
1012
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

PAPER Special Section on Data Engineering and Information Management

Efficient Methods for Aggregate Reverse Rank Queries

Yuyang DONG†a), Hanxiong CHEN†b), Kazutaka FURUSE†c), Nonmembers,
and Hiroyuki KITAGAWA††d), Member

SUMMARY Given two data sets of user preferences and product at-
tributes in addition to a set of query products, the aggregate reverse rank
(ARR) query returns top-k users who regard the given query products as
the highest aggregate rank than other users. ARR queries are designed to
focus on product bundling in marketing. Manufacturers are mostly willing
to bundle several products together for the purpose of maximizing benefits
or inventory liquidation. This naturally leads to an increase in data on users
and products. Thus, the problem of efficiently processing ARR queries
become a big issue. In this paper, we reveal two limitations of the state-
of-the-art solution to ARR query; that is, (a) It has poor efficiency when
the distribution of the query set is dispersive. (b) It has to process a large
portion user data. To address these limitations, we develop a cluster-and-
process method and a sophisticated indexing strategy. From the theoretical
analysis of the results and experimental comparisons, we conclude that our
proposals have superior performance.
key words: similarity search, aggregate reverse rank queries, clustering
method, cone+ tree

1. Introduction

In the user-product mode, there are two different datasets:
user preferences and products. A top-k query retrieves the
top-k products for a given user preference in this model.
However, manufacturers also want to know the potential
customers for their products. Therefore, reverse k-rank
query [1] is proposed to obtain the top-k user preferences for
a given product. Because most manufacturers offer several
products as part of product bundling, the aggregate reverse
rank query (ARR) [2] responds to this requirement by re-
trieving the top-k user preferences for a set of products. Not
limited to shopping, the concept of ARR can be extended to
a wider range of applications such as team (multiple mem-
bers) reviewing and area (multiple businesses) reviewing.

An example of ARR query is shown in Fig. 1. There
are five different books (p1–p5) scored on “price” and “rat-
ings” in Table (b). Three preferences of users Tom, Jerry,
and Spike are listed in Table (a), which are the weights for
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Fig. 1 The example

each attribute in the book. The score of a book under a user
preference is the defined value of the inner product of the
book attributes vector and user preference vector [1]–[3]∗.
Now, assume that the book shop selects two bundles from
books, say {p1, p2} and {p4, p5}. The result of ARR query
when k = 1 for them are shown in Table (c). The ARR
query evaluates the aggregate rank (ARank) with the sum of
each book’s rank, e.g., {p1, p2} ranks as 3 + 2 = 5 based on
Tom’s preference. The ARR query returns Tom as the result
because Tom thinks the books {p1, p2} has the highest rank
than the rest.

1.1 Definitions

The assumptions made on the product database, preferences
database and the score function between them are the same
as those made in the related research [1]–[4]. The querying
problems are based on a User-Product model, which has two
kinds of database: product data set P and user’s preference
data set W. Each product p ∈ P is a d-dimensional vector
that contains d non-negative scoring attributes. The product
p can be represented as a point p = (p[1], p[2], . . . , p[d]),
where p[i] is the ith attribute value. The preference w ∈
W is also a d-dimensional vector and w[i] is a non-negative
weight that affects the value of p[i], where

∗Without loss of generality, we assume that the minimum val-
ues are preferable.
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d∑

i=1

w[i] = 1.

The score of product p w.r.t preference w is defined as the
inner product between p and w, denoted by

f (w, p) =
d∑

i=1

w[i] · p[i].

All products are ranked with their scores and we assume that
the minimum score is preferable. Now, let Q denote a query
set containing a set of products.

Given a query product q, for a specific w, the rank of
q is defined as the number of products such that f (w, p) is
smaller than q’s score f (w, q); that is,

Definition 1. (rank(w, q)). Given a product data set P, a
preference w and a query q, the rank of q by w is given by

rank(w, q) = |S |,
where S ⊆ P and ∀pi ∈ S , f (w, pi) < f (w, q) ∧ ∀p j ∈ (P −
S ), f (w, p j) ≥ f (w, q).

The aggregate reverse rank query [2] retrieves the top-
k w’s which produce q better aggregate rank (ARank) than
other w′s,

Definition 2. (aggregate reverse rank query, ARR). Given a
product set P and a user preference set W, a positive integer
k and a query set Q, the ARR query returns the set S , S ⊆ W
and |S | = k such that ∀wi ∈ S ,∀w j ∈ (W − S ), the identity
ARank(wi,Q) ≤ ARank(w j,Q) holds.

Currently, three aggregate evaluation functions are
considered for ARank.

• SUM : ARankS (w,Q) =
∑

qi∈Q
rank(w, qi)

•MAX : ARankM(w,Q) = Max
qi∈Q

(rank(w, qi))

•MIN : ARankm(w,Q) = Min
qi∈Q

(rank(w, qi)) (1)

The SUM function treats each rank equally. By choos-
ing either of MAX and MIN, it can be avoided that ex-
tremely different ranks composed to a worse ARank then
that from relatively average ranks. In the rest of paper, we
only discuss the processing of first SUM aggregate function
since the other two functions also share the same technique
of our proposal.

1.2 Motivation

The purpose of this research is to address the following two
limitations of the state-of-the-art method employed to re-
solve ARR queries:

1. The efficiency degrades when Q is distributed
widely. As earlier defined, Q is the query set of bundled

Fig. 2 The limitations of previous method (DTM) [2]: (a) The search
space of P spreads when the issued Q is distributed wildly. (b) The search
space of W is over-enlarged from range w ∈ [wa, wb] to range w ∈ [u′, v′]

products offered by a manufacturer. In practice, the at-
tribute values of the products in Q are not very close as
they may not be in the same category. For example, in a
product bundling of smartphones and earphones, each price
may be quite different. Similarly, book shops always bundle
attractive books with some unpopular books, which makes
the values of the rating among these books dispersive. The
state-of-the-art method for solving ARR queries in [2] is
shown in Fig. 2 (a), where the search area is the area sand-
wiched between the two dashed lines (details are described
in Sect. 2). In the worst case, when Q is distributed as wide
as the whole space, then the efficiency will degrade to a
brute-force search.

2. Only a few of user preferences data w ∈ W are
filtered. We did a preliminary experiment to observe how
many w ∈ W are filtered with the synthetic data (UN, CL)
and the real AMAZON data (refer to Sect. 5). Less than 16%
of w ∈ W are filtered for all data sets, which is not satisfac-
tory because it means that even with an index, more than
84% of data have to be accessed. Furthermore, since the
user data sets W are always much larger than the product
data P, it is very significant to enhance the filtering perfor-
mance.

Our solution to address the above limitations is design-
ing and combining the following techniques. Imaging that
in Fig. 2 (a), Q contains only two groups of queries locate
densely around the left-low and right-up corners of the MBR
of Q. Instead of finding the ARR against Q, it is much more
efficient to treat the two groups one by one then compose
the results. Motivated by this, we first propose a cluster-
based method which efficiently processes the situation when
Q is distributed widely. To achieve a better filtering of user
preferences data, we design a cone+ tree to index W which
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Fig. 3 Bounding phase. (a) Finding the set Wt of top-w in each dimen-
sion. (b) Using Wt to find the upper bound Qup

m and lower bound Qlow
m of

Q.

provides tighter bounds. As in Fig. 2 (b), w’s distribute on
the line l : w[1] + w[2] = 1. Using MBR to index a range
[wa, wb] will enlarge the search range on w to [u′, v′] in pro-
cessing a certain p. Where, u′ is the intersection of line l
with the line passing the left-low of the MBR and perpen-
dicular to vector p (v′ is similar). Instead, our proposal in-
dexes exactly the range [wa, wb] into a cone+ tree node. (The
details of discussion is in Sect. 4)

Contribution. This paper makes the following contri-
butions:

• We demonstrate two limitations of the state-of-the-art
method of a widely distributed Q and badly filtered W,
either of which is a serious problem. To address these
limitations, we proposed three solutions: (a) A cluster-
ing processing method (CPM) that divides Q into clus-
ters to filter data which cannot be filtered by previous
methods and process them integrally to avoid redun-
dant comparison. (b) A novel cone+ tree based method
(C+TM) which can filter more W data. (c) A combina-
tion method (CC+M) of the above.
• Both the theoretical analysis and experimental results

validated the efficiency of the proposed methods.

The rest of this paper is organized as follows: Section 2
describes the state-of-the-art method for ARR query. Sec-
tion 3 and Sect. 4 introduce the proposed methods. The ex-
perimental results are discussed in Sect. 5. Section 6 sum-
marizes related work and Sect. 7 concludes the paper.

2. Bound-and-Filter Framework for Arr Query

In this section, we briefly describe the state-of-the-art solu-
tion, referred to in the literature as the Double Tree Method
(DTM) [2], for ARR queries. DTM is based on a bound-
and-filter structure and has two phases: bounding and filter-
ing.

1. Bounding. Figure 3 shows the bounding phase. In
this phase, two points Q.up and Q.low are created to bound
Q. First, a d-elements subset of W, Wt = {w(i)

t }d1 is built.
The element w(i)

t ∈ Wt is the most similar (in terms of cosine
similarity) to the unit vector (ei) of the ith dimension. In

Fig. 4 Filtering phase. (a) R-tree of W. (b) Filtering area defined by
ew1.up/ew1.low and Q.up/Q.low (the gray parts). (c) Filtering data W with
rank bounds and the minRank.

other words, w(i)
t ∈ W and ∀w ∈ W, cos(w(i)

t , ei) ≥ cos(w, ei)).
The two bounds of Q, denoted as Q.up and Q.low, are found
using the following rules:

Qu= {arg max
q∈Q

f (w(i)
t , q)}di=1 (2)

Ql= {arg min
q∈Q

f (w(i)
t , q)}di=1 (3)

Q.up=MBR(Qu).up and Q.low = MBR(Ql).low (4)

where the MBR(Qu) is the minimum bounding rectangle of
Qu. The MBR(Qu).up and MBR(Qu).low are represented
the left-low point and right-up point of this MBR, respec-
tively.

2. Filtering. Notice that both W and P were pre-
indexed independently with two R-trees. Figure 4 (b) shows
the filtering phase. For an MBR ew1 of R-tree, its upper
bound ew1.up forms the upper border line with Q.up, while
its lower bound ew1.low and Q.low form the lower border
line. The only data space of P that must be computed is
the area sandwiched between the two dashed border lines
marked in gray in the figure. Figure 4 (c) shows how to filter
W; here, a threshold value denoted by minRank is updated
with the kth smallest rank during processing (this is because
we only want the top-k w’s such as ew4 and ew5). The MBRs
of w’s whose lower bounds rank is greater than minRank will
be filtered.

3. Clustering Processing Method (CPM)

In Sect. 1.2, we introduce the filtering space, which is deter-
mined by the previous bound-and-filter method DTM and
becomes very small when Q distributes widely. To address
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Fig. 5 The score ranges against the whole Q, Q1 and Q2

this limitation, we propose a novel clustering processing
method (CPM) which divides Q into clusters and processes
them separately so that they filter more data than the DTM
does.

3.1 Counting Rank Separately

Regarding the situation where Q distributes widely, we can
divide Q into clusters instead of treating all q ∈ Q as a
whole. We can then estimate the ARank by counting the
rank against each cluster. Figure 5 shows the difference of
the filtering (gray) area between the whole Q and its clusters
Q1 and Q2. There are 4 bounding score a, b, c, d, and let ã
denote the number of points whose score less than a. We
know that ã · |Q| estimates the lower bound of the aggregate
rank in [2]. Applying this result to the clusters, the lower
bound (LB) becomes:

LB = ã · |Q1|+ c̃ · |Q2| = ã · |Q|+ (c̃− ã) · |Q2| > ã · |Q| (5)

Obviously, the bound becomes tighter if we estimate the
rank separately against clustered Q then sum them up.

A simple implementation of this idea is to count the
rank while searching the products R-tree for each cluster
and summing them up finally. However, this process needs
to access the R-tree index a number of times, which is equals
to the number of clusters. We propose a more efficient al-
gorithm named the Clustering Processing Method (CPM),
which is also based on the bound-and-filter framework but
counts rank for all clusters in only one R-tree traversal.

Algorithm 1 shows the CPM. In CPM, a buffer keeps
the top-k w’s for the result of the ARR query which, initially,
is simply the first k w’s ∈ W and their aggregate ranks (Line
1). The value minRank is a threshold which changes accord-
ing as the buffer. First, we divide Q into clusters Qc (Line 2)
and, during the bounding phase, we compute the bounds of
each cluster (Line 3). Algorithm 2 is called to search with
RtreeP and count the ARank with clusters Qc (Lines 7-9).
According to the f lag returned by Algorithm 2, we update
the buffer (Line 15) or add the children of ew for recursion
(Lines 11 and 17).

The key point of CPM is to recursively count ARank
with clusters Qc but not independently in Algorithm 2. We
use an array of flags (info) to mark the state and avoid un-
necessary processing; for example, the flag info[“Q′′1 ] is true
means that the current ep has been filtered by Q1 and we do
not need to consider it again. Parent nodes in the R-tree pass
info to their children (Line 15). The child node first confirms

Algorithm 1 Cluster Processing Method (CPM)
Input: P,W,Q
Output: result set heap
1: Initialize buffer to store the first k w’s in the ARank(w,Q) sorted in

ascending order.
2: Qc⇐ Clustering(Q).
3: Get bounds for each Qi ∈ Qc // Bounding phase.
4: heapW.enqueue(RtreeW.root) // Filtering phase start.
5: while heapW is not empty do
6: ew ⇐ heapW.dequeue()
7: heapP.enqueue(RtreeP.root)
8: minRank ⇐ the last rank in buffer.
9: f lag ⇐ ARank-Cluster(heapP, ew,Qc,minRank) //Call Algo-

rithm 2.
10: if f lag = 0 then
11: heapW.enqueue(ew.children)
12: else
13: if f lag = 1 then
14: if ew is a single vector then
15: Update buffer with ew and its ARank.
16: else
17: heapW.enqueue(ew.children)
18: return buffer

Algorithm 2 ARank-Cluster
Input: heapP, ew,Qc,minRank
Output: include: 1; discard: -1; uncertain : 0;
1: rnk ⇐ 0
2: while heapP is not empty do
3: {ep, In f o} ⇐ heapP.dequeue()
4: if ep is non-leaf node then
5: for each Qi ∈ Qc do
6: if In f o[“Q′′i ] = f alse then
7: if ep ≺ Qi then
8: In f o[“Q′′i ]⇐ true
9: rnk ⇐ rnk + ep.size × |Qi |

10: if rnk ≥ minRank then
11: return -1
12: else if ep  Qi then
13: In f o[“Q′′i ]⇐ true
14: else
15: heapP.enqueue({ep.children, In f o})
16: if ep is a leaf node then
17: for each Qi ∈ Qc do
18: if In f o[“Q′′i ] = f alse then
19: Calculate f (qi, w) for each qi ∈ Qi and update rnk.
20: if rnk ≤ minRank then
21: return 1
22: else
23: return 0

info (Line 3) to decide whether to skip processing (Lines 6
and 18), and updates info after it determines that it can filter
new clusters (Lines 8 and 13).

3.2 Clustering Q

The clustering method is called at Line 4 of the CPM algo-
rithm to divide the query set Q into clusters. In this research,
we simply utilize x-means [5], which is a variation of the
well-known k-means, as the clustering method. The reasons
we choose x-means are: 1) it is not a wise idea to take times
to analyze Q and choose among clustering algorithms, so the
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simple x-means meets this need. 2) since Q is unpredictable
and without background knowledge, no other clustering al-
gorithms performance generally better, and 3) x-means can
divide Q properly without inputting any parameter (e.g., the
number of clusters). Nevertheless, it is still an important
future work to find a specific strategy for clustering Q.

X-means is a heuristic clustering method, which de-
termines the number of clusters by repeatedly attempting a
2-means subdivision and keeping the best result divisions.
The Bayesian Information Criterion (BIC)† is used to make
the subdivision decision and the lowest BIC is preferred. In
conclusion, the procedure of clustering Q with x-means is:
(a) Divide Q into 2 clusters. (b) For each cluster, divide it
into 2 sub-clusters. (c) if BIC decreases then repeat (b).

4. Cone+ Tree and Methods

In this section, we address the second limitation in Sect. 1.2.
Our solution is to develop the cone+ tree index and search
methods based on it.

4.1 The Over-Enlarged Bound by R-tree

The intrinsic reason for the second limitation pointed out in
Sect. 1.2 is that the previous DTM indexes W data with a
spatial R-tree then utilizes the MBR to estimate the bound
of the score. It is not an appropriate way since the bounding
points in spatial MBR will over-enlarge the bound from the
actual inner product value.

Figure 6 shows a 2-dimensional example for the over-
enlarged bound by R-tree index. The points w1 ∼ w4 are
located on a line L (plane in high dimensional space) where∑d

i=1 w[i] = 1, based on the definitions in Sect. 1.1, We can
see that R-tree groups data into their MBR and the right-up
and left-low points are used to estimate the upper and lower
score bounds, respectively. However, the diagonal crossing
MBR.up and MBR.low always makes the largest angle with
L; thus, for an arbitrary point p, the right-up and left-low
points of MBR always enlarge (i.e., loosen) the bound of
the score unnecessarily.

Inspired by above, we aim at bounding W with a tighter
way, which is preferable to group w′s with their directions.
Therefore, we propose a cone+ tree index to pre-index the
user data W. The cone+ tree is a variant of the cone-tree
method [6] and, like the latter, it groups data by cosine sim-
ilarity; in addition, cone+ tree stores the boundary points
of each node and uses them to calculate the precise score
bounds in processing.

4.2 Cone Tree and Cone+ Tree

Cone tree [6] is a binary construction tree. Every node in
the tree is indexed with a center and encloses all points,
which are close to this center up to cosine similarity. The
node splits into two, left and right, child nodes if it has more

†https://en.wikipedia.org/wiki/Bayesian information criterion

Fig. 6 The difference of score bounds created by MBR and real score
bounds.

points than a set threshold value Mn. The tree is built hier-
archically by splitting itself until the points are fewer than
Mn.

In [6], a cone tree was proposed, where the score
bounds were based on a cone used to search for the max-
imum inner product value under the assumption that the
length (i.e., norm) of a query is irrelevant to the maximum
inner product result. In other words, it is enough to con-
sider only the directions in the cone. Unfortunately, since
our problem is different, this assumption on the cone tree
and the ways maximum bounding was achieved in [6] does
not hold in ARR queries.

From Fig. 6, we can know that the actual bounds of the
set of w’s are always found from the boundary points. We
put forward the following Lemma 1.

Lemma 1. Given a set of preference B and a product p, the
boundary points of B is B.boundar. The preference w ∈ B
which makes the maximum (minimum) score of f (w, p) must
be contained in B.boundar.

Proof. By contradiction. Assume that ∃wa ∈ B and wa �
B.boundar, where ∀wb ∈ B f (wa, p) ≥ f (wb, p). Since the
inner product is a monotone function and all values are pos-
itive, so ∃wa[i] > wb[i], i ∈ [1, d] and wa should be a bound-
ary point in B.boundar. This leads to the contradiction. �

In the geometric view, the inner product f (w, p) is the
length of the projection of w onto p. Therefore, both the
shortest and the longest projection of a set of w’s come from
the boundary points of the set.

We took advantage of Lemma 1 and proposed a cone+

tree which keeps the boundary points for each node. There-
fore the precise score bounds can be computed directly. Fig-
ure 7 shows the example of cone+ tree. Algorithm 3 and 4
show the construction of cone+ tree. The indexed bound-
ary points are the points containing the maximum value on
a single dimension (Algorithm 4, Line 2).

4.3 Cone+ Tree Method (C+TM) and Combined Method
(CC+M)

When processing ARR with cone+ tree and R-tree in the
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Fig. 7 Images of 2-dimensional (left) and 3-dimensional (rigth) cone+

tree, respectively.

Algorithm 3 Cone+TreeSplit(Data)
Input: points set, Data
Output: two centering points of children, a, b ;
1: Select a random point x ∈ Data.
2: a⇐ arg max

x′∈Data
cosineS im(x, x′)

3: b⇐ arg max
x′∈Data

cosineS im(a, x′)

4: return {a,b}

Algorithm 4 BuildCone+Tree(Data)
Input: points set, Data
Output: cone+ tree, tree ;
1: tree.data⇐ Data
2: tree.boundary⇐ {w ∈ Data : arg max

i∈[0,d)
w[i]}

3: if |Data| ≤ Mn then
4: return tree
5: else
6: {a, b} ⇐ Cone+TreeS plit(Data)
7: le f t ⇐ {p ∈ Data : cosineS im(p, a) > cosineS im(p, b)}
8: tree.le f tChild ⇐ BuildCone+Tree(le f t)
9: tree.rightChild ⇐ BuildCone+Tree(Data − le f t)

10: return tree

filtering phase, we can compute the bounds between a cone+

and an MBR by the following Theorem.

Theorem 1. (The bounds with cone+ and MBR): Given
a set of w’s in a cone+ node cw, a set of points in an
MBR ep. ∀w ∈ cw, ∀p ∈ ep, f (w, p) is upper bounded
by Maxwb∈cw.boundar{ f (wb, ep.up)}. Similarly, it is lower
bounded by Minwb∈cw.boundar{ f (wb, ep.low)}.

For a query set Q and an MBR ep of points, the rela-
tionship between them on a w’s cone+ can be inferred from
the following.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ep ≺ Q :

Maxwb∈cw.boundar{ f (wb, ep.up)} <
Minwb∈cw.boundar{ f (wb,Q.low)}

ep  Q :

Minwb∈cw.boundar{ f (wb, ep.low)} >
Maxwb∈cw.boundar{ f (wb,Q.up)}

Unknow : otherwise

(6)

The Cone+ Tree Method (C+TM) can be implemented eas-

ily by indexing W in the cone+ tree and using Eq. (6) to ap-
ply the bound-and-filter framework described in Sect. 2. We
can also combine the features of the two methods in this pa-
per, i.e., the (CC+M) method, which can be implemented by
using cone+ tree with W and replacing Lines 7 and 12 in
Algorithm 1 with the above Eq. (6).

5. Experiment

We present the experimental evaluation of the previous
DTM [2], the proposed CPM and C+TM, and the method
CC+M which combines the features of both CPM and
C+TM. All algorithms were implemented in C++, and the
experiments were run in-memory on a Mac with 2.6 GHz
Intel Core i7, 16 GB RAM.

Synthetic data. The synthetic data sets for both P
and W are uniform (UN), clustered (CL) and anti-correlated
(AC) with an attribute value range of [0, 1). Q is randomly
select from P. The details of the generation can be found in
[1]–[3].

Real data. We also have two real data sets: NBA†
and AMAZON††. NBA data set contains 20,960 tuples of
players in the NBA from 1949 to 2009. We extracted 5-
tuples to evaluate a player with his points, rebounds, assists,
blocks, and steals from this NBA statistics. The NBA data is
treated as P, and we generate user data W with UN. AMA-
ZON is the metadata of products and reviews from the fa-
mous AMAZON.com. This metadata has 208,321 user re-
views to the products in the category of Movies and TV, in
which product bundling often occurs. Each user and prod-
uct had at least five reviews. For each product in the meta-
data, we extracted the value on “Price” and “salesRank” as
a 2-dimensional vector to represented the data p ∈ P. For
a w ∈ W, we computed the average value on “Price” and
“salesRank” of the products which the user bought. In both
case of NBA and AMAZON data, Q is randomly selected
from P.

Experimental results for synthetic data. Figures 8, 9
and 10 show the experimental results for the synthetic data
sets (UN, CL, AC) with varying dimensions d (2-5), where
both data sets P and W contained 100K tuples. Q had five
query points, and we wanted to find the five best preferences
(k = 5) for this Q. Figures 8 (a), 9 (a), 10 (a) show the run-
time on varying dimensionality. CPM and C+TM boost the
performance at least 1.5 times in all cases. Figures 8 (b),
9 (b), 10 (b) show that all methods are stable with k from 10
to 50, this is because k is far smaller then the data size. The
combined method CC+M takes advantages of them and be
the best. We can also see that all methods have better perfor-
mance in CL data than others, it is because that the CL data
can be indexed (R-tree and Cone+ tree) in tighter bounds.
We varied the |Q| size to test the performance of clustered
processing in CPM, the results are shown in Figs. 8 (c), 9 (c),
10 (c). We also observed the percentage of W been filtered.

†NBA: http://www.databasebasketball.com.
††AMAZON: http://jmcauley.ucsd.edu/data/amazon/.
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Fig. 8 Comparison results on UN data, |P| = |W | = 100K, k = 10.

Fig. 9 Comparison results on CL data, |P| = |W | = 100K, k = 10.

Fig. 10 Comparison results AC data, |P| = |W | = 100K, |Q| = 5, k = 10.

Fig. 11 Comparison results on data with different distribution, |P| = |W |
= 100K, k = 10, |Q| = 5.

Fig. 12 Comparison results on Real data (NBA, AMAZON).

Fig. 13 Scalability on varying |P| and |W | on UN data, k = 10, |Q| = 5,
d = 3.

Figures 8 (d), 9 (d), 10 (d) react the superior filtering of the
proposed cone+ tree structure. Figure 11 shows the results
on different distribution between P and W. In same, pro-
posed methods have better performance.

Experimental results for real data. Figure 12 (a)
shows the results with the NBA data set on varying Q. We
selected five, ten, and fifteen players from the same team
as Q to deal with a practical query “find users who like an
NBA team.” As we expected, CC+M is the fastest method.
Figure 12 (a) shows the results with the AMAZON data set
on varying k, it is a good demonstration that our proposals
have outstanding performance in marketing applications.

Scalability. Figure 13 shows the scalable property for
varying |P| and |W |. As well as the previous DTM, the pro-
posed CPM, C+TM and CC+M are all scalable, linear and
they outperform DTM. A key benefit from the proposed
cone+ tree, C+TM and CC+M is that it can be stable even
with the a large |W |.

Precision. We also test the quality of the ARR query
with AMAZON data. We randomly selected two products
then execute ARR query with three different aggregate func-
tions in Eq. (1). Figure 14 reports the precision of ARR
query with the percentage of users in ARR query results who
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Fig. 14 The precision of ARR query on AMAZON data with SUM, MIN
and MAX aggregate functions.

really have bought either of the selected product. Neverthe-
less, we can know that the precision depends on the data and
the aggregate function, so it is also an important issue that to
adjust a suitable aggregate function based on specific data.

6. Related Work

Basic top-k query. The most basic query processing is the
top-k query. In the user-product model, when given a user
preference, the top-k query returns k products with mini-
mal ranking scores. The research [7] is an important inves-
tigation that describes and classifies top-k query processing
techniques in relational databases.

Reverse rank queries (RRQ). Conversely, finding po-
tential users for a given product is an equally important field
in the user-product model. We call these kinds of queries
as the reverse rank queries (RRQ). An example of the RRQ
is the reverse top-k [4] query, which has been proposed to
evaluate the impact of a product based on the preferences
of users who treat it as a top-k product. For an efficient
reverse top-k process, Vlachou et al. [3] proposed a branch-
and-bound (BBR) algorithm using a boundary-based regis-
tration and a tree-based processing. Vlachou et al. In order
to resolve the reverse query for some less-popular objects,
Zhang et al. [1] proposed another kind of RRQ: the reverse
k-rank query, which can find the top-k user preferences with
the highest rank for a given object among all users. The
most relevant research related to this work is the aggregate
reverse rank query [2]. Dong et al. [8] also proposed a Grid-
index algorithm, which is focused on efficiently processing
RRQ with high-dimensional data.

Reverse queries in spatial data. For the spatial query
problem, there also exist many reverse queries. Given a
data point, queries are performed to find result sets con-
taining this data point. Korn et al [9] proposed the reverse
nearest neighbour (RNN) query. On the other end, Yao et
al. [10] proposed the reverse furthest neighbor (RFN) query
to find points where the query point is deemed as the furthest
neighbor. The extension of the RNN, which is the reverse k
nearest neighbor (RKNN), has equally been researched on
sufficiently. We remark that Yang et al. [11] analyzed and
compared notable algorithms from [12]–[16]. In another
direction, Dellis and Seeger introduced the reverse skyline
query, which uses the advantages of products to find poten-
tial customers based on the dominance of competitors’ prod-
ucts [17], [18]. The preference of each user is described as
a data point representing the desirable product.

7. Conclusion

In this paper, we pointed out two serious limitations of the
state-of-the-art method of aggregate reverse rank query and
proposed two methods CPM and C+TM to solve them. On
the one hand, CPM divides a query set into clusters and pro-
cesses them to overcome the low efficiency caused by bad
filtering when considering the query set as a whole. On the
other hand, C+TM uses a novel index cone+ tree to avoid
enlarging the score bound. Furthermore, we also proposed
a method CC+M that utilizes the advantages of both of the
above solutions. The experimental results on both synthetic
data and real data showed that CC+M has the best efficiency.

As future works, we are finding ways to reduce the
computational cost of constructing the cone+ tree. This cost
is currently linear to data size. We also want to propose a
strategy of clustering for ARR problem to achieve a better
efficacy. Moreover, we are considering a wider definition of
ARR query with more than proposed three aggregate ARank
functions.
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