Impact of Ba to Si deposition rate ratios during molecular beam epitaxy on carrier concentration and spectral response of BaSi₂ epitaxial films

Ryota Takabe, Tianguo Deng, Komomo Kodama, Yudai Yamashita, Takuma Sato, Kaoru Toko, and Takashi Suemasu

Citation: Journal of Applied Physics **123**, 045703 (2018); doi: 10.1063/1.4994850 View online: https://doi.org/10.1063/1.4994850 View Table of Contents: http://aip.scitation.org/toc/jap/123/4 Published by the American Institute of Physics

Articles you may be interested in

Low temperature synthesis of highly oriented p-type $Si_{1-x}Ge_x$ (x: 0–1) on an insulator by Al-induced layer exchange Journal of Applied Physics **122**, 155305 (2017); 10.1063/1.4996373

Ab initio molecular dynamics simulations of AIN responding to low energy particle radiation Journal of Applied Physics **123**, 045904 (2018); 10.1063/1.5009750

Silicon photoresistive sensors with improved performance Journal of Applied Physics **123**, 044505 (2018); 10.1063/1.5006819

LPCVD homoepitaxy of Si doped β -Ga₂O₃ thin films on (010) and (001) substrates Applied Physics Letters **112**, 052104 (2018); 10.1063/1.5017616

Guest Editorial: The dawn of gallium oxide microelectronics Applied Physics Letters **112**, 060401 (2018); 10.1063/1.5017845

High n-type Sb dopant activation in Ge-rich poly-Ge_{1-x}Sn_x layers on SiO₂ using pulsed laser annealing in flowing water Applied Physics Letters **112**, 062104 (2018); 10.1063/1.4997369

Impact of Ba to Si deposition rate ratios during molecular beam epitaxy on carrier concentration and spectral response of BaSi₂ epitaxial films

Ryota Takabe, Tianguo Deng, Komomo Kodama, Yudai Yamashita, Takuma Sato, Kaoru Toko, and Takashi Suemasu Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

(Received 7 July 2017; accepted 27 November 2017; published online 31 January 2018)

Undoped 0.5- μ m-thick BaSi₂ epitaxial films were grown on Si(111) substrates with various ratios of the Ba deposition rate to the Si deposition rate (R_{Ba}/R_{Si}) ranging from 1.0 to 5.1, and their electrical and optical properties were characterized. The photoresponse spectra drastically changed as a function of R_{Ba}/R_{Si} , and the quantum efficiency reached a maximum at $R_{Ba}/R_{Si} = 2.2$. Hall measurements and capacitance versus voltage measurements revealed that the electron concentration drastically decreased as R_{Ba}/R_{Si} approached 2.2, and the BaSi₂ films with R_{Ba}/R_{Si} = 2.0, 2.2, and 2.6 exhibited p-type conductivity. The lowest hole concentration of approximately 1×10^{15} cm⁻³ was obtained for the BaSi₂ grown with $R_{Ba}/R_{Si} = 2.2$, which is the lowest value ever reported. First-principles calculations suggest that Si vacancies give rise to localized states within the bandgap of BaSi₂ and therefore degrade the minority-carrier properties. *Published by AIP Publishing*. https://doi.org/10.1063/1.4994850

I. INTRODUCTION

Recently, Kaneka Corporation has achieved the conversion efficiency (η) exceeding 26% in a heterojunction backcontact-type crystalline silicon (c-Si) solar cell. This broke the old record for η of 25.6% and brings η closer to the performance limit determined by the Si bandgap E_g^{Si} of 1.1 eV.^{1,2} To develop improvements in η with lower cost, many researchers have paid much attention to Cu(In,Ga)(S,Se)₂, CdTe, and perovskite solar cells. However, these materials contain nonabundant and/or toxic elements.^{3–7} Silicon thin-film solar cells have been studied extensively; $^{8-13}$ but with this material, it is not easy to attain a high η as large as 20%. Thus, exploring alternative materials for thin-film solar cells is very important. Among such materials, we have been studying semiconducting barium disilicide (BaSi₂),¹⁴ which consists of the safe and earth-abundant elements, Ba and Si, and possesses a bandgap of 1.3 eV that is appropriate for a single-junction solar cell.¹⁵ In addition, BaSi₂ has a large absorption coefficient of 3×10^4 cm⁻¹ at 1.5 eV, which is more than 40 times larger than that of c-Si.¹⁵⁻¹⁸ In addition, undoped BaSi₂ exhibits a large minority-carrier diffusion length of $10\,\mu\text{m}$ and a large minority-carrier lifetime of 10 μ s.^{19–22} Both electron and hole concentrations can be controlled in a wide range up to the order of 10¹⁹ cm⁻³ by doping Sb and B, respectively.^{23,24} Recently, we attained an η value approaching 10% in p-BaSi₂/n-Si heterojunction solar cells.^{25–27} Other types of solar cells such as Schottky-type BaSi2, BaSi2 nanowires, BaSi2/ perovskite stacked layers, and back-contacted BaSi2 have also been proposed.^{28–31} To further improve the η of BaSi₂ solar cells and to achieve homojunction solar cells, it is important to fabricate high-quality BaSi2 epitaxial films.

In past works, we employed molecular beam epitaxy (MBE) to co-deposit Ba and Si on heated Si(111) substrates for the $BaSi_2$ growth.^{32,33} Because the vapor pressure of Ba is much higher than that of Si, we grew these $BaSi_2$ films under

a Ba-rich condition where, for example, the ratio of the Ba deposition rate to the Si deposition rate (R_{Ba}/R_{Si}) was fixed at 3.0^{33} These BaSi₂ films exhibit an n-type conductivity with an electron concentration *n* in the range from 5×10^{15} to 2×10^{16} cm⁻³.³⁴⁻³⁶ Regarding GaAs MBE growth, the density of the electron trap states located 0.82 eV from the conduction band edge increases with the As/Ga flux ratio.³⁷ This is because the Ga vacancies, As antisites, and interstitial As in the GaAs films work as electron traps. Therefore, we anticipate that the value of $R_{\text{Ba}}/R_{\text{Si}}$ will have a huge impact on the characteristics of BaSi2 films in the same way as the As/Ga flux ratio does. According to Kumar et al.,³⁸ the supercell approach based on first-principles density functional theory (DFT) revealed that the formation energies of point defects in BaSi₂ such as Si vacancies (V_{Si}), Ba antisites (Ba_{Si}), and interstitial Si (Si_i) are dependent upon the growth conditions. Hence, the amount of point defects and their species in BaSi₂ may change with $R_{\text{Ba}}/R_{\text{Si}}$. The purpose of this research is to fabricate undoped BaSi2 epitaxial films with various values of $R_{\rm Ba}/R_{\rm Si}$ and to examine the influence of $R_{\rm Ba}/R_{\rm Si}$ on the crystalline qualities and the electrical and optical properties. Kumar et al. also found out that Si vacancies are most likely to occur in BaSi₂.³⁸ Thus, we also aim to reveal the influence of Si vacancies on the density of states (DOS) and total energies in the orthorhombic unit cell of BaSi₂.

II. METHODS

A. Formation of BaSi₂ films and characterizations

An ion-pumped MBE system (R-DEC) with a base pressure better than 10^{-8} Pa and equipped with a Knudsen cell for Ba and an electron-beam evaporation source for Si was used for sample preparation. The values of R_{Ba} and R_{Si} were controlled using an electron impact emission spectroscopy (EIES, INFICON) feedback system. We used low-resistivity n-Si(111) (resistivity $\rho = 0.01 \Omega$ cm) substrates for the photoresponsivity

measurement to make the contribution of photogenerated carriers in the Si substrate to the internal quantum efficiency (IOE) negligibly small. In contrast, we employed highresistivity p-Si(111) ($\rho = 1000-10000 \,\Omega \,\mathrm{cm}$) for the Hall measurement, assuming that the undoped BaSi2 exhibits n-type conductivity. Before growth, substrates were first cleaned according to standard RCA (Radio Corporation of America) procedure, followed by thermal cleaning at 900 °C for 30 min in the ultra-high vacuum chamber to remove a protective oxide layer on the surface. We then deposited Ba on a Si substrate heated at 500 °C by reactive deposition epitaxy to form a 3-nm-thick BaSi₂ template layer.³⁹ This template functions as a seed crystal source for the subsequent layer. Next, we grew $0.5-\mu$ m-thick undoped BaSi₂ on the templates at 580 °C by MBE. During the MBE growth, the R_{Si} was fixed at 0.9 nm/min and the $R_{\rm Ba}$ was varied from 0.9 to 4.6 nm/min, meaning that the $R_{\rm Ba}/R_{\rm Si}$ varied from 1.0 to 5.1. We then formed a 3-nm-thick amorphous Si at 180 °C, which acts as a surface passivation layer for assuring a good electrical contact.^{22,27,40} Finally, 80-nm-thick indium-tin-oxide (ITO) electrodes with 1 mm diameter were sputtered on the front surface and 150-nm-thick Al electrodes on the back surface of the Si substrate for the optical property evaluation. As described later, the *IQE* reached a maximum at $R_{\rm Ba}/R_{\rm Si} = 2.2$. To check the IQE spectra, we also grew one sample possessing an undoped BaSi₂ absorber as thick as $1.0 \,\mu\text{m}$, with which the photocurrent density (J_L) beyond 40 mA/cm² was simulated in a BaSi₂ solar cell in Ref. 30.

The crystalline qualities of grown films were characterized by reflection high-energy electron diffraction (RHEED) along the Si $[11\overline{2}]$ azimuth, and with x-ray diffraction (XRD; RIGAKU Smart Lab) using Cu Ka radiation, where Ge(220) single crystals were used to make the x-ray monochromatic. We measured θ -2 θ XRD patterns to confirm the *a*-axis orientation of BaSi₂. We also conducted ω -scan x-ray rocking curve measurement to obtain full width at half maximum (FWHM) of a BaSi₂(600) diffraction intensity to represent its crystalline quality. The actual atomic ratio of Ba to Si, $N_{\rm Ba}/N_{\rm Si}$, of the films was measured by Rutherford backscattering (RBS) spectrometry, where the incident He ion energy was set at 1.6 MeV and the backscattered ions with a scattering angle of 150° were detected. Photoresponse and reflectance spectra were evaluated at room temperature using a lock-in technique with a xenon lamp and a 25-cm-focallength single monochromator (Bunko Keiki SM-1700A and RU-60N). The light intensity was calibrated using a pyroelectric sensor (Melles Griot 13PEM001/J). The carrier concentration of BaSi2 was measured by Hall measurements using the van der Pauw method with an applied magnetic field of 0.8 T. We also measured the capacitance versus voltage (C-V) characteristics to estimate the carrier concentration in BaSi2^{35,36} at the condition when the carrier concentration decreased down to the order of 10^{15} cm⁻³, and hence, the carriers flowing through the Si substrate was not negligible in the Hall measurement. For this purpose, we fabricated 0.5-µm-thick undoped BaSi2 on medium-doped p-Si(111) ($\rho = 0.1 \ \Omega \ cm$). The hole concentration p of this substrate was $2 \times 10^{17} \text{ cm}^{-3}$.

B. Computational details

The crystal structure of orthorhombic BaSi₂ is shown in Fig. 1. The stoichiometric description of the unit cell is Ba₈Si₁₆. In each BaSi₂ unit cell, there are two crystallographically inequivalent sites for Ba (Ba⁽¹⁾ and Ba⁽²⁾) and three inequivalent sites for Si $(Si^{(3)}, Si^{(4)}, and Si^{(5)})$. Therefore, the atoms are distributed over $4Ba^{(1)}$, $4Ba^{(2)}$, $4Si^{(3)}$, $4Si^{(4)}$, and $8Si^{(5)}$. Total energies of $BaSi_2$ with three kinds of V_{Si} and DOSs were calculated using the Vienna ab initio simulation package code⁴¹ based on DFT with the projector-augmented wave pseudopotential⁴² and Perdew-Wang generalized gradient approximation method.⁴³ Total energy minimization was obtained via optimization of the lattice parameters and relaxation of the atomic positions in a conjugate gradient routine. Using an energy cutoff of 600 eV and a $6 \times 8 \times 4$ grid of Monkhorst-Pack points, the convergence in the total energy was better than 1 meV/atom.⁴⁴ Hereafter, we describe $BaSi_2$ with one V_{Si} as $Ba_8Si_{15}V_{Si(3)}$, in which one of the four $Si^{(3)}$ sites is vacant, $Ba_8Si_{15}V_{Si(4)}$, in which one of the four $Si^{(4)}$ sites is missing, or $Ba_8Si_{15}V_{Si(5)}$, in which one of the eight Si⁽⁵⁾ sites is vacant. The calculated total energies of these compounds are summarized in Table I. In our framework of first-principles calculations, we cannot take into account thermal effects at the finite temperature to the DFT calculation.

III. RESULTS AND DISCUSSION

A. Experimental results

Figure 2 shows the RHEED patterns observed along the Si[11 $\overline{2}$] azimuth and the θ -2 θ XRD patterns for BaSi₂ films formed with different values of R_{Ba}/R_{Si} . As shown in Fig. 2, sharp streaky RHEED patterns and intense *a*-axis-oriented diffraction peaks in the XRD patterns can be observed.

FIG. 1. Crystal structure of BaSi₂. There are two crystallographically inequivalent sites for Ba (Ba⁽¹⁾ and Ba⁽²⁾) and three inequivalent sites for Si (Si⁽³⁾, Si⁽⁴⁾, and Si⁽⁵⁾) in the orthorhombic unit cell of BaSi₂.

TABLE I. Calculated electronic energies for $Ba_8Si_{16},\ Ba_8Si_{15}V_{Si(3)},\ Ba_8Si_{15}V_{Si(4)},$ and $Ba_8Si_{15}V_{Si(5)}.$

Compound	Total energy (eV)
$8Ba + 16Si \rightarrow Ba_8Si_{16}$	-133.696
$Ba_8Si_{16} \rightarrow Ba_8Si_{15}V_{Si(3)} + Si$	-132.591 (-127.174-5.417)
$Ba_8Si_{16} \rightarrow Ba_8Si_{15}V_{Si(4)} + Si$	-132.519 (-127.102-5.417)
$Ba_8Si_{16} \rightarrow Ba_8Si_{15}V_{Si(5)} + Si$	-132.455 (-127.038-5.417)

FIG. 2. θ -2 θ XRD and RHEED patterns of BaSi₂ layers with various values of R_{Ba}/R_{Si} . The RHEED patterns were observed along the Si[11 $\overline{2}$] azimuth just after the growth of BaSi₂. The asterisk (*) indicates the diffraction of the substrate used.

These results show that *a*-axis-oriented BaSi₂ epitaxial films were grown on the Si(111) substrate, regardless of the R_{Ba}/R_{Si} .

Figure 3 presents the $R_{\rm Ba}/R_{\rm Si}$ dependences of BaSi₂ growth rate and FWHM values obtained from an ω -scan x-ray rocking curve using a BaSi₂(600) diffraction intensity. The BaSi₂ growth rate monotonically increases as the $R_{\rm Ba}$ increases. The FWHM value decreases with increasing $R_{\rm Ba}/R_{\rm Si}$

FIG. 3. Dependences of FWHM of $BaSi_2(600)$ intensity and $BaSi_2$ growth rate on R_{Ba}/R_{Si} .

and reaches a minimum at $R_{\text{Ba}}/R_{\text{Si}} \sim 3$, and increases with $R_{\text{Ba}}/R_{\text{Si}}$. This result suggests that the $R_{\text{Ba}}/R_{\text{Si}}$ should be around 3 from the view point of crystalline quality of BaSi₂. That is why we have chosen the $R_{\text{Ba}}/R_{\text{Si}}$ value at 3.0 for the MBE growth of BaSi₂ films.³³

Figure 4(a) shows the RBS spectra and Fig. 4(b) presents the resultant $N_{\text{Ba}}/N_{\text{Si}}$ depth profiles for BaSi₂ films with $R_{\text{Ba}}/R_{\text{Si}} = 1.0, 2.2, \text{ and } 4.0$. The $N_{\text{Ba}}/N_{\text{Si}} > 0.5$ means that Ba was in excess of stoichiometric conditions, while $N_{\rm Ba}/N_{\rm Si} < 0.5$ indicates that the Ba amount was deficient. The $N_{\rm Ba}/N_{\rm Si}$ value in the sample with $R_{\rm Ba}/R_{\rm Si} = 4.0$ was greater than that with $R_{\rm Ba}/R_{\rm Si} = 2.2$ along the entire depth. Similarly, the $N_{\text{Ba}}/N_{\text{Si}}$ value in the sample with $R_{\text{Ba}}/R_{\text{Si}} = 2.2$ was greater than that with $R_{\text{Ba}}/R_{\text{Si}} = 1.0$. Thus, we assume that the amount of point defects and their species in BaSi2 of these three samples are different. In addition, the $N_{\rm Ba}/N_{\rm Si}$ decreased when it approached the BaSi₂/Si interface for all the samples even though they were grown under a constant value of $R_{\rm Ba}/R_{\rm Si}$ during the growth. This result suggests that the Si substrate supplied Si atoms to the BaSi₂ layer during the MBE growth.

The photoresponse spectra of the samples are shown in Fig. 5(a). A bias voltage $V_{\text{bias}} = -1$ V was applied to the front-surface ITO electrode with respect to the back-surface Al electrode to extract the photogenerated holes in the BaSi₂

FIG. 4. (a) RBS spectra for $BaSi_2$ with $R_{Ba}/R_{Si} = 1.0$, 2.2 and 4.0, and (b) depth profiles of the Ba/Si atomic ratio, N_{Ba}/N_{Si} .

FIG. 5. (a) Photoresponse spectra of 0.5- μ m-thick BaSi₂ grown with various R_{Ba}/R_{Si} values measured under a bias voltage of -1 V applied to the front ITO electrode with respect to the back Al electrode, (b) dependence of photocurrent density J_{L} on R_{Ba}/R_{Si} , and (c) bias voltage dependence of IQE spectra of 1.0- μ m-thick BaSi₂ with $R_{Ba}/R_{Si} = 2.0$ grown on p-BaSi₂(50 nm)/ p-Si(111) ($\rho < 0.01 \Omega$ cm).

film. To our surprise, the photoresponse spectra were quite sensitive to variations in $R_{\text{Ba}}/R_{\text{Si}}$. To clarify the impact of the spectral response, we converted them to the values of *IQE* and subsequently to the photocurrent density J_{L} using

$$J_{\rm L} = q \int \Phi_{\rm AM1.5G} \times IQE \ dE, \tag{1}$$

where q is the elemental charge and $\Phi_{AM1.5G}$ is the photon flux density of AM1.5G. As shown in Fig. 5(b), the J_L reached a maximum at $R_{Ba}/R_{Si} = 2.2$. Figure 5(c) shows the IQE spectra of the 1.0- μ m-thick BaSi₂ film grown with $R_{Ba}/R_{Si} = 2.0$ at $V_{bias} = 0.1$, 0.3, and 0.5 V. For this sample, we chose the R_{Ba}/R_{Si} value at 2.0 instead of 2.2. This is because the N_{Ba}/N_{Si} may exceed 0.5 in the region close to the surface for $R_{Ba}/R_{Si} = 2.2$ when the BaSi₂ thickness increases from 500 nm to 1 μ m, leading to the degradation of the photoresponse properties. The *IQE* exceeds 80% in a wide wavelength range at $V_{\text{bais}} = 0.5 \text{ V}$, demonstrating the great potential of BaSi₂ homojunction solar cells. In the present work, the photogenerated carriers in BaSi₂, where the electric field exists because of V_{bias} , are collected by drifting. The *IQE* is proportional to the ratio of the carrier lifetime to the carrier transit time. With increasing V_{bias} , the drift velocity of carriers increases, leading to a decrease in the carrier transit time. Therefore, more holes and electrons can reach the ITO electrode and the n-Si region before recombination, respectively. When the transit time becomes much shorter than the carrier lifetime, the *IQE* may exceed 100% as shown in the case of $V_{\text{bias}} = 0.5 \text{ V}$. This phenomenon has been applied to practical devices such as photoconductors.

We next measured the carrier concentration of each sample and examined the correlation between the photoresponsivity and the carrier concentration. Figure 6(a) shows the relationship between $R_{\text{Ba}}/R_{\text{Si}}$ and carrier concentration as evaluated by Hall measurements and/or *C-V* measurements. For this purpose, we have fabricated eight samples with $R_{\text{Ba}}/R_{\text{Si}} = 1.0, 1.7, 2.0, 2.2, 2.6, 3.0, 3.5, and 4.0.$ Among them, the carrier type of the BaSi₂ films grown with $R_{\text{Ba}}/R_{\text{Si}} = 2.0,$ 2.2, and 2.6 was *p*. Other samples showed n-type conductivity, and the electron concentration increases for both increasing and decreasing $R_{\text{Ba}}/R_{\text{Si}}$ values. The hole concentration reached a minimum of approximately 1×10^{15} cm⁻³ at $R_{\text{Ba}}/R_{\text{Si}} = 2.2$. This small majority carrier concentration may reduce the carrier recombination of photogenerated minority

FIG. 6. (a) Relationship between the carrier concentration and $R_{\text{Ba}}/R_{\text{Si}}$. (b) Capacitance $(1/C^2)$ versus voltage (V) plot of a BaSi₂/p-Si heterojunction diode with $R_{\text{Ba}}/R_{\text{Si}} = 2.2$. The current density versus voltage plot is inserted.

carriers (electrons) with majority carriers (holes) and hence leads to an enhanced minority-carrier lifetime and, consequently, gives rise to large spectral response and $J_{\rm L}$, as shown in Figs. 5(a) and 5(b). Regarding the BaSi₂ film with R_{Ba}/R_{Si} = 2.0–2.6, we estimated the carrier concentration by the C-V method because the carrier concentration decreased so much. Figure 6(b) shows an example of the $1/C^2$ versus V plot for the sample with $R_{\rm Ba}/R_{\rm Si} = 2.2$. The current density versus voltage plot is also shown. The current density increased when the negative bias voltage was applied to the ITO electrode with respect to the p-Si substrate. The carrier type by the Hall measurement was found to be holes. The built-in voltage $V_{\rm D}$ was approximately 0.80 V, and this value corresponds to the difference in the Fermi level between $BaSi_2$ ($E_E^{BaSi_2}$) and Si $(E_{\rm F}^{\rm Si})$ before contact. In our previous report, ^{35,36} the $V_{\rm D}$ value was 1.5 V for n-BaSi₂ ($n = 2 \times 10^{16} \text{ cm}^{-3}$) formed with $R_{\text{Ba}}/R_{\text{Si}} = 3.0$ on the same p-Si substrate $(p = 2 \times 10^{17} \text{ cm}^{-3})$. Here, we evaluate the position of $E_{\rm F}^{\rm BaSi_2}$ for BaSi₂ with $R_{\rm Ba}$ $R_{\rm Si} = 2.2$. The electron affinity of BaSi₂ and Si is $q\chi_{\rm BaSi_2}$ = 3.2 eV (Ref. 45) and $q\chi_{Si}$ = 4.05 eV, respectively, and their bandgaps are $E_g^{\text{BaSi}_2} = 1.3 \text{ eV}$ and $E_g^{\text{Si}} = 1.1 \text{ eV}$. Thus, the valence band offset $\Delta E_{\rm V}$ is given by $q\chi_{\rm Si} + E_{\rm g}^{\rm Si} - (q\chi_{\rm BaSi_2})$ $+E_{g}^{BaSi_{2}}) = 0.65 \,\text{eV}$. Assuming that the effective density of states at the valence band of Si, N_V^{Si} , is $1.04 \times 10^{19} \text{ cm}^{-3}$, the $E_{\rm F}^{\rm Si}$ is located at $k_{\rm B}T \ln(N_{\rm V}^{\rm Si}/p) = 0.10 \, {\rm eV}$ from the valenceband edge of Si, where $k_{\rm B}$ is the Boltzmann constant and T is the absolute temperature. Therefore, the $E_{\rm F}^{\rm BaSi_2}$ is positioned at around 0.25 eV (=0.80 + 0.10-0.65) above the valence band edge of BaSi₂, $E_V^{\text{BaSi}_2}$, suggesting that the BaSi₂ exhibits p-type conductivity. Therefore, the hole concentration of the BaSi₂ film with $R_{Ba}/R_{Si} = 2.2$ is thus estimated to be approximately $1 \times 10^{15} \,\mathrm{cm}^{-3}$ using

$$p = N_{\rm V}^{\rm BaSi_2} \exp\left(-\frac{E_{\rm F}^{\rm BaSi_2} - E_{\rm V}^{\rm BaSi_2}}{k_{\rm B}T}\right). \tag{2}$$

Here, the effective density of states at the valence band of BaSi₂, $N_V^{\text{BaSi}_2}$, is approximately $2.0 \times 10^{19} \text{ cm}^{-3}$ from the principle-axis components of the effective mass tensor for holes and two equivalent valleys at $E_V^{\text{BaSi}_2}$.¹⁶ The obtained hole concentration is also explained by the slope of the $1/C^2$ versus V plot. According to Kumar et al.,³⁸ V_{Si}, Ba_{Si}, and Si_i are predominant defects in BaSi₂. We expect that these point defects form during the MBE growth when the $R_{\text{Ba}}/R_{\text{Si}}$ is deviated from the ideal value and that they work as donor impurities. The conduction type changed from n-type to p-type in the BaSi₂ films grown with $R_{Ba}/R_{Si} = 2.0-2.6$ when the density of Si vacancies which act as donors became smaller than the residual hole concentration, likely owing to B atoms. This is because the optimum value of $R_{\rm Ba}/R_{\rm Si}$ minimizes Si vacancies. It is reported that p-type doping due to B contamination is routinely detected in Si MBE when using standard MBE cleaning schemes.^{46,47} The influence of the wet chemical precleaning as well as of the in situ thermal cleaning in the ultra-high vacuum was investigated with respect to this effect.⁴⁶ We cannot detect such a small B concentration of the order of 10^{15} cm⁻³ by secondary ion mass spectrometry (SIMS), which is much smaller than the SIMS detection limit of B in BaSi₂.

B. Calculation results

To elucidate what happens in Ba₈Si₁₅V_{Si(3)}, Ba₈Si₁₅V_{Si(4)}, and Ba₈Si₁₅V_{Si(5)}, we discuss here their total DOSs and energies. The binding energy of Ba8Si16 was calculated to be -133.696 eV. The total energy of Ba₈Si₁₅V_{Si(3)}, for example, is calculated to be (-127.174) + (-5.417) = -132.591 eV. In the same way, the total energies of $Ba_8Si_{15}V_{Si(4)}$ and $Ba_8Si_{15}V_{Si(5)}$ were calculated as summarized in Table I. From an energetic point of view, Ba₈Si₁₅V_{Si(3)} is most likely to form, implying that the $V_{\rm Si}$ is most likely to be located at the Si⁽³⁾ sites. It should be noted that $Ba_8Si_{15}V_{Si(4)}$ is also energetically favorable because of a small energy difference between Ba₈Si₁₅V_{Si(3)} and Ba₈Si₁₅V_{Si(4)}. Figure 7 shows the total DOSs of (a) Ba_8Si_{16} , (b) $Ba_8Si_{15}V_{Si(3)}$, (c) $Ba_8Si_{15}V_{Si(4)}$, and (d) $Ba_8Si_{15}V_{Si(5)}$ near the Fermi level, E_F . The energy zero of the DOS curve is taken at their $E_{\rm F}$. There are localized states within the bandgap as shown in Figs. 7(b)-7(d). These results suggest that the deviation from stoichiometry promotes recombination

FIG. 7. Total DOSs of (a) Ba_8Si_{16} , (b) $Ba_8Si_{15}V_{Si(3)}$, (c) $Ba_8Si_{15}V_{Si(4)}$, and (d) $Ba_8Si_{15}V_{Si(5)}$. Color line shows the position of E_F .

of electron-hole pairs via localized states and therefore leads to the degradation in *IQE*. In Fig. 7(c), the E_F is positioned closer to the conduction band edge, suggesting that $Ba_8Si_{15}V_{Si(4)}$ is an n-type semiconductor. We speculate that that is why the electron concentration increased in Fig. 6(a) with $R_{\rm Ba}/R_{\rm Si}$ being away from the optimum value of around 2.2. The present calculation results show that it is very important to satisfy stoichiometry in a BaSi₂ absorber by controlling R_{Ba}/R_{Si} precisely. This is, however, not consistent with the fact that the BaSi2 film with $R_{\text{Ba}}/R_{\text{Si}} = 2.2 \ (N_{\text{Ba}}/N_{\text{Si}} < 0.5)$ was optimum as shown in Fig. 4(b). We think that excess Si atoms are precipitated in the form of Si microcrystallites as discussed below. Figure 8 shows the Raman spectrum of a 0.5-µm-thick a-axis-oriented BaSi₂ epitaxial film grown with $R_{\rm Ba}/R_{\rm Si} = 2.0$, measured at room temperature by NRS-5100 (RIGAKU Smart Lab) using a frequency doubled Nd:YAG laser (532 nm). The Raman lines originate from Si tetrahedra with $T_{\rm h}$ symmetry in the lattice of BaSi₂. The transverse optical phonon line of Si (Si_{TO}) was observed even in such a thick BaSi₂ film. Considering that the absorption coefficient of BaSi₂ at this wavelength is $\alpha = 3 \times 10^5 \text{ cm}^{-1}$,¹⁵ and hence the penetration depth of the laser light was limited to around $1/\alpha \times 3 \sim 0.1 \,\mu m$, the Si_{TO} signal is considered to originate from Si precipitates in the BaSi₂ film. Similar Si_{TO} signals were detected in BaSi₂ (Ref. 48) and β -FeSi₂ films⁴⁹ by Raman spectroscopy, and they were ascribed to the Si precipitates in the films.

IV. SUMMARY

We fabricated 0.5- μ m-thick undoped BaSi₂ epitaxial films on Si(111) substrates with various values of $R_{\text{Ba}}/R_{\text{Si}}$ ranging from 1.0 to 5.1 and characterized their electrical and optical properties. The RBS measurement revealed that the $N_{\text{Ba}}/N_{\text{Si}}$ value decreased close to the BaSi₂/Si interface. This was attributed to the Si atoms diffused from the Si substrate during the MBE growth. The photoresponsivity drastically changed as the $R_{\text{Ba}}/R_{\text{Si}}$ was varied, and the J_{L} reached a maximum at $R_{\text{Ba}}/R_{\text{Si}} = 2.2$. As a result of the Hall and *C-V* measurements, it was found that the electron concentration decreased when $R_{\text{Ba}}/R_{\text{Si}}$ approached the optimum value, and the BaSi₂ films grown with $R_{\text{Ba}}/R_{\text{Si}} = 2.0, 2.2$, and 2.6 exhibited p-type conductivity. The lowest hole concentration of approximately $1 \times 10^{15} \text{ cm}^{-3}$ ever reported was obtained at

FIG. 8. Raman spectrum of a 0.5- μ m-thick BaSi₂ epitaxial film with $R_{\rm Ba}/R_{\rm Si}=2.0$ at RT.

 $R_{\text{Ba}}/R_{\text{Si}} = 2.2$. First-principles calculations by VASP predicted that BaSi₂ containing Si vacancies induce localized states within the bandgap. Therefore, it is very important to control $R_{\text{Ba}}/R_{\text{Si}}$ precisely to improve the BaSi₂ solar cell performance because various disorders or defects are sensitive to $R_{\text{Ba}}/R_{\text{Si}}$.

ACKNOWLEDGMENTS

The authors would like to express sincere thanks to Dr. D. Sekiba, Research Facility Center for Science and Technology of the University of Tsukuba, for his help in RBS. This work was financially supported by a Grant-in-Aid for Scientific Research A (15H02237) from the Japan Society for the Promotion of Science (JSPS). R.T. was financially supported by a Grant-in-Aid for JSPS Fellows (15J02139).

- ¹K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, Nat. Energy **2**, 17032 (2017).
- ²K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, IEEE J. Photovoltaics 4, 1433 (2014).
- ³P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, *Phys. Status Solidi RRL* **9**, 28 (2015).
- ⁴P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, Phys. Status Solidi RRL **10**, 583 (2016).
- ⁵X. Wu, Sol. Energy 77, 803 (2004).
- ⁶J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature **499**, 316 (2013).
- ⁷W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Science **348**, 1234 (2015).
- ⁸H. Sai, T. Matsui, T. Koida, K. Matsubara, M. Kondo, S. Sugiyama, H. Katayama, Y. Takeuchi, and I. Yoshida, Appl. Phys. Lett. **106**, 213902 (2015).
- ⁹C. Trompoukis, I. Abdo, R. Cariou, I. Cosme, W. Chen, O. Deparis, A. Dmitriev, E. Drouard, M. Foldyna, E. G. Caurel, I. Gordon, B. Heidari, A. Herman, L. Lalouat, K. D. Lee, J. Liu, K. Lodewijks, F. Mandorlo, I. Massiot, A. Mayer, V. Mijkovic, J. Muller, R. Orobtchouk, G. Poulain, P. Prod'Homme, P. R. Cabarrocas, C. Seassal, J. Poortmans, R. Mertens, O. E. Daif, and V. Depauw, Phys. Status Solidi A 212, 140 (2015).
- ¹⁰H. Tan, E. Moulin, F. T. Si, J. W. Schüttauf, M. Stuckelberger, O. Isabella, F. J. Haug, C. Ballif, M. Zeman, and A. H. M. Smets, Prog. Photovoltaics 23, 949 (2015).
- ¹¹H. Sai, T. Matsui, K. Saito, M. Kondo, and I. Yoshida, Prog. Photovoltaics **23**, 1572 (2015).
- ¹²F. Meillaud, M. Boccard, G. Bugnon, M. Despeisse, S. Hänni, F.-J. Haug, J. Persoz, J.-W. Schüttauf, M. Stuckelberger, and C. Ballif, Mater. Today 18, 378 (2015).
- ¹³M. Konagai, Jpn. J. Appl. Phys., Part 1 50, 030001 (2011).
- ¹⁴T. Suemasu and N. Usami, J. Phys. D: Appl. Phys. 50, 023001 (2017).
- ¹⁵K. Toh, T. Saito, and T. Suemasu, Jpn. J. Appl. Phys., Part 1 **50**, 068001 (2011).
- ¹⁶D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, Phys. Status Solidi B 244, 2611 (2007).
- ¹⁷M. Kumar, N. Umezawa, and M. Imai, J. Appl. Phys. **115**, 203718 (2014).
 ¹⁸M. Kumar, N. Umezawa, and M. Imai, Appl. Phys. Express **7**, 071203 (2014).
- ¹⁹M. Baba, K. Toh, K. Toko, N. Saito, N. Yoshizawa, K. Jiptner, T. Sakiguchi, K. O. Hara, N. Usami, and T. Suemasu, J. Cryst. Growth 348, 75 (2012).
- ²⁰K. O. Hara, N. Usami, K. Toh, M. Baba, K. Toko, and T. Suemasu, J. Appl. Phys. **112**, 083108 (2012).
- ²¹K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, Appl. Phys. Express 6, 112302 (2013).
- ²²R. Takabe, K. O. Hara, M. Baba, W. Du, N. Shimada, K. Toko, N. Usami, and T. Suemasu, J. Appl. Phys. **115**, 193510 (2014).

- ²³M. A. Khan, K. O. Hara, W. Du, M. Baba, K. Nakamura, M. Suzuno, K. Toko, N. Usami, and T. Suemasu, Appl. Phys. Lett. **102**, 112107 (2013).
- ²⁴M. Kobayashi, Y. Matsumoto, Y. Ichikawa, D. Tsukada, and T. Suemasu, Appl. Phys. Express 1, 051403 (2008).
- ²⁵D. Tsukahara, S. Yachi, H. Takeuchi, R. Takabe, W. Du, M. Baba, Y. Li, K. Toko, N. Usami, and T. Suemasu, Appl. Phys. Lett. **108**, 152101 (2016).
- ²⁶S. Yachi, R. Takabe, K. Toko, and T. Suemasu, Appl. Phys. Lett. 109, 072103 (2016).
- ²⁷R. Takabe, S. Yachi, W. Du, D. Tsukahara, H. Takeuchi, K. Toko, and T. Suemasu, AIP Adv. 6, 085107 (2016).
- ²⁸A. Sasaki, Y. Kataoka, K. Aoki, S. Saito, K. Kobayashi, T. Ito, K. Kakushima, and H. Iwai, Jpn. J. Appl. Phys., Part 1 54, 031202 (2015).
- ²⁹A. Pokhrel, L. Samad, F. Meng, and S. Jin, Nanoscale 7, 17450 (2015).
- ³⁰R. Vismara, O. Isabella, and M. Zeman, Proc. SPIE **9898**, 98980J (2016).
- ³¹R. Vismara, O. Isabella, and M. Zeman, Opt. Express 25, A402 (2017).
- ³²Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys., Part 2 43, L478 (2004).
- ³³R. Takabe, K. Nakamura, M. Baba, W. Du, M. A. Khan, K. Toko, M. Sasase, K. O. Hara, N. Usami, and T. Suemasu, Jpn. J. Appl. Phys., Part 1 53, 04ER04 (2014).
- ³⁴K. Morita, Y. Inomata, and T. Suemasu, Thin Solid Films **508**, 363 (2006).
- ³⁵H. Takeuchi, W. Du, M. Baba, R. Takabe, K. Toko, and T. Suemasu, Jpn. J. Appl. Phys., Part 1 54, 07JE01 (2015).

J. Appl. Phys. 123, 045703 (2018)

- ³⁶W. Du, M. Baba, K. Toko, K. O. Hara, K. Watanabe, T. Sekiguchi, N. Usami, and T. Suemasu, J. Appl. Phys. 115, 223701 (2014).
- ³⁷P. K. Bhattacharya, J. W. Ku, S. J. T. Owen, V. Aebi, C. B. Cooper III, and R. L. Moon, Appl. Phys. Lett. **36**, 304 (1980).
- ³⁸M. Kumar, N. Umezawa, W. Zou, and M. Imai, J. Mater. Chem. A 5, 25293 (2017).
- ³⁹Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys., Part 1 43, 4155 (2004).
- ⁴⁰R. Takabe, H. Takeuchi, W. Du, K. Ito, K. Toko, S. Ueda, A. Kimura, and T. Suemasu, J. Appl. Phys. **119**, 165304 (2016).
- ⁴¹G. Kresse and D. Joubert, Phys. Rev. B **59**, 1758 (1999).
- ⁴²P. E. Blöchl, Phys. Rev. B **50**, 17953 (1994).
- ⁴³J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
- ⁴⁴H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- ⁴⁵T. Suemasu, K. Morita, M. Kobayashi, M. Saida, and M. Sasaki, Jpn. J. Appl. Phys., Part 2 45, L519 (2006).
- ⁴⁶A. Casel, E. Kasper, H. Kibbel, and E. Sasse, J. Vac. Sci. Technol. B 5, 1650 (1987).
- ⁴⁷K. Miki, K. Sakamoto, and T. Sakamoto, Surf. Sci. 406, 312 (1998).
- ⁴⁸Y. Terai, H. Yamaguchi, H. Tsukamoto, N. Murakoso, M. Iinuma, and T. Suemasu, Jpn. J. Appl. Phys., Part 1 56, 05DD02 (2017).
- ⁴⁹M. Iinuma, H. Tsukamoto, N. Murakoso, H. Yamaguchi, and Y. Terai, JJAP Conf. Proc. 5, 011106 (2017).