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Abstract

We present the first results of our spatially axisymmetric core-collapse supernova simulations with full Boltzmann
neutrino transport, which amount to a time-dependent five-dimensional (two in space and three in momentum
space) problem. Special relativistic effects are fully taken into account with a two-energy-grid technique. We
performed two simulations for a progenitor of 11.2M☉, employing different nuclear equations of state (EOSs):
Lattimer and Swesty’s EOS with the incompressibility of K=220MeV (LS EOS) and Furusawa’s EOS based on
the relativistic mean field theory with the TM1 parameter set (FS EOS). In the LS EOS, the shock wave reaches
∼700 km at 300 ms after bounce and is still expanding, whereas in the FS EOS it stalled at ∼200 km and has
started to recede by the same time. This seems to be due to more vigorous turbulent motions in the former during
the entire postbounce phase, which leads to higher neutrino-heating efficiency in the neutrino-driven convection.
We also look into the neutrino distributions in momentum space, which is the advantage of the Boltzmann
transport over other approximate methods. We find nonaxisymmetric angular distributions with respect to the local
radial direction, which also generate off-diagonal components of the Eddington tensor. We find that the rθ
component reaches ∼10% of the dominant rr component and, more importantly, it dictates the evolution of lateral
neutrino fluxes, dominating over the θθ component, in the semitransparent region. These data will be useful to
further test and possibly improve the prescriptions used in the approximate methods.
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1. Introduction

The theoretical study of the explosion mechanism of core-
collapse supernovae (CCSNe) has heavily relied on numerical
simulations. This is mainly because nearby CCSNe are rare(van
den Bergh & Tammann 1991; Cappellaro et al. 1993; Tammann
et al. 1994; Reed 2005; Diehl et al. 2006; Maoz & Badenes 2010;
Li et al. 2011), and, in fact, SN1987A is the only one close
enough to extract some useful information on what happened
deep inside the massive star from, among other things, the
detection of neutrinos (Bionta et al. 1987; Hirata et al. 1987).
Since the CCSNe are intrinsically multiscale, multiphysics, and
multidimensional (multi-D) phenomena, their mechanism can be
addressed only with detailed numerical simulations.

Unfortunately, even the most advanced multi-D simulations
of CCSNe employed approximations one way or another in
their numerical treatment of neutrino transport(Marek &
Janka 2009; Müller et al. 2012; Bruenn et al. 2013, 2016;
Takiwaki et al. 2014; Dolence et al. 2015; Just et al. 2015;
Lentz et al. 2015; Melson et al. 2015; O’Connor & Couch
2015; Burrows et al. 2018; Kuroda et al. 2016; Pan et al. 2016;

Roberts et al. 2016; Skinner et al. 2016; Summa et al. 2016;
Andresen et al. 2017). Most of them somehow integrated out
the angular degrees of freedom in momentum space or
neglected nonradial fluxes in neutrino transport. Ott et al.
(2008) is the only exception, in which they conducted time-
dependent five-dimensional simulations in spatial axisymmetry.
However, they ignored relativistic corrections completely,
dropping all fluid-velocity-dependent terms, which are crucial
for qualitatively correct descriptions of the angular distribution of
neutrinos in momentum space (see, e.g., Buras et al. 2006; Lentz
et al. 2012).
The best way to calibrate all of these approximate methods

should be to compare them with simulations that solve full
Boltzmann equations, retaining the angular degree of freedom,
for neutrino transport. Under axisymmetry in space, this is now
indeed possible, and we have achieved such simulations with
the K computer in Japan, one of the best currently available
supercomputers with ∼10 PFLOPS. The validation of our
Boltzmann solver has been conducted in a series of papers: the
standard tests in static matter distributions meant for radiation
transport codes were done in Sumiyoshi & Yamada (2012);
Nagakura et al. (2014) coupled the Boltzmann solver with a
hydrodynamics code of their own construction and tested in
dynamical settings the capability of the integrated code to treat
special relativistic effects; Nagakura et al. (2017), on the other
hand, tested a new module implemented to track the motion of
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a proto neutron star (PNS) with a moving grid; very recently,
Richers et al. (2017) made a detailed comparison with another
Boltzmann solver based on the Monte Carlo method using
snapshots from our 2D and 1D simulations and calculating
steady-state neutrino distribution functions in the static fluid
backgrounds. Having established the reliability of our code
with these test computations, we now proceed to present the
first series of multi-D simulations of CCSNe with the full
Boltzmann neutrino transport. In this paper, we also pay
attention to the neutrino angular distributions in momentum
space, which are what the Boltzmann solver is meant for in the
first place. Throughout this paper, Greek and Latin subscripts
denote spacetime and spatial components, respectively. We use
the metric signature −+++. Unless otherwise stated, we work
in units with c=G=1, where c is the speed of light and G is
the gravitational constant.

2. Methods and Models

We solve numerically the equations of neutrino-radiation
hydrodynamics. We apply the so-called discrete-ordinate
method to the Boltzmann equations for neutrino transport,
taking fully into account special relativistic effects by virtue of
a two-energy-grid technique(Nagakura et al. 2014). It has
already incorporated general relativistic capabilities as well, a
part of which is utilized to track the proper motion of PNSs
(Nagakura et al. 2017). The hydrodynamics and self-gravity are
still Newtonian: the so-called central scheme of second-order
accuracy in both space and time is employed for the former,
and the Poisson equation is solved for the latter.

It should be noted that our treatment of neutrino transport is
essentially different from other approximate methods such as
the M1 scheme that are commonly employed in the currently
most elaborate supernova simulations and are based on the
truncated moment formalism one way or another. It is
combined with the ray-by-ray approximation in some applica-
tions (see, e.g., Müller et al. 2012). In the moment formalism,
the Boltzmann equation is angle-integrated in momentum space
to obtain an infinite number of equations for angular moments,
which are then truncated at some order somehow (see Section 4
for more details). Such approximations reduce the computa-
tional cost drastically. On the other hand, they inevitably
introduce the so-called closure relation among low-order
moments, which are the artificial prescriptions to make the
truncated equations self-contained. Although the validity of
those prescriptions has been assessed for spherically symmetric
cases in the literature (Richers et al. 2017), it remains to be
demonstrated in multidimensional and, more importantly,
dynamical settings. In sharp contrast, our approach does not
employ any such artificial prescription in the neutrino transport
except for the finite discretization of the Boltzmann equation,
which is all but mandatory for this sort of simulation.

We adopt spherical coordinates (r, θ) covering
0�r�5000 km and 0°�θ�180° in the meridian section.
We deploy 384(r)×128(θ) grid points. Momentum space is
also discretized nonuniformly with 20 energy mesh points
covering 0�ε�300MeV and q f´(¯) ( ¯ )10 6 angular grid
points over the entire solid angle. The polar and azimuthal
angles q f(¯ ¯ ), are locally measured from the radial direction.
Three neutrino species are distinguished: electron-type neu-
trinos νe, electron-type antineutrinos n̄e, and all of the others,
collectively denoted by νx.

We pick up a nonrotating progenitor model of 11.2Me from
Woosley et al. (2002). We employ two nuclear equations of state
(EOSs): Lattimer & Swesty’s EOS with the incompressibility
of K=220MeV (Lattimer & Douglas Swesty 1991) and
Furusawa’s EOS derived from H. Shen’s relativistic mean field
EOS with the TM1 parameter set(Furusawa et al. 2011, 2013);
the former is softer than the latter (see Sumiyoshi et al. 2004). In
the following, they are referred to as the LS and FS EOSs,
respectively.10 The choice of EOS is simply based on the fact that
most of the previous simulations employed one of these EOSs.
We are currently running similar simulations, but with another
EOS: Togashi’s nuclear EOS based on the variational method
with realistic nuclear potentials (Togashi & Takano 2013)
extended by Furusawa et al. (2017) to subnuclear densities; it
takes into account the full ensemble of heavy nuclei in nuclear
statistical equilibrium. The results will be reported elsewhere
(H. Nagakura et al. 2018, in preparation). Neutrino–matter
interactions are based on those given by Bruenn (1985), but we
have implemented the up-to-date electron capture rates for heavy
nuclei(Langanke & Martínez-Pinedo 2000; Langanke et al. 2003;
Juodagalvis et al. 2010); they are calculated based on the
abundance of heavy nuclei obtained in the FS EOS. The same
rates are employed in the LS EOS model just for simplicity. Note
also that the LS EOS employs a single-nucleus approximation,
and the detailed information on the population of various nuclei is
unavailable. In the current simulations, we incorporated the
nonisoenergetic scatterings on electrons and positrons as well as
the bremsstrahlung in nucleon collisions. We refer readers to
Nagakura et al. (2014, 2017) and Sumiyoshi & Yamada (2012)
for more details of our code.
We start the simulations in spherical symmetry and switch

them to axisymmetric computations at ∼1ms after core bounce
when a negative entropy gradient starts to develop behind the
shock wave. We seed by hand at this point in time perturbations
of 0.1% in the radial velocities at 30�r�50 km, where
convection is expected to occur (see Figure 2). Note that we do
not explicitly consider possible turbulent motions that have
already existed in the progenitors before collapse. We then
expect in nonrotating models that nonradial motions develop
initially in the convectively unstable region and then spread in
the rest of the postshock flow. Each model is run up to
t=300ms after bounce.

3. Dynamics

As displayed in Figure 1(a), the shock wave produced at the
core bounce expands rather gradually with time for the LS
EOS, and its maximum radius reaches ∼700 km at t=300 ms.
For the FS EOS, on the other hand, the shock wave stalls at
r∼200 km at t∼100 ms and then starts to recede at
t∼250 ms and shrinks back to r∼100 km by t∼300 ms.
Although the time evolutions of the average shock radii of the
two models are quite similar to each other until ∼60 ms after
bounce and their deviations become remarkable thereafter,
some differences have in fact already appeared in the postshock
flows by this time.
In the top two panels of Figure 2, we compare the angle-

averaged amplitudes of lateral velocity for the two models. The
more reddish the color is, the stronger the lateral motions. It is
apparent that they become appreciable initially at t∼10 ms in

10 The maximum gravitational masses at zero temperature and nonrotating
neutron stars are 2.02 Me for LS EOS and 2.21 Me for FS EOS, respectively.
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a region at r∼30 km almost simultaneously, which marks the
onset of the prompt convection. Although the turbulent region
extends upward in both models, the amplitudes of the lateral
velocity are larger for the LS EOS than for the FS EOS,
indicating that the prompt convection is more vigorous in the
former. This trend persists until much later times, though, as is
also evident from the figure.

The difference in the strength of the prompt convection may
be understood from the difference in the Brunt–Väisälä
frequencies, which are compared in the lower panels of
Figure 2. Reddish colors again imply more rapid (exponential)
growth of the convection. As expected, the unstable region
emerges at r∼30–50 km immediately after the switch to the
2D computations for both models. Although this strongly
unstable region persists until t∼15 ms at about the same
location for both models, the maximum frequency is larger for

the LS EOS. This difference can be traced back to the
difference in photodissociations of heavy nuclei by shock
heating. In fact, they are stronger in the LS EOS, and, as a
result, the shock is weakened more severely, producing steeper
negative entropy gradients in this case. The initial fluctuations
produced this way are carried upward by acoustic waves, which
are also stronger in the LS EOS. As a consequence, the
turbulent motions are more vigorous for the LS EOS than for
the FS EOS as already mentioned, a fact that has an important
implication for later evolution of the shock waves.
It is interesting that the neutrino luminosities (L) and mean

energies (Em, defined as the ratio of energy density to number
density) are almost identical between the two cases
(Figure 1(b)). It should be noted, however, that the neutrino-
heating efficiency is different, being higher for the LS EOS (see
solid lines in Figure 1(c)). This is mainly because the total

Figure 1. (a) Shock radii as functions of time. The color-shaded regions show the ranges of the shock radii: red for the LS EOS and blue for the FS EOS. The solid
lines are the angle-averaged values. For comparison, the corresponding results in spherical symmetry are displayed with dashed lines. (b) Time evolutions of the angle-
integrated luminosities (L, solid lines) and the angle-averaged mean energies (Em, dashed lines) for different species of neutrinos. Both of them are measured at
r=500 km. (c) Neutrino-heating efficiency (solid lines) and total mass in the gain region (dashed lines). The heating efficiency is defined as the ratio of the energy
deposition rate in the gain region to the sum of the neutrino luminosities of νe and n̄e. (d) Ratio of the advection to heating timescales (Tadv/Theat, with solid lines) and
the χ parameter (dashed lines). The dotted black line represents Tadv/Theat=1 and χ=3 for reference.
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baryon mass in the gain region, where heating dominates over
cooling and the net heating occurs, is consistently larger for the
LS EOS than for the FS EOS (dashed lines in the same panel).
This in turn seems to be a consequence of the turbulent motions
that are more vigorous for the LS EOS, as we mentioned in the
previous paragraphs.

Figure 3 compares the entropy and velocity distributions
between the two models at t=200 ms. Their postshock
morphologies are quite similar to each other, and only the scales
are different. In fact, the convection is dominant over the
standing accretion shock instability (SASI) in most of the
postbounce phase for both models (see the χ parameter (Foglizzo
et al. 2006; Iwakami et al. 2014) in Figure 1(d)). In the same
panel, we also show the ratio of the advection timescale
( = ˙T M Madv g with Mg and Ṁ denoting the mass in the gain
region and the mass accretion rate, respectively) to the heating
timescale ( = n∣ ∣ ˙T E Qheat tot with Etot and nQ̇ being the total
energy and the heating rate in the gain region, respectively) as
solid lines. One can see that it is consistently larger for the LS
EOS than for the FS EOS, meaning that the former has more
favorable conditions for shock revival than the latter.

The decline of this ratio near the end of the simulation for the
LS EOS in spite of a continuous growth of the maximum shock
radius is an artifact originating from our choice of the minimum
shock radius in the evaluation of the ratio. As displayed in
Figure 1(a), the minimum shock radius is still decreasing with
time at the end of the simulation. Then the volume of the gain
region is underestimated, and, as a result, Theat is overestimated.
The fact that the ratio occasionally exceeds unity but still yields
no shock revival for the FS EOS indicates that the criterion is
not a rigorous condition, which is understood also from the
uncertainty in its definition just mentioned. We do not intend to
discuss the applicability of the diagnostics any further in this
paper, but we still think it is useful in judging, albeit roughly,
which model is closer to shock revival.

4. ν Distributions in Momentum Space

Next we turn our attention to novel features of the neutrino
distributions in momentum space. We find in our calculations a
significant nonaxisymmetry with respect to the radial direction
in the neutrino angular distributions. It is produced by lateral

Figure 2. Color contours showing time evolutions of the radial profile of angle-averaged lateral velocities ( q∣ ∣v ) until 100 ms after bounce (top) and of Brunt–Väisälä
frequencies in the very early postbounce phase up to 20 ms (bottom). Left and right panels present LS and FS EOS models, respectively. The solid line indicates the
minimum shock radius in each panel. Note that a positive (negative) sign is assigned to imaginary (real) Brunt–Väisälä frequencies in this figure for convenience.
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inhomogeneities in matter, which are in turn generated by
hydrodynamical instabilities. The asymmetry hence appears
inevitably in multi-D simulations.

Figure 4 shows as an example the angular distributions of νe
with an energy of ε=11.1MeV at three different radial
positions. Each surface displays the neutrino distribution
function for different propagation directions normalized by
the maximum value in the fluid rest frame. Colors of the
surfaces denote the locations on an arbitrarily chosen radial ray.
The angular distribution is almost isotropic at r=23 km (red
surface), while they become forward-peaked (green and blue
surfaces) as the radius increases, a fact that is well known.
What is really new here is that they are nonaxisymmetric with
respect to the radial direction, which is more apparent in
Figure 5, in which the isotropic contributions are subtracted
from the original distributions and the resultant ones are
renormalized by their maximum values. Note that the feature is
robust, occurring irrespective of neutrino energies or species.

It should be mentioned, however, that the nonaxisymmetric
angular distributions obtained in the current simulations still
have a symmetry with respect to the azimuthal angle (f̄) in
momentum space. This is because these are nonrotating
models, and there is a mirror symmetry with respect to the
plane spanned by ēr and qē in momentum space in the absence
of rotation. Once rotation is taken into account, the symmetry is
lost even in (spatial) axisymmetry. This is why we do not
assume this symmetry in our code. In 3D simulations, no
symmetry remains in the angular distribution in momentum
space. Its characterization is an interesting subject of spatially
3D supernova simulations with multiangle neutrino transport,
which are currently being undertaken and will be reported
elsewhere later.

The multiangle treatment of neutrino transport in our
simulations enables us to evaluate the so-called Eddington
tensor (k ij), which characterizes these nonaxisymmetric angular
distributions more quantitatively. The Eddington tensor is
obtained from the neutrino distribution function ( f ) as follows.

We first define the second angular moment Mμν as

òe
e

eº W Wmn m n( ) ( ) ( )M f p p d
1

, , 1m m

where pμ is the four-momentum of neutrinos, and ε and Ωm are
the corresponding energy and solid angle measured in the fluid
rest frame. Then the Eddington tensor k ij is given as

e
e
e

º( ) ( )
( )

( )k
P

E
, 2ij

ij

where P ij and E are defined from Mμν as

e g g eº m n
mn( ) ( ) ( )P M , 3ij i j

e eº m n
mn( ) ( ) ( )E n n M , 4

with nμ and g d= +m m m( )n ni i i being the unit vector orthogonal
to a hypersurface of constant coordinate time and the projection
tensor onto this hypersurface, respectively.
We pay particular attention here to one of the off-diagonal

components of the Eddington tensor, k rθ, which are zero in
spherical symmetry in space; that is, they are a measure of
genuine multidimensional transfer. The left panel in Figure 6(a)
shows k rθ for νe with the mean energy at each point. As
expected, it is almost zero inside the PNS, where matter is
opaque enough to make the neutrino distribution isotropic. It
becomes nonzero outside the PNS, however, and increases with
radius in accord with the appearance of the nonaxisymmetric
structures in the neutrino angular distribution (see Figure 4). In
fact, the k rθ corresponds to the mode with ℓ=2, m=1 in the
spherical harmonics expansion of the distribution function.
The right panel in Figure 6(a) compares k rθ obtained from

our simulation with that which is evaluated according to the
M1 prescription: the Eddington tensor in the M1 prescription
(k ij

M1) is obtained by replacing P ij in Equation (3) with

e
z e

e
z e

e=
-

+
-( ) ( ) ( ) ( ( )) ( ) ( )P P P

3 1

2

3 1

2
, 5ij ij ij

M1 thin thick

Figure 3. Snapshots of entropy per baryon (upper) and fluid speed (lower) at
t=200 ms. Left and right panels are for the LS and FS EOS, respectively.

Figure 4. Angular distributions of νe in momentum space at tpb=15 ms for
the LS EOS. Different colors correspond to different radial positions (red:
r = 23 km, green: r = 39 km, blue: r = 49 km) along the radial ray with the
zenith angle of θ=8π/15. The neutrino energy is ε=11.1 MeV in the fluid
rest frame.
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where ζ is referred to as the variable Eddington factor, which
we set as

z e
e

e
=

+

+ -
( )

¯ ( )
¯ ( )

( )F

F

3 4

5 2 4 3
. 6

2

2

In this expression, F̄ denotes the so-called flux factor, which is
the energy flux normalized with the energy density in the fluid
rest frame. The flux factor that we use in this paper is measured
in the fluid rest frame (see Shibata et al. 2011 for another
option):

e
e e
e

= mn
m n⎛

⎝⎜
⎞
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( ) ( )
( )

( )F
h H H

J
, 7

2

1 2

where J and Hμ can be expressed in terms of Mμν as

e e

e e
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=-
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mn
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ab

( ) ( )
( ) ( ) ( )

J u u M

H h u M

,

, 8

with mu and d= +n
m

n
m m

n( )h u u being the fluid four-velocity and
the projection tensor onto the fluid rest frame, respectively. The
optically thick and thin limits of P ij are denoted by Pij

thick and

Pij
thin (Shibata et al. 2011; Just et al. 2015; O’Connor & Couch

2015; Kuroda et al. 2016), which are written as
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where V i denotes the three-dimensional vector of fluid velocity.
Here, F i can be expressed in terms of Mμν as

e g e= - m n
mn( ) ( ) ( )F n M . 10i i

As clearly seen in this panel, the values of k rθ are
substantially different between the two cases. We find that
such discrepancies in k rθ are rather generic, being insensitive to
the choice of the prescription for the Eddington factor (see Just
et al. 2015 for various options). They are also systematic in the
sense that the increase in the number of grid points in the M1
prescription does not reduce the difference. This is in contrast

to our approach, in which the accuracy is simply improved with
the resolution.
Moreover, we find in krθ an intriguing correlation/anticorrelation

between νe and n̄e. The two panels of Figure 6(b) compare krθ for
νe and n̄e with the same energy of ε=8.5MeV. As can be seen in
these panels, they are anticorrelated with each other in the vicinity
of PNS (50 km), whereas they are positively correlated at larger
radii (>80 km). The anticorrelation is particularly remarkable for
low-energy neutrinos with 10MeV. We find that the sign of krθ

roughly coincides with that of the lateral neutrino flux, which is
shown in Figure 6(c). In fact, it is apparent that the lateral flux is
oriented in the opposite directions for νe and n̄e. This is in turn due
to the Fermi degeneracy of νe at r30 km, which produces
opposite trends in the number densities of νe and n̄e. Since neutrinos
flow from high to low ν number density regions in the diffusion
regime, the fluxes of νe and n̄e should be naturally anticorrelated as
a result of the opposite trend in the number densities of νe and n̄e.
We do not know for the moment how this anticorrelation in the
fluxes is transferred to that in krθ. It will be necessary to analyze
more in detail the equations of motion for higher moments
including krθ.
Importantly, the anticorrelation is then carried to larger radii

by the radial flux and remains nonvanishing even at r∼50 km,
where νe is no longer degenerate. On the other hand, at even
larger radii, where matter is optically thin to neutrinos, k rθ is
correlated with the local lateral velocity of matter due to
relativistic aberration. Note that this positive correlation at large
distances is less remarkable than the anticorrelation in the
vicinity of PNS (see the equatorial region in Figure 6(b)), since
the angular distribution is no longer determined locally and the
correlation is somewhat smeared out.
As will be discussed in Section 6, the appropriate treatment

of k rθ is related to the accurate calculation of the neutrino flux,
in particular its lateral component (see Equations (11) and
(12)). It is true that these correlations/anticorrelations look
rather minor, but they may play an important role through the
lateral fluxes of neutrinos. In fact, they clearly indicate the
intricacy of neutrino transport in nonspherically dynamical
settings. It will be interesting to see how well the M1 scheme
can reproduce these features and to conceive possible
improvements of its prescription.

Figure 5. Similar to Figure 4 but with the deviations from spherical symmetry emphasized and viewed from different angles: (a) q p=¯ 3 and f p=¯ 2 3, (b) q p=¯ 3
and f p=¯ 4 3. In each panel, the minimum is subtracted isotropically from the original angular distribution, and the resultant distribution is normalized so that the
maximum value should always be identical. The blue surface corresponds to the one with the same color in Figure 4, while the purple surface shows another subtracted
surface at the same radius but at a different zenith angle, θ=17π/45.
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5. Angular Resolution in Momentum Space

This study is the first-ever attempt to perform spatially 2D
supernova simulations with multiangle and multienergy
neutrino transport, taking into account all special relativistic
effects completely. It is a legitimate concern, however, that the
current simulations may not have a sufficient numerical
resolution, especially in momentum space (Richers et al.
2017). In this section, we hence discuss this resolution issue,
focusing on the angular resolution in momentum space.

For that purpose, we perform a new high-resolution
simulation for the early postbounce phase, whereas for the
discussion of the late postbounce phase we employ the results
of our previous analyses (Richers et al. 2017) of time-
independent solutions of the Boltzmann equations for neutrinos

in given matter distributions; close comparisons were made
with the data obtained with Monte Carlo simulations (Richers
et al. 2015). Note that although the use of the time-independent
solutions for the fixed matter distributions enabled us to
conduct rigorous comparisons, its applicability may be limited
to the late postbounce phase, where the timescale of variations
in the background is indeed long. For the earlier phase,
however, we need to consider time-dependent solutions. We
hence run a higher-resolution simulation, in which the time
evolutions of both neutrino and matter distributions are
computed for only 15 ms from the bounce with the LS EOS.
We compare the results so obtained with the original ones to
see to what extent the angular resolution could affect the
outcome. Note, however, that the comparisons are not so

Figure 6. (a) The (rθ) component of the Eddington tensor (k rθ) for νe in the northern hemisphere obtained in our simulation for the FS EOS (left) and its deviation
from the M1 prescription (right). The values of k rθ are evaluated at the mean neutrino energy at each point. (b) k rθ for νe (left) and n̄e (right) on a smaller spatial scale
of 100 km. The neutrino energy is fixed to 8.53 MeV in the fluid rest frame. (c) Same as panel (b) but for H θ/J, with H and J being the energy flux and energy
densities measured in the fluid rest frame, respectively. The time is t=190 ms in all cases.
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clear-cut as in the previous paper, since the matter dynamics in
this phase is chaotic, and small perturbations induced by the
change in the angular resolution modify not only the neutrino
distributions but also the matter configurations in the back-
ground substantially.

Richers et al. (2017) demonstrated that our Boltzmann solver
tends to underestimate the forward peak in the angular
distributions of neutrinos in momentum space at large radii if
the number of angular mesh points is not large enough. This is
actually just as expected and was indeed pointed out by
Yamada et al. (1999) in their 1D study. As a matter of fact,
neutrinos are moving almost radially at large distances from the
neutrino sphere no matter what happens to them at small radii,
and if the angular spread becomes smaller than the smallest
width of the angular bin employed in the Boltzmann solver, it
is no longer resolved.

Such properties of our Boltzmann solver should have some
implications for the success or failure of explosion in our
simulations, since the underestimation of the forward peak in
the angular distribution in momentum space leads in turn to the
overestimation of the local number density of neutrinos and, as
a result, the overestimation of neutrino heating in the gain
region. On the other hand, Richers et al. (2017) also found that
the finite energy resolution tends to underestimate the neutrino
heating. We then surmise from these results that the volume-
integrated net energy deposition in the gain region is probably
underestimated in the current simulations by a few percent.

For the study of the resolution dependence in the early
postbounce phase, we conduct a high-resolution simulation for
a short period as mentioned earlier. This time the matter
distribution is not fixed but calculated just as in the ordinary
run. We deploy q f´(¯) ( ¯ )14 10 angular grid points over the
entire solid angle while space and energy grids are unchanged

from the normal run. In Figure 7, we compare the radial
profiles of some angle-averaged quantities at 15 ms after
bounce between the models with the normal and high angular
resolutions. As can be seen in this figure, the prompt shock
wave is a bit faster and reaches a larger radius in the high-
resolution model than in the normal-resolution model (upper
left panel); in association with this, the deleptonization behind
the shock is slightly stronger in the former around
20�r�40 km (upper right). These are all attributed to the
fact that the high-resolution simulation experiences a stronger
prompt convection. This is indeed corroborated both in the
fluid velocity and their lateral component in the convectively
unstable region: they are a little larger in the high-resolution
simulation consistently. As mentioned earlier, however, matter
motions in this region are stochastic due to the chaotic nature of
convection. The results would be different substantially if, for
example, the initial time is changed even slightly. It is also
difficult to isolate the influence of the angular resolution on the
neutrino transport alone. More detailed resolution studies in
dynamical settings will be reported elsewhere. With these
caveats in mind, we will further compare some quantities of
relevance in neutrino transport.
Figure 8 displays the radial profiles along two radial rays

with θ=π/4 (left column) and θ=3π/4 (right column) of
some relevant quantities in the νe distribution at 15 ms after
bounce. The neutrino energy is set to the average value at each
point. In the top panels, the flux factors (F̄) defined in
Equation (7) are shown. One immediately recognizes that it is
systematically smaller for the high-resolution case in the
postshock region. This is not directly related to the angular
resolution, though. Instead, it is simply because the shock
radius is larger in the high-resolution run, and, as a result, the
flux factor increases more slowly from the optically thick limit

Figure 7. Angle-averaged radial profiles of fluid quantities. Upper left: entropy per baryon. Upper right: electron fraction. Bottom left: fluid speed. Bottom right:
absolute values of lateral velocity. The red line shows the result of the normal-resolution simulation, while the blue lines correspond to the high-resolution simulation.
The time is t=15 ms postbounce.
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( =F̄ 0) to the thin limit ( =F̄ 1). On the other hand, the flux
factor is always smaller for the normal case than for the high-
resolution case at large radii. This is a direct resolution effect;
that is, the low-resolution simulation fails to reproduce the
forward peak in the angular distribution at large radii.

The rr components of the Eddington tensor, k rr, are shown
in the middle panels of Figure 8. It is observed that they also
increase a bit more slowly initially in the high-resolution run.
This is again a mere consequence of the larger shock radius in
that case. In these panels, we also display as additional dotted
lines the same components of the Eddington tensor that are
obtained with the M1 prescription. Except in the inner,
optically thick region, they are always slightly greater than
those obtained with the Boltzmann code for both resolutions.
Considering the result in Richers et al. (2017) that low-
resolution computations with the Boltzmann solver tend to
underestimate k rr, one may think that the results of the M1
prescription are closer to the true values. It should be noted,
however, that the differences found here in k rr between the
Boltzmann and M1 results are larger than those obtained in
Richers et al. (2017; see Figure17 in their paper). This may

imply that the M1 prescription has its own problem in
reproducing k rr for the highly time-dependent and highly
inhomogeneous matter distributions considered here. This issue
will be further studied in our forthcoming paper. It is
incidentally pointed out that the M1 prescription needs the
flux factor to obtain the Eddington tensor (see Equations (5)
and (6)). In the present comparison, it is provided by the
Boltzmann solver, although it should be calculated on its own
in the actual simulations with the M1 approximation. It is hence
desirable to make comparisons by employing the results of
such M1 simulations, which is another subject worth further
investigations.
The bottom panels in Figure 8 are again the Eddington

tensors but for the rθ component k rθ this time. It should be
noted first that k rθ is very sensitive to the matter motion in the
background. As a result, their profiles are quite different
between the normal and high-resolution simulations, and it is
rather difficult to discuss the convergence in the current
dynamical setting. Nevertheless, it is evident that the
Boltzmann and M1 results are substantially different from
each other even qualitatively in the semitransparent region,

Figure 8. Flux factor (top) and the rr (middle) and rθ (bottom) components of the Eddington tensor for electron-type neutrinos. The left column presents the radial
profiles along the radial ray with θ=π/4, while the right one displays the same quantities but for θ=3π/4. The colors of lines and the time of the snapshot
(t = 15 ms postbounce) are the same as in Figure 7.
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although they agree in both the optically thin and thick limits
irrespective of resolutions. This is indeed consistent with the
findings by Richers et al. (2017), who also came to the same
conclusion that the difference in k rθ between the Boltzmann
transport with multiangles and the M1 prescription in the
semitransparent regime is intrinsic and never reduced by
increasing resolution. As will be demonstrated in Section 6,
inaccurate k rθ may give a ∼10% level of errors in the neutrino
luminosity and, more importantly, will lead to qualitatively
wrong lateral fluxes of neutrinos in the semitransparent region.

In Figure 9, we compare the angular distributions in
momentum space obtained with the two resolutions. Note that
the isotropic contributions are subtracted as previously in these
pictures so that the anisotropies could be better recognized. In
panel (a), the purple surface is identical to the one presented in
Figure 5, while the black surface is the high-resolution
counterpart. In Figure 9(b), we change the viewing angle to
facilitate readers’ understanding of the nonaxisymmetric
features. As mentioned above, since the matter distributions
in the background are different between the two cases, the
neutrino angular distributions differ qualitatively. It is impor-
tant, however, that the degree of asymmetry is even more
prominent in the high-resolution simulation. This is again
consistent with the finding in Richers et al. (2017) that k rθ tends
to be underestimated in low-angular-resolution simulations (see
the right panel of Figure15 in their paper).

6. Possible Implications of Off-diagonal Components on
Supernova Dynamics

The existence of the nonaxisymmetric features in the angular
distributions of neutrinos and the appearance of the nonvanish-
ing off-diagonal components of the Eddington tensor as a result
are the main novel findings in this paper. The legitimate
question then is how significant they are for supernova
dynamics. In order to fully address this issue, one must run
additional simulations with some approximate neutrino trans-
port scheme such as the ray-by-ray or M1 methods, which
either completely ignore or employ a makeshift prescription for
these nonaxisymmetric features, for the same progenitor,
resolution, EOS, and input physics and make a detailed
comparison, which is certainly beyond the scope of this paper.
Instead, in this section, we compare different components of

the Eddington tensor quantitatively and discuss how the off-
diagonal components might become important.
Note first that the equations for both the zeroth and first

moments of the angular distribution include in principle all
components of the Eddington tensor (see, e.g., Equations(3.37)
and (3.38) in Shibata et al. 2011). It should be also pointed out
that reaction rates of some neutrino–matter interactions such
as nonisoenergetic scatterings and pair processes depend on
higher-order moments including the Eddington tensor. Neglecting
them may have some implications for CCSNe dynamics.
Although this is an interesting issue and is in fact on our to-do
list, in the following, we will limit our discussion to the advection
part of the neutrino transport.
The principal part of the equations for the first angular

moment or the flux can be approximately written as (see also
Equation(3.38) in Shibata et al. 2011)

¶ ~ -¶ - ¶q q( ) ( ) ( ) ( )F Ek
r

Ek
1

, 11t
r

r
rr r

¶ ~ -¶ - ¶q q
q

qq( ) ( ) ( ) ( )F Ek
r

Ek
1

, 12t r
r

where we ignore collision terms and assume that the spacetime
is flat and the background matter is axisymmetric and
nonrotating. The off-diagonal component of Eddington tensor
k rθ appears in the second and first terms on the right-hand side
of Equations (11) and (12), respectively. Note that it does not
show up in the principal part of the zeroth-order equation for
the energy density.
In Figure 10, we display radial profiles of the absolute values

of the ratios of ¶q q( )Ek rr to ¶ ( )Ekr
rr (upper panels) and

¶ q( )Ekr
r to ¶q qq( )Ek r (lower panels) on two radial rays with

θ=π/4 and 3π/4 at 15 ms after bounce. In this analysis, we
consider electron-type neutrinos alone, and their energy is set
to the mean energy at each point. The results of both the
normal- and high-resolution simulations are presented for
comparison.
As seen in the upper panels, the radial flux is in general

dictated mainly by krr, with k rθ being at most 10%. This is
certainly not a large value but still may not be ignored, since, as
Burrows et al. (2018) claim, an accumulation of seemingly
minor effects may turn out to be crucially important. On the
other hand, k rθ plays more important roles in the equation for

Figure 9. Same picture as in Figure 5 but for two different angular resolutions. The purple wired frame is identical to the same purple one in Figure 5. The black one is
a high-resolution counterpart.
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the lateral component of neutrino flux, as demonstrated in the
bottom panels. In fact, the ratio of the radial gradient of Ek rθ to
the lateral gradient of Ek rθ/r exceeds unity in some postshock
regions. This is also the case for the result of the high-
resolution simulation, although the radial profiles themselves
are quite different from those in the normal-resolution run,
which is a consequence of the fact that matter distributions in
the background become different between the two cases.

As discussed in Sections 4 and 5, the M1 prescription is not
very successful in reproducing k rθ in the semitransparent
region, particularly in nonspherical settings. Although there is
no artificially preferred direction in the M1 transport unlike in
the ray-by-ray approximation, the lateral neutrino flux may still
be inaccurate. It is misleading to argue that the Eddington
tensor is reproduced again very well in the transparent regime
with its off-diagonal component becoming negligible compared
with the dominant krr. This is because the errors in the
semitransparent region will not be confined there and will
spread to the transparent region in time. The errors in the flux
will lead to those in the Eddington tensor through the closure
relation, which will again contribute to errors in the flux. This
may eventually affect CCSNe dynamics. The quantitative
assessment of this effect requires detailed comparisons in
collaboration with other groups and is much beyond the scope
of this first report of our new simulations.

We finally mention that the above analysis is based on the
result of the early postbounce phase, in which the semitran-
sparent region is highly dynamical owing to the prompt
convection, and the k rθ effect may be much smaller in the later
phase. The errors in early times have some influence on the
evolution in later times in principle, though. It should also be
added that convections in the proto neutron star and other

hydrodynamical instabilities such as SASI and convections in
the heating region occur more often than not even in the late
phase. Again, quantitative assessments are certainly in order
and will be studied in subsequent papers.

7. Comparison with Previous Works

In this section, we attempt to compare our results with other
CCSNe simulations. The same progenitor model has been
employed by many authors so far (Müller et al. 2012; Takiwaki
et al. 2014; Summa et al. 2016). We note first that our results
are qualitatively in line with them in that softer EOSs are
advantageous for shock revival. It should be pointed out,
however, that there are some studies in which softer EOSs
including the LS EOS have smaller shock radii initially than the
stiffer ones (see, e.g., Fischer et al. 2014), in apparent
contradiction with our results.
According to Fischer et al. (2014), the difference in the

shock trajectory originates mainly not from the stiffness of
EOS but from the treatment of electron captures on heavy
nuclei: representative heavy nuclei tend to be smaller in the
softer LS EOS than in the stiffer STOS EOS, which is
essentially the same as our FS EOS except for the single-
nucleus approximation in the former, resulting in the greater
deleptonization in the LS EOS during the collapse phase; this
in turn leads to the smaller inner core and hence the weaker
prompt shock wave for the LS EOS. Recall, however, that the
electron capture rates employed in our simulation with the LS
EOS are the same as those for the simulation with the FS EOS.
As a result, the effects just mentioned are not taken into
account in our current simulations, and the shock trajectories
reflect the difference in the stiffness of EOSs alone.

Figure 10. Radial profiles of the absolute ratios of ∂θ (Ek
rθ)/r to ¶ ( )Ekr

rr (upper panels) and ¶ q( )Ekr
r to ¶q qq( )Ek r (lower panels). These quantities measure the

relative importance of the terms on the right-hand side of Equations (11) and (12) for the r and θ components of neutrino flux. The left and right panels show profiles
along the radial rays with θ=π/4 and 3π/4, respectively. Only electron-type neutrinos with the local mean energy are considered in this figure. The time is
t=15 ms postbounce.
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The treatment of nuclear weak interactions consistent with
the EOS employed is important to compute CCSNe dynamics
accurately. We stress that the current approximate treatment is
meant just for simplicity in models with EOSs that employ the
single-nucleus approximation. We believe that multinucleus
EOSs are indispensable for the quantitative study of the nuclear
weak interactions mentioned above. Such a study is indeed
under way (H. Nagakura et al. 2018, in preparation) with the
multinucleus extension by Furusawa et al. (2017) of Togashi’s
EOS (Togashi & Takano 2013), which is based on the
variational method for realistic nuclear potentials.

It is also important to point out that the shock expansion in
our model looks less energetic than those in other simulations
with the same progenitor model (see, e.g., Takiwaki et al.
2014). It is difficult to pin down the cause of the discrepancy,
since there are many differences in input physics as well as
numerical methods for hydrodynamics and neutrino transport,
but the ray-by-ray approximation employed for neutrino
transport in their simulations may be one of the main causes
of the difference. In fact, Skinner et al. (2016) pointed out that
the ray-by-ray approximation tends to artificially facilitate
explosion in 2D, enhancing sloshing motions in axisymmetry.
A similar concern was also expressed by Sumiyoshi et al.
(2015), who showed that the asymmetry in the neutrino heating
tends to be overestimated in the ray-by-ray approximation.
More detailed comparisons in collaborations with other groups
are required to substantiate the claim, though.

8. Summary and Discussion

We have presented the first report of spatially axisymmetric
CCSNe simulations with the full Boltzmann neutrino transport.
We have found both similarities and differences between the
two models with two different nuclear EOSs. On the one hand,
the neutrino luminosities and mean energies as well as the
postshock morphologies except the scale are very similar
between the two. This seems to be a consequence of the
cancellation of the stronger bounce that would be expected in
the softer LS EOS by the greater electron captures that
produced the smaller inner core in the LS EOS model. On the
other hand, the neutrino-heating efficiency and the mass in the
gain region are consistently higher for the LS EOS. This seems
to be due to more vigorous turbulent motions in the postshock
flow for the LS EOS than for the FS EOS, a fact that results in
the greater expansion of the shock wave: it has reached
∼700 km by 300 ms after bounce, and its maximum radius is
still growing.

By virtue of the multiangle treatment in our simulations, we
have found interesting features in the neutrino distribution in
momentum space, such as the lack of axisymmetry with respect
to the local radial direction and the nonvanishing off-diagonal
component of the Eddington tensor. With the aid of our
previous analyses in Richers et al. (2017) and an additional
high-resolution simulation for the early postbounce phase, we
have estimated that the current simulations may have under-
estimated the neutrino-heating rate by a few percent owing to
rather low angular and energy resolutions in momentum space.
The possible effects of the off-diagonal component of the
Eddington tensor, k rθ, on neutrino transport have also been
discussed quantitatively: it plays a nonnegligible role in the
time evolution of neutrino fluxes; it may give a ∼10% level of
contribution to the neutrino luminosity; and, more importantly,

it can be a dominant factor in the time evolution of lateral flux
in the semitransparent region.
We have found an interesting correlation/anticorrelation in

k rθ between νe and n̄e depending on the radius. It is related to
the lateral fluxes of these neutrinos. It will be interesting to see
how well the M1 approximation fares in reproducing these
features and hence the lateral fluxes. The close comparison
between our Boltzmann solver and other approximate methods
possibly in collaboration with other groups will be indis-
pensable in assessing critically and quantitatively the signifi-
cance of the findings in this paper for the CCSNe dynamics. It
will also enable us to calibrate and possibly improve the
prescriptions, which should be given by hand in approximate
transport schemes. This is indeed important practically, since
our method is very costly in terms of required numerical
resources.
We have made an attempt to compare our results with those

obtained by other groups for the same progenitor model. We
have found that the general trend that softer EOSs are favorable
for shock revival is also true of our simulations. On the other
hand, the continuous shock expansion observed for the softer
LS EOS looks less energetic than that found by others.
Although this seems to be consistent with the finding by
Skinner et al. (2016) that the ray-by-ray approximation in
spatial axisymmetry may artificially enhance shock revival,
more detailed comparisons are certainly necessary to draw
some conclusions.
There are also certainly many other issues remaining to be

addressed. The top priority is to make detailed comparisons
with other approximate methods to assess the importance of
multiangle treatments for supernova dynamics by possibly
collaborating with other groups. We will also explore other
progenitors with different masses. The EOS dependence should
be further clarified. Rotation is another concern, since the
angular distribution in momentum space is then qualitatively
changed: for example, the principal axis will not be aligned
with the radial direction in general, and another off-diagonal
component, k rf, will no longer be vanishing. We are currently
implementing general relativity in our code to investigate its
influences, which are expected to be nonnegligible. The
angular distributions for different species of neutrinos we
obtained in this study are valuable in their own right, for
example, the analysis of collective oscillations of neutrino
flavors (Duan et al. 2010; Mirizzi 2013; Capozzi et al. 2017;
Izaguirre et al. 2017), which feed on the differences in the
angular distributions among different neutrino species. They
are currently being investigated, and the results will be reported
elsewhere.
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