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Introduction 

Oral squamous cell carcinoma (OSCC) represents more than 95% of oral-cavity 

cancer(1). In developing countries, OSCC is the sixth most common cancer. OSCC has 

an overall 5-year survival rate of less than 50%(1), and this poor prognosis is due 

mainly to a high likelihood of metastasis to lymph nodes in the neck(2-5). Despite 

recent advances in treatment modalities such as surgery, radiotherapy, and 

chemotherapy, the survival rates for OSCC have not markedly improved(6). Thus, 

metastasis to neck lymph no prognostic des is a major factor in OSCC. 

Tumor invasion and metastasis require tumor cells to resolve and move through 

the extracellular matrix (ECM). Matrix metalloproteinases (MMPs) and tissue 

inhibitors of metalloproteases (TIMPs) are important for degrading the ECM during 

these processes(7). Matrix metalloproteinase-2 (MMP-2) is especially important in 

tumor-cell invasion because it can deconstruct collagen type Ⅳ, the major constituent 

of basement membranes(8). The proteolytic activation of MMP-2 is controlled by 

TIMP-2, which is necessary for activating pro-MMP-2(9, 10). TIMP-2 forms a 

complex with membrane type-Ⅰ metalloprotease 1 (MT1-MMP) on cell membranes, 

and the TIMP-2/MT1-MMP complex activates pro-MMP-2. Thus, an imbalance in 

MMP-2 and TIMP-2 might disrupt the balance of ECM turnover and lead to 

uncontrolled degradation of the ECM, including basement membranes, and is the most 

likely cause of tumor invasion and metastasis(7). Thus, it may be possible to control 

pro-MMP-2 activation, and therefore tumor invasion and metastasis, by regulating 

TIMP-2. 

MicroRNAs (miRNAs), which are short, non-coding RNAs of 20–22 
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nucleotides, regulate gene expression at the post-transcriptional level by interacting 

with the 3′-untranslated regions (3′-UTR) of the target gene(11). MiRNAs are involved 

in a wide range of biological functions, and can function as oncogenes or tumor 

suppressors according to the functions of the target genes. To date, several miRNAs 

have been implicated in the progression of OSCC, including miR-26a/b, miR-23b/27b, 

miR-155, miR-221, and miR-205(12-16). Recent studies show that miR-205-5p is 

downregulated in various cancer cells, including breast cancer, prostate cancer, and 

oral cancer(17-19). In addition, the transient overexpression of miR-205-5p in cancer 

cells is reported to suppress tumor progression by inhibiting tumor-associated genes 

and upregulating tumor-suppressing genes. However, the signaling pathway and 

anti-tumorigenic functions of miR-205-5p in various cancer cells are unclear.  

 

Purpose 

 The present study was conducted to determine the function of miR-205-5p in 

OSCC and the molecular mechanism by which miR-205-5p suppresses OSCC tumor 

progression. 

 

Material and Methods 

OSCC clinical specimens and cell lines.   

OSCC cell lines (HSC3 and SAS) obtained from the Japanese Collection of 

Research Bioresources (Osaka, Japan) were cultured as previously described(14). We 

authenticated HSC3 and SAS through short tandem repeat (STR) profiling (PowerPlex 

16 STR System) in 2017 and ensure that no culture contamination occurred. We 
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obtained 71 primary OSCC tissue, and 28 lymph node metastases tissue from 71 

previously untreated subjects with OSCC who visited the University of Tsukuba 

Hospital between February 2008 and November 2010, and from 6 subjects who did not 

have cancer. Primary and metastatic specimens were collected at the time of biopsy 

and neck dissection respectively. And they prepared for formalin-fixed 

paraffin-embedded (FFPE) histology using standard procedures. OSCC was diagnosed 

and classified based on the Tumor-Node Metastasis (TNM) system of Unio 

Internationalis Contra Cancrum (UICC). All OSCC cases were diagnosed clinically 

and confirmed histologically by pathologists. The clinical characteristics of the OSCC 

patients are shown in Table Ⅰ. 

 This study was reviewed and approved by the Ethics Committee University of 

Tsukuba Hospital (No. 215). All patients gave informed written consent prior to 

enrollment. 

 

TaqMan-based quantitative (q) RT-PCR assays of miRNA expression. 

Total RNA was extracted with the miRNeasy Mini Kit (Qiagen, Venlo, Limburg, 

Netherlands) for cell lines and the miRNeasy FFPE Kit (Qiagen) for FFPE. Reverse 

transcription was performed using the TaqMan MicroRNA Reverse Transcription Kit 

(Applied Biosystems, Foster City, CA, USA). MiR-205 expression was measured 

using the TaqMan MicroRNA Assay system (Applied Biosystems) according to the 

manufacturer’s instructions. PCR reactions were performed using the CFX384 

Real-Time System (Bio-Rad Laboratories, Pleasanton, CA, USA). The small RNA 

RNU6B was used as internal control. Relative expression was calculated by the 
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comparative threshold (Ct) method. 

 

TaqMan-based qRT-PCR assay of mRNA expression. 

Total RNA was extracted with the RNeasy Mini Kit (Qiagen) and 

reverse-transcribed with the PrimeScript RT Reagent Kit (TaKaRa, Shiga, Japan). PCR 

reactions were conducted using the CFX384 Real-Time System (Bio-Rad 

Laboratories). Relative mRNA expression was normalized against GAPDH. Relative 

expression was calculated by the comparative threshold (Ct) method. The following 

qRT-PCR primers were used: for TIMP-2, 5′-GCCCCCGCCCGCCCAGCCCCCC-3′ 

(forward) and 5′-GCAACAATATCCACTTTACCAGAGTTAA-3′ (reverse); for 

GAPDH, 5′-CAACGGATTTGGTCGTATTGG-3′ (forward) and 

5′-GCAACAATATCCACTTTACCAGAGTTAA-3′ (reverse). 

 

Transfection with miR-205-5p mimic or inhibitor or with siRNA. 

Cells were cultured to 70–80% confluence in 12-well plates and transfected with 

50 nM miR-205-5p mimic or inhibitor (hsa-miR-205 mirVanaTM miRNA Mimic, 

#4464066; mirVanaTM miRNA Inhibitor, #4464084), or with 50 nM scramble negative 

control (mirVanaTM miRNA Mimic Negative Control, #4464058; mirVanaTM miRNA 

Inhibitor Negative Control, #4464076) from Ambion (Austin, TX, USA). To knock 

down TIMP-2, cells were transfected with 25 nM TIMP-2 siRNA (Silencer®Select 

siRNA, #4390824) or control siRNA (Silencer®Negative control siRNA, #AM4611). 

Lipofectamine RNAiMAX transfection reagent (Invitrogen, Carlsbad, CA, USA) was 

used according to the manufacturer’s instructions. The cells were incubated for 24 h 
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after transfection, the medium was exchanged for FBS-free medium, and the cells were 

incubated for another 48 h. Both the transfected cells and the culture media were used 

for assays and analyses, as described below.  

 

Cell proliferation, migration, and invasion assays. 

Cells were cultured as described previously(14). Cell proliferation was 

performed as described in previous study. Cells were transfected with 50nM 

miR-205-5p mimic or inhibitor by reverse transfection and plated in 96 well plates at 

3×103 cells per well. After 72h, cell proliferation was determined with the MTT assay 

using MTT Cell Count Kit (Nakalai Tesque, Kyoto, Japan). Cell migration was 

measured with the 96-well BME Cell-Invasion Assay according to the manufacturer’s 

instructions (Trevigen, Inc., MD, USA). Invasiveness was assayed by the 

three-dimensional Matrigel culture method(20, 21):  8 × 105 transfected cells were 

suspended in 200 µL Matrigel (Corning, NY, USA). A 150-µL drop of Matrigel 

mixture containing transfected cells was polymerized on the bottom of a 6-well 

microplate and incubated in 2 mL medium for 48 h. Photographs were taken by 

fixed-point observation at 40× magnification under a BZ-X700 microscope (Keyence, 

Osaka, Japan). Invasiveness was assessed by the distance of cell migration. The 

distance of cell migration represented the length from the gel surface to the migratory 

front of cells invaded out of gel. 

 

Identification of candidate genes regulated by miR-205-5p. 

 Possible miR-205-5p targets were identified by bioinformatics analysis with 
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the TargetScan algorithm and integrated analysis across data for human cancer-cell 

lines and mRNA microarray data to identify miRNAs whose expression was correlated 

with the inverse expression of the mRNA targets predicted in silico. 

 

Plasmid construction and dual-luciferase reporter assay 

    Partial wild-type sequences of the TIMP-2 3’-UTR or those with a deleted 

miR-205-5p target sites (positions 590-596 of the TIMP-2 3’-UTR) were inserted 

between the XhoⅠ-PmeⅠ restriction sites in the 3’-UTR of hRluc gene in the 

psiCHECK-2 vector (Promega, Madision, WI, USA). The protocol for vector 

construction was as described previously (22, 23). The synthesized DNA was cloned 

into the psiCHECK-2 vector. HSC3 cells were transfected with 50 ng of the vector and 

50nM miR-205-5p mimic using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA). 

The activities of firefly and Renilla luciferases in cell lysates were determined with a 

Dual-luciferase Reporter assay system (Promega). Normalized data were calculated as 

the ratio Renilla/firefly luciferase activities. 

 

Western blotting. 

 Cells were incubated for 72 h after transfection, and then cell lysates were 

prepared. In addition, the culture media were centrifuged and the supernatants were 

collected. The supernatants were inspissated with a Vivaspin2-10K (GE Healthcare 

UK Ltd, Little Chalfont, UK) according to the manufacturer’s instructions. Next, 15 μg 

of protein lysates were separated on Mini-PROTEIN TGX Gels (Bio-Rad, Hercules, 

CA, USA) and transferred to Trans-Blot Turbo Mini PVDF membranes (Bio-Rad, 
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Hercules, CA, USA). The membranes were probed with rabbit anti-TIMP-2 antibodies 

(1:1000; #5738; Cell Signaling Technology, Danvers, MA, USA), rabbit MT1-MMP 

antibodies (1:1000; ab51074; Abcam, Cambridge, UK), and goat anti-actin antibodies 

(1:1000; sc1615; Santa Cruz Biotechnology, Texas, USA) overnight at 4°C. Proteins 

were detected with Chemi-Lumi One Super (Nakalai Tesque, Kyoto, Japan), and 

images of the blots were obtained with a ChemiDoc XRS Plus system (Bio-Rad, 

Hercules, CA, USA). 

 

Gelatin zymography. 

MMP-2 enzyme activity was analyzed in cell supernatants by gelatin 

zymography using the Gelatin Zymography Kit (Cosmo Bio Co., Ltd; Tokyo, Japan) 

according to the manufacturer’s instructions. Images were obtained using the 

ChemiDoc XRS Plus system (Bio-Rad, Hercules, CA, USA). 

 

MMP-2 activity assay. 

The enzymatic activated MMP-2 content and total MMP-2 in cell supernatants 

were determined using the QuickZyme Human MMP-2 Activity Assay (QuickZyme 

BioSciences, Leiden, Netherlands) according to the manufacturer's instructions. 

 

Statistical analysis. 

Data for in vitro experiments were evaluated by the Student’s t-test. 

Relationships among more than three variables and numerical values were analyzed 

using Kruskal-Wallis test with Steel-Dwass test. The analysis of disease-specific 
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survival was performed by the Kaplan-Meier method and compared using the 

Log-rank test. Correlations between miR-205-5p and TIMP-2 expression were 

evaluated by Spearman’s rank test. All statistical analyses were performed using JMP 

version 11. 

 

Results 

MiR-205-5p in OSCC cell lines and clinical specimens. 

 I evaluated the miR-205-5p expression in 71 primary OSCC specimens, 28 

metastatic OSCC specimens (Table Ⅰ), and in the HSC3 and SAS cell lines. And I 

found that the miR-205-5p expression was significantly lower in primary OSCC tissue 

than in normal oral mucosa adjacent to the biopsied tumor tissue, and that the 

expression was even lower in metastatic OSCC tissue than in primary OSCC tissue 

(Fig. 1A). On the other hand, the miR-205-5p expression was relatively low in primary 

OSCC tissue with metastasis compared to that without metastasis (p=0.103). Further, I 

determined the cut-off value (=3.74) of miR-205-5p in primary OSCC tissue by 

receiver operating characteristic (ROC) curve and analyzed disease specific survival 

by the Kaplan-Meier method and compared using the Log-rank test. There was no 

difference between miR-205-5p high expression group and miR-205-5p low 

expression group (Fig. 1B). 

 

Effect of miR-205-5p mimic or inhibitor on cell proliferation, migration, and invasion. 

Proliferation was not suppressed in HSC3 or SAS cells transfected with 

miR-205-5p mimic compared to the negative control (Fig. 2A). HSC3-cell migration 
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was significantly suppressed by transfection with miR-205-5p mimic compared to the 

negative control, but SAS-cell migration was not (Fig. 2B). Invasiveness was 

significantly suppressed in both HSC3 and SAS cells transfected with miR-205-5p 

mimic compared to the negative control (Fig. 2C). The number of cells invaded out of 

gel was almost proportional to the migration distance. On the other hand, proliferation 

had no difference in HSC3 and SAS cells transfected with miR-205-5p inhibitor 

compared to the negative control (Fig. 2D). Both migration and invasiveness were 

significantly enhanced in HSC3 and SAS cells transfected with miR-205-5p inhibitor 

as compared to negative control (Fig. 2E, F). 

 

Identification of miR-205-5p target genes in OSCC.  

 I screened the TargetScan database for possible target genes containing a 

putative miR-205-5p-binding site in their 3′ UTR, and identified 5974 candidate genes 

that might be regulated by miR-205-5p. From these, I selected genes related to TIMPs 

and MMPs, and identified three candidate miR-205-5p targets (Table Ⅱ). Among these 

candidates, I focused on the TIMP-2 gene, because Spearman’s rank test showed a 

significant negative correlation between the expression of TIMP-2 mRNA and that of 

miR-205-5p in OSCC specimens (Fig. 3A-C) 

 

TIMP-2 is a direct target of miR-205-5p in OSCC cells. 

 The TargetScan database showed one putative, poorly conserved 

miR-205-5p-binding site in the 3′-UTR of TIMP-2 (position 590–596) (Fig. 4A).  I 

investigated the TIMP-2 expression in miR-205-5p mimic–transfected OSCC cells, 
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and found that the TIMP-2 mRNA and protein were suppressed in cells transfected 

with miR-205-5p mimic compared to the negative control (Fig. 4B, C). To determine 

whether the TIMP-2 mRNA contains a target site for miR-205-5p, I conducted 

luciferase reporter assays in HSC3 and SAS cells. The TargetScan database showed 

that there was one putative miR-205-5p binding site in the TIMP-2 3′-UTR (position 

590-596). I used vectors encoding either a partial wild-type sequence (including the 

predicted miR-205-5p target site) or deletion of the seed sequence of the 3′-UTR of 

TIMP-2 mRNA. I found that the luciferase activity was significantly suppressed by 

cotransfection with miR-205-5p mimic and the vector carrying the wild-type 3′-UTR 

of TIMP-2 (Fig. 4D). 

 

Effect of TIMP-2 silencing in OSCC cell lines. 

  I next investigated TIMP-2’s function in HSC3 and SAS cells by 

loss-of-function studies using si-TIMP-2 transfection. Western blots and qRT-PCR 

indicated that si-TIMP-2 effectively downregulated the TIMP-2 expression in both cell 

lines (Fig. 5A, B). Invasiveness was suppressed in both HSC3 and SAS cells when 

transfected with si-TIMP-2 compared to the negative control (Fig. 5C). 

 

Suppression of TIMP-2 reduces the activation of pro-MMP2 by the TIMP-2/MT1-MMP 

complex. 

 To investigate whether reducing TIMP-2 expression could affect the activation 

of pro-MMP2 by MT1-MMP, I used western blots or gelatin zymography to measure 

the expression of TIMP-2, MT1-MMP, pro-MMP2, and active-MMP2 in HSC3 and 
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SAS cells transfected with miR-205-5p mimic or si-TIMP-2. Western blots showed 

that the TIMP-2 expression was reduced in the supernatant of both cells transfected 

with miR-205-5p mimic or si-TIMP-2 compared to the negative control, and that the 

MT1-MMP expression was comparable in both cells transfected with miR-205-5p 

mimic, si-TIMP-2, or negative control (Fig. 6A). Next, I measured the pro-MMP2 

activation in cell supernatants (see Material and Methods). The MMP-2 activity assay 

showed that the rate of pro-MMP-2 activation was significantly lower in both cells 

transfected with miR-205 mimic or si-TIMP-2 than in those transfected with the 

negative control (Fig. 6B). The rate of pro-MMP-2 activation represented the 

percentage of active-MMP-2 to total MMP-2 (pro-MMP-2 + active-MMP-2). The 

gelatin zymography showed that activated pro-MMP-2 (active-MMP-2) was decreased 

in both cells transfected with miR-205-5p mimic than in those transfected with the 

negative control (Fig. 6C). 

 

 

Discussion 

There is growing evidence for the involvement of miRNAs in several biological 

processes, including human oncogenesis and metastasis(24); these include miR-29c, 

miR-335, and miR-375(25, 26). Studies show that miR-155-5p is downregulated in 

OSCC tissue, and that a low miR-155-5p level is correlated with a poor prognosis(14). 

Therefore, the investigation of miRNA-expression signatures in cancer specimens is an 

important research avenue.  My present study, which focused on miR-205-5p, 

produced three major findings: first, that miR-205-5p was tumor-suppressive in OSCC 
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cells (Fig. 1 and 2); second, that miR-205-5p directly suppressed TIMP-2 expression in 

OSCC cells (Fig. 4); and third, that by suppressing TIMP-2 expression, miR-205-5p 

inhibited pro-MMP-2 activation (Fig. 6). 

In this study, I observed that the miR-205-5p expression was significantly 

downregulated in OSCC tissues and cell lines compared to normal oral mucosa 

adjacent to the biopsied OSCC tissue (Fig. 1A).  I also showed that transfection with 

miR-205-5p suppressed the invasiveness of both HSC3 and SAS cells (Fig. 2C). These 

results suggested that miR-205-5p acts as a tumor-suppressive miRNA in OSCC, and 

that reduced miR-205-5p expression may significantly contribute to OSCC invasion 

and metastasis. Recent studies show that miR-205-5p is downregulated in several 

types of cancer, including breast, prostate, and bladder cancer(27-29), and that 

miR-205-5p suppresses several tumor types by targeting oncogenes(16, 19, 30-32). 

Other studies show that miR-205-5p suppresses cell invasiveness in several types of 

cancer(33). The role of miR-205-5p in suppressing cell invasion has also been 

confirmed in in vivo models of breast cancer(28). These findings are consistent with  

my present results. In contrast, Kaplan–Meier analysis showed that there was no 

difference between miR-205-5p high expression group and miR-205-5p low 

expression group (Fig. 1B). Recent study shows that low expression of miR-205 was 

associated with poor prognosis in cervical cancer (34). Other recent study shows that 

low expression of both miR-205 and let-7d was associated with poor prognosis in 

HNSCC, but low expression of only miR-205 was not associated (35). To reveal the 

relation between expression of miR-205-5p and disease specific survival in OSCC, it 

will be necessary to research more OSCC cases. 
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One miRNA can regulate several protein-coding genes. Indeed, bioinformatic 

studies show that at least 30–60% of the protein-coding genes in the human genome 

are regulated by miRNAs(36). Therefore, a reduced expression of tumor-suppressive 

miRNAs may cause an overexpression of oncogenic genes in cancer cells. 

In this study, I identified TIMP-2 as a miR-205-5p target. Other recent studies 

show that TIMP-2 is an oncogenic factor in several types of cancer.  My data showed 

a significant negative correlation between the expression of TIMP-2 mRNA and that of 

miR-205-5p in OSCC tissues (R = −0.318, p = 0.0074) (Fig. 3). Furthermore, my 

luciferase reporter assays confirmed that miR-205-5p miRNA directly binds the 

3′-UTR of TIMP-2 (Fig. 4D). This is the first report to show that TIMP-2 is directly 

regulated by miR-205-5p in OSCC cells. 

TIMP-2 is known to regulate MMP through its enzymatic activity.  My present 

data showed that silencing TIMP-2 suppressed invasiveness in OSCC cells (Fig. 5), 

suggesting that TIMP-2 promotes OSCC tumor progression. Recent 

immunohistochemical analyses identified elevated TIMP-2 as an indicator of 

aggressive behavior and a poor prognosis in patients with HNSCC(37), and 

demonstrated a strong correlation between marked TIMP-2 expression and 

lymph-node metastasis, as well as a poor prognosis, in the early stages of 

OSCC(37-39). These reports are consistent with my findings indicating that TIMP-2 

may promote OSCC tumor progression. Recent studies show that TIMP-2 promotes 

tumor progression by the activation of MMP-2, which is mediated by MT1-MMP(9, 

10). TIMP-2 was long thought to suppress tumor invasion by inhibiting MMP-2 in 

general, and when overexpressed, TIMP-2 inhibited MMP-2 in vitro. However, 
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according to a model of cell-mediated MMP-2 activation, pro-MMP-2 binds TIMP-2 

in a complex with MT1-MMP on the cell surface, forming a 

pro-MMP-2/TIMP-2/MT1-MMP ternary complex. In this case. the pro-MMP-2 is 

activated by the adjacent MT1-MMP that is not bound to TIMP-2(9, 10, 40). In my 

present study, although I observed that TIMP-2 was reduced in the supernatant of 

miR-205-5p mimic–transfected HSC3 and SAS cells, the MT1-MMP expression was 

unchanged (Fig. 6A). In addition, pro-MMP-2 was activated at a lower rate in 

miR-205-5p mimic–transfected both cells (Fig. 6B, C). These results suggest that 

miR-205-5p suppresses the pro-MMP-2 activation by regulating TIMP-2, as illustrated 

in Figure 7. Recent studies show that TIMP-2 enhances the pro-MMP-2 activation via 

MT1-MMP in vivo(41-45), and that upregulating TIMP-2 promotes MMP-2 activation 

and the invasiveness of glioma cells(43). Another study showed that the ratio of 

MMP-2 activation is strongly correlated with TIMP-2 expression in SCC of the 

tongue(38). These findings are consistent with my present results. Pro-MMP-2 

activation depends on the local TIMP-2 concentration; this activation and occurs at a 

low concentration of TIMP-2 relative to MT1-MMP, leaving sufficient inhibitor-free 

MT1-MMP to initiate the activation of pro-MMP-2(46, 47). On the other hand, high 

TIMP-2 levels inhibit MMP-2 activation by blocking all of the available MT1-MMP 

molecules (48). In my present study, the amount of TIMP-2 secreted into the culture 

medium appeared to be appropriate for regulating the MMP-2 activation in HSC3 and 

SAS cells. To further determine the role of miR-205-5p’s regulation of TIMP-2 in 

OSCC, it will be necessary to use animal models. 

In summary, the present study demonstrated that miR-205-5p functions as a 
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tumor suppressor in OSCC, that miR-205-5p directly regulates TIMP-2 expression, 

and that miR-205-5p suppresses pro-MMP-2’s activation by regulating the TIMP-2 

expression in OSCC cells (Fig. 7). 

This identification of the tumor-suppressive role of miR-205-5p in OSCC may 

have significant therapeutic potential. Currently, RNA interference is being 

implemented as a gene-specific approach in molecular medicine. Thus, it may be 

possible to use miR-205-5p to regulate specific tumor-progressive genes as a novel 

therapeutic approach to treating OSCC. 
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Tables 

 

pTNM: Pathological tumor node metastasis 

Table Ⅰ. Clinical classification of OSCC patients  

  Primary OSCC Metastatic OSCC 

     Total Lymph node 

Negative 

(n = 41) 

Lymph node 

Positive 

(n = 30) 

Metastatic lymph node  

 

(n = 28) 

Age     

＜60 18 7 11 9 

≧60 53 34 19 19 

Gender     

Male 47 24 23 21 

Fema

le 

24 17 7 7 

Primary 

lesion 

    

Tong

ue 

33 20 13 12 

Gum 23 15 8 7 

Bucc

al mucosa 

7 4 3 3 

Other 8 2 6 6 

pTNM 

stage 

    

Ⅰ-Ⅱ 28 28 0 0 

Ⅲ-Ⅳ 43 13 30 28 
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Table Ⅱ. miR-205-5p candidate target genes 

Gene 

symbol 

Representative 

transcript 

Gene name Conserved Poorly 

conserved 

TIMP-2 NM_003255 
Metallopeptidase 

inhibitor 2 
0 1 

MMP16 NM_005941 
Matrix metallo- 

peptidase 16 
0 1 

MMP19 NM_002429 
Matrix metallo- 

peptidase 19 
0 1 
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Figure 

Figure. 1 

  

 

 

 

Figure 1. miR-205-5p expression in OSCC cell lines and clinical specimens. (A) Clinical 

specimens were classified as tissue with normal epithelia (n = 6), primary tumor tissue without 

lymph-node metastasis (n = 41), primary tumor tissue with lymph-node metastasis (n = 30), or 

metastatic tumor tissue (n = 28). The HSC3 and SAS cell lines were used to analyze miRNA 

expression and function. RNU6B was used for normalization. Box-and-whisker plots represent 

data from clinical specimens. Middle line, median; lower whisker, minimum; upper whisker, 

maximum. Shapes representing cell lines show the median. (*P < 0.05) (B) Kaplan-Meier 

curves for overall survival in 29 subjects with miR-205-5p high expression and 42 subjects with 

miR-205-5p low expression. The difference between these two groups is determined by the 

long-rank test. 
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Figure. 2 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Effect of miR-205-5p mimic or inhibitor on OSCC-cell proliferation, migration, 

and invasiveness. HSC3 and SAS cells were transfected with 50 nM miR-205-5p mimic or 

inhibitor or a negative control. (A, D) Cells were cultured for 24 h after transfection, and then 

assayed for proliferation. The value for the negative control (NC) was set to 1; bars represent 

the average of 6 wells per treatment. Error bars are SD. (*P < 0.05). (B, E) Cells were cultured 

for 48 h after transfection and then assayed for migration. The value for negative NC was set to 

1; bars represent the average of 6 wells per treatment. Error bars are SD. (*P < 0.05). (C, F) 

Cells were cultured for 48 h after transfection and then assayed for invasive activity as 

described in Material and Methods. The value for NC was set to 1; bars represent the average of 

6 wells per treatment, and error bars are SD. (*P < 0.05). Scale bar in photographs: 500 μm. 
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Figure. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Negative correlation between miR-205-5p and TIMP-2 mRNA expression in 

OSCC specimens. (A, B, C) TIMP-2, MMP-16, MMP-19 and miR-205-5p expressions were 

analyzed by qRT-PCR as described in Material and Methods. TIMP-2 / MMP-16 / MMP-19 

and miR-205-5p were normalized to GAPDH and RNU6B, respectively. P and R values were 

calculated using a Spearman’s correlation test.  (*P < 0.01) 
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Figure. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. TIMP-2 is a direct target of miR-205-5p. (A) Schematic showing the conservation 

of a putative miR-205-5p target site in the 3′ UTR of TIMP-2. (B) TIMP-2 mRNA levels in 

HSC3 and SAS cells transfected with miR-205-5p mimic or negative control. TIMP-2 was 

normalized to GAPDH. The expression of the negative control (NC) was set to 1; bars represent 

the average of 6 wells per treatment, and the error bars are SD. (*P < 0.05). (C) Western blot 

showing the TIMP-2 levels in HSC3 and SAS cells transfected with miR-205-5p mimic or 

negative control. Actin was used as a loading control. (D) Luciferase reporter assays were 

performed using vectors that included (Wild type) or lucked (Deletion type) the wild type 

sequences of the putative miR-205-5p target site. Renllla luciferase assays were normalized to 

firefly luciferase values.  The luminescence for NC was set to 1; bars represent the average of 

6 wells per treatment, and error bars are SD. (*P < 0.05). 
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Figure. 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of si-TIMP-2 transfection on OSCC cell lines. (A) TIMP-2 mRNA levels, 

normalized to GAPDH, in HSC3 and SAS cells transfected with si-TIMP-2 (25 nM) or 

negative control. The value for the negative control (NC) was set to 1; bars represent the 

average of 6 wells per treatment, and error bars are SD. (*P < 0.05). (B) Western blot showing 

the TIMP-2 levels in HSC3 and SAS cells after transfection with si-TIMP-2 or negative 

control. Actin was used as a loading control. (C) Cells were cultured for 48 h after transfection, 

and then assayed for invasiveness (see Material and Methods). The value for the negative 

control was set to 1; bars represent the average of 6 wells per treatment, and error bars are SD. 

(*P < 0.05). Scale bars = 500 μm. 
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Figure. 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. TIMP-2 suppression in OSCC cells reduces the activation of pro-MMP2 by the 

TIMP-2/MT1-MMP complex. HAC3 and SAS cells were transfected with miR-205-5p mimic, 

si-TIMP-2, or negative control. (A) Cells were cultured in FBS-free medium for 48 h, then the 

content of TIMP-2 in the culture supernatant and of MT1-MMP in the cells were analyzed by 

western blot. Actin was used as a loading control. (B) Cells were cultured in FBS-free medium 

for 48 h, and then the amount of activated pro-MMP2 in the supernatant was analyzed as 

described in Material and Methods. The value for negative control (NC) was set to 1; bars 

represent the average of 4 wells per treatment, and error bars are SD. (*P < 0.05). (C) Cells 

were cultured in FBS-free medium for 48 h, and then the MMP2 enzyme activity in the 

supernatant was analyzed by gelatin zymography. 
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Figure. 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Pathway by which miR-205-5p regulates TIMP-2 to suppress pro-MMP-2 

activation. MiR-205-5p suppresses TIMP-2 expression, reducing the amount of 

TIMP-2/MT1-MMP complex on the cell membrane. Thus, pro-MMP-2 activation mediated by 

the membrane-bound TIMP-2/MT1-MMP complex is suppressed. 
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