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We show that the ZN Berry phase (Berry phase quantized into 2π=N) provides a useful tool to
characterize symmetry protected topological phases with correlation that can be directly computed through
numerics of a relatively small system size. The ZN Berry phase is defined in aN − 1-dimensional parameter
space of local gauge twists, which we call the “synthetic Brillouin zone,” and an appropriate choice of
an integration path consistent with the symmetry of the system ensures exact quantization of the Berry
phase. We demonstrate the usefulness of the ZN Berry phase by studying two 1D models of bosons, SU(3)
and SU(4) Affleck-Kennedy-Lieb-Tasaki models, where topological phase transitions are captured by Z3

and Z4 Berry phases, respectively. We find that the exact quantization of the ZN Berry phase at the
topological transitions arises from a gapless band structure (e.g., Dirac cones or nodal lines) in the synthetic
Brillouin zone.
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In the past decades, topology has come to the fore of the
condensed matter research and it has been serving as a
guiding principle to explore novel phases of matter without
relying on the symmetry breaking [1].Meanwhile, symmetry
still plays an important role in an interplaywith topology. For
example, topological phases of noninteracting fermions have
been classified according to the generic internal symmetries,
i.e., time-reversal, particle-hole, and chiral symmetries [1–5],
and recently, the classification has been further extended by
incorporating crystal symmetries [4,6–11]. On the other
hand, characterization of topological phases becomes amore
difficult problem for systems of strongly interacting particles
[12]. There have been active studies on classification and
characterization of symmetry protected topological (SPT)
phases that are supported with strong correlation effects
[1,13–21]. However, the characterization of SPT phases for
a given Hamiltonian remains a highly nontrivial problem.
In particular, a concise way to characterize them through
fairly cheap numerics has been desired.
In characterizing SPT phases, the notion of adiabatic

continuation plays an essential role [13–15,22]. By adia-
batically continuing a given system into a simple reference
system, the topological character in the original system is
easily diagnosed by studying the simple reference system.
For example, a system that can be adiabatically decom-
posed into a set of the elementary units in the system (an
atomic insulator in the case of free fermions) is identified as
a trivial phase. In contrast, the requirement for keeping a
finite gap and the symmetry of the system sometimes
excludes the possibility of “atomic insulators” and leaves a
set of finite size entangled clusters [13,16,23], which

indicates that the state is in a SPT phase. A representative
example is the Haldane phase in a spin-1 Heisenberg chain
[14,17,24–26], where the entangled clusters are intersite
singlets of emergent spin-1=2 degrees of freedom.
In the search of adiabatic continuation into the embedded

entangled clusters, it is useful to study the Berry phase
defined through the local gauge twist [as schematically
illustrated in Fig. 1(a)] [13,15,22,27,28]. Since the Berry
phase can be quantized by symmetry in some cases, it
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FIG. 1. (a) Schematic picture of the biquadratic model and the
local gauge twist. The bonds Ji represent the biquadratic
interactions. (b) Synthetic Brillouin zone and the integration
path C leading to the Berry phase quantization. (c)–(e) The
energy spectra for the ground state and the first excited state on
the Brillouin zone. The gap at Γ point is always nonzero due to
the finite size effect. At the phase transition, the gap closes at K
and K0 points forming Dirac cones.
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provides a conserved quantity in the process of the
adiabatic continuation that encodes the topological nature
of the system. The Berry phase for the entangled cluster is
easily obtained in the simple reference system and gives a
characterization for the original system, which helps to
have intuitive understanding of SPT phases. Also, the
quantized nature is suitable for numerical analysis since
it eliminates system size dependence. This is especially
helpful in characterizing correlated SPT phases in numeri-
cal analysis. However, Berry phase analysis of correlated
SPT phases have been so far mostly limited to the Haldane
phase with Berry phase π [13].
In this Letter, we generalize the characterization of SPT

phases with a correlation based on the Berry phase by using
fractionally quantized Berry phase 2π=N (ZN Berry phase)
and propose that such ZN Berry phase provides a useful
tool to diagnose general topological phases of interacting
particles [23]. We demonstrate that the ZN Berry phase is
useful in characterizing one-dimensional SPT phases clas-
sified by general ZN topological number. Specifically, we
extend the Berry phase analysis so that it can detect
entangled clusters other than the conventional spin-1=2
singlets. We demonstrate that spin-1 singlets can be
detected with the appropriate redefinition of the Berry
phase. This can be applied to a bond-alternating spin-1
chain with biquadratic interaction (hereafter, called the
biquadratic model), which supports a Z3 SPT phase. In this
case, the phase transition is captured by the Z3 Berry phase
(0 or 2π=3), instead of the conventional one πð¼ 2π=2Þ. We
also show that a SU(4) symmetric spin chain supports a
topological phase with a SU(4) fully antisymmetrized state
being the entangled cluster, which can be diagnosed by the
Z4 Berry phase. These generalizations of the Berry phase
into fractional ones involve the synthetic Brillouin zone
(BZ) [see Fig. 1(b)] that parametrizes local gauge twists for
a particular bond. When there exist N kinds of local gauge
twists [N ¼ 3 for the SU(3) chain and N ¼ 4 for the SU(4)
chain], such synthetic BZ is given by a N − 1-dimensional
space. (Note that the system itself is one dimensional.)
We find that the phase transition is governed by a gapless
structure that appears in the effective band structure in
the synthetic Brillouin zone, such as the Dirac cones
shown in Fig. 1(d). Thus, the ZN Berry phase analysis
allows us to understand the topological phase transition in
the many-body system by using an analogy to that in the
free-fermion system.
Let us begin with the formulation of the Berry phase. For

simplicity, we focus on a one-dimensional periodic system
with Hamiltonian H ¼ P

ijHij. For finite size systems
(either open or periodic) that are studied by numerical
calculations in practice, the Berry phase is defined in the
following way. First, we pick up a term on a certain bond,
Hnm, out of the terms in the Hamiltonian. Then, it is
replaced byHnmðϕÞ ¼ UmðϕÞHnmU

†
mðϕÞ, whereUmðϕÞ ¼

eiÂϕ (the local gauge twist) acts on the mth site. While it

looks like a unitary transformation, it actually is not, since
the operation is selectively acting on the chosen bond.
Therefore, the eigenvalues and eigenvectors change as
jG0i → jGϕi. Using the set of these wave functions, the
Berry phase γ is defined as

iγ ¼
Z

2π

0

dϕhGϕj∂ϕGϕi: ð1Þ

The choice of the gauge twist Â is essential: it should make
UmðϕÞ periodic in ϕ and should properly capture the
underlying entangled cluster [29].
In the previous studies of spin systems, Â ¼ S − Ŝz has

been the standard choice [13,15,27], which is suitable for
detecting a spin-1=2 singlet. In this case, some symmetries
constrain the Berry phase γ to quantize into 0 or π, where
γ ¼ π signals the existence of a spin-1=2 singlet at the
chosen bond. This is indeed the case for the Haldane phase
in the spin-1 Heisenberg chain, which is a representative
SPT phase, and its topological nature is captured by the
valence bond solid picture, with pairs of spin-1=2 obtained
from fractionalization of the original spin-1 forming
intersite spin-1=2 singlets [30]. Then, γ ¼ π characterizes
the Haldane phase, while γ ¼ 0 characterizes the topologi-
cally trivial large-D phase where fractional spin-1=2s form
intrasite spin-1=2 singlets. Such quantization of the Berry
phase (into 0 or π) allows us to observe the sharp transition
between the Haldane and the large-D phases even for a
chain of a relatively small number of sites. This observation
can be generalized to the case of the ZN Berry phase.
Namely, the quantization of the general ZN Berry phase
indicates a sharp phase transition even for a small size
system (without extrapolation to the thermodynamic limit)
that can be studied in practical numerical calculations.
Next, we study a case where the entangled cluster is not a

conventional spin-1=2 singlet. To this end, we consider a
spin-1 chain with bond-alternating biquadratic interaction
[31], which is described by the Hamiltonian

Ĥ ¼ −J1
X

i

ðŜ2i · Ŝ2iþ1Þ2 − J2
X

i

ðŜ2iþ1 · Ŝ2iþ2Þ2: ð2Þ

It is known that this model supports the SU(3) Affleck-
Kennedy-Lieb-Tasaki (AKLT) state [32]. In the language
of the SU(3) AKLT state, the elementary object is a quark
(and antiquark) and the entangled cluster characterizing the
SPT phase is a meson (specifically, η meson). In the
language of the spin-1 biquadratic model, the entangled
cluster is mapped to a spin-1 “singlet” (two-spin state with
zero total angular momentum). By writing J1;2 as J1 ¼
J þ Δ and J2 ¼ J − Δ, the parameter Δ controls how the
entangled clusters are formed. Therefore, once we fix the
position of the gauge-twisted bond, the transition has to be
observed by changing Δ. However, the standard choice of
Â ¼ S − Ŝz is inadequate for detecting the spin-1 singlet.
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Instead, we use the twist operator Â ¼ Â3 ≡ 1 − Ŝ2z. Since
Ŝz (Ŝ

2
z) is part of the dipole (quadrupole) moment, we call

eiðS−ŜzÞϕ (eiÂ3ϕ) dipolar (quadrupolar) twist. For our model,
the twist is reflected in Hn;nþ1ðϕÞ, and if there is a
symmetry Hn;nþ1ðϕÞ ¼ Hnþ1;nð−ϕÞ, the Berry phase
should quantize into 0 or π [13]. The dipolar twist obeys
this symmetry, while the quadrupolar twist does not. As a
result, the latter does not lead to Z2 quantization, but may
quantize into other fractions of 2π [29].
The numerically obtained Berry phase as a function of Δ

is summarized in Fig. 2. We identify two phases, which are
characterized by γ ¼ 0 for Δ > 0 and γ ¼ 2π=3 for Δ < 0.
The embedded spin-1 singlet exists on the twisted bond if
γ ¼ 2π=3, since an isolated singlet with a Â3 twist is
described by the wave function, jψϕi ¼ ðj þ 1;−1i −
eiϕj0; 0i þ j − 1;þ1iÞ= ffiffiffi

3
p

(by using a representation for
the state of two spins, jsz1; sz2i ¼ jsz1i ⊗ jsz2i with
Ŝzijszi i ¼ szi jszi i), and the second term eiϕj0; 0i contributes
to the Berry phase by 2π=3. Note that, with the dipolar
twist, the Berry phase is zero regardless of the sign of Δ,
which means that the phase transition in Fig. 2 is captured
only with our new method. The system size dependence in
Fig. 2(a) suggests that the transition gets sharper as we
approach the thermodynamic limit. However, the imperfect
quantization degrades the advantage of the Berry phase.
Fortunately, the exact quantization is restored if the

symmetry of the system is fully appreciated. The key
symmetry of Eq. (2) is the spin rotational symmetry, in
particular, the symmetry under the interchange of x, y, and
z directions in the spin space. [This corresponds to the
interchange of three flavors of quarks that forms a Z3

subgroup of the SU(3) symmetry [32].] Accordingly, our
formulation of the Berry phase can be symmetrized
by considering the other twist operators Â1 ¼ 1 − Ŝ2x and

Â2 ¼ 1 − Ŝ2y in addition to Â3, and we define the generalized
local gauge twist as expðiPiÂiϕiÞ with three parameters
ϕ1;2;3. Because Â1 þ Â2 þ Â3 ¼ 1̂, only two of three

parameters are independent, namely, a twist by eiÂ3ϕ has
the same effect as a twist by e−iðÂ1þÂ2Þϕ since ei1̂ϕ is trivial.
This means that the generalized local gauge twist is defined
on the two-dimensional periodic parameter space, which
we call the synthetic Brillouin zone, with the hexagonal
symmetry as shown in Fig. 1(b). In terms of the synthetic
BZ, we can see that the Berry phase defined for a straight
line along the ϕ3 axis in the synthetic BZ leads to deviation
from the quantization [Fig. 2(a)]. Instead, we now consider
the path C (K1-Γ-K2) in Fig. 1(b), which is more symmetric
in the synthetic BZ. Figure 2(b) shows the Berry phase
obtained with the path C. In this case, the Berry phase shows
an exact quantization into 0 and 2π=3, leading to the sharp
transition. The origin of the quantization is understood by
considering the Berry phases defined with three different
paths, γ1 with K1-Γ-K2, γ2 with K2-Γ-K3, and γ3 with
K3-Γ-K1. By the threefold rotational symmetry in the
synthetic BZ, we obtain γ1 ¼ γ2 ¼ γ3. At the same time,
if the three paths are combined, they result in a trivial path,
giving us

P
iγi ¼ 0 (mod 2π). The consequence of this

symmetry consideration is that the Berry phase γi should
quantize into 2π=3 [23]. This argument does not rely on full
SU(3) symmetry; we have confirmed the quantization with
perturbation that breaks SU(3), but preserves Z3 × Z3

symmetry (see Supplemental Material [29]).
The introduction of the synthetic BZ reveals another

notable aspect of the transition, i.e., an emergent gapless
structure in the effective band structure. Generally speak-
ing, quantization of the Berry phase indicates a jump in the
value of γ at the phase transition, and such a jump requires
a singularity in the wave function that is associated with
gap closing. In this case, the energy gap above the ground
state should close somewhere on the integration path.
Conversely, no sharp transition is expected when the gap
remains finite over the entire integration path. The right
panel of Fig. 2(a) plots the energy spectrum as a function of
ϕ for the eiÂ3ϕ twist at Δ ¼ 0, which shows the absence of
any gap closure. This accounts for the smooth change of γ
at Δ in Fig. 2(a). In contrast, we indeed have a gap closing
point on the path C at Δ ¼ 0. More specifically, the gapless
points are found at K and K0 points in the synthetic
Brillouin zone. [See Figs. 1(c)–1(e) and the right panel
of Fig. 2(b).] Interestingly, the energy spectrum at Δ ¼ 0
shows Dirac cones in a similar way to the band structure of
graphene. This reminds us of the fact that the topological
transition in free-fermion systems is often associated with a
gapless band structure, such as Dirac cones. In an analogy,
the topological phase transition in our model, although it is
a correlated one-dimensional model, is associated with the
Dirac cones that appear in the synthetic Brillouin zone.
Note that the gap at Γ point, representing the state without

(a)

(b)

FIG. 2. (a) The Berry phase with eiÂ3ϕ for several system sizes
(L denotes the number of the spins). (Right) The energy spectra

as functions of ϕ at Δ ¼ 0. (b) The Berry phase with ei
P

i
Âiϕi

using C in Fig. 1(b) as an integration path. (Right) The energy
spectrum along the high symmetry lines in the synthetic Brillouin
zone. L is set to 12. The energies are in the unit of J.
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any twist, is always finite, including the case with Δ ¼ 0.
In passing, we note that it is known that the ground state
is doubly degenerate in the thermodynamic limit for
Δ ¼ 0 [31]. This means that the “band structures” in
Figs. 1(c)–1(e) collapse in the infinite size limit, and the
jump in γ gets sharper with L → ∞ in any case. However,
as we have stressed earlier, the advantage of the quantized
Berry phase lies in the usefulness in the finite size
calculation of a relatively small system size.
Next, we show the usefulness of the ZN Berry phase by

applying it to another example of 1D SPT phases. We
consider a SU(4) symmetric Hamiltonian [33]

H ¼ −
X

i

X15

a¼1

½J1Λað2iÞΛ̄að2iþ 1Þ

þ J2Λ̄að2iþ 1ÞΛað2iþ 2Þ�: ð3Þ

Here, the fundamental representations of SU(4) and its
conjugate representations are assigned on the ð2iÞth sites
and (2iþ 1)th sites, respectively [see Fig. 3(a)]. The
explicit form of the Λa is found in Ref. [34]. For
convenience, we parametrize J1;2 as J1 ¼ J0 þ δJ and
J2 ¼ J0 − δJ. With the appropriate parameter choice, the
ground state of this Hamiltonian shares the majority of
properties with the SU(4) AKLT state [32]. In this case, the
entangled cluster is the completely antisymmetrized state
formed by a pair of the fundamental and its conjugate
representations [which is analogous to the η meson in the
SU(3) case]. In a similar manner to the case of Δ for the
biquadratic model, δJ controls how the entangled clusters
are formed, and the phase transition takes place by
changing δJ. For the detection of the pattern of entangled
clusters, we adopt UðϕÞ ¼ expðiP4

n¼1 ǍnϕnÞ as a gauge
twist, where ðǍnÞij ¼ δijδin. Independent local gauge
twists are defined on the three-dimensional synthetic BZ
with the symmetry of the fcc BZ.
The numerically obtained Berry phase is plotted in

Figs. 3(b) and 3(c). Again, the exact quantization of the
Berry phase is achieved for a symmetric integration path
W1-Γ-W2 in the synthetic BZ as shown in Figs. 3(d) and
3(e). With this setup, the phase transition is captured by a
jump from γ ¼ 0 to γ ¼ π=2 ¼ ð2π=4Þ [23,35,36]. Similar
to the SU(3) case, the exact quantization is realized by
integration paths that are symmetric against the interchange
of Ǎi ’s and forming a trivial path as a combination. On the
other hand, a straight integration path and its symmetric
counterparts do not form a trivial path, giving imperfect
quantization [Fig. 3(c)]. The jump in the Z4 Berry phase is
again associated with the gapless point on the integration
path. In this case, the gap closes on the X-W line; i.e., nodal
lines appear in the three-dimensional Brillouin zone for
δJ ¼ 0 [see Fig. 3(f)]. Interestingly, the energy spectrum
resembles the band structure for the single orbital tight-
binding model on the diamond lattice [see Fig. 3(g)].

Before closing, we compare the present characterization
of SPT phases with the other known characterization that is
based on projective representations of symmetry operation
in the matrix product state representation of ground states
[37]. The projective representation (and associated factor
sets) extracts information of fractional excitations at the
edge and is known to provide complete classification of 1D
SPT phases. The Berry phase method has a similarity in
that it detects entangled clusters, where the fractional
excitations are interpreted as broken pieces of a cluster
at the edge. Whether the Berry-phase-based theory can be
as complete as the projective group method is an interesting
future problem. As a first step, we give an alternative
expression for the Z3 Berry phase, which better clarifies the
relation to the other theory, in the Supplemental Material
[29]. This formula makes a clearer relationship between
the quantized Berry phase and the general classification
theory based on group cohomology [38]. Interestingly, the
alternative formula uses only the wave functions at Γ
and K1 [see Fig. 1(d)], which is advantageous also in
numerical evaluation.
To summarize, we have demonstrated the usefulness of

the ZN Berry phase as a topological invariant for SU(N)
symmetric SPT phases. The key is the multiparameter local
gauge twist, revealing that the topological transitions are
associated with Dirac cones or nodal lines in the parameter
space. It would be an interesting future problem to explore

(a)

(b)

(d)

(e)

(f)
(g)

(c)

FIG. 3. (a) Schematic picture of the SU(4) model. q and q̄
denote the fundamental representation and the conjugate repre-
sentation, respectively. (b),(c) The Berry phases obtained with (b)
the path W1-Γ-W2 and (c) the straight integration path along the
ϕ1 axis. (d),(e) The synthetic Brillouin zone and the integration
path. (f) The energy spectrum on the symmetric lines in the
synthetic BZ for δJ ¼ 0. (Inset) The location of the nodal lines.
(g) The band structure of the single orbital tight-binding model
on the diamond lattice.
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the relationship between Dirac cones or nodal lines found
here and those in free-fermion systems at the topological
transition, for example, in terms of the criticality. Another
promising direction would be an extension of the ZN Berry
phase to topological phases in higher spatial dimensions.
The major task in doing so will be finding proper ways of
applying the local gauge twist to ensure exact quantization.
Once they are found, it will provide a tractable way to
characterize general SPT phases based on the Hamiltonians
explicitly.
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