iteration. As in the case of x0, if xk ̸= x∗, there
exists a positive-valued variable in xk, which vanishes if the simplex algorithm generates k
different basic feasible solutions at most. Since the number of variables is n, we have the last
key result (Theorem 2 [10]):

Theorem 2.3 The simplex algorithm finds an optimal solution x∗ of the problem (1) after
generating n⌈(mγ/δ ) log(mγ/δ )⌉ different basic feasible solutions at most.

Kitahara et al. [11] has performed a similar analysis for the upper bounding simplex algo-
rithm (see e.g., [2, 4]).

3 How to derive the ratio of δ to γ for general linear programs

Let us denote the upper bound given in Theorem 2.3 as

U(m,n,δ ,γ) = n
⌈

m
γ
δ

log
(

m
γ
δ

)⌉
.

As is obvious from this bound, the simplex algorithm serves as a strongly polynomial-time
algorithm for a linear program if the problem is nondegenerate and the ratio of γ to δ is
bounded from above by a polynomial in m and n. A typical case is where all basic feasible
solutions are integral, and realized when A is totally unimodular and b is integral. Then, for
general linear programs, how large is U(m,n,δ ,γ)? To answer the question, in this section,
we discuss methods of computing the values γ and δ without assuming any special structures
on the problem (1).

COMPUTATION OF THE VALUE γ

With respect to γ , it is not hard to compute the value. In fact, γ can be determined after solving
the following linear program for j = 1, . . . ,n:∣∣∣∣ maximize x j

subject to Ax = b, x ≥ 0.
(7)

The feasible set of (1) has been assumed to be nonempty and bounded, and hence (7) with the
same feasible set has an optimal solution, say x j. The value of γ is given by the maximum
of x j

j for j = 1, . . . ,n. Since polynomial-time algorithms are available for (1), and hence for
(7) [7, 9], the total complexity of computing γ is also bounded by a polynomial in the input
length of (7), or (1).

COMPUTATION OF THE VALUE δ

Unfortunately, in contrast to γ , computing the value δ is intractable. In fact, the following
well-known NP-complete problem (see also [6]) reduces in polynomial time to the problem of
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finding a basic feasible solution with a component equal to δ .

PARTITION [8]

INSTANCE: n positive integers a j, j = 1, . . . ,n.

QUESTION: Is there a subset S ⊂ {1, . . . ,n} such that ∑ j∈S a j = ∑ j ̸∈S a j?

Before proceeding the discussion, let us define our problem more precisely:

FINDING δ
INPUT: An integer m×n matrix A and an integer m-vector b.

OUTPUT: If any, a basic feasible solution with the minimum positive component in all basic
feasible solutions of the system:

Ax = b, x ≥ 0.

Theorem 3.1 The problem FINDING δ is NP-hard.

Proof. Let us consider an arbitrary instance of the problem PARTITION. Without loss of
generality, we can assume a j > 1 for some j. Otherwise, the problem is trivial to solve: the
answer is “yes” if and only if n is even. We can also assume that ∑n

j=1 a j is an even integer,
because otherwise the answer is “no”. Let b = ∑n

j=1 a j/2 and define a linear system:∣∣∣∣∣∣∣∣∣
n

∑
j=1

a jx j = b

x j + xn+ j = 1, j = 1, . . . ,n
x ≥ 0,

(8)

where x = (x1, . . . ,x2n)
T. Note that each basic feasible solution to this system is obtained by

fixing either x j or xn+ j to zero for all j except one. Therefore, the variables of at most one
pair (x j,xn+ j) can be fractions in each basic feasible solution. If the system (8) has a basic
feasible solution x′ without such a fraction variable pair, we can answer “yes” along with the
certification S = B∩{1, . . . ,n}, where B is the index set of basic variables in x′. In order to
check it, we solve a slightly perturbed system:∣∣∣∣∣∣∣∣∣

α
n

∑
j=1

a jx j = αb+1

x j + xn+ j = 1, j = 1, . . . ,n
x ≥ 0,

(9)

where α is any integer larger than max{a j | j = 1, . . . ,n}+ 1. First, we will show that there
exists a surjection from the set of basic feasible solutions of (9) to the set of basic feasible
solutions of (8).

Let x′ be any basic feasible solution of (8), and let r ∈ argmin{x′j | j ∈ B∩{1, . . . ,n}}.
There are three cases to consider.
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Case 1: 0 < x′r < 1. Since a j’s and b are all integers, we have

1
ar

≤ x′r ≤ 1− 1
ar
,

1
ar

≤ x′n+r ≤ 1− 1
ar
. (10)

Let
x′′r = x′r +

1
αar

, x′′n+r = x′n+r −
1

αar
, x′′j = x′j for each j ̸∈ {r, n+ r}. (11)

Then x′′r +x′′n+r = 1, and we have 0 ≤ x′′r ,x
′′
n+r ≤ 1 since 0 < 1/(αar)< 1/ar. We see that x′′

is a basic feasible solution of (9).

Case 2: x′r = 0. Let

x′′r =
1

αar
, x′′n+r = 1− 1

αar
, x′′j = x′j for each j ̸∈ {r, n+ r}. (12)

Again, x′′ is a basic feasible solution of (9).

Case 3: x′r = 1. There exists an index s ∈ {1, . . . ,n} such that x′s = 0 and x′n+s = 1; otherwise,
∑n

j=1 a jx′j =∑n
j=1 a j = b=∑n

j=1 a j/2, which contradicts the fact that a j’s are positive integers.
Let

x′′s =
1

αas
, x′′n+s = 1− 1

αas
, x′′j = x′j for each j ̸∈ {s, n+ s}. (13)

Then x′′ is a basic feasible solution of (9), as in case 2.

Thus, in any case, there exists a basic feasible solution of (9) corresponding to x′.
Now, let x′′ be any basic feasible solution to (9). Let r ∈ argmin{x′′j | j ∈ B∩{1, . . . ,n}}.

Then 0 < x′′r < 1, and hence we have

1
αar

≤ x′′r ≤ 1− 1
αar

,
1

αar
≤ x′′n+r ≤ 1− 1

αar
.

Let
x′r = x′′r −

1
αar

, x′n+r = x′′n+r +
1

αar
, x′j = x′′j for each j ̸∈ {r, n+ r}.

Then x′ is a basic feasible solution of (8).
The above discussion implies that each basic feasible solution x′ of (8) in Case 1 corre-

sponds to some basic feasible solution x′′ of (9) in a one-to-one fashion. From (10) and (11),
we have

x′′r ≥ 1
ar

+
1

αar
>

1
α
, x′′n+r ≥

1
ar

− 1
αar

>
1
α
,

by noting that α > max{a j | j = 1, . . . ,n}+ 1. As a result, all positive components in x′′ are
greater than 1/α . In contrast to this, if x′′ corresponds to a basic feasible solution of (8) in
Case 2 or 3, there exists a fractional component x′′r , or x′′s , such that

x′′r =
1

αar
≤ 1

α
, x′′s =

1
αas

≤ 1
α
.
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Therefore, the answer to PARTITION is “yes” if and only if the output of FINDING δ for the
system (9) is less than 1/α .

4 Numerical results

As suggested by Theorem 3.1, the only surest way to obtain the exact value of δ is currently
enumeration of all basic feasible solutions. However, an upper bound on δ is easy to obtain
with some additional effort in the course of solving (1) by the simplex algorithm. The analysis
of Kitahara-Mizuno [10] reviewed in Section 2 was conducted on the basis of the relationship
(4), i.e., δ ≤ xk

j ≤ γ if xk
j ̸= 0, satisfied by each basic feasible solution xk encountered in

the simplex algorithm. Suppose the algorithm terminates after generating K basic feasible
solutions, and let

δ+ = min{xk
j | xk

j > 0, j = 1, . . . ,n; k = 0,1, . . . ,K}
γ− = max{xk

j | xk
j > 0, j = 1, . . . ,n; k = 0,1, . . . ,K}.

Then, naturally, as in (4), each basic feasible solution xk satisfies

δ+ ≤ xk
j ≤ γ− if xk

j ̸= 0.

Even replacing δ and γ by δ+ and γ−, respectively, we can develop the same argument as in
Section 2, and derive an upper bound:

U(m,n,δ+,γ−) = n
⌈

m
γ−

δ+
log

(
m

γ−

δ+

)⌉
(14)

on the number of different basic feasible solutions generated with the simplex algorithm. Since
we need to generate K basic feasible solutions beforehand, this result is somewhat preposter-
ous. Nevertheless, due to limited computational resources, we calculated this bound, instead
of the bound U(m,n,δ ,γ) of Kitahara-Mizuno, and compared it with the actual number of
different basic feasible solutions, denoted by K, generated with the simplex algorithm. For
this purpose, we modified an existing computer code of the simplex algorithm provided in [3],
adopting the largest coefficient (Dantzig’s) rule. We then selected from [14] 20 instances of
sizes between (m,n) = (27,59) and (990,2361), without considering their problem structures,
and solved them on an Intel Core i7-4790 (3.60GHz).

Our computational results are summarized in Table 1, which lists the problem size (m×n),
the number of total iterations (# iterations), the number of generated different basic feasible
solutions (K), the minimum positive component (δ+), the maximum positive component (γ−)
in the K basic feasible solutions, and the upper bound defined in (14) (U(m,n,δ+,γ−)) when
the simplex algorithm solved each instance (name). For a reference, the last column gives the
value:

V (m,n) =
(

n−⌈(n−m+1)/2⌉
m

)
+

(
n−⌈(n−m+2)/2⌉

m

)
,
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which is known to be an upper bound on the number of vertices in the feasible set of (1)
[13]. We see from Table 1 that U(m,n,δ+,γ−) is a considerable overestimate of K, and even
of the number of total iterations, while it is far less than V (m,n) for each instance. Since
δ ≤ δ+ and γ ≥ γ−, the original U(m,n,δ ,γ) would be a yet larger overestimate. Although
U(m,n,δ ,γ) is a powerful guarantee that the simplex algorithm serves as a polynomial-time
algorithm for some special structured problems, it might be too weak to estimate the number
of iterations needed to solve general problems with no favorable structure. Anyway, to unravel
the relationship between problem structures and U(m,n,δ ,γ), we need further theoretical and
empirical research.
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