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ABSTRACT: Because circulating microRNAs (miRNAs)
have been recognized as a new class of blood-based biomarkers
for various diseases, a significant challenge has been the
development of point-of-care testing (POCT) systems based
on detection of circulating miRNAs directly from serum. A
promising approach to POCT systems is considered to be the
development of enzyme-free and isothermal detection systems.
Here, two types of DNA circuit system based on proportional
and exponential amplification strategies were constructed
using double-stranded DNA-modified magnetic beads (dsDNA-MBs) and their performances for detection of miRNA were
studied comparatively. Both proportional and exponential amplification DNA circuit systems enabled the detection of target
miRNA (miR-141) at room temperature without the need for additional enzymes because miR-141 acted as a catalyst for
successive toehold-mediated DNA displacement reactions. A significant increase in the noise fluorescence signal was observed for
the exponential amplification DNA circuit system because of the leakage (undesired DNA displacement reaction) revealed by the
kinetic study on each DNA displacement reaction. Nevertheless, the exponential amplification DNA circuit system showed a
lower limit of detection (LOD: 46 pM) and shorter assay time (15 min) compared to those of the proportional amplification
DNA circuit system (LOD: 103 pM at 180 min). It is most likely that the exponential amplification DNA circuit system enabled
amplification of both the signals and target miR-141, whereas the proportional amplification DNA circuit system enabled
amplification of the signals alone. In addition, the exponential amplification DNA circuit system was able to discriminate between
mismatched base sequences in miR-200 family members and specifically detect miR-141 even in the presence of serum. These
findings are important for the rational design for POCT systems.

■ INTRODUCTION

Circulating microRNAs (miRNAs) have been recognized as a
new class of relatively noninvasive (i.e., blood-based) biomarkers
for various diseases because expression profiles of miRNAs are
reported to be different between abnormal and normal cells.1−4 A
significant challenge is to detect circulating miRNAs directly
from serum because of their possible application to point-of-care
testing (POCT) systems.5−7 Currently, the quantitative reverse
transcription polymerase chain reaction (qRT-PCR) method is
the “gold standard method” for expression profiling analysis of
circulating miRNA in serum samples.8−10 However, coexisting
materials in serum easily inhibit enzymatic reactions, including
synthesis of complimentary DNA (cDNA) through reverse
transcription of miRNA and amplification of cDNA based on
PCR. Therefore, miRNA-specific qRT-PCR still requires tedious
processes such as the isolation of total miRNA from exosomes in
serum samples.11−14 Additional problems for miRNA-specific
qRT-PCR are the use of instruments to precisely control thermal
cycling. On the basis of these facts, miRNA-specific qRT-PCR is
considerably difficult to use for POCT systems. Hence, a
promising approach to POCT systems is believed to be the

development of an enzyme-free and isothermal assay system,
achieving detection of miRNAs directly from serum samples.
A new class of enzyme-free and isothermal system, entropy-

driven catalytic reaction (the so-called DNA circuit system),15

has been devised on the basis of successive toehold-mediated
DNA displacement reactions.16 The DNA circuit system enables
to amplify signals proportionally at room temperature without
any enzymes or instruments because the target DNA (RNA)
catalyzes successive toehold-mediated DNA displacement
reactions.17−21 Although proportional amplification DNA circuit
systems have been used for the detection of miRNAs, an assay
time over several hours is needed to detect low concentrations of
target miRNAs. Meanwhile, DNA circuit systems based on an
exponential amplification strategy have also been reported,15,22,23

which enable amplification of both signals and target nucleic
acids, and thus, PCR-like, this system is considered to be the best
candidate for miRNA-based POCT systems. However, the
number of reports on exponential amplification DNA circuit
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systems is limited and furthermore comparative studies of the
analytical performances of proportional and exponential
amplification DNA circuit systems have not been reported.
Accordingly, it is important to clarify the performance and
problems of the exponential amplification DNA circuit system
when considering the rational design for POCT systems.
As presented here, two types of a DNA circuit system based on

proportional (Figure 1a) and exponential amplification strategies
(Figure 1b) were constructed using double-stranded DNA-
modified magnetic beads (dsDNA-MBs) and their analytical
performances, including the limit of detection (LOD), assay
time, and kinetics were studied comparatively. One of the most
troublesome defects in DNA circuit systems is leakage, causing
the generation of noise signals even in the absence of the target
nucleic acid, caused by (i) impurity of dsDNAs and (ii) undesired
DNA displacement reactions.15 Because the source of dsDNA
impurity (single-stranded DNAs) is mainly partially formed
dsDNA due to imperfect stoichiometry, dsDNA should be
purified by electrophoresis to ensure proper stoichiometry and
improve purity. The use of dsDNA-MB in place of free dsDNA
does not require the time-consuming purification of dsDNA by
electrophoresis because impurity of dsDNA-MB is easily
removed by washing under a magnetic field, eliminating the
leakage by dsDNA impurity. Both proportional and exponential
amplification DNA circuit systems were able to detect target
miRNA at room temperature without any enzymes. Unlike the
proportional amplification DNA circuit system, a significant
increase in the noise signal was observed for the exponential
amplification DNA circuit system due to the leakage caused by
undesired DNA displacement reactions. Nevertheless, the
exponential amplification DNA circuit system showed lower
LOD and shorter assay time compared to that of the proportional
amplification DNA circuit system. Eventually, the exponential
amplification DNA circuit system allows for a rapid assay for

detecting target miRNA at concentrations as low as 46 pM in 15
min, as well as discriminating base-mismatched miR-200 family
sequences.

■ RESULTS AND DISCUSSION

Design Principle of Proportional and Exponential
Amplification DNA Circuits. The current study reports on a
comparative study of the proportional and exponential
amplification strategies for DNA circuit systems (Figure 1).
Table S1 shows miRNA and DNA sequences used in this study.
As a proof of concept, hsa-miR-141 (miR-141) was chosen as a
target miRNA because expression profiles of miR-141 in serum
are reported to be different between healthy persons and cancer
patients.24 Two types of dsDNA (1) (S-1/S-2/S-3f) and dsDNA
(2) (S-4/S-5f/trigger) were added to DNA-modified MB to
prepare dsDNA-MBs (1) (S-1/S-2/S-3f) and (2) (S-4/S-5f/
trigger), respectively, and the resulting dsDNA-MBs (1) (S-1/S-
2/S-3f) and (2) (S-4/S-5f/trigger) were washed repeatedly with
buffer under a magnetic field to remove any impurity (undesired
single-stranded DNAs). The target miR-141 causes the toehold-
mediated DNA displacement reaction with DNA (S-2) in
dsDNA-MB (1) (S-1/S-2/S-3f), resulting in the formation of an
intermediate containing a newly formed toehold structure.
Subsequently, the release of the miR-141 and a 6-carboxy-
fluorescein (FAM)-labeled DNA (S-3f) from the intermediate
occurs by fuel DNA through the toehold-mediated DNA
displacement reaction. The released target miR-141 can be
recycled as a catalyst for the DNA circuit, and the proportional
amplification of the fluorescence signal starts a new (propor-
tional amplification strategy: Figure 1a). Additionally, the
released DNA (S-2) induces the release of trigger DNA and
FAM-labeled DNA (S-5f) from dsDNA-MB (2) (S-4/S-5f/
trigger) through the toehold-mediated DNA displacement
reaction. The released trigger DNA can also act as a catalyst

Figure 1. Schematic illustration of the principles of DNA circuit systems based on (a) proportional and (b) exponential amplification strategies.
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for the DNA circuit because of the sequence of trigger DNA
being identical to that of the miR-141, and the exponential
amplification of both the fluorescence signal and the trigger
DNAs equivalent with miR-141 occurs (exponential amplifica-
tion strategy: Figure 1b). Thus, the exponential amplification
DNA circuit system is a simple expansion of the proportional
amplification DNA circuit system, allowing an easy comparison
of their analytical performances.
Performance of Proportional and Exponential Ampli-

fication DNA Circuits. To evaluate the proportional
amplification DNA circuit, dsDNA-MB (1) (S-1/S-2/S-3f)
([dsDNA (1) (S-1/S-2/S-3f)] = 10 nM) was incubated in 10
mM Tris−HCl buffer pH 7.7 containing 12.5 mM MgCl2, 150
mM NaCl, and 0.01 (v/v %) Tween 20 in the presence of fuel
DNA (10 nM) and various concentrations of miR-141 (100 pM
to 8 nM). Fluorescence intensity in the mixture was monitored at
522 nm at 25 °C for 180 min; the fluorescence intensity was
normalized as follows: normalized F = (Ft − F0)/(Fmax − F0),
where Ft, Fmax, and F0 are fluorescence intensities at tmin, 10 nM
of dsDNA (1) (S-1/S-2/S-3f), and 0min, respectively. Notably, a
significant increase in the normalized F was observed for the
mixture of dsDNA-MB (1) (S-1/S-2/S-3f), fuel DNA, and miR-
141 with different concentrations (Figure 2) and both the values

and increase rates of the normalized F are concentration-
dependent on miR-141. However, the mixture of dsDNA-MB
(1) (S-1/S-2/S-3f) and fuel DNA showed a slight increase in the
normalized F even in the absence of miR-141 due to leakage
caused by an undesired entropy-driven DNA displacement
reaction between fuel DNA and dsDNA-MB (1) (S-1/S-2/S-3f).
Consequently, 100 pM of miR-141 could be detectable within
180 min and the turnover number of miR-141 is roughly four
cycles (100 pM of miR-141 reacted with 397 pM of dsDNA (1)
(S-1/S-2/S-3f) on dsDNA-MB (1) (S-1/S-2/S-3f) above the
baseline set by the presence of fuel DNA and absence of miR-
141). These facts obviously demonstrate that proportional
amplification of the normalized F is due to a miR-141-triggered
DNA circuit mechanism.
An exponential amplification DNA circuit system was

constructed by adding dsDNA-MB (2) (S-4/S-5f/trigger) to a
mixture containing the dsDNA-MB (1) (S-1/S-2/S-3f), fuel

DNA, and miR-141. Ideally, this DNA circuit system should
enable amplification of both the normalized F as well as the
trigger DNA (equivalent to miR-141) by 2n-fold, with n being the
number of circuit cycles. Figure 3a shows the normalized F as a
function of time at different concentrations of miR-141 (10 pM
to 5 nM). The normalized F exhibited a typical sigmoidal curve
with an abrupt increase and a plateau after 180 min. In addition,
the normalized F in the absence of miR-141 showed a substantial
increase after 30 min. Note that the time needed to reach the
normalized F of 0.4 (the Ct value) was also proportionally
dependent on the log-concentration of miR-141 at 50 pM to 5
nM (Figure 3b), strongly indicating exponential amplification of
both the fluorescence signal and the trigger DNA (miR-141).
Taken together, these findings revealed that the concentration of
miR-141 was responsible for the rise time of the normalized F.
The delayed exponential increase in the normalized F observed
even in the absence of miR-141 is most likely due to the released
DNA (S-2) by leakage through an undesired DNA displacement
reaction between fuel DNA and dsDNA-MB (1) (S-1/S-2/S-3f),
viz., the released DNA (S-2) starts nonspecific amplification of
both the fluorescence signal and the trigger DNA.

Kinetic Study on the Proportional and Exponential
Amplification DNA Circuits. The toehold-mediated DNA
displacement reaction involves a two-step process. The first step
is to form several base pairs at the toeholds, and then the second
step is a branch migration process to form complete dsDNA
along with the release of outgoing DNA. A model of bimolecular
kinetic can be applied to the kinetics of the toehold-mediated
DNA displacement reactions.25−27 Figure 4 shows models of
each toehold-mediated DNA displacement reaction in both
proportional and exponential amplification DNA circuit systems.
Because the toehold-mediated DNA displacement reactions with
an appropriate toehold length proceed rapidly, the back reactions
can be negligible (see the Supporting Information).25 To
estimate the individual rate constants k1, k2, k3, k4, k5, kL1, and
kL2, all DNA displacement reactions were carried out in 10 mM
Tris−HCl buffer pH 7.7 containing 150 mM NaCl, 12.5 mM
MgCl2, and 0.01 (v/v %) Tween 20 at 25 °C, with all DNA
concentrations of 10 nM. The time-dependent increase in the
fluorescence signal in the mixture was monitored (Figure S1),
and the rate constants were determined from the equation (see
eq SI4 in the Supporting Information). Note that the rate
constants k1 (4.2× 105M−1 s−1), k2 (1.3× 105M−1 s−1), k4 (6.0×
105M−1 s−11), and k5 (3.4× 105M−1 s−1) are of the same order of
magnitude as the rate constants of the DNA circuit system using
free DNA in solution.15 Additionally, the rate constant k3 (3.7 ×
104 M−1 s−1) was the lowest among k1−k5, indicating that this
process is the rate-determining step in both proportional and
exponential amplification DNA circuit systems. The lower rate
constant observed for k3 is presumably due to a shorter toehold
length (4 nt) compared to that of other toehold-mediated DNA
displacement reactions (6 nt). However, significantly lower rate
constants kL1 (5.5 × 102 M−1 s−1) and kL2 (9.0 × 10 M−1 s−1)
were observed for leakage caused by entropy-driven DNA
displacement reactions between fuel DNA and dsDNA-MB (1)
(S-1/S-2/S-3f) and rate constant kL1 was one-order higher than
kL2. Therefore, the proportional amplification DNA circuit
system can amplify signal generation by over 2 orders of
magnitude (k3/kL2 = 411). Meanwhile, the nonspecific
amplification observed for the exponential amplification DNA
circuit system (Figure 3) is due to the low k3/kL1 ratio (= 67), viz.,
the released DNA (S-2) by leakage causes the release of trigger
DNA from dsDNA-MB (2) (S-4/S-5f/trigger).

Figure 2. Normalized F of the proportional DNA circuit system as a
function of time at different miR-141 concentrations in the presence of
fuel DNA (10 nM). Normalized F represents that 1.0 is the fluorescence
of 10 nM of FAM. Gray circles are normalized F of the dsDNA-MB (1)
(S-1/S-2/S-3f) alone. Mean values and standard deviations were
obtained from three independent experiments.
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Sensitivity and Assay Times of Proportional and
Exponential Amplification DNA Circuits. Figure 5 shows
the normalized F of both proportional (Figure 5a) and
exponential amplification DNA circuit systems (Figure 5b)

with various concentrations of miR-141 at different assay times
(15, 30, 45, 60, 120, and 180 min). The normalized F of
proportional and exponential amplification DNA circuit systems
proportionally correlated to the concentration of miR-141, and

Figure 3. (a) Normalized F of the exponential DNA circuit system as a function of time at different miR-141 concentrations in the presence of fuel DNA
(10 nM). Normalized F represents that 1.0 is the fluorescence of 20 nM FAM. Gray circles are normalized F of the mixture of dsDNA-MB (1) (S-1/S-2/
S-3f) and dsDNA-MB (2) (S-4/S-5f/trigger) in the absence of fuel DNA. (b) The corresponding calibration curve of miR-141 concentration vsCt (time
needed to reach the normalized F of 0.4) for the exponential DNA circuit system. Mean values and standard deviations were obtained from three
independent experiments.

Figure 4. Kinetic models of the proportional and exponential DNA circuit systems and the rate constant values of each DNA displacement reaction.
Mean values and standard deviations were obtained from three independent experiments.
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the LODs (calculated 3 times the standard deviation (σ) of the
leak signal, i.e., normalized F at 0 M (leak signal) + 3σ) are
summarized in Table 1. The LODs of the proportional
amplification DNA circuit system decreased with an increase in
assay time, achieving the lowest LOD (103 pM) after 180 min.
This is due to proportional amplification of normalized F caused
by the miR-141-triggered DNA circuit mechanism. In sharp
contrast, the LODs of the exponential amplification DNA circuit
system did not depend on assay time (15−60 min), viz., LODs
were found to be almost constant values (40−50 pM) due to
nonspecific exponential amplification caused by leakage. It
should be noted that the LODs of the exponential amplification
DNA circuit system had an LOD (46 pM) even after 15 min that
was ca. 20-fold lower compared to that of the proportional
amplification DNA circuit system (LOD: 1.1 nM at 15 min).
Because the concentration of miR-141 was responsible for the
rise time of the normalized F, the real-time fluorescence signal
curves could be used as the measure for quantitative analysis of
miR-141. The LOD was also calculated to be 36 pM from Figure
3b. Moreover, the exponential amplification DNA circuit system
had a dynamic range over 3 orders of magnitude of miR-141
concentrations and the dynamic range of the exponential
amplification DNA circuit system was wider than that of the
proportional amplification DNA circuit system. The lower LOD,
shorter assay time, and wider dynamic range are based on the
exponential amplification of both the normalized F and the
trigger DNA.
Specificity of Exponential Amplification DNA Circuit.

Another important consideration is specificity because miRNA
family members are known to have homologous sequences.

Target miR-141 belongs to miR-200 family members, including
miR-429, miR-200a, miR-200b, and miR-200c.24 A similar assay
procedure was employed for the exponential amplification DNA
circuit system using miR-200 family members. Figure 6 shows
the comparison between the normalized F at 15 min of different
miRNAs (100 pM and 1 nM), and Figure S2 also shows the
normalized F as a function of time and Ct values. Note that

Figure 5. (a) Normalized F of the proportional DNA circuit systemwith various concentrations ofmiR-141 at different assay times (15min: y = 0.030x +
0.011, R2 = 0.98, 30min: y = 0.058x + 0.023, R2 = 0.99, 45min: y = 0.074x + 0.040, R2 = 0.99, 60min: y = 0.087x + 0.048, R2 = 0.99, 120 min: y = 0.192x +
0.065, R2 = 0.99, and 180min: y = 0.246x + 0.088, R2 = 0.99). Normalized F represents that 1.0 is the fluorescence of 10 nM of FAM. The inset shows the
responses to 0−1.0 nM of miR-141. (b) Normalized F of the exponential DNA circuit system with various concentrations of miR-141 at different assay
times (15 min: y = 0.123 log(x) + 0.285, R2 = 0.98, 30 min: y = 0.196 log(x) + 0.433, R2 = 0.98, 45 min: y = 0.217 log(x) + 0.562, R2 = 0.99, and 60 min: y
= 0.202 log(x) + 0.664, R2 = 0.99). Normalized F represents that 1.0 is the fluorescence of 20 nM of FAM. 3σ lines represent vales of normalized F at 0M
(leak signal) + 3σ at different assay times. Mean values and standard deviations were obtained from three independent experiments using different
diluent stock solutions.

Table 1. LODs at Different Assay Times (15, 30, 45, 60, 120, and 180 min) of the Proportional And Exponential DNA Circuit
Systemsa

15 min 30 min 45 min 60 min 120 min 180 min

LODs of proportional DNA circuit systemb 1.1 nM 279 pM 240 pM 192 pM 119 pM 103 pM
LODs of exponential DNA circuit systemb 46 pM 50 pM 42 pM 42 pM

aMean values and standard deviations were obtained from three independent experiments using different diluent stock solutions. bCalculated 3 times
the standard deviation (σ) of the leak signal, i.e., normalized F at 0 M (leak signal) + 3σ.

Figure 6. Normalized F of the exponential DNA circuit system when
analyzing 1 nM (red bars) and 100 pM (blue bars) of miR-141 (target
miRNA) and mismatch miRNAs (miR-429, miR-200a, miR-200b, and
miR-200c). Mean values and standard deviations were obtained from
three independent experiments.
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normalized F at 15min andCt values of miR-200 family members
except for miR-141 were similar to those of the leakage (miRNA
= 0 M) and miR-141 induced the highest normalized F and the
smallest Ct values, demonstrating that the exponential
amplification DNA circuit system allows for discriminating
between other miR-200 family members and miR-141. These
results are due to the high capability of toehold-mediated DNA
displacement reactions to discriminate mismatched base
sequences.28

Detection of Target miRNA in the Presence of Serum
by Exponential Amplification DNA Circuit. To demonstrate
the feasibility of a more practical application of the exponential
amplification DNA circuit system, detection of miR-141 from
exosome-free fetal bovine serum (Exo-FBS) was conducted by
spiking different concentrations of miR-141 (100 pM and 1 nM)
into Exo-FBS. Exo-FBS as a realistically complex matrix is known
to inhibit enzymatic reactions used in qRT-PCR.11−14 Table 2

shows the normalized F at 15 min and Ct values at different
concentrations of miR-141 (100 pM and 1 nM) in the presence
(10%) and absence of FBS, and Figure S3 also shows the
normalized F as a function of time. Notably, the exponential
amplification DNA circuit system showed no change in
normalized F at 15 min or Ct values with high reproducibility,
even in the presence of 10% FBS. Thus, satisfactory recovery
(95.3−103.9%) and a low relative standard deviation (RSD: 2.8−
6.2%) were observed, indicating serum does not interfere with
the exponential amplification DNA circuit process through
successive toehold-mediated DNA displacement reactions.
These results indicate that the exponential amplification DNA
circuit system shows great promise as a practical application for
the detection of miRNAs directly from real samples.

■ CONCLUSIONS
The current study describes a comparative study of DNA circuit
system-based proportional and exponential amplification strat-
egies for enzyme-free detection of miRNA at room temperature.
The proportional and exponential amplification DNA circuit
systems were constructed using dsDNA-MBs. The use of
dsDNA-MBs in place of free dsDNAs allowed easy elimination
of the leakage caused by impurity of dsDNA because impurity of
dsDNA-MBs is easily removable by washing under a magnetic
field without the time-consuming purification process by
electrophoresis. Both proportional and exponential amplification
DNA circuit systems were able to detect miR-141 at room
temperature without the need for additional enzymes because
the miR-141 acted as a catalyst for successive toehold-mediated
DNA displacement reactions. A slight increase in noise
fluorescence signal was observed for the proportional
amplification DNA circuit system, whereas the exponential

amplification DNA circuit system showed a significant increase in
noise fluorescence signal due to the leakage caused by undesired
DNA displacement reactions. The kinetic study of each toehold
DNA displacement reaction in DNA circuit systems revealed that
ratio (k3/kL1) of rate constants of the rate-determining step (k3)
and leakage step (kL1) for the exponential amplification DNA
circuit system was lower than that for the proportional
amplification DNA circuit system (k3/kL2), indicating that this
finding was in accordance with the observed noise signals.
Nevertheless, the exponential amplification DNA circuit system
showed a lower LOD (46 pM) and shorter assay time (15 min)
compared with those of the proportional amplification DNA
circuit system (LOD: 103 pM in 180 min). In addition, the
exponential amplification DNA circuit system was able to
discriminate between differences in base mismatches in miR-200
family members and detect miR-141 even in the presence of
serum. These findings revealed that suppression of the leakage in
the exponential amplification DNA circuit system is an important
issue for the development of miRNA-based POCT systems.

■ EXPERIMENTAL SECTION
Chemicals and Instruments. Trizma-pH 7.7 (Sigma-

Aldrich), Tween 20 (Wako, Japan), magnesium chloride
hexahydrate (MgCl2: Wako, Japan), sodium chloride (NaCl:
Wako, Japan), 3 μmofMagnoshereM300/streptavidin (MB: JSR
Life Sciences, Japan), guanidine thiocyanate (Wako, Japan), and
exosome-depleted fetal bovine serum medium (FBS: System
Biosciences, Inc.) were used without further purification. Water
was purified using the Milli-Q system (Millipore). Oligonucleo-
tides (DNAs and RNAs) were purchased from Japan Bio Service,
Co., Japan, and the DNA and RNA sequences employed are
shown in Table S1. Fluorescence spectra were recorded using a
Quantus fluorometer (Promega). All incubation processes were
performed with a Thermo shaker incubator (ALLSHENG,
China).

Preparation of dsDNA (1) (S-1/S-2/S-3f) and (2) (S-4/S-
5f/Trigger). For preparation of dsDNA (1), 10 mM Tris−HCl
buffer solutions at pH 7.7 with 150 mM NaCl and 0.01 (v/v %)
Tween 20 of S-1 (20 μM, 20 μL), S-2 (40 μM, 20 μL), and S-3f
(40 μM, 20 μL), and 10 mM Tris−HCl buffer pH 7.7 containing
150 mMNaCl and 0.01 (v/v %) Tween 20 (300 μL) were mixed.
For preparation of dsDNA (2), 10 mM Tris−HCl buffer
solutions at pH 7.7 with 150 mMNaCl and 0.01 (v/v %) Tween
20 of S-4 (20 μM, 20 μL), trigger (20 μM, 40 μL), and S-5f (20
μM, 40 μL), and 20 mM Tris−HCl buffer (300 μL) were mixed.
The resulting mixtures were annealed at 95 °C for 5 min and
allowed to cool to room temperature over the course of 120 min.
Each final concentration of dsDNAs (1) and (2) was 1 μM with
excess single-stranded DNAs (S-2, S-3f, trigger, and S-5f).

Preparation of dsDNA-MB (1) (S-1/S-2/S-3f) and (2) (S-
4/S-5f/Trigger). To prepare the DNA-MB, streptavidin-
modified MB (1000 μL, 10 mg mL−1, 6 × 108 MBs mL−1) was
washed three times using 10 mM Tris−HCl buffer pH 7.7
containing 150 mM NaCl and 0.01 (v/v %) Tween 20 (1000
μL). A solution of biotin-labeled capture DNA in 10 mM Tris−
HCl buffer pH 7.7 with 150 mM NaCl and 0.01 (v/v %) Tween
20 (20 μM, 400 μL) was added to MB, and the mixture was
incubated with gentle mixing at 25 °C for 60 min. The DNA-MB
was pulled to the wall of the reaction tube by application of a
magnetic field. The DNA-MB was then washed three times using
10 mM Tris−HCl buffer pH 7.7 containing 150 mM NaCl and
0.01 (v/v %) Tween 20 (1000 μL). The DNA-MB was dispersed
in 10 mMTris−HCl buffer pH 7.7 containing 150 mMNaCl and

Table 2. Detection of miR-141 in the Absence or Presence of
FBS (10%) by the Exponential DNA Circuit System

FBS (−) 10% FBS (+)

miR-141
normalized Fa

Ct (min)
a

RSD
(%)

normalized Fa

Ct (min)
a

RSD
(%)

recovery
(%)

100 pM 0.17 ± 0.01 6.1 0.16 ± 0.01 6.2 95.3
55.0 ± 1.6 2.8 56.9 ± 1.9 3.3 103.3

1 nM 0.28 ± 0.02 6.1 0.26 ± 0.01 5.6 95.5
27.9 ± 1.4 5.0 29.0 ± 1.4 4.9 103.9

aMean values and standard deviations were obtained from three
independent experiments.
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0.01 (v/v %) Tween 20 to adjust 6 × 108 MBs mL−1

concentration. To quantify the amount of immobilized capture
DNA strands onMB, FAM-labeled capture DNA (capture DNA-
F) was used in place of capture DNA. Procedures for the
preparation and the purification of FAM-labeled capture DNA-
modified MB were the same as those described above.
Fluorescence intensity at 522 nm aliquots of the supernatant
were converted to molar concentrations of capture DNA-F by
interpolation from a standard linear calibration curve prepared
with known concentrations of capture DNA-F using identical
buffer pH, salt, and Tween 20 concentrations. The average
number of capture DNA-F per MB particle was (2.16 ± 0.17) ×
106 strands per MB (immobilization efficiency: 27%), calculated
by dividing the measured DNA molar concentration by the MB
concentration.
A solution of DNA-MB in 10 mM Tris−HCl buffer pH 7.7

containing 150 mM NaCl and 0.01 (v/v %) Tween 20 (200 μL,
1.2 × 108 MBs) was added to a 1.5 mL PCR tube, and the DNA-
MB was pulled to the wall of the reaction tube by application of a
magnetic field to remove buffer solution. Each solution of
dsDNAs (1) and (2) in 10 mM Tris−HCl buffer pH 7.7
containing 150 mM NaCl and 0.01 (v/v %) Tween 20 (76 μL,
[dsDNA (1)] = [dsDNA (2)] = 1 μM) was separately added to
DNA-MB (1.2 × 108 MBs) to prepare dsDNA-MB (1) and
dsDNA-MB (2), respectively, and the mixtures were incubated
with gentle mixing at 25 °C for 60 min. The dsDNA-MB (1) and
dsDNA-MB (2) were pulled to the wall of the reaction tube by
application of a magnetic field. Both dsDNA-MB (1) and
dsDNA-MB (2) were then washed three times using 10 mM
Tris−HCl buffer pH 7.7 containing 150 mMNaCl and 0.01 (v/v
%) Tween 20 (400 μL), and supernatants were corrected to
quantify the amount of immobilized dsDNA (1) and (2) strands
on MB. In addition, fresh 10 mM Tris−HCl buffer pH 7.7
containing 150 mMNaCl and 0.01 (v/v %) Tween 20 (1000 μL)
was added to the dsDNA-MB (1) and dsDNA-MB (2) and the
mixtures were incubated further with gentle mixing at 25 °C for 6
h to remove nonspecific adsorbed dsDNAs (1) and (2). The
dsDNA-MB (1) and dsDNA-MB (2) were pulled to the wall of
the reaction tube by application of a magnetic field and washed
three times using 10mMTris−HCl buffer pH 7.7 containing 150
mM NaCl and 0.01 (v/v %) Tween 20 (400 μL). Fluorescence
intensity at 522 nm of all supernatants was converted to molar
concentrations of dsDNAs (1) and (2) by interpolation from a
standard linear calibration curve prepared with known
concentrations of dsDNAs (1) and (2) using identical buffer
pH, salt, and Tween 20 concentrations. The average number of
dsDNAs (1) and (2) per dsDNA-MB (1) and dsDNA-MB (2)
was (2.70 ± 0.21) × 105 strands per MB (immobilization
efficiency: 71%) and (2.82 ± 0.15) × 105 strands per MB
(immobilization efficiency: 74%), respectively, as calculated by
dividing the measured DNA molar concentration by the MB
concentration. The dsDNA-MB (1) and dsDNA-MB (2) were
dispersed in 10 mMTris−HCl buffer pH 7.7 containing 150 mM
NaCl and 0.01 (v/v %) Tween 20 to adjust 50 nM
concentrations of dsDNAs (1) and (2).
Detection of miR-141 by the Proportional Amplifica-

tion DNA Circuit System. A solution of the dsDNA-MB (1) in
10 mM Tris−HCl buffer pH 7.7 containing 150 mM NaCl and
0.01 (v/v %) Tween 20 (40 μL, [dsDNA (1)] = 50 nM) was
added to a 0.5 mL PCR tube, and the dsDNA-MB (1) was pulled
to the wall of the reaction tube by application of a magnetic field
to remove buffer solution. To the dsDNA-MB (1), 10 mMTris−
HCl buffer pH 7.7 containing 150 mM NaCl and 0.01 (v/v %)

Tween 20 (170 μL), 10 mM Tris−HCl buffer pH 7.7 containing
150 mM NaCl, 0.01 (v/v %) Tween 20, and 250 mM of MgCl2
(10 μL), fuel DNA in 10mMTris−HCl buffer pH 7.7 containing
150 mMNaCl and 0.01 (v/v %) Tween 20 (200 nM, 10 μL), and
various concentrations of miR-141 solutions in 10 mM Tris−
HCl buffer pH 7.7 containing 150 mM NaCl and 0.01 (v/v %)
Tween 20 (2−160 nM, 10 μL) were added, and the total volume
was 200 μL. Final concentrations of Mg2+, dsDNA (1), fuel
DNA, and miR-141 were 12.5 mM, 10 nM, 10 nM, and 100 pM
to 8 nM, respectively. The resulting mixture was incubated with
gentle mixing at 25 °C for 180 min. During the incubation,
fluorescence intensity at 522 nm was measured at appropriate
time intervals after precipitation of dsDNA-MB (1) by
application of a magnetic field. Furthermore, measured
fluorescence intensity was normalized as follows (Ft − F0)/
(Fmax − F0), where Ft, Fmax, and F0 are fluorescence intensity at t
min, fluorescence intensity at 10 nM of dsDNA (1), and
fluorescence intensity at 0 min, respectively.

Detection of miR-141 by the Exponential Amplifica-
tion DNA Circuit System. A solution of the dsDNA-MB (1) in
10 mM Tris−HCl buffer pH 7.7 containing 150 mM NaCl and
0.01 (v/v %) Tween 20 (40 μL, [dsDNA (1)] = 50 nM) was
added to a 0.5 mL PCR tube, and the dsDNA-MB (1) was pulled
to the wall of the reaction tube by application of a magnetic field
to remove buffer solution. To the dsDNA-MB (1), a solution of
the dsDNA-MB (2) in 10 mM Tris−HCl buffer pH 7.7
containing 150 mM NaCl and 0.01 (v/v %) Tween 20 (40 μL,
[dsDNA (2)] = 50 nM)was added, and both the dsDNA-MB (1)
and dsDNA-MB (2) were pulled to the wall of the reaction tube
by application of a magnetic field to remove buffer solution. To
the mixture of dsDNA-MB (1) and dsDNA-MB (2), 10 mM
Tris−HCl buffer pH 7.7 containing 150 mMNaCl and 0.01 (v/v
%) Tween 20 (170 μL), 10 mM Tris−HCl buffer pH 7.7
containing 150 mMNaCl, 0.01 (v/v %) Tween 20, and 250 mM
of MgCl2 (10 μL), fuel DNA in 10 mM Tris−HCl buffer pH 7.7
containing 150 mMNaCl and 0.01 (v/v %) Tween 20 (200 nM,
10 μL), and various concentrations of miR-141 solutions in 10
mM Tris−HCl buffer pH 7.7 containing 150 mMNaCl and 0.01
(v/v %) Tween 20 (20 pM to 100 nM, 10 μL) were added, and
the total volume was 200 μL. Final concentrations of Mg2+,
dsDNA (1), fuel DNA, and miR-141 were 12.5 mM, 10 nM, 10
nM, and 1 pM to 5 nM, respectively. The resulting mixture was
incubated with gentle mixing at 25 °C for 180 min. During the
incubation, fluorescence intensity at 522 nm was measured at
appropriate time intervals after precipitation of the dsDNA-MB
(1) and the dsDNA-MB (2) by application of a magnetic field.
Furthermore, the measured fluorescence intensity was normal-
ized as follows: (Ft − F0)/(Fmax − F0), where Ft, Fmax, and F0 are
fluorescence intensity at t min, total fluorescence intensity at 10
nM of dsDNA (1) and at 10 nM of dsDNA (2), and fluorescence
intensity at 0 min, respectively.

Determination of Rate Constants of DNA Displace-
ment Reactions. To determine the individual rate constants k1,
k2, k3, k4, k5, kL1, and kL2, FAM-labeled DNAs (S-2f and trigger-f)
and FAM-miR-141 (miR-141f) were also used. The procedures
for the preparation and the purification of dsDNA-MBs were
identical to those described above. Each DNA displacement
reaction was carried out in 10 mM Tris−HCl buffer pH 7.7
containing 150 mMNaCl, 0.01 (v/v %) Tween 20, and 12.5 mM
ofMgCl2 at 25 °C, and final concentrations of dsDNAs and other
single-stranded DNAs and RNAs (fuel DNA, S-2, miR-141, and
miR-141f) were same as 10 nM. During the incubation,
fluorescence intensity at 522 nm was measured at appropriate
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time intervals after precipitation of the dsDNA-MBs by
application of a magnetic field. Furthermore, measured
fluorescence intensity was normalized as follows: (Ft − Fblank)/
(Fmax− Fblank), where Ft, Fmax, and Fblank are fluorescence intensity
at t s, fluorescence intensity at 10 nM of dsDNA, and
fluorescence intensity of dsDNA-MB alone at t s, respectively.
Thus, normalized F corresponds to the reaction efficiency (0−1)
of each DNA displacement reaction. Figure S1a,b shows the
time-dependent increase in normalized F, and the rate constants
k1, k2, k3, k4, k5, kL1, and kL2 were determined from the fitting eq
SI4 (see the Supporting Information) using normalized F values
and the kinetic model (see the Supporting Information).
Discrimination of Base Mismatches in miR-141 Family

Members. Except for the use of miR-429, miR-200a, miR-200b,
and miR-200c (100 pM and 1 nM), the detection procedure and
conditions were identical to those described above.
Detection of miR-141 in the Presence of Serum. A

solution of guanidine thiocyanate in 10 mMTris−HCl buffer pH
7.7 containing 150 mM NaCl and 0.01 (v/v %) Tween 20 (4 M,
500 μL) was added to exosome-free FBS (500 μL) to deactivate
DNase and RNase, and the FBS−guanidine mixture was
incubated for 10 min at room temperature. Solutions of miR-
141 in 10mMTris−HCl buffer pH 7.7 containing 150mMNaCl
and 0.01 (v/v %)Tween 20 (95.4 nM and 0.954 nM, 10 μL) were
separately added to the FBS−guanidine mixture (190 μL), and
the total volume of FBS solutions was 200 μL ([FBS] = 49.7%
(v/v), [guanidine thiocyanate] = 1.9 M, [miR-141] = 4.77 and
0.477 nM). The resulting FBS (42 μL) solutions containing miR-
141 (4.77 and 0.477 nM) were used to the assay mixture, as
described above. Final concentrations of FBS, guanidine
thiocyanate, and miR-141 were 10%, 0.4 M, and 1.0 nM or 100
pM, respectively, and the detection procedure and conditions
were identical to those described above. Although increase in
fluorescence intensity was observed for all samples containing
FBS, the normalized F values were the same as those of the
samples in the absence of FBS.
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