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Abstract

This paper revisits multiplicative bias correction for some asymmetric kernel density estimators

(KDEs) when the data is supported on [0,∞)d or [0, 1]d. The original method was introduced

by Jones et al. (1995) for the standard KDE with symmetric kernel. After Hirukawa (2010) for

beta KDE, there have been renewed interests for applications to the asymmetric KDEs. We stress

that the variance manipulation must be performed by looking at four terms from the law of total

variance/covariance, in which only one term is negligible, while other three terms contribute to the

variance formula. It turns out that, even for recently developed asymmetric KDEs, the achievement

of the reduced bias is available, at the expense of the constant-factor inflation of the variance.

Interestingly, the same factor appears in other bias correction methods.

Keywords: multiplicative bias correction; nonparametric density estimation; boundary bias problem;

asymmetric kernel.

1. Introduction

The kernel density estimator (KDE), introduced by Rosenblatt (1956), is perhaps the most popular in

the context of nonparametric density estimation. Several asymptotic results using the location-scale

form Kh(· − x), with Kh(·) = K(·/h)/h, where K is a kernel and h > 0 is a bandwidth, have been

well established when the support S of the underlying density is R. See, e.g., Silverman (1986) and

Wand and Jones (1995). However, if S ≠ R, the standard KDE is, in general, inconsistent, due to

the bias that is O(1) near the boundary. For this boundary bias problem, various remedies have been

discussed in the literature; for example, renormalization, reflection, and generalized jackknifing (Jones

(1993)), transformation (Marron and Ruppert (1994)), and advanced reflection (Zhang et al. (1999)).

During recent years, when S ̸= R, there has been a growing interest of the development of the

nonparametric density estimation using a certain asymmetric kernel. To the best of our knowledge,

Silverman (1986, page 28) first mentioned the possibility of using gamma or log-normal (LN) kernel

for the nonnegative data, and Chen (1999) did pioneering studies on beta KDE using a beta kernel for

the data from the unit interval. Note that Chen’s beta KDE is boundary bias free and nonnegative.

Since then, there have been many attempts to suggest a suitable asymmetric kernel K(·;x, β), where
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x is the location where the density estimation is made, and β > 0 is a smoothing parameter. Given

an iid sample {X1, . . . , Xn} from the density f with the support S, we construct an average estimator

f̃β(x) =
1

n

n∑
i=1

K(Xi;x, β), x ∈ S, (1)

which is customarily called an asymmetric KDE when K(·;x, β) is chosen to be supported on S ̸= R.
The following points should be distinguished between the classical KDE and the recent asymmetric

KDE. Whenever S ̸= R, the support of the asymmetric kernel K(·;x, β) at the location x ∈ S
under consideration matchs the support S of the underlying density, whereas any location-scale kernel

Kh(· − x), at the location x near the boundary, necessarily has a mass outside the support S. Such

an asymmetric KDE has often been built within a certain parametric form like (generalized) gamma

density, inverse Gaussian (IG) density, reciprocal IG (RIG) density, Birnbaum–Saunders (BS) density,

LN density, and so on. See, e.g., Igarashi and Kakizawa (2018a) and references cited therein.

Typically, when the support S of the density f to be estimated has only one boundary point {0}
(for the case S = [0, 1], {0} should read {0, 1}, of course), there exist constants[1] q, r, r′ > 0; q ≥ r ≥ r′

and functions γ1(·; f) and δ(·), independent of β, such that, for all sufficiently small β > 0,

Bias[f̃β(x)] = βqγ1(x; f) + o(βq), (2)

V ar[f̃β(x)] =

n−1β−r′δ(x)f(x) + o(n−1β−r′) for x ∈ S\{0},

n−1β−rδ(0)f(0) + o(n−1β−r) for x = 0.
(3)

Then, assuming that β = βn ↘ 0 and nβr → ∞ (in this case, nβr
′ → ∞) as n→ ∞, the leading term

of the mean squared error MSE[f̃β(x)] (in short, asymptotic MSE (AMSE)) is given by

AMSE[f̃β(x)] =

β2qγ21(x; f) + n−1β−r′δ(x)f(x) for x ∈ S\{0},

β2qγ21(0; f) + n−1β−rδ(0)f(0) for x = 0

(i.e., the asymmetric KDE is pointwise consistent). Choosing

βopt(x) =


[
r′δ(x)f(x)

2qγ21(x; f)
n−1

]1/(2q+r′)

for x ∈ S\{0},[
rδ(0)f(0)

2qγ21(0; f)
n−1

]1/(2q+r)

for x = 0,

we have the optimal AMSE;

AMSEopt[f̃β(x)] =


2q + r′

r′
{γ21(x; f)}r

′/(2q+r′)
[ r′
2q
δ(x)f(x)n−1

]2q/(2q+r′)
for x ∈ S\{0},

2q + r

r
{γ21(0; f)}r/(2q+r)

[ r
2q
δ(0)f(0)n−1

]2q/(2q+r)
for x = 0.

(4)

[1]The particular case of q = r = 1 and r′ = 1/2 is important, in accordance with the pioneering work on the gamma

KDE (Chen (2000)). However, it would not be guaranteed generally, except that one index “r” (say) could be assumed

to be 1, without loss of generality.
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1.1. Additive bias reduction

Improving the performance (4) is an important topic even when S ̸= R. There have been recent

renewed interests on bias reductions for the asymmetric KDE (1). Suppose that, in addition to (2),

Bias[f̃β(x)] =
2∑

j=1

βjqγj(x; f) + o(β2q), (5)

for some function γ2(·; f), independent of β. In this case, the easiest way to remove the O(βq) bias is

perhaps an additive bias reduction due to Schucany and Sommers (1977). That is, for each constant

a ∈ (0, 1), the estimator, defined by

f̃β,SSa(x) =
1

1− aq
f̃β(x)−

aq

1− aq
f̃β/a(x), x ∈ S (we call the SS-type),

has the asymptotic bias, Bias[f̃β,SSa(x)] = −(β2q/aq)γ2(x; f) + o(β2q). This technique was originally

applied to the standard KDE, and recently to the asymmetric KDEs. See Leblanc (2010), Igarashi

and Kakizawa (2014a, 2015, 2018a), and Igarashi (2016a) for the data supported on S = [0,∞) or

[0, 1]. Furthermore, as discussed in Jones and Foster (1993, Example 2.1) for the standard KDE, and

Igarashi and Kakizawa (2015, 2018b) and Igarashi (2016a) for the asymmetric KDEs, if the estimator

(1) is differentiable with respect to β, the limiting estimator, defined by

lim
a→1

f̃β,SSa(x) = f̃β(x)−
β

q

∂

∂β
f̃β(x) = f̃β,SS1(x) (say), x ∈ S,

will have the asymptotic bias, Bias[f̃β,SS1(x)] = −β2qγ2(x; f) + o(β2q). Here, the SS-type estimator

is written as the form (1), i.e., f̃β,SSa(x) = n−1
∑n

i=1KSSa(Xi;x, β), x ∈ S, where

KSSa(s;x, β) =


1

1− aq
K(s;x, β)− aq

1− aq
K(s;x, β/a), a ∈ (0, 1),

K(s;x, β)− β

q

∂

∂β
K(s;x, β), a = 1,

so that the resulting asymmetric kernel will be interpreted as “a higher order asymmetric kernel”

derived from a given asymmetric kernel K(·;x, β) only[2]. Its asymptotic variance and AMSE are

found in Igarashi and Kakizawa (2015, 2018a, 2018b) and Igarashi (2016a) for the data supported on

S = [0,∞) or [0, 1] (if a ∈ (0, 1), an additional task is to approximate Cov[f̃β(x), f̃β/a(x)]). Compared

to the (uncorrected) estimator f̃β(x), the order of V [f̃β,SSa(x)] remains unchanged, but the coefficient

of the leading term of V [f̃β,SSa(x)] increases with the factor

λ(a) =
1

(1− a)2

{
1− 2a

( 2a

a+ 1

)1/2
+ a5/2

}
,

where λ is increasing for a ∈ (0, 1); lima→0 λ(a) = 1 and lima→1 λ(a) = 27/16. Interestingly, the factor

λ(a) appeared in Wand and Schucany (1990) for the (standard) Gaussian KDE (S = R). It should

be remarked that, although the SSa-type, for each a ∈ (0, 1], loses the nonnegativity by construction,

the positive part estimator f̃+β,SSa
(x) = max{0, f̃β,SSa(x)} not only keeps the nonnegativity, but also

improves the performance in the sense that MSE[f̃+β,SSa
(x)] ≤MSE[f̃β,SSa(x)].

[2]For the standard KDE using the location-scale formK[2]((·−x)/h)/h as the kernel, Jones and Foster (1993) considered

an enormous variety of higher order kernels from a given 2nd order kernel K[2] only, by generalized jackknifing.
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1.2. Nonnegative bias reductions

There have been other bias reduction methods due to Terrell and Scott (1980) and Jones and Foster

(1993), that are guaranteed to be nonnegative. Technically, introducing a parameter ϵ ↘ 0 to avoid

the division by zero, two nonnegative bias-corrected estimators (we call the TS-type and JF-type) are,

respectively, defined by, for each constant a ∈ (0, 1),

f̃β,TSa(x) =
{f̃β(x) + ϵ}1/(1−aq)

{f̃β/a(x) + ϵ/aq}aq/(1−aq)
, f̃β,JFa(x) = {f̃β(x) + ϵ} exp

{
f̃β,SSa(x)

f̃β(x) + ϵ
− 1

}
, x ∈ S

(Terrell and Scott (1980) and Jones and Foster (1993) originally used ϵ = 0 for the standard KDE

(S = R)). By construction, we can see that, if ϵ is independent of a, then,

lim
a→1

f̃β,TSa(x) = lim
a→1

f̃β,JFa(x) = {f̃β(x) + ϵ} exp
{
f̃β,SS1(x)

f̃β(x) + ϵ
− 1

}
, x ∈ S

(hence, the TS-type is linked with the JF-type; f̃β,TS1(x) = f̃β,JF1(x)). As demonstrated in Igarashi

(2016a) and Igarashi and Kakizawa (2018a, 2018b) (note that a careful analysis of the remainder term

was carried out there), the TS-type and JF-type have the stochastic expansions

f̃β,#a(x) ≈ f̃β,SSa(x) +
{f̃β(x)− f̃β,SSa(x) + ϵ}2

2aχ{#=TS}f(x)
, # = TS, JF, if f(x) > 0,

which help understanding of asymptotic properties of the TSa-type and JFa-type similar to those of the

SSa-type, except for an additional bias term coming from E[{f̃β(x)−f̃β,SSa(x)+ϵ}2/f(x)]/(2aχ{#=TS}).

Consequently, the TSa-type and JFa-type bias reductions work even for the asymmetric KDEs, at

expense of the constant-factor inflation; λ(a) of the variance, as in the SSa-type bias reduction.

On the other hand, in the seminal paper, Jones et al. (1995) developed another multiplicative

(hence, nonnegative) bias reduction method (we call the JLN-type), focusing on the standard KDE

(S = R). A possible application to asymmetric KDEs was mentioned in Hagmann and Scaillet (2007).

Hirukawa (2010, correction 2016) showed that the asymptotic variance of the JLN-type bias-corrected

beta KDE is equivalent to that of the (uncorrected) beta KDE, despite the variance inflation λ(a)

for the TSa-type bias-corrected beta KDE (the TS1-type or JFa-type bias-corrected beta KDE was

additionally studied by Igarashi (2016a)). However[3], as will be revisited in this paper, it turns out

that Hirukawa’s asymptotic variance miss two terms, and, to make matters worse, Hirukawa’s original

incorrect proof may lead to similar incorrect conclusions in his companion papers (Hirukawa and

Sakudo (2014, 2015)) and subsequent papers (Funke and Kawka (2015), Zougab and Adjabi (2016),

and Zougab et al. (2018)). To be exact, as Jones et al. (1995) did for the standard KDE (S = R), we
need, for the variance manipulation, to look at four terms from the law of total variance/covariance,

in which only one term is negligible, while other three terms contribute to the final result (i.e., the

aforementioned authors’s asymptotic variances would be incorrectly asserted in common).

[3]The first author, in his master thesis (March, 2012; in Japanese), realized that the asymptotic variances of the

JLN-type bias-corrected beta/gamma/Bernstein KDEs have the inflation factor λ(1/2). However, his proof at that time

was formal without a rigorous analysis of the remainder term of the stochastic expansion.
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1.3. Overview of the paper

The contribution of this paper is three fold. First, we are changing the original JLN-type definition

involved the division by f̃β(Xi), i = 1, . . . , n, as follows: In line with Jones et al. (1995) (they originally

used ϵ = 0 for the standard KDE (S = R)), we define the multiplicative bias-corrected estimator by

f̃β,JLN (x) = {f̃β(x) + ϵ} 1
n

n∑
i=1

K(Xi;x, β)

f̃β(Xi) + ϵ
, x ∈ S, (6)

where the introduction of ϵ ↘ 0 avoids dividing by zero. By construction, this estimator keeps the

nonnegativity. Second, we are carefully examining the asymptotic negligibility of the remainder term

of the stochastic expansion, in the spirit of Chen et al. (2009) (see Igarashi and Kakizawa (2018a)). The

basic tools are the Rosenthal and Bennett inequalities of the absolute moment and tail probability of

the sum of zero-mean independent random variables (and their conditional variants). Third, revisiting

the variance manipulation, it is shown that the JLN-type bias reduction, even when it is applied to

the asymmetric KDEs, works, at expense of the constant-factor inflation of the variance, whose factor

is given by λ(1/2) = 4 − 4
√
2/

√
3 + 1/

√
2 ≈ 1.441, at least, for three specific asymmetric KDEs

suggested in Igarashi and Kakizawa (2015, 2018a) and Igarashi (2016b) (S = [0,∞)), or the beta

KDE (S = [0, 1]). Interestingly, the same factor λ(1/2) appeared in the SS1/2-type, TS1/2-type, and

JF1/2-type. It is worth noting that the ratio of the integral
∫∞
−∞{2ϕ(u)− (ϕ∗ϕ)(u)}2du relative to the

integral
∫∞
−∞ ϕ2(u)du is equal to λ(1/2), where ϕ is Gaussian density and ∗ is a convolution operator.

The rest of the paper is organized as follows. After presenting our assumptions, Section 2 gives the

main results for the JLN-type bias-corrected estimator (6). Section 3 is devoted to the special cases of

three different families of asymmetric KDEs for the nonnegative data. Section 4 describes extension to

d-variate density estimation by using the product kernel method. Section 5 discusses the product-type

beta KDE for the data supported on [0, 1]d. In Section 6, we present results from simulation studies.

The proofs are given in the Appendix; some technical details are deferred without further reference

to an supplemental issue: Supplemental appendix to “Multiplicative bias correction for asymmetric

kernel density estimators revisited”, Faculty of Economics, Hokkaido University, Discussion Paper

Series A: No. 2018–328.

Notation. The dependency on the sample size n is suppressed (e.g., the smoothing parameter is

denoted by β, instead of βn), but, unless otherwise stated, the limits will be taken as n → ∞. We

use the notation ||h||S = supx∈S |h(x)| for any bounded function h on S. As usual, we also denote by

h(j)(x) = (d/dx)jh(x) the jth derivative of h (if it exists), and write h(0)(x) = h(x).

2. JLN-type bias correction

In what follows, we assume that S = [0,∞). Let Xn = {X1, . . . , Xn} be a random sample of size n,

drawn from a univariate unknown density f with the support S. The goal of this section is to study

the JLN-type bias-corrected KDE (6). We formulate our asymptotic results at given point x0 ∈ [0, cU ],

where cU > 0 is fixed but arbitrary.
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For simplicity, the jth moment around x (∈ S) of K(·;x, β) is denoted by

µ̃j(K(·;x, β)) =
∫
S
(t− x)jK(t;x, β)dt (if it exists).

2.1. Assumptions

We make the following assumptions (although, as in Introduction, we can formulate the assumptions

indexed by q, r, r′ > 0; q ≥ r ≥ r′, we here focus on the particular case q = r = 1 and r′ = 1/2, in

accordance with the gamma KDE (Chen (2000))):

A1. There exists a density pK(·; ·), such that

1. K(t;x, β) = pK(t/β;x/β)/β for any t, x ∈ S, where the functional form of pK is independent

of β and x (this implies that K(·;x, β) is nonnegative and satisfies µ̃0(K(·;x, β)) ≡ 1, where

µ̃j(K(·;x, β)) = βj
∫
S(u− x/β)jpK(u;x/β)du for j ∈ N (if it exists)),

2. the jth raw moment µ′j(y) =
∫
S u

jpK(u; y)du exists for any y ∈ S, having the polynomial

grawth of degree j, i.e., supy∈S{µ′j(y)/(1 + y)j} <∞, for j = 1, 2, 3, 4, 6, and

3. for any y ∈ S, µ′1(y) = y + ζ1,1 for some constant ζ1,1, independent of y (in other words,

for any x ∈ S, K(·;x, β) satisfies µ̃1(K(·;x, β)) = βζ1,1); in this case, the constant ζ1,1 is

necessarily equal to µ′1(0) > 0.

A2. (i) When x/β → ∞ (it holds at least for any fixed bounded x > 0), the jth moments around x;

µ̃j(K(·;x, β)), j = 2, 3, 4, 6, admit the asymptotic expansions

µ̃j(K(·;x, β)) =


βζ1,2 x+ β2ζ2,2 +O(β3x−1), j = 2,

β2ζ2,3 x +O(β3), j = 3,

β2ζ2,4 x
2 +O(β3x), j = 4,

O(β3x3), j = 6

for some constants ζ1,2, ζ2,2, ζ2,3, ζ2,4 (ζ1,2, ζ2,4 > 0), independent of β and x. More precisely, the

remainder terms r2,β(x) = O(β3x−1), r3,β(x) = O(β3), r4,β(x) = O(β3x), and r6,β(x) = O(β3x3)

for j = 2, 3, 4, 6 are estimated, as follows: Given constants η ∈ [0, 1) and cL > 0, for all

sufficiently small β > 0, x ≥ cLβ
η implies that |r2,β(x)| ≤ M2β

3/(x + β), |r3,β(x)| ≤ M3β
3,

|r4,β(x)| ≤M4β
3(x+ β), and |r6,β(x)| ≤M6β

3(x+ β)3 for some constants M2,M3,M4,M6 > 0,

independent of β and x.

(ii) The following uniform/nonuniform bounds hold:

1. supx∈S sups∈S K(s;x, β) ≤ CKβ
−1 for some constant CK > 0, independent of β.

2. whenever x > 0, sups∈S K(s;x, β) ≤ C ′
K(βx)−1/2 for some constant C ′

K > 0, independent

of β and x.
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(iii) Given constants η ∈ [0, 1) and cL > 0, for all sufficiently small β > 0, x ≥ cLβ
η implies that∣∣∣∫

S
K2(s;x, β)ds− 1

2
√
πβx

∣∣∣ ≤ M√
βx

( β

x+ β

)
for some constant M > 0, independent of β and x.

(iv) Given constants η ∈ [0, 1/4) and 0 < cL < cU , for all sufficiently small β > 0, the following

approximations hold for x ∈ [cLβ
η, cU ]:∫

S
K(t;x, β)

∫
S
K(s;x, β)K(s; t, β)dsdt =

1√
6πβx

+ o((βx)−1/2),∫
S

∫
S

{ 2∏
j=1

K(tj ;x, β)
}∫

S

{ 2∏
j=1

K(s; tj , β)
}
dsdt1dt2 =

1

2
√
2πβx

+ o((βx)−1/2).

A3. (i) f is four times continuously differentiable on S, with
∑4

j=0 ||f (j)||S <∞.

(ii) There exist constants η4 ∈ (0, 1] and L4 > 0, such that |f (4)(y) − f (4)(z)| ≤ L4|y − z|η4 for

any y, z ∈ S.

A4. (i) There exists a constant R(> cU ), such that, for some ℓ ∈ N,

1. inf0≤x≤R f(x) > 0, and

2. for all sufficiently small β > 0, supx∈[0,cU ]

∫∞
R (1+ s2)K(s;x, β)/f ℓ(s)ds is smaller than any

positive power of β.

(ii) There exists a constant δ ∈ (0, 1), such that, given constants η ∈ [0, 1) and 0 < cL < cU , for

all sufficiently small β > 0, supx∈[cLβη ,cU ]

∫ δx
0 K(s;x, β)ds is smaller than any positive power of

β.

A5. β ∝ n−ι1 for some constant ι1 ∈ (0, 1).

Assumptions A3 and A5 are standard in nonparametric density estimation. To make the statements

of other assumptions clearer, we will give, in the next section, some examples which are covered (or

not covered) in our framework of Assumption A1.1. Define

γ1(x; f) = ζ1,1f
(1)(x) +

ζ1,2
2
xf (2)(x), γ2(x; f) =

ζ2,2
2
f (2)(x) +

ζ2,3
6
xf (3)(x) +

ζ2,4
24

x2f (4)(x).

Before presenting our main results on the JLN-type (Subsection 2.2), let us now illustrate the key

quantities in our analysis (compared to (3) and (5)). For simplicity, we write

B
(K),f
β (s) =

∫
S
K(t; s, β)f(t)dt− f(s), s ∈ S.

As usual, Taylor’s expansion around t = s yields

∣∣∣∫
S
K(t; s, β)f(t)dt− f(s)−

4∑
j=1

f (j)(s)

j!
µ̃j(K(·; s, β))

∣∣∣ ≤ L4

24
µ̃
(4+η4)/6
6 (K(·; s, β)),
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hence, for all sufficiently small β > 0, s ≥ cLβ
η (η ∈ [0, 1) and cL > 0 are constants) implies that

∣∣∣B(K),f
β (s)−

2∑
j=1

βjγj(s; f)
∣∣∣ ≤ 4∑

j=2

||f (j)||S
j!

|rj,β(s)|+
L4

24
|r6,β(s)|(4+η4)/6

≤M ′
[
β3−η + β2+η4/2(1 + s2+η4/2)

]
(7)

for some constant M ′ > 0, independent of β and s (see Assumptions A1.3 and A2(i)). Our framework

of Assumption A1.1–2 facilitates the boundary analysis when s = βκ (κ ≥ 0 is a constant), i.e.,

B
(K),f
β (βκ) = β{µ′1(κ)− κ}f (1)(0) + β2

2
{µ′2(κ)− κ2}f (2)(0) +O(β3) (8)

(for the expression (8), we can use µ′1(κ)− κ = µ′1(0) under Assumption A1.3), since

∣∣∣∫
S
K(t;βκ, β)f(t)dt− f(βκ)−

2∑
j=1

f (j)(βκ)

j!
µ̃j(K(·;βκ, β))

∣∣∣ ≤ ||f (3)||S
6

µ̃
3/4
4 (K(·;βκ, β)),

with µ̃j(K(·;βκ, β)) = βj
∫
S(u−κ)

jpK(u;κ)du, j = 1, 2, 4 (note that |f (2)(βκ)− f (2)(0)| ≤ βκ||f (3)||S
and |f (1)(βκ)− f (1)(0)− βκf (2)(0)| ≤ (1/2)(βκ)2||f (3)||S).

Remark 1 (i) supx∈S |B(K),f
β (x)| ≤ 2||f ||S under the boundedness of f and Assumption A1.1.

(ii) Under Assumptions A1, A2(i), and A3(i), we have, for all sufficiently small β > 0,

sup
x∈[0,R̃]

|B(K),f
β (x)| = O(β) for any constant R̃ > 0. (9)

Also,

sup
x∈[0,βτ ]

|B(K),f
β (x)− βξ1,1f

(1)(0)| = O(β2τ ) for any constant τ ∈ (0, 1).

Proof of Remark 1(ii) We see that, for x ≥ 0,∣∣∣∫
S
K(t;x, β)f(t)dt− f(x)− βξ1,1f

(1)(x)
∣∣∣ ≤ ||f (2)||S

2
µ̃2(K(·;x, β)),

hence, |B(K),f
β (x)| ≤ βξ1,1||f (1)||S + (1/2)||f (2)||S µ̃2(K(·;x, β)). For any R̃ > 0, Assumption A2(i)

yields, for all sufficiently small β > 0, sup
x∈[β1/2,R̃]

µ̃2(K(·;x, β)) ≤ βζ1,2R̃ + β2(|ζ2,2|+M2), whereas

Assumption A1.2 implies that

µ̃2(K(·;x, β)) ≤ 2
[∫

S
t2
1

β
pK

( t
β
;
x

β

)
dt+ x2

]
≤ 2

[
β2

{
1 +

(x
β

)2}
sup
y∈S

µ′2(y)

1 + y2
+ x2

]
,

hence, supx∈[0,βτ̃ ] µ̃2(K(·;x, β)) = O(βmin(2,2τ̃)) for any constant τ̃ > 0. The latter result then follows

from supx∈[0,βτ̃ ] |f (1)(x)− f (1)(0)| ≤ β τ̃ ||f (2)||S . □

Remark 2 The error bound (7) should read

∣∣∣B(K),f
β (s)−

2∑
j=1

βjγj(s; f)
∣∣∣ ≤M ′β2+η4/2(1 + s2+η4/2) for s ≥ 0,
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if Assumption A2(i) can be replaced by the following stronger version[4]:

A2. (i♯) The jth moments around x ≥ 0; µ̃j(K(·;x, β)), j = 2, 3, 4, 6, are given by

µ̃j(K(·;x, β)) =


βζ1,2 x+ β2ζ2,2 j = 2,

β2ζ2,3 x + r3,β(x), j = 3,

β2ζ2,4 x
2 + r4,β(x), j = 4,

r6,β(x), j = 6

with |r3,β(x)| ≤M3β
3, |r4,β(x)| ≤M4β

3(x+β), and |r6,β(x)| ≤M6β
3(x+β)3 for some constants

ζ1,2, ζ2,2, ζ2,3, ζ2,4 (ζ1,2, ζ2,2, ζ2,4 > 0) and M3,M4,M6 > 0, independent of β and x.

Also, if g is continuously differentiable g on S, with
∑1

i=0 ||g(i)||S < ∞, Assumptions A1.1–2,

A2(i,ii.2,iii), and A3(i) yield, for all sufficiently small β > 0,

∫
S
K2(t;x, β)g(t)dt =


β−1/2 g(x)

2
√
πx

+ o((βx)−1/2) +O(1) for x ∈ [cLβ
η, cU ],

β−1g(0)

∫
S
p2K(u;κ)du+O(1) for x = βκ,

(10)

where η ∈ [0, 1), 0 < cL < cU , and κ ≥ 0 are constants. The proof is easy, as follows: For x ∈ [cLβ
η, cU ],

Taylor’s expansion around t = x yields∣∣∣∫
S
K2(t;x, β)g(t)dt− g(x)

∫
S
K2(t;x, β)dt

∣∣∣ ≤ ||g(1)||S
∫
S
|t− x|K2(t;x, β)dt

≤ ||g(1)||S
C ′
K√
βx
µ̃
1/2
2 (K(·;x, β))

≤ ||g(1)||SC ′
K

{
ζ1,2 +

β1−η

cL
(|ζ2,2|+M2)

}1/2
,

whereas, for x = βκ, Taylor’s expansion around t = 0 yields∣∣∣∫
S
K2(t;βκ, β)g(t)dt− g(0)

∫
S
K2(t;βκ, β)dt

∣∣∣ ≤ ||g(1)||S
∫
S
tK2(t;βκ, β)dt,

with
∫
S t

jK2(t;βκ, β)dt = βj−1
∫
S u

jp2K(u;κ)du, j = 0, 1.

2.2. Main results

2.2.1. Bias and variance approximations

We are ready to present the bias and variance of the JLN-type bias-corrected KDE (6).

Proposition 1 Suppose that Assumptions A1, A2(i,ii.1), and A3–A5 hold (we set ℓ ≥ 3 for A4(i))[5],

and that ϵ ∝ βι2 for some constant ι2 > 1. Then, for all sufficiently small β > 0,

Bias[f̃β,JLN (x)] =

β2BJLN (x; f) + o(β2) +O(n−1(βx)−1/2) for x ∈ [cLβ
η, cU ],

β2I(κ; f) + o(β2) +O(n−1β−1) for x = βκ,
(11)

[4]The requirement of µ̃2(K(·;x, β)) = βζ1,2 x + β2ζ2,2 is satisfied, if, in addition to Assumption A1.3, the 2nd raw

moment µ′
2(y), for y ≥ 0, is a quadratic polynomial in y; µ′

2(y) = y2 + (2ζ1,1 + ζ1,2)y + ζ2,2; in this case, we have

ζj,j = µ′
j(0) > 0, j = 1, 2.

[5]Hirukawa and Sakudo (2014) (see also the subsequent papers; Funke and Kawka (2015), Hirukawa and Sakudo

(2015), Zougab and Adjabi (2016), and Zougab et al. (2018)) assumed nβ3 → ∞ to control the remainder term of the

bias, i.e., O(n−1β−1) = o(b2). Their stronger assumption is, however, redundant for analyzing the M(I)SE.
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where η ∈ [0, 1), 0 < cL < cU , and κ ≥ 0 are constants,

BJLN (x; f) = −f(x)γ1
(
x;
γ1(·; f)
f(·)

)
,

I(κ; f) = {µ′1(0)}2
{f (1)(0)}2

f(0)
+

{
−1

2

∫
S
µ′2(y)pK(y;κ)dy + µ′2(κ)−

κ2

2

}
f (2)(0).

Note that, under Assumption A2(i♯), we can use

I(κ; f) = ζ21,1
{f (1)(0)}2

f(0)
− ζ1,1

(
ζ1,1 +

ζ1,2
2

)
f (2)(0) = BJLN (βκ; f) +O(β).

Proposition 2 Suppose that Assumptions A1–A5 hold (we set ℓ ≥ 5 for A4(i)), and that ϵ ∝ βι2 for

some constant ι2 ≥ 1. Then, for all sufficiently small β > 0,

V [f̃β,JLN (x)] =

n
−1β−1/2λ(1/2)

f(x)

2
√
πx

+ o(n−1(βx)−1/2) +O(β5) for x ∈ [cLβ
η, cU ],

n−1β−1J(κ)f(0) + o(n−1β−1) +O(β5) for x = βκ,

(12)

where η ∈ [0, 1/4), 0 < cL < cU , and κ ≥ 0 are constants, and J(κ) = 4J1(κ)− 4J2(κ) + J3(κ) with

J1(κ) =

∫
S
p2K(u;κ)du, J2(κ) =

∫
S
pK(y;κ)

∫
S
pK(u;κ)pK(u; y)dudy,

J3(κ) =

∫
S

∫
S

[ 2∏
j=1

pK(yj ;κ)
] ∫

S

[ 2∏
j=1

pK(u; yj)
]
dudy1dy2.

Note that V [f̃β,JLN (x)] = O(n−1(βx)−1/2 + β5) for x ∈ [cLβ
η, cU ], if η ∈ [0, 1).

Remark 3 A careful analysis of Proofs of Propositions 1 and 2 shows that, for all sufficiently small

β > 0,

sup
x∈[0,cU ]

V [f̃β,JLN (x)] = O(n−1β−1 + β5),

sup
x∈[0,βτ ]

|Bias[f̃β,JLN (x)]| = O(β2τ + n−1β−1) for any constant τ ∈ (1/2, 1).

These bounds will be required to show that the different rates in the variance and the remainder term

of the bias has negligible impact on the truncated mean integrated squared error (MISE).

2.2.2. MSE

Propositions 1 and 2 (i.e., the bias (11) and variance (12)) immediately yield

MSE[f̃β,JLN (x0)]

=


β4B2

JLN (x0; f) + n−1β−1/2λ(1/2)
f(x0)

2
√
πx0

+ o(β4 + n−1β−1/2) for fixed x0 ∈ (0, cU ],

β4I2(0; f) + n−1β−1J(0)f(0) + o(β4 + n−1β−1) for x0 = 0,
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whose leading term is minimized by choosing

βoptJLN (x0) =


[ λ(1/2) f(x0)

2
√
πx0

8B2
JLN (x0; f)

n−1

]2/9
for fixed x0 ∈ (0, cU ],[

J(0)f(0)

4I2(0; f)
n−1

]1/5
for x0 = 0,

and the optimal AMSE is then given by

AMSEopt[f̃β,JLN (x0)] =


9{B2

JLN (x0; f)}1/9
[1
8
λ(1/2)

f(x0)

2
√
πx0

n−1
]8/9

for fixed x0 ∈ (0, cU ],

5{I2(0; f)}1/5
[1
4
J(0)f(0)n−1

]4/5
for x0 = 0.

This order is faster, compared with (4) when q = r = 1 and r′ = 1/2.

2.2.3. MISE

To measure a global performance of the density estimator, we now technically use the truncated MISE,

defined by MISEw[f̂ ] =
∫
[0,w]MSE[f̂(x)]dx, where w ∈ (0, cU ] is a constant. Propositions 1 and 2,

together with Remark 3, yield MISEw[f̃β,JLN ] = AMISEw[f̃β,JLN ] + o(β4 + n−1β−1/2), where

AMISEw[f̃β,JLN ] = β4
∫ w

0
B2

JLN (x; f)dx+ n−1β−1/2λ(1/2)

∫ w

0

f(x)

2
√
πx
dx

(with β ∝ n−2/9, the convergence rate n−8/9 is achieved, which is faster than that of the uncorrected

case, n−4/5).

Proof Choosing constants τ1 ∈ (4/5, 1) and τ2 ∈ (0, 1/4), we have, for all sufficiently small β > 0,∫ w

βτ1

Bias2[f̃β,JLN (x)]dx = β4
∫ w

βτ1

B2
JLN (x; f)dx+ o(n−1β−1/2 + β4) +O((n−1β−1/2)2 log(1/β))

= β4
∫ w

0
B2

JLN (x; f)dx+ o(n−1β−1/2 + β4),∫ w

βτ2

V [f̃β,JLN (x)]dx = n−1β−1/2λ(1/2)

∫ w

βτ2

f(x)

2
√
πx
dx+ o(n−1β−1/2 + β4)

= n−1β−1/2λ(1/2)

∫ w

0

f(x)

2
√
πx
dx+ o(n−1β−1/2 + β4),∫ βτ1

0
MSE[f̃β,JLN (x)]dx = O({β4τ1 + (n−1b−1)2 + n−1β−1 + β5}βτ1) = o(n−1β−1/2 + β4),∫ βτ2

βτ1

V [f̃β,JLN (x)]dx = O(n−1β−1/2+τ1/2 + β5+τ2) = o(n−1β−1/2 + β4). □

3. Special cases and discussion

To build the asymmetric kernel K(·;x, β) supported on [0,∞), we focus on the application of three

different families:
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• The modified Bessel (MB) density, with the parameter ω, σ > 0 and λ ∈ R, is defined by

K(MB)
ω,σ (s;λ) =

sλ−1

2σλKλ(ω)
exp

{
−ω
2

( s
σ
+
σ

s

)}
,

where Kν is the modified Bessel function of the third kind with index ν ∈ R, i.e.,

Kν(ω) =

∫ ∞

0

sν−1

2
exp

{
−ω
2
(s+ s−1)

}
ds =

∫ ∞

0
cosh(νt) exp{−ω cosh(t)}dt

(note that Kν(ω) = K−ν(ω) and K1/2(ω) = {π/(2ω)}1/2e−ω).

• The weighted LN[λ] density, with the parameter µ, λ ∈ R and σ2 > 0, is defined by

K
(LN)
µ,σ2 (s;λ) =

sλ−1

√
2πσ

exp
{
−(log s− µ)2

2σ2
− λµ− λ2σ2

2

}
(by definition, K

(LN)
µ,σ2 (·;λ) = K

(LN)
µ+λσ2,σ2(·; 0) for λ ∈ R).

• The Amoroso density, with the parameter α, β > 0 and γ ̸= 0, is defined by

K
(A)
α,β,γ(s) =

|γ|sαγ−1

βαγΓ(α)
exp

{
−
( s
β

)γ}
.

3.1. Application to MIG/MLN/Amoroso KDEs

Example 1 (MIG KDE) Reformulating the IG/BS/RIG KDEs due to Jin and Kawczak (2003) and

Scaillet (2004), Igarashi and Kakizawa (2014b, 2015) suggested the mixture of IG and RIG kernels (in

short, the MIG kernel)

K(MIGp)(·;x, b) = (1− p)K
(MB)
x/b+1,x+b(·;−1/2) + pK

(MB)
x/b+1,x+b(·; 1/2), x ≥ 0

to construct the (uncorrected) MIG KDE defined by f̂
(MIGp)
b (x) = n−1

∑n
i=1K

(MIGp)(Xi;x, b), where

p ∈ [0, 1] is a mixing proportion, independent of β and x. This class of estimators contains the

(reformulated) IG/BS/RIG KDEs as special cases p = 0, 1/2, 1, respectively.

Example 2 (MLN KDE) Reformulating the LN KDE due to Jin and Kawczak (2003), Igarashi

(2016b) (see also Igarashi and Kakizawa (2015)) used the LN[±1/2] kernel K
(LN)

µb(x),σ
2
b (x)

(·;±1/2), x ≥ 0,

where

µb(x) = log(x+ b) = log bρ(x/b), σ2b (x) = log
(
1 +

b

x+ b

)
= log

{
1 +

1

ρ(x/b)

}
≤ log 2

(we write ρ(t) = t+1). Parallel to the MIG kernel, we may choose a mixture of the LN[±1/2] kernels

(in short, the MLN kernel)

K(MLNp)(·;x, b) = (1− p)K
(LN)

µb(x),σ
2
b (x)

(·;−1/2) + pK
(LN)

µb(x),σ
2
b (x)

(·; 1/2), x ≥ 0

to construct the (uncorrected) MLN KDE defined by f̂
(MLNp)
b (x) = n−1

∑n
i=1K

(MLNp)(Xi;x, b).
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Example 3 (Amoroso (or generalized gamma) KDE) For every constant γ > 0, Igarashi and

Kakizawa (2018a) suggested the Amoroso kernel

K(Aγ)(s;x, b) = K
(A)
αb(x),bβb(x),γ

(s), x ≥ 0,

where

αb(x) =
x/b+ 1

γ
=
ρ(x/b)

γ
, βb(x) = (x/b+ 1)

Γ
(
x/b+1

γ

)
Γ
(
x/b+2

γ

) = ρ(x/b)
Γ
(
ρ(x/b)

γ

)
Γ
(
ρ(x/b)+1

γ

) .
In this paper, we use the (uncorrected) Amoroso KDE defined by f̂

(Aγ)
b (x) = n−1

∑n
i=1K

(Aγ)(Xi;x, bγ),

for every constant γ > 0[6]. The gamma KDE due to Chen (2000), f̂
(G)
b (x) = n−1

∑n
i=1K

(A)
x/b+1,b,1(s)

is a core member with γ = 1.

Now, to ensure Propositions 1 and 2 for the bias-corrected MIG/MLN/Amoroso KDEs, defined by

f̂
(#)
b,JLN (x) = {f̂ (#)

b (x) + ϵ} 1
n

n∑
i=1

K(#)(Xi;x, b)

f̂
(#)
b (Xi) + ϵ

, x ≥ 0, # =MIGp,MLNp, Aγ ,

we have only to verify Assumptions on the respective kernel K(#)(·; ·, b). The most of them is not

restrictive or available from the existing literature. By construction, Assumptions A1 and A2(i,iii)

can be readily verified for three examples. In addition to q = r = 1 and r′ = 1/2, from Lemma 1 of

Igarashi and Kakizawa (2015) and Lemma A.1 of Igarashi and Kakizawa (2018a), we obtain

• (ζ
(#p)
1,1 , ζ

(#p)
1,2 ) = (p+ 1, 1), (ζ

(#p)
2,2 , ζ

(#p)
2,3 , ζ

(#p)
2,4 ) = (5p+ 2, 3(p+ 2), 3), where # =MIG,MLN ,

• (ζ
(Aγ)
1,1 , ζ

(Aγ)
1,2 ) = (γ, 1), (ζ

(Aγ)
2,2 , ζ

(Aγ)
2,3 , ζ

(Aγ)
2,4 ) =

(1
2
(3γ2 + 1), 2γ + 3, 3

)
.

Assumption A2(i♯) holds for the MIG/LN[−1/2]/gamma kernels[7]. The uniform/nonuniform bounds

in Assumption A2(ii) for the MB kernel K
(MB)
x/b+1,x+b(·;λ) and the weighted LN kernel K

(LN)

µb(x),σ
2
b (x)

(·;λ),
where λ ∈ R, are found in Lemma A.2 of Igarashi and Kakizawa (2014b), Lemma 4 of Igarashi (2016b),

and Remark A.1(i) of Igarashi and Kakizawa (2015). See also Lemma A.3 of Igarashi and Kakizawa

(2018a) for the Amoroso kernel K(Aγ)(·; ·, bγ).
On the other hand, after some algebra, it is straightforward to see that

[6]Igarashi and Kakizawa’s original definition should read n−1 ∑n
i=1 K

(Aγ)(Xi;x, b).

In their paper (Igarashi and Kakizawa (2018a)), the negative exponent γ < 0 has been allowed, for which the definition

of the parameter (αb(x), βb(x)) should read, as follows: For every constant γ < 0,

αb(x) =
ρ∗(x/b) + 1

|γ| , βb(x) = ρ∗(x/b)
Γ
(

ρ∗(x/b)+1
|γ|

)
Γ
(

ρ∗(x/b)
|γ|

) , where ρ∗(x) = x+ c∗, with c∗ > 1 (rather than c∗ = 1).

For the simulation studies in Section 6, c∗ = 1.1 was chosen.
[7]Let x ≥ 0. We can see that µ̃j(K

(#)(·;x, b))’s, where # = G,MIGp, are the polynomials in x;

µ̃j(K
(G)(·;x, b)) =



b, j = 1,

bx+ 2b2, j = 2,

5b2x+O(b3), j = 3,

3b2x2 +O(b3(x+ b)), j = 4,

O(b3(x+ b)3), j = 6

and µ̃j(K
(MIGp)(·;x, b)) =



(p+ 1)b, j = 1,

bx+ (5p+ 2)b2, j = 2,

3(p+ 2)b2x+O(b3), j = 3,

3b2x2 +O(b3(x+ b)), j = 4,

O(b3(x+ b)3), j = 6,
13



• the kernels K(MIGp)(·; ·, b), K(MLNp)(·; ·, b), and K(Aγ)(·; ·, bγ) can be well approximated by

a Gaussian, i.e., choosing constants η ∈ [0, 1/4) and τ ∈ ((2η + 1)/3, 1/2), we have, for all

sufficiently small β > 0,√
βxK(x+

√
βxz1;x+

√
βxz2, β) = ϕ(z1 − z2)[1 + o(1)]

uniformly in z1, z2 ∈ [−βτ/
√
βx, βτ/

√
βx ] and x ∈ [cLβ

η, cU ].

This Gaussian approximation is a sufficient condition for Assumption A2(iv); note that, in this case,

two coefficients ζ1,2 and ζ2,4 are equal to 1 and 3, respectively.

It remains to verify Assumption A4. For this, we now consider the two situations (we do not pursue

more general conditions) where either of the following assumptions holds for some constant ι > 0:

f1[ι]. infx∈S{f(x) exp(C2x
ι)} ≥ C1 for some constants C1, C2 > 0.

f2. infx∈S{f(x)(1 + x)C2} ≥ C1 for some constants C1 > 0 and C2 > 1.

In either case, inf0≤x≤R f(x) > 0 for any R > 0 (Assumption A4(i.1) is automatically satisfied).

Lemma 3 (i) If either of Assumption f1[ι] or f2 holds for some ι ∈ (0, 1], Assumption A4(i.2,ii) holds

for any ℓ ∈ N when K is the MIG kernel K(MIGp)(·; ·, b).
(ii) If Assumption f2 holds, Assumption A4(i.2,ii) holds for any ℓ ∈ N when K is the MLN kernel

K(MLNp)(·; ·, b).
(iii) Given γ > 0, if either of Assumption f1[ι] or f2 holds for some ι ∈ (0, γ], Assumption A4(i.2,ii)

holds for any ℓ ∈ N when K is the Amoroso kernel K(Aγ)(·; ·, bγ).

3.2. Discussion

Examples 1–3 have in common that the linear function ρ(t) = t+ 1 (one can use ρ(t) = t+ c, where

c ≥ 1 is a constant) is adopted. As demonstrated in Chen (2000) and Igarashi and Kakizawa (2014b,

2015, 2018a) (see also Hirukawa and Sakudo (2015) for a subfamily of the generalized gamma KDE

under an additional restriction γ ≥ 1, focusing on the Nakagami case with γ = 2), it may be true that

whereas µ̃j(K
(MLNp)(·;x, b))’s are, in general, the rational functions in x;

µ̃j(K
(MLNp)(·;x, b)) =



(p+ 1)b, j = 1,

bx+ (5p+ 2)b2 +
pb3

x+ b
, j = 2,

3(p+ 2)b2x+ r
(MLNp)

3,b (x), j = 3,

3b2x2 + r
(MLNp)

4,b (x), j = 4,

r
(MLNp)

6,b (x) j = 6

with |r(MLNp)

3,b (x)| ≤ M3b
3, |r(MLNp)

4,b (x)| ≤ M4b
3(x + b), and |r(MLNp)

6,b (x)| ≤ M6b
3(x + b)3 for some constants

M3,M4,M6 > 0, independent of b and x.

The MLNp kernel for p ∈ (0, 1] does not satisfy Assumption A2(i♯).
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the use of two-regime ρ-function, having the form

ρc(t) =

c+ t, t > 2,

rc(t), t ∈ [0, 2]
(we assume c+ 2 = rc(2) ≥ rc(0) ≥ 1 for some constant c ∈ R),

where the function ρc is continuous and non-decreasing on [0,∞), has the following advantages for the

resulting estimator f̃⋆b (·; ρc) (we call the two-regime type): (i) choosing c = 0, Bias[f̃⋆b (x; ρ0)] does not

involve f ′ in the leading O(b)-term, when x ∈ [2b,∞), or (ii) one can minimize the O(n−4/5)-MISE

of f̃⋆b (·; ρc) with respect to the additional parameter c; see Igarashi and Kakizawa (2014b). However,

Assumption A1.3 is violated, due to the introduction of the non-linear ρ-function.

Remark 4 Even if Assumption A1.3 is replaced by the following assumption, (9) remains valid:

A1. 3♯. µ′1(y) has the form[8] of

µ′1(y) =

ζ1,1 + y, y > c′,

ζ(y), y ∈ [0, c′]
for some constants c′ > 0 and ζ1,1 ∈ R,

where ζ is a continuous and non-decreasing function on [0,∞), with ζ(c′) = ζ1,1 + c′ ≥ ζ(0) > 0.

The proof is easy: We see that, for x ≥ 0,∣∣∣∫
S
K(t;x, β)f(t)dt− f(x)− β{µ′1(x/β)− x/β}f (1)(x)

∣∣∣ ≤ ||f (2)||S
2

µ̃2(K(·;x, β)),

where sup
x∈[0,R̃]

µ̃2(K(·;x, β)) = O(β) for any constant R̃ > 0 (see Proof of (9)). By definition,

x ∈ [c′β, R̃] implies µ′1(x/β)− x/β ≡ ζ1,1. Also, supx∈[0,c′β] |µ′1(x/β)− x/β| ≤ ζ(c′) + c′.

The following result reveals the weakness of the two-regime type.

Proposition 4 (Violation of Assumption A1.3) In Propositions 1 and 2, if Assumption A1.3 is

replaced by A1.3♯, then, in general, the order of the bias can not be improved near the boundary, i.e.,

the asymptotic bias (11) when x = βκ should read as

Bias[f̃β,JLN (βκ)] = β
[
{µ′1(κ)− κ} −

∫
S
{µ′1(y)− y}pK(y;κ)dy

]
f (1)(0) +O(β2 + n−1β−1)

(without a shoulder condition f (1)(0) = 0, Assumption A1.3[9] plays a crucial role of the bias reduction).

[8]Using the non-linear ρ-function ρc (rather than ρ(t) = t + 1), the two-regime MIGp/MLNp kernels, for p ∈ [0, 1],

yield µ′
1(y) = p+ ρc(y), whereas the two-regime Amorosoγ kernel yields µ′

1(y) = γρc(y/γ).
[9]Generally speaking, it is difficult to solve the integral equation M(κ)−

∫
S M(y)pK(y;κ)dy = 0 with respect to the

function M; of course, M(·) ≡ constant (hence, the case µ′
1(y)− y ≡ ζ1,1) is an exceptional solution.

Anyway, letting rc(t) = (c+1)(t/2)2/(c+1) +1, where c > −1, we numerically verify that µ′
1(y)− y = p+ ρc(y)− y for

the two-regime MIGp/MLNp kernels is not the solution of the integral equation; in this case, the JLN-type bias correction

does not work, unless f (1)(0) = 0. The same argument is valid for the two-regime Amorosoγ kernel by considering the

case µ′
1(y) = γρc(y/γ).
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We close this section by pointing out that, in the literature, the variants of the IG/BS/LN KDEs

usingK(IG)S (s;x, b) = K
(MB)
1/(bx),x(s;−1/2), K(BS)JK (s;x, b) = (1/2){K(MB)

1/b,x (s;−1/2)+K
(MB)
1/b,x (s; 1/2)},

and K(LN)JK (s;x, b) = K
(LN)
log x,log(1+b)(s; 0), due to Jin and Kawczak (2003)[10] and Scaillet (2004),

have been discussed, but the resulting estimators yield f̂b(0) = 0 by construction. Clearly, such an

unrealistic constraint is not suitable for estimating the density f(0) > 0. See also Koul and Song

(2013), Marchant et al. (2013), and Saulo et al. (2013). To make matters worse, a variant of the

RIG KDE using K(RIG)S (s;x, b) = K
(MB)
(x−b)/b,x−b(s; 1/2), due to Scaillet (2004), had the downward bias

(e−2−1)f(0) at x = 0; see Igarashi and Kakizawa (2014b). Also, the IGS/BSJK/LNJK KDEs had the

asymptotic variance n−1b−1/2(2
√
πxJ)−1f(x), J = 1, 3/2 (rather than n−1b−1/2(2

√
πx)−1f(x)) under∫∞

0 x−Jf(x)dx < ∞ (any bounded continuous density f on [0,∞), with f(0) > 0, was implicitly

excluded). These problems were apparently caused by the bad parameterization; when x = 0, the

parameter (1/(bx), x), (1/b, x), (log x, log(1 + b)) lies outside the parameter space of the IG/BS/LN

density, respectively, and, when x ∈ [0, b], K(RIG)S (·;x, b) is not the density. That is the reason why

the authors have so far suggested a suitable parameterization for a certain parametric family Kθ(·);
see Examples 1–3, in such a way that, choosing a subcomponent θ1 to be a function θ1(x, b) of the

location x ∈ S and a smoothing parameter b, the resulting density estimator n−1
∑n

i=1Kθ1(x,b),θ2(Xi)

shares common properties to the gamma KDE (Chen (2000)). See also Kakizawa (2018).

Remark 5 The above-mentioned “bad” asymmetric KDEs may be applied, if f(0) = 0 is known

in advance; in this case, the corresponding “bad” kernels (IGS/RIGS/BSJK/LNJK) share similar

properties to K(·;x, β) for fixed x ∈ (0, cU ] (the details are omitted here). We stress that, after the

JLN-type bias correction, the asymptotic variances at x ∈ (0, cU ] increase with the factor λ(1/2),

hence, incorrect asymptotic variances of Theorem 2 in Hirukawa and Sakudo (2014) (see also Funke

and Kawka (2015)) should be corrected as n−1b−1/2λ(1/2)(2
√
πxJ)−1f(x).

4. The case [0,∞]d: product-type asymmetric KDE

Once the univariate case is studied in detail, the product kernel method is available for estimating the

multivariate density. To illustrate it, we focus on the situation where the data Xi = (Xi1, . . . , Xid)
′ is

supported on Sd = [0,∞)d, and construct d-variate product-type asymmetric KDE, defined by[11]

f̃ Π
β (x) =

1

n

n∑
i=1

d∏
j=1

K(Xij ;xj , β), x = (x1, . . . , xd)
′ ∈ Sd.

Similar theoretical results as in one dimension can be easily derived under the following assumptions:

• (id) A random sample {X1, . . . ,Xn} is drawn from an unknown density f with support Sd.

[10]Jin and Kawczak (2003) originally considered K
(LN)

log x,4 log(1+b)(s; 0); but the “4” in their definition of 4 log(1 + b)

seemed to be not important. Their estimator should read as K
(LN)

log x,log(1+b)(s; 0) (of course, K
(LN)
log x,b(s; 0) can be used).

[11]Although, in this paper, we adopt the single smoothing parameter β for simplicity, one can use vectors of the

smoothing parameter proportional to a given vector (c̃1, . . . , c̃d)
′, i.e., (β1, . . . , βd)

′ = β(c̃1, . . . , c̃d)
′, where c̃j > 0 is a

constant.
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(iid) There exists a function φ, being four times continuously differentiable on (c,∞)d (⊃ Sd),

such that the target density f is the restriction of φ on Sd, and that f and ∂i1 · · · ∂iqf are all

bounded for q = 1, 2, 3, 4; i1, . . . , iq ∈ {1, . . . , d}, where ∂j = ∂/∂xj . In addition, there exist

constants η4 ∈ (0, 1] and L4 > 0, such that |∂i1∂i2∂i3∂i4f(u)− ∂i1∂i2∂i3∂i4f(v)| ≤ L4||u− v||η4

for any u,v ∈ Sd, where ||u|| is an Euculidian norm (
∑d

j=1 u
2
j )

1/2 of u = (u1, . . . , ud)
′.

(iiid) β ∝ n−ι1 for some constant ι1 ∈ (0, 1/d).

Note that one technical assumption, analogous to Assumption A4 (see Lemma 3 in the previous

section), can be verified under either of the following assumptions for some constant ι > 0:

f1d[ι]. infx∈Sd
{f(x) exp(C2||x||ι)} ≥ C1 for some constants C1, C2 > 0.

f2d. infx∈Sd
{f(x)(1 + ||x||)C2} ≥ C1 for some constants C1 > 0 and C2 > 1.

In either case, infx∈[0,R]d f(x) > 0 for any R > 0. Other assumptions related to the product-type

asymmetric kernel KΠ(s;x, β) =
∏d

j=1K(sj ;xj , β) are met, provided that the selected asymmetric

kernel K(·; ·, β) in one dimensional case satisfies Assumptions A1 and A2. Here, the j1, . . . , jd-th

moment around x (∈ Sd) of K
Π(·;x, β), denoted by

µ̃j1,...,jd(K
Π(·;x, β)) =

∫
Sd

(t1 − x1)
j1 · · · (td − xd)

jdKΠ(t;x, β)dt (if it exists),

can be written as

µ̃j1,...,jd(K
Π(·;x, β)) =

d∏
i=1

µ̃ji(K(·;xi, β)) due to the independence,

so that the cross-moments up to the fourth-order, except for the marginal moments, are given by

µ̃ 1,...,1︸︷︷︸
j times

,0,...,0(K
Π(·;x, β)) = (βζ1,1)

j , j = 2, 3, 4,

µ̃2,1,0,...,0(K
Π(·;x, β)) = β2ζ1,1ζ1,2 x1x2 +O(β3) when x1/β → ∞,

µ̃3,1,0,...,0(K
Π(·;x, β)) = µ̃2,1,1,0,...,0(K

Π(·;x, β)) = O(β3x1) when x1/β → ∞,

µ̃2,2,0,...,0(K
Π(·;x, β)) = β2ζ21,2 x1x2 +O(β3(x1 + x2)) when x1/β → ∞ and x2/β → ∞

(there are, of course, the permutation variants, being omitted here). Similarly, the uniform/nonuniform

bounds and the approximations of certain integrals (see Assumption A2(ii–iv)) are readily extended:

• supx∈Sd
sups∈Sd

KΠ(s;x, β) ≤ (CKβ
−1)d,

• whenever x1, . . . , xd′ > 0, supxd′+1,...,xd∈S sups∈Sd
KΠ(s;x, β) ≤ (CKβ

−1)d−d′
∏d′

j=1(C
′
Kβxj)

−1/2,

where d′ = 1, . . . , d (the permutation variants for (x1, . . . , xd) are omitted here),

• given constants η ∈ [0, 1) and cL > 0, for all sufficiently small β > 0, x1, . . . , xd ≥ cLβ
η imply

that ∣∣∣∫
Sd

{KΠ(s;x, β)}2ds− β−d/2∏d
j=1(2

√
πxj)

∣∣∣ ≤ β−d/2Md∏d
j=1

√
xj

d∑
j=1

β

xj + β

for some constant Md > 0, independent of β and x, and
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• given constants η ∈ [0, 1/4) and 0 < cL < cU , for all sufficiently small β > 0, the following

approximations hold for x1, . . . , xd ∈ [cLβ
η, cU ]:∫

Sd

KΠ(t;x, β)

∫
Sd

KΠ(s;x, β)KΠ(s; t, β)dsdt =
β−d/2∏d

j=1(
√

6πxj)
+ o(β−d/2

d∏
j=1

x
−1/2
j ),

∫
Sd

∫
Sd

{ 2∏
j=1

KΠ(tj ;x, β)
}∫

Sd

{ 2∏
j=1

KΠ(s; tj , β)
}
dsdt1dt2 =

β−d/2∏d
j=1(2

√
2πxj)

+ o(β−d/2
d∏

j=1

x
−1/2
j ).

It turns out that the JLN-type bias-corrected estimator

f̃ Π
β,JLN (x) = {f̃ Π

β (x) + ϵ} 1
n

n∑
i=1

KΠ(Xi;x, β)

f̃ Π
β (Xi) + ϵ

, x ∈ Sd

(we assume ϵ ∝ βι2 for some ι2 > 1) has the asymptotic bias and variance at x = (x1, . . . , xd)
′, as

follows: For all sufficiently small β > 0, we have, for x1, . . . , xd ∈ [cLβ
η, cU ],

Bias[f̃ Π
β,JLN (x)] = −β2f(x)γ1,d

(
x;
γ1,d(·; f)
f(·)

)
+ o(β2) +O(n−1β−d/2

d∏
j=1

x
−1/2
j ), if η ∈ [0, 1),

V [f̃ Π
β,JLN (x)] = n−1β−d/2 λd f(x)∏d

j=1(2
√
πxj)

+ o(n−1β−d/2
d∏

j=1

x
−1/2
j ) +O(β5), if η ∈ [0, 1/4)

(note that, if η ∈ [0, 1), then, V [f̃ Π
β,JLN (x)] = O(n−1β−d/2

∏d
j=1 x

−1/2
j + β5)), where

γ1,d(x; f) =

d∑
j=1

{
ζ1,1 ∂jf(x) +

ζ1,2
2
xj ∂

2
j f(x)

}
and λd = 4− 4

(√2√
3

)d
+

( 1√
2

)d
.

Remark 6 The corresponding results when some components are near the boundary {0} can be

also obtained. For examples, when x0 = (y1, . . . , yd′ , βκd′+1, . . . , βκd)
′ (its permutation variants are

omitted), where y1, . . . , yd′ ∈ (0, cU ] and κd′+1, . . . , κd ≥ 0 are fixed,

V [f̃ Π
β,JLN (x0)] = n−1β−(d−d′)−d′/2J(κd′+1, . . . , κd)

f(y1, . . . , yd′ , 0, . . . , 0)∏d′

j=1(2
√
πyj)

+o(n−1β−(d−d′)−d′/2) +O(β5), d′ = 0, 1, . . . , d− 1,

where

J(κd′+1, . . . , κd) = 4

d∏
j=d′+1

J1(κj)− 4
(√2√

3

)d′
d∏

j=d′+1

J2(κj) +
( 1√

2

)d′
d∏

j=d′+1

J3(κj).

The leading term of the variance of f̃ Π
β,JLN is different from that of the (uncorrected) estimator f̃ Π

β

(actually, for the fixed interior case with xj > 0, j = 1, . . . , d, the asymptotic variance increases with

the factor λd > 1); an incorrect asymptotic variance of Theorem 2.2 in Funke and Kawka (2015) (see

also Zougab et al. (2018)) should be corrected so.
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Remark 7 Introduce the subset D(d′,τ)
[0,cU ]d

= {x ∈ [0, cU ]
d | the only d′ components belong to [0, βτ ]}

for d′ = 1, . . . , d. Then, for all sufficiently small β > 0, x ∈ D(d′,τ)
[0,cU ]d

implies that

Bias[f̃ Π
β,JLN (x)] = O(β2τ + n−1β−d′−(d−d′)/2

∏
xj∈[βτ ,cU ]

x
−1/2
j ), if τ ∈ (1/2, 1),

V [f̃ Π
β,JLN (x)] = O(n−1β−d′−(d−d′)/2

∏
xj∈[βτ ,cU ]

x
−1/2
j + β5), if τ ∈ [0, 1).

As in the univariate case (Subsection 2.2.3), using these bounds, the different rates of the variance and

the remainder term of the bias has negligible impact on the MISE (here, the integration is performed

in [0, w]d). That is, MISEw[f̃
Π
β,JLN ] = AMISEw[f̃

Π
β,JLN ] + o(β4 + n−1β−1/2), where

AMISEw[f̃
Π
β,JLN ] = β4

∫
[0,w]d

B2
JLN,d(x; f)dx+ n−1β−d/2λd

∫
[0,w]d

f(x)∏d
j=1(2

√
πxj)

dx

with

BJLN,d(x; f) = −f(x)γ1,d
(
x;
γ1,d(·; f)
f(·)

)
.

Using β ∝ n−2/(d+8), which is feasible if d < 8 (see Assumption (iiid)), the convergence rate n−8/(d+8)

is achieved.

Proof Choosing constants τ1 ∈ (4/5, 1) and τ2 ∈ (0, 1/4), we have, for all sufficiently small β > 0,∫
[βτ1 ,w]d

Bias2[f̃ Π
β,JLN (x)]dx = β4

∫
[βτ1 ,w]d

B2
JLN,d(x; f)dx+ o(n−1β−d/2 + β4)

+O((n−1β−d/2)2{log(1/β)}d)

= β4
∫
[0,w]d

B2
JLN,d(x; f)dx+ o(n−1β−d/2 + β4),∫

[βτ2 ,w]d
V [f̃ Π

β,JLN (x)]dx = n−1β−d/2λd

∫
[βτ2 ,w]d

f(x)∏d
j=1(2

√
πxj)

dx+ o(n−1β−d/2 + β4)

= n−1β−d/2λd

∫
[0,w]d

f(x)∏d
j=1(2

√
πxj)

dx+ o(n−1β−d/2 + β4),

and[12]∫
[0,w]d\[βτ1 ,w]d

Bias2[f̃ Π
β,JLN (x)]dx =

d∑
dL=1

O(β4τ1+dLτ1 + (n−1β−dL−(d−dL)/2)2βdLτ1{log(1/β)}d−dL)

= o(n−1β−d/2 + β4),

[12]The subset [0, w]d\[βτ2 , w]d consists of the following two patterns:

(I) For dL = 1, . . . , d, the dL components belong to [0, βτ1 ], and the remaining d− dL components belong to [βτ1 , w],

and

(II) for dM = 1, . . . , d, the dM components belong to [βτ1 , βτ2 ], and the remaining d − dM components belong to

[βτ2 , w].

Note that the subset [0, w]d\[βτ1 , w]d consists of the pattern (I) only.
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∫
[0,w]d\[βτ2 ,w]d

V [f̃ Π
β,JLN (x)]dx =

d∑
dL=1

O(n−1β−dL−(d−dL)/2+dLτ1+(d−dL)τ1/2 + β5+dLτ1)

+

d∑
dM=1

O(n−1β−d/2+dM τ1/2+(d−dM )τ2/2 + β5+dM τ2)

= o(n−1β−d/2 + β4). □

5. The case [0, 1]d: product-type beta KDE

To estimate a density f with support [0, 1]d, we now consider the product-type beta KDE, defined by

f̂
(B)Π
b (x) =

1

n

n∑
i=1

d∏
j=1

K(B)(Xij ;xj , b), x ∈ [0, 1]d

(we write K(B)Π(s;x, b) =
∏d

j=1K
(B)(sj ;xj , b)), where

K(B)(s;x, b) =
sx/b(1− s)(1−x)/b

B(x/b+ 1, (1− x)/b+ 1)

is the beta kernel due to Chen (1999). Then, the JLN-type bias-corrected beta KDE is constructed as

f̂
(B)Π
b,JLN (x) = {f̂ (B)Π

b (x) + ϵ} 1
n

n∑
i=1

K(B)Π(Xi;x, b)

f̂
(B)Π
b (Xi)

, x ∈ [0, 1]d.

Let ψ(x) = x(1−x). Our results in Section 2–4 can be extended, with minor modifications, as follows:

• In addition to (iiid), we make the following assumptions:

(i♯d) A random sample {X1, . . . ,Xn} is drawn from an unknown density f with support [0, 1]d.

(ii♯d) There exists a function φ, being four times continuously differentiable on (c, c)d (⊃ [0, 1]d),

such that the target density f is the restriction of φ on [0, 1]d, and there exist constants η4 ∈ (0, 1]

and L4 > 0, such that |∂i1∂i2∂i3∂i4f(u)− ∂i1∂i2∂i3∂i4f(v)| ≤ L4||u− v||η4 for any u,v ∈ [0, 1]d.

(f♯d)
[13] infx∈[0,1]d f(x) > 0.

• The beta kernelK(B)(s;x, b) in one dimensional case has no scale parameter, unlike the examples

in Section 3; hence, some arguments, relying on Assumption A1, must be re-considered. Also,

as variants of the properties in Assumption A2, the beta kernel K(B)(s;x, b) satisfies:

(i) The jth moments around x; µ̃j(K
(B)(·;x, b)), j = 1, 2, 3, 4, 6, are given by

µ̃j(K
(B)(·;x, b)) =



b(1− 2x) − 2b2(1− 2x) +O(b3), j = 1,

bx(1− x) + b2{2− 11x(1− x)} +O(b3), j = 2,

5b2(1− 2x)x(1− x) +O(b3), j = 3,

3b2x2(1− x)2 +O(b3), j = 4,

O(b3), j = 6
[13]This assumption is natural for the compact support case, in which a rigorous treatment of the integrals involving the

powers of 1/f is a fairly easy task. On the other hand, for the previous section (the unbounded support case [0,∞)d),

we believe that a rather technical assumption (e.g., Assumption A4) is indispensable, due to the unboundedness of 1/f .
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uniformly in x ∈ [0, 1] (Lemma A.1 in Igarashi (2016a)),

(ii) the mode of the density K(B)(·;x, b) is given by x, where the uniform/nonuniform bounds

for sups∈[0,1]K
(B)(s;x, b) = K(B)(x;x, b) are available (Lemma A.3 in Igarashi (2016a))[14]:

1. sup
x∈[0,1]

K(B)(x;x, b) ≤ b−1(1 + b), 2. whenever x ∈ (0, 1), K(B)(x;x, b) ≤ b−1/2(1 + b)√
2πψ(x)

,

(iii) given constants η ∈ [0, 1) and cL > 0, for all sufficiently small b > 0, x ∈ [cLb
η, 1 − cLb

η]

implies that ∣∣∣∫
S
{K(B)(s;x, b)}2ds− 1

2
√
πbψ(x)

∣∣∣ ≤ M√
bψ(x)

{ b

ψ(x) + b

}
for some constant M > 0, independent of b and x,

(iv) given constants η ∈ [0, 1/4) and cL > 0, for all sufficiently small b > 0, the following

approximations hold for x ∈ [cLb
η, 1− cLb

η]:∫ 1

0
K(B)(t;x, b)

∫ 1

0
K(B)(s;x, b)K(B)(s; t, b)dsdt =

1√
6πbψ(x)

+ o({bψ(x)}−1/2),

∫ 1

0

∫ 1

0

{ 2∏
j=1

K(B)(tj ;x, b)
}∫ 1

0

{ 2∏
j=1

K(B)(s; tj , b)
}
dsdt1dt2 =

1

2
√

2πbψ(x)
+ o({bψ(x)}−1/2)

(as mentioned in Section 3, these calculations can be verified by a Gaussian approximation√
bψ(x)K(B)(x+

√
bψ(x)z1;x+

√
bψ(x)z2, b) = ϕ(z1 − z2)[1 + o(1)]

uniformly in z1, z2 ∈ [−bτ/
√
bψ(x), bτ/

√
bψ(x) ] and x ∈ [cLb

η, 1− cLb
τ ]; the detail is omitted),

and

(iv′) for all sufficiently small b > 0, the following approximations hold for x = bκ, 1− bκ:∫ 1

0
K(B)(t;x, b)

∫ 1

0
K(B)(s;x, b)K(B)(s; t, b)dsdt = b−1J

(B)
2 (κ) + o(b−1),∫ 1

0

∫ 1

0

{ 2∏
j=1

K(B)(tj ;x, b)
}∫ 1

0

{ 2∏
j=1

K(B)(s; tj , b)
}
dsdt1dt2 = b−1J

(B)
3 (κ) + o(b−1),

where

J
(B)
2 (κ) =

1

2κ+1Γ2(κ+ 1)

∫ ∞

0
yκ
e−yΓ(y + κ+ 1)

2yΓ(y + 1)
dy,

J
(B)
3 (κ) =

1

2Γ2(κ+ 1)

∫ ∞

0

∫ ∞

0
yκ1y

κ
2

e−(y1+y2)Γ(y1 + y2 + 1)

2y1+y2Γ(y1 + 1)Γ(y2 + 1)
dy1dy2.

[14]Whenever x ∈ (0, 1), the density K(B)(·;x, b) has an exponential small tail as b ↘ 0, in the sense that

3-1. for s0 ∈ (0, x], sup
0≤s≤s0

K(B)(s;x, b) ≤ b−1(1 + b) exp
[1
b

(
x log

s0
x

+ x− s0
)]

,

3-2. for s′0 ∈ [x, 1), sup
s′0≤s≤1

K(B)(s;x, b) ≤ b−1(1 + b) exp
[1
b

{
(1− x) log

1− s′0
1− x

+ (1− x)− (1− s′0)
}]

.

The proof is easy, as follows: K(B)(s;x, b)/K(B)(x;x, b) = (s/x)x/b{(1− s)/(1− x)}(1−x)/b is strictly increasing on [0, x]

(strictly decreasing on [x, 1]); note log z − z + 1 ≤ 0.
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Note that the above mentioned properties have the d-variate counterparts as in Section 4 (the details

are omitted to save space).

Now, we define

γ
(B)
1,d (x; f) =

d∑
j=1

{
(1− 2xj)∂jf(x) +

1

2
xj(1− xj)∂

2
j f(x)

}
.

Provided that ϵ ∝ bι2 for some constant ι2 > 1, the asymptotic bias and variance at x = (x1, . . . , xd)
′

are given, as follows: For all sufficiently small b > 0, we have, for x1, . . . , xd ∈ [cLb
η, 1− cLb

η],

Bias[f̂
(B)Π
b,JLN (x)] = b2B

(B)
JLN,d(x; f) + o(b2) +O(n−1b−d/2

d∏
j=1

{ψ(xj)}−1/2), if η ∈ [0, 1),

V [f̂
(B)Π
b,JLN (x)] = n−1b−d/2 λd f(x)∏d

j=1 2
√
πψ(xj)

+ o(n−1b−d/2
d∏

j=1

{ψ(xj)}−1/2) +O(b5), if η ∈ [0, 1/4)

(note that, if η ∈ [0, 1), then, V [f̂
(B)Π
b,JLN (x)] = O(n−1b−d/2

∏d
j=1{ψ(xj)}−1/2 + b5)), where

B
(B)
JLN,d(x; f) = −f(x)γ(B)

1,d

(
x;
γ
(B)
1,d (·; f)
f(·)

)
.

Remark 8 The corresponding results when some components are near the boundary {0, 1} can be

also obtained. For examples, when x0 = (y1, . . . , yd′ , bκd′+1, . . . , bκd)
′ (its permutation variants are

omitted), where, y1, . . . , yd′ ∈ (0, 1) and κd′+1, . . . , κd ≥ 0 are fixed,

V [f̂
(B)Π
b,JLN (x0)] = n−1b−d′/2−(d−d′)J (B)(κd′+1, . . . , κd)

f(y1, . . . , yd′ , bκd′+1, . . . , bκd)∏d′

j=1(2
√
πψ(yj))

+o(n−1b−d′/2−(d−d′)) +O(b5), d′ = 0, 1, . . . , d− 1,

where

J (B)(κd′+1, . . . , κd) = 4
d∏

j=d′+1

J
(B)
1 (κj)− 4

(√2√
3

)d′
d∏

j=d′+1

J
(B)
2 (κj) +

( 1√
2

)d′
d∏

j=d′+1

J
(B)
3 (κj).

Similar results remain valid for x0 = (y1, . . . , yd′ , bκd′+1, . . . , bκd′′ , 1 − bκd′′+1, . . . , 1 − bκd)
′ (and its

permutation variants), except that f should be evaluated at (y1, . . . , yd′ , 0, . . . , 0, 1, . . . , 1).

The leading term of the variance of f̂
(B)Π
b,JLN is different from that of the (uncorrected) beta KDE

f̂
(B)Π
b (actually, for the fixed interior case with xj ∈ (0, 1), j = 1, . . . , d, the asymptotic variance

increases with the factor λd > 1); an incorrect asymptotic variance of Theorem 2.2 in Funke and

Kawka (2015) (see also Hirukawa (2010)) should be corrected so. Furthermore, the MISE should read

as
∫
[0,1]d MSE[f̂

(B)Π
b,JLN (x)]dx = AMISE[f̂

(B)Π
b,JLN ] + o(n−1b−d/2 + b4), where

AMISE[f̂
(B)Π
b,JLN ] = b4

∫
[0,1]d

{B(B)
JLN,d(x; f)}

2dx+ n−1b−d/2λd

∫
[0,1]d

f(x)∏d
j=1(2

√
πψ(xj))

dx

(the formula given by Funke and Kawka (2015) (see also Hirukawa (2010)) miss the factor λd). Using

b ∝ n−2/(d+8), which is feasible if d < 8 (see Assumption (iiid)), the convergence rate n−8/(d+8) is

achieved.
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Proof Introducing D(d′,η)
d =

{
x ∈ [0, 1]d | the only d′ components belong to [0, bη]

∪
[1− bη, 1]

}
for

d′ = 1, . . . , d, where η ∈ [0, 1) is a constant, we can see that, for all sufficiently small β > 0,

Bias[f̂
(B)Π
b,JLN (x)] = O(b2 + n−1b−d′−(d−d′)/2

∏
xj∈[bη ,1−bη ]

{ψ(xj)}−1/2),

V [f̂
(B)Π
b,JLN (x)] = O(n−1b−d′−(d−d′)/2

∏
xj∈[bη ,1−bη ]

{ψ(xj)}−1/2 + b5)

for x ∈ D(d′,η)
d . Then, choosing constants τ1 ∈ (1/2, 1) and τ2 ∈ (0, 1/4), we have, for all sufficiently

small b > 0,∫
[bτ1 ,1−bτ1 ]d

Bias2[f̂
(B)Π
b,JLN (x)]dx = b4

∫
[bτ1 ,1−bτ1 ]d

{B(B)
JLN,d(x; f)}

2dx+ o(n−1b−d/2 + b4)

+O((n−1b−d/2)2{log(1/b)}d)

= b4
∫
[0,1]d

{B(B)
JLN,d(x; f)}

2dx+ o(n−1b−d/2 + b4),∫
[bτ2 ,1−bτ2 ]d

V [f̂
(B)Π
b,JLN (x)]dx = n−1b−d/2λd

∫
[bτ2 ,1−bτ2 ]d

f(x)∏d
j=1(2

√
πψ(xj))

dx+ o(n−1b−d/2 + b4)

= n−1b−d/2λd

∫
[0,1]d

f(x)∏d
j=1(2

√
πψ(xj))

dx+ o(n−1b−d/2 + b4),

and that[15]∫
[0,1]d\[bτ1 ,1−bτ1 ]d

Bias2[f̂
(B)Π
b,JLN (x)]dx =

d∑
dL=1

O(b4+dLτ1 + (n−1b−dL−(d−dL)/2)2bdLτ1{log(1/b)}d−dL)

= o(n−1b−d/2 + b4),∫
[0,1]d\[bτ2 ,1−bτ2 ]d

V [f̂
(B)Π
b,JLN (x)]dx =

d∑
dL=1

O(n−1b−dL−(d−dL)/2+dLτ1+(d−dL)τ1/2 + b5+dLτ1)

+
d∑

dM=1

O(n−1b−d/2+dM τ1/2+(d−dM )τ2/2 + b5+dM τ2)

= o(n−1b−d/2 + b4). □

6. Simulation studies

We illustrate, through the simulations, the finite sample performance of the JLN-type bias-corrected

Amoroso/IG/BS/RIG/LN[−1/2] KDEs, together with their uncorrected estimators (Examples 1–3).

[15]The subset [0, 1]d\[bτ2 , 1− bτ2 ]d consists of the following two patterns:

(I) For dL = 1, . . . , d, the dL components belong to [0, bτ1 ]
∪
[1− bτ1 , 1], and the remaining d− dL components belong

to [bτ1 , 1− bτ1 ], and

(II) for dM = 1, . . . , d, the dM components belong to [bτ1 , bτ2 ]
∪
[1−bτ2 , 1−bτ1 ], and the remaining d−dM components

belong to [bτ2 , 1− bτ2 ].

Note that the subset [0, 1]d\[bτ1 , 1− bτ1 ]d consists of the pattern (I) only.
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We generated 1000 replicate samples of n = 100, 300 from the five densities:

A. f(x) =
1

2

(e−x/3

3
+
xe−x/3

9

)
, B. f(x) =

e−x/3

3
, C. f(x) =

1

2

(e−x/10

10
+ xe−x

)
,

D. f(x) =
1

2

[ 1√
2π0.8x

exp
{
−(log x− 1)2

2(0.8)2

}
+

1√
2π0.4x

exp
{
−(log x− 2)2

2(0.4)2

}]
,

E. f(x) =
2√
2π

exp
(
−x

2

2

)
,

and calculated the integrated squared error (ISE); ISEk =
∫∞
0 {f̃ [k](x)−f(x)}2dx for the kth sample.

Each smoothing parameter b was chosen using the least squared cross-validation method (here, we

chose ϵ = 0.000001 × b2). Tables 1–5 show that the average ISEs; (1/1000)
∑1000

k=1 ISEk decreased,

as the sample size n increased. Overall, the JLN-type bias-corrected KDEs f̂
(#)
b,JLN , using the linear

ρ-function; ρ(t) = t + 1, outperformed the uncorrected estimators f̂
(#)
b , except for cases C and D

(n = 100). As expected, when the shoulder condition f (1)(0) = 0 is satisfied (cases A and E),

the two-regime version, denoted by f̃
⋆(#)
b,JLN , using r1/4(t) = (5/4)(t/2)8/5 + 1 (for the Amoroso case,

r1/(4|γ|)(t) = {1/(4|γ|)+1}(t/2)2/(1/(4|γ|)+1)+1); see Subsection 3.2, also worked well, whereas, for cases

B and C, having f (1)(0) ̸= 0, f̃
⋆(#)
b,JLN almost behaved worse than f̂

(#)
b,JLN . Additionally, we compared the

JLN-type with other bias corrections (see Igarashi and Kakizawa (2018b)), reviewed in Introduction.

We observe from Table 6; the simulation results (n = 300) of the SS1-type and JF1-type bias-corrected

Amoroso KDEs, that, for case B, the JLN-type outperformed the SS1-type and JF1-type. On the other

hand, for cases A and E, since the shoulder condition f (1)(0) = 0 is satisfied, the two-regime JLN-type

worked very well. For cases C and D, it may be difficult to decide whether the JLN-type was superior

or inferior to the SS1-type and JF1-type, since the numerical results contradicted with the graph of

the AMISE asymptotic efficiency; this may be caused by the small sample size n. In summary, our

simulation results confirm the bias reduction. It is worthwhile to note that the two-regime version,

especially, the choice of c = 1/4 (c = 1/(4|γ|) for the Amoroso case), had the advantage over the

linear ρ-function, i.e., the average ISEs of f̃
⋆(#)
b were almost smaller than those of f̂

(#)
b . However, the

present simulation results indicate that, without the shoulder condition f (1)(0) = 0, such a two-regime

formulation is incompatible with the bias correction; this was already pointed out by Igarashi and

Kakizawa (2015, 2018a) for the SS/TS/JF-types.

Appendix

For simplicity, we write ζβ(x) = f̃β(x)− f(x) + ϵ, and

Ux,β,i =
f(x) + ζβ(x)

f(Xi) + ζβ(Xi)
K(Xi;x, β), i = 1, . . . , n.

Then,

E[f̃β,JLN (x)] =
1

n

n∑
i=1

E[Ux,β,i] = E[Ux,β,1],
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V [f̃β,JLN (x)] =
1

n2

n∑
i,j=1

Cov[Ux,β,i, Ux,β,j ] =
1

n
V [Ux,β,1] +

n− 1

n
Cov[Ux,β,1, Ux,β,2],

where, by virtue of the law of total variance/covariance,

V [Ux,β,1] = E
[
V [Ux,β,1|X1]

]
+ V

[
E[Ux,β,1|X1]

]
,

Cov[Ux,β,1, Ux,β,2] = E
[
Cov[Ux,β,1, Ux,β,2|X1, X2]

]
+ Cov

[
E[Ux,β,1|X1, X2], E[Ux,β,2|X1, X2]

]
.

Define, for ℓ = 1, 2,

P [0]
ℓ (x) =

f(x)

f(Xℓ)
and P [j]

ℓ (x) = −ζβ(x)ζj−1
β (Xℓ) +

f(x)ζjβ(Xℓ)

f(Xℓ)
, j = 1, 2, . . . .

We use the stochastic expansion

f(x) + ζβ(x)

f(Xℓ) + ζβ(Xℓ)
=

m∑
j=0

(−1)j
P [j]
ℓ (x)

f j(Xℓ)
+R(JLN)

[m],ℓ (x) for m = 0, 2, 4.

To complete the proofs below, we must deal with the integrals involving the unbounded function of the

power of 1/f , as well as the asymptotic negligibility of the remainder term R(JLN)
[m],ℓ (x). Details are in

supplemental issue: Supplemental appendix to “Multiplicative bias correction for asymmetric kernel

density estimators revisited”, Faculty of Economics, Hokkaido University, Discussion Paper Series A:

No. 2018–328.

Proof of Proposition 1 Using the stochastic expansion (we set m = 2), we have

E[Ux,β,1]− f(x) = E

[
K(X1;x, β)

f(X1)
E[ζβ(x)|X1]

]
− f(x)E

[
K(X1;x, β)

f2(X1)
E[ζβ(X1)|X1]

]
−E

[
K(X1;x, β)

f2(X1)
E[ζβ(x)ζβ(X1)|X1]

]
+ f(x)E

[
K(X1;x, β)

f3(X1)
E[ζ2β(X1)|X1]

]
+E

[
K(X1;x, β)E[R(JLN)

[2],1 (x)|X1]
]

= I1,1(x)− f(x)I1,2(x)− I1,3(x) + f(x)I1,4(x) + I1,5(x) (say).

It is shown that, given constants η ∈ [0, 1) and 0 < cL < cR, for all sufficiently small β > 0,

I1,1(x)− {ϵ+B
(K),f
β (x)} =

O(n−1(βx)−1/2) for x ∈ [cLβ
η, cU ],

O(n−1β−1) for x = βκ,

I1,2(x)−
∫
S

K(s;x, β)

f(s)
{ϵ+B

(K),f
β (s)}ds =

O(n−1(βx)−1/2) for x ∈ [cLβ
η, cU ],

O(n−1β−1) for x = βκ,

I1,3(x)−B
(K),f
β (x)

∫
S

K(s;x, β)

f(s)
B

(K),f
β (s)ds =

o(β2) +O(n−1(βx)−1/2) for x ∈ [cLβ
η, cU ],

o(β2) +O(n−1β−1) for x = βκ,

I1,4(x)−
∫
S

K(s;x, β)

f2(s)
{B(K),f

β (s)}2ds =

o(β2) +O(n−1(βx)−1/2) for x ∈ [cLβ
η, cU ],

o(β2) +O(n−1β−1) for x = βκ,

I1,5(x) =

o(β2 + n−1(βx)−1/2) for x ∈ [cLβ
η, cU ],

o(β2 + n−1β−1) for x = βκ.
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The result follows from

I1,1(x)− f(x)I1,2(x) =



−β2f(x)γ1
(
x;
γ1(·; f)
f(·)

)
+ o(β2) +O(n−1(βx)−1/2) for x ∈ [cLβ

η, cU ],

β2
[
{µ′1(0)}2

{f (1)(0)}2

f(0)
+

{
−1

2

∫
S
µ′2(y)pK(y;κ)dy + µ′2(κ)−

κ2

2

}
f (2)(0)

]
+o(β2) +O(n−1β−1) for x = βκ,

I1,3(x)− f(x)I1,4(x) =

o(β2) +O(n−1(βx)−1/2) for x ∈ [cLβ
η, cU ],

o(β2) +O(n−1β−1) for x = βκ,

noting that (7), (8),

∫
S

K(s;x, β)

f(s)
B

(K),f
β (s)ds =



β
γ1(x; f)

f(x)
+ β2

{γ2(x; f)
f(x)

+ γ1

(
x;
γ1(·; f)
f(·)

)}
+ o(β2) for x ∈ [cLβ

η, cU ],

βµ′1(0)
f (1)(0)

f(0)
+ β2

[
−µ′1(0){µ′1(0) + κ}

{f (1)(0)
f(0)

}2

+
1

2

{∫
S
µ′2(y)pK(y;κ)dy − µ′2(κ)

}f (2)(0)
f(0)

]
+O(β3) for x = βκ,

∫
S

K(s;x, β)

f2(s)
{B(K),f

β (s)}2ds =


β2

{γ1(x; f)
f(x)

}2
+ o(β2) for x ∈ [cLβ

η, cU ],

β2{µ′1(0)}2
{f (1)(0)
f(0)

}2
+O(β3) for x = βκ,

sup
x∈[0,cU ]

∣∣∣∫
S

K(s;x, β)

f(s)
ds− 1

f(x)

∣∣∣ = O(β). □

Remark A.1 The vanishing of the O(βj)-terms in I1,2j−1(x) and I1,2j(x), for j = 1, 2 and x = βκ,

is ensured by Assumption A1.3. Actually, if Assumption A1.3 is replaced by A1.3♯, then, for x = βκ,

I1,1(x)− f(x)I1,2(x)

= β
[
{µ′1(κ)− κ} −

∫
S
{µ′1(y)− y}pK(y;κ)dy

]
f (1)(0)

+β2
[∫

S
(y − κ){µ′1(y)− y}pK(y;κ)dy

{f (1)(0)}2

f(0)
+

{
−1

2

∫
S
µ′2(y)pK(y;κ)dy + µ′2(κ)−

κ2

2

}
f (2)(0)

]
+o(β2) +O(n−1β−1),

I1,3(x)− f(x)I1,4(x)

= β2
[
{µ′1(κ)− κ}

∫
S
{µ′1(y)− y}pK(y;κ)dy −

∫
S
{µ′1(y)− y}2pK(y;κ)dy

]{f (1)(0)}2
f(0)

+o(β2) +O(n−1β−1).

Proof of Proposition 2 It is easy to see that, given constants η ∈ [0, 1) and 0 < cL < cR, for all

sufficiently small β > 0,

1

n
E
[
V [Ux,β,1|X1]

]
≤ 1

n

{
sup
s∈S

K(s;x, β)
}
E
[
K(X1;x, β)E[{R(JLN)

[0],1 (x)}2|X1]
]

=

o(n−1(βx)−1/2) for x ∈ [cLβ
η, cU ],

o(n−1β−1) for x = βκ.
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Using the stochastic expansion (m = 0, 2, 4), it can be shown that, for all sufficiently small β > 0,

1

n
V
[
E[Ux,β,1|X1]

]
− 1

n
I1(x) =

o(n−1(βx)−1/2) for x ∈ [cLβ
η, cU ],

o(n−1β−1) for x = βκ,

E
[
Cov[Ux,β,1, Ux,β,2|X1, X2]

]
− 1

n
I2(x) =

o(n−1(βx)−1/2) +O(β5) for x ∈ [cLβ
η, cU ],

o(n−1β−1) +O(β5) for x = βκ,

Cov
[
E[Ux,β,1|X1, X2], E[Ux,β,2|X1, X2]−

1

n
I3(x) =

o(n−1(βx)−1/2) +O(β5) for x ∈ [cLβ
η, cU ],

o(n−1β−1) +O(β5) for x = βκ,

where

I1(x) = f2(x)

∫
S

K2(s;x, β)

f(s)
ds,

I2(x) =
∫
S
K2(s;x, β)f(s)ds− 2f(x)

∫
S

K(t;x, β)

f(t)

∫
S
K(s;x, β)K(s; t, β)f(s)dsdt

+f2(x)

∫
S

∫
S

K(t;x, β)

f(t)

K(u;x, β)

f(u)

∫
S
K(s; t, β)K(s;u, β)f(s)dsdtdu,

I3(x) = 2f(x)

∫
S
K2(s;x, β)ds− 2f2(x)

∫
S

K(t;x, β)

f(t)

∫
S
K(s;x, β)K(s; t, β)dsdt

(note that n−1
∑3

j=1 Ij(x) = O(n−1(βx)−1/2) for x ∈ [cLβ
η, cU ], if η ∈ [0, 1)). The result follows from

n−1
3∑

j=1

Ij(x)

=

n
−1β−1/2

(
4− 4

√
2√
3
+

1√
2

) f(x)

2
√
πx

+ o(n−1(βx)−1/2) for x ∈ [cLβ
η, cU ], if η ∈ [0, 1/4),

n−1β−1{4J1(κ)− 4J2(κ) + J3(κ)}f(0) + o(n−1β−1) for x = βκ.

□
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Table 1: Case A. The average ISEs×106.

The number in the parentheses stands for the standard deviation×106 of the ISEs.

n linear A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2 IG BS RIG LN [−1/2]

100 f̂
(#)
b 3389 3263 3006 2914 3201 3392 3735 4135 3316 3539 3751 3288

(2946) (3216) (3144) (3206) (3235) (2898) (2674) (2941) (3346) (3411) (3468) (3317)

f̂
(#)
b,JLN 2105 2255 2239 2497 2639 2763 3160 3583 2482 2569 2591 2515

(2403) (2781) (2673) (2738) (2271) (2424) (2746) (3035) (2591) (2936) (2996) (2741)

300 f̂
(#)
b 1483 1399 1240 1193 1252 1450 1633 1772 1356 1460 1615 1358

(1172) (1269) (1166) (1485) (1142) (1220) (1154) (1088) (1280) (1287) (1351) (1279)

f̂
(#)
b,JLN 888 895 909 1003 1086 1099 1237 1379 990 1017 1061 995

(887) (989) (1127) (1329) (1068) (897) (935) (1030) (905) (999) (985) (936)

n two-regime A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2 IG BS RIG LN [−1/2]

100 f̃
⋆(#)
b 2422 2479 2596 2979 3258 2920 2799 2850 2710 2768 2650 2698

(2825) (2881) (2997) (3058) (2921) (2807) (2537) (2571) (2772) (2896) (2764) (2806)

f̃
⋆(#)
b,JLN 2025 2017 2000 2258 2401 2305 2417 2581 2189 2434 2565 2146

(2795) (2798) (2803) (2616) (2604) (2386) (2412) (2512) (2706) (2759) (2724) (2637)

300 f̃
⋆(#)
b 931 961 1032 1193 1332 1154 1095 1100 1104 1084 1034 1082

(1059) (1105) (1120) (1138) (1236) (1032) (919) (935) (1121) (1174) (1035) (1095)

f̃
⋆(#)
b,JLN 728 705 677 842 935 832 867 937 761 873 937 744

(947) (1006) (926) (975) (998) (855) (842) (880) (859) (959) (873) (864)

Table 2: Case B. The average ISEs×106.

The number in the parentheses stands for the standard deviation×106 of the ISEs.

n linear A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2 IG BS RIG LN [−1/2]

100 f̂
(#)
b 6452 6480 6049 5578 5924 6652 7505 7983 6565 7184 7466 6478

(5871) (7440) (7483) (7131) (6366) (6154) (6561) (6147) (7350) (8495) (7694) (7071)

f̂
(#)
b,JLN 3168 3639 3899 4390 4548 4455 4543 5041 4088 4288 4010 3921

(4128) (5740) (5521) (6380) (5223) (4549) (3780) (4184) (4366) (5226) (4941) (4401)

300 f̂
(#)
b 2821 2634 2374 2113 2217 2628 3043 3309 2474 2756 3014 2474

(2599) (2804) (2787) (2642) (2062) (2245) (2339) (1980) (2352) (2752) (2828) (2368)

f̂
(#)
b,JLN 1256 1296 1407 1519 1637 1696 1868 2052 1538 1562 1568 1493

(1475) (1524) (1752) (1790) (1506) (1388) (1464) (1535) (1502) (1706) (1764) (1476)

n two-regime A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2 IG BS RIG LN [−1/2]

100 f̃
⋆(#)
b 5346 5368 5242 5814 6140 5592 5688 5789 5551 5848 5783 5603

(6183) (7209) (6333) (7612) (6582) (5225) (4956) (4781) (6274) (6198) (5209) (6648)

f̃
⋆(#)
b,JLN 4684 4592 4437 4429 4749 4869 5270 5505 4718 5658 6110 4845

(4748) (5822) (5583) (6522) (5649) (4664) (4780) (4708) (4868) (5101) (5023) (6106)

300 f̃
⋆(#)
b 2053 2043 1948 2106 2232 2128 2221 2324 2041 2179 2222 2028

(2081) (2408) (2038) (2515) (1975) (1870) (1966) (1969) (1961) (2056) (1919) (1968)

f̃
⋆(#)
b,JLN 1925 1774 1619 1521 1690 1909 2119 2288 1807 2182 2417 1817

(1899) (1710) (1601) (1685) (1752) (1777) (1742) (1836) (1777) (1825) (1783) (1840)
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Table 3: Case C. The average ISEs×106.

The number in the parentheses stands for the standard deviation×106 of the ISEs.

n linear A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2 IG BS RIG LN [−1/2]

100 f̂
(#)
b 7178 6656 6045 5411 5763 6688 7454 8060 6462 6926 7545 6482

(4902) (4722) (4604) (4325) (4565) (4967) (4944) (4936) (4970) (5060) (5310) (4912)

f̂
(#)
b,JLN 8002 7052 6077 5182 5840 8709 11444 13437 7415 7734 9594 7480

(4845) (4818) (4563) (4328) (4469) (5297) (6533) (7794) (4959) (5287) (5300) (5011)

300 f̂
(#)
b 3264 2969 2594 2234 2323 2787 3213 3577 2699 2985 3332 2703

(2000) (1911) (1785) (1697) (1726) (1870) (2049) (2178) (1844) (1897) (2072) (1852)

f̂
(#)
b,JLN 3155 2757 2343 1941 2166 3920 7310 9415 2624 2877 3394 2622

(2172) (1963) (1818) (1542) (1782) (3653) (5676) (6497) (2149) (2122) (2474) (2124)

n two-regime A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2 IG BS RIG LN [−1/2]

100 f̃
⋆(#)
b 6131 6032 5826 5539 5853 6587 6914 7138 6243 6268 6386 6276

(3885) (4154) (4294) (4308) (4244) (4016) (3607) (3426) (4094) (3874) (3400) (4027)

f̃
⋆(#)
b,JLN 6132 5920 5735 5460 6054 6881 7212 7293 6359 6356 6389 6433

(3493) (3657) (3951) (4217) (4218) (3473) (3284) (2948) (3712) (3621) (3351) (3706)

300 f̃
⋆(#)
b 2743 2576 2379 2257 2351 2614 3219 3745 2485 2655 3008 2514

(1729) (1716) (1716) (1739) (1765) (1853) (2056) (1939) (1758) (1762) (1801) (1793)

f̃
⋆(#)
b,JLN 3028 2756 2440 2050 2325 3162 4071 4619 2906 3173 3755 2952

(1712) (1688) (1676) (1486) (1697) (1963) (1891) (1625) (1920) (1593) (1276) (1990)

Table 4: Case D. The average ISEs×106.

The number in the parentheses stands for the standard deviation×106 of the ISEs.

n linear A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2 IG BS RIG LN [−1/2]

100 f̂
(#)
b 4665 4230 3669 3168 3155 3800 4600 5371 3708 4170 4705 3721

(2851) (2744) (2491) (2295) (2316) (2659) (3011) (3326) (2599) (2736) (2907) (2586)

f̂
(#)
b,JLN 4914 4269 3584 3227 3253 4441 5817 6725 3708 4177 5083 3838

(3030) (2843) (2587) (2344) (2493) (3470) (3855) (3956) (2794) (2955) (3523) (2954)

300 f̂
(#)
b 2124 1908 1677 1490 1476 1690 1949 2187 1662 1886 2098 1665

(1188) (1108) (1022) (965) (961) (1051) (1138) (1244) (1020) (1113) (1183) (1022)

f̂
(#)
b,JLN 2106 1828 1554 1467 1421 1648 2929 4104 1543 1772 2079 1562

(1270) (1144) (1044) (1023) (984) (1271) (2836) (3330) (1050) (1132) (1272) (1066)

n two-regime A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2 IG BS RIG LN [−1/2]

100 f̃
⋆(#)
b 4373 3882 3463 3208 3261 3865 5052 5618 3549 3976 5193 3662

(2454) (2448) (2383) (2332) (2354) (2719) (2693) (2400) (2524) (2466) (2321) (2622)

f̃
⋆(#)
b,JLN 5004 4699 4237 3875 3814 4597 5170 5507 4285 5594 5864 4471

(1951) (2123) (2414) (2432) (2375) (2595) (2397) (2364) (2710) (1689) (1560) (2741)

300 f̃
⋆(#)
b 1660 1586 1516 1484 1499 1538 1874 2897 1511 1590 1838 1509

(1033) (1026) (1010) (987) (1002) (1013) (1543) (2281) (1005) (1076) (1417) (1010)

f̃
⋆(#)
b,JLN 1896 1724 1623 1580 1628 1741 2328 2966 1635 3160 4715 1637

(1186) (1089) (1085) (1086) (1073) (1158) (1659) (1850) (1114) (2090) (1375) (1153)
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Table 5: Case E. The average ISEs×106.

The number in the parentheses stands for the standard deviation×106 of the ISEs.

n linear A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2 IG BS RIG LN [−1/2]

100 f̂
(#)
b 18180 17507 16301 16554 17644 18206 20264 21747 17373 18362 19808 17458

(19993) (20660) (20420) (20261) (20074) (18769) (19102) (17432) (20823) (21422) (22564) (21431)

f̂
(#)
b,JLN 15038 15448 15117 16095 17172 17181 20203 28981 15994 16648 17890 15809

(15160) (19084) (18934) (17961) (16453) (13954) (15101) (26322) (14895) (18077) (18604) (14917)

300 f̂
(#)
b 7431 7027 6492 6565 7097 7403 8287 8966 6984 7361 7982 6961

(5803) (5940) (5727) (5919) (5937) (5527) (5801) (5579) (5824) (5826) (6148) (5830)

f̂
(#)
b,JLN 6287 6271 6085 6485 7235 6946 7813 11065 6472 6778 7246 6451

(5597) (6471) (6578) (6224) (5925) (5207) (6337) (11816) (5591) (6354) (6789) (5720)

n two-regime A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2 IG BS RIG LN [−1/2]

100 f̃
(#)
b 12778 13282 14334 16933 18391 15339 14276 14089 14853 14236 13404 15064

(18000) (18217) (18190) (18570) (18115) (12745) (12241) (12211) (15453) (15446) (16331) (17311)

f̃
(#)
b,JLN 8689 9066 9955 13492 13781 11304 11146 11441 10955 11325 10642 10437

(13676) (13839) (11844) (12669) (12878) (10943) (10453) (10544) (11499) (12542) (10778) (11068)

300 f̃
(#)
b 4993 5263 5840 6954 7584 6560 6069 5822 6297 5849 5511 6312

(5666) (5640) (5844) (6635) (6110) (5136) (4730) (4584) (5846) (5747) (5769) (6078)

f̃
(#)
b,JLN 3229 3594 4303 6235 6623 4897 4519 4502 4627 4416 4211 4413

(3626) (4450) (4638) (5506) (5144) (4023) (3841) (3843) (4372) (4371) (3936) (4060)
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Table 6: The average ISEs×106.

The number in the parentheses stands for the standard deviation×106 of the ISEs.

linear A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2

n = 100 Case A f̂
(#)
b,SS1

2289 2289 2211 2393 2504 2544 2963 3471

(2684) (3121) (2861) (2847) (2255) (2305) (2452) (2733)

f̂
(#),+
b,SS1

2288 2288 2221 2375 2504 2544 2963 3480

(2684) (3121) (2935) (2807) (2260) (2302) (2451) (2760)

f̂
(#)
b,JF1

2120 2022 2123 2353 2630 2414 2973 3674

(2487) (2488) (2945) (2879) (2393) (2463) (2682) (3054)

Case B f̂
(#)
b,SS1

4088 4297 4368 4659 4673 4693 5334 5969

(4789) (5453) (5791) (6653) (5257) (4184) (4556) (4762)

f̂
(#),+
b,SS1

4087 4299 4371 4657 4672 4692 5334 6000

(4789) (5460) (5801) (6643) (5260) (4184) (4557) (4863)

f̂
(#)
b,JF1

3458 3656 4023 4447 4700 4159 4815 5667

(4123) (4990) (5803) (6333) (5270) (4240) (4835) (5169)

Case C f̂
(#)
b,SS1

7796 7204 6295 5308 5847 7164 8343 9218

(4918) (4930) (4578) (4407) (4453) (4503) (4943) (5446)

f̂
(#),+
b,SS1

7807 7223 6298 5318 5848 7163 8350 9216

(4900) (4929) (4571) (4415) (4454) (4499) (4940) (5441)

f̂
(#)
b,JF1

9043 8059 6805 5372 5720 6704 7870 8864

(4567) (5084) (4782) (4385) (4379) (4576) (5235) (6167)

Case D f̂
(#)
b,SS1

5195 4601 3841 3133 3047 3825 4617 5182

(2818) (2964) (2719) (2333) (2384) (2911) (3037) (3100)

f̂
(#),+
b,SS1

5192 4603 3831 3120 3046 3822 4608 5153

(2825) (2982) (2711) (2301) (2388) (2911) (3037) (3097)

f̂
(#)
b,JF1

5734 5099 4175 3275 3174 3933 4665 5334

(2956) (3097) (2793) (2355) (2426) (2883) (2985) (3206)

Case E f̂
(#)
b,SS1

11855 12568 13174 14023 14789 13752 14890 17189

(12877) (18628) (20412) (18530) (15457) (12444) (10726) (11400)

f̂
(#),+
b,SS1

11866 12563 13174 13995 14779 13763 14890 17189

(13002) (18599) (20359) (18571) (15464) (12603) (10726) (11400)

f̂
(#)
b,JF1

12321 12416 12837 14622 14962 12936 14003 18814

(12239) (15400) (18734) (18552) (14210) (8751) (12315) (18493)
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Table 6: Continued.

linear A2 A1.5 A1 A0.5 A−0.5 A−1 A−1.5 A−2

n = 300 Case A f̂
(#)
b,SS1

925 879 888 949 1040 1007 1180 1357

(979) (1060) (1179) (1498) (1080) (816) (883) (883)

f̂
(#),+
b,SS1

925 879 888 952 1040 1007 1180 1357

(979) (1060) (1179) (1503) (1079) (816) (891) (882)

f̂
(#)
b,JF1

858 827 850 960 1044 946 1057 1269

(916) (926) (1169) (1461) (1031) (829) (871) (989)

Case B f̂
(#)
b,SS1

1719 1720 1622 1620 1717 1895 2183 2567

(1719) (2122) (1948) (1899) (1752) (1695) (1593) (1815)

f̂
(#),+
b,SS1

1719 1719 1621 1620 1717 1894 2183 2567

(1719) (2114) (1947) (1899) (1752) (1694) (1593) (1815)

f̂
(#)
b,JF1

1446 1457 1468 1604 1685 1642 1878 2174

(1642) (1851) (1849) (1985) (1622) (1461) (1497) (1572)

Case C f̂
(#)
b,SS1

3341 2950 2504 2049 2197 3089 4523 5527

(2266) (2084) (1882) (1679) (1765) (2626) (3566) (4027)

f̂
(#),+
b,SS1

3346 2961 2505 2049 2197 3091 4525 5526

(2267) (2111) (1884) (1680) (1767) (2626) (3565) (4028)

f̂
(#)
b,JF1

3540 3079 2583 2034 2200 3248 4506 5384

(2367) (2137) (1917) (1608) (1780) (2757) (3680) (4166)

Case D f̂
(#)
b,SS1

2252 1955 1655 1438 1408 1524 2095 2810

(1386) (1273) (1113) (979) (988) (1088) (1723) (2211)

f̂
(#),+
b,SS1

2231 1934 1652 1438 1408 1521 2085 2804

(1374) (1218) (1111) (981) (988) (1092) (1727) (2228)

f̂
(#)
b,JF1

2421 2105 1756 1488 1456 1657 2208 2830

(1387) (1277) (1109) (1046) (1021) (1102) (1639) (2002)

Case E f̂
(#)
b,SS1

5178 5137 5118 5638 6215 5765 6371 7274

(4871) (5745) (6155) (6237) (5479) (4447) (4541) (4872)

f̂
(#),+
b,SS1

5177 5135 5116 5640 6210 5765 6371 7274

(4871) (5743) (6164) (6246) (5480) (4447) (4541) (4872)

f̂
(#)
b,JF1

5793 5611 5389 5948 6428 6345 7158 9156

(5171) (5872) (6277) (6336) (5521) (4002) (5913) (11047)
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