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Abstract 

The small G protein ADP-ribosylation factor 6 (Arf6) plays pivotal roles in a wide variety of 

cellular events such as endocytosis, exocytosis, and actin cytoskeleton reorganization. 

However, the physiological functions of Arf6 at the whole animal level have not yet been 

thoroughly understood. The purpose of this study is to clarify physiological functions of Arf6 

in lymphatic endothelium in mice. Here, I show that Arf6 regulates developmental and tumor 

lymphangiogenesis in mice. I generated and analyzed lymphatic endothelial cell 

(LEC)-specific Arf6 conditional knockout (LEC-Arf6 cKO) mice, and found that these mouse 

embryos exhibit severe skin edema and impairment in the formation of lymphatic vessel 

network at the mid-gestation stage. Furthermore, I found that knockdown of Arf6 in human 

LECs inhibits in vitro capillary tube formation and directed cell migration induced by 

vascular endothelial growth factor-C (VEGF-C), and Arf6 mediates VEGF-C-induced cell 

migration through the internalization of β1 integrin. Finally, it was found that LEC-Arf6 cKO 

mice transplanted with B16 melanoma cells attenuated tumor lymphangiogenesis and 

progression. Collectively, these results provide evidence that Arf6 in LECs plays a crucial 

role in physiological and pathological lymphangiogenesis. 
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1. Introduction 

1-1. Small GTPase  

Small GTPases or small guanine nucleotide-binding proteins (small G proteins) with 

molecular weight of about 20 kDa are conserved from yeast to human [1]. To date, more than 

100 membranes of small G protein superfamily have been identified, and are classified into 

five families including Ras, Rho, Rab, Ran, and Arf family based on similarity of their 

functions and sequences (Figure 1A). Small G proteins cycle between GDP-bound inactive 

and GTP-bound active forms to regulate a wide variety of cellular functions, such as gene 

expression, cytoskeletal reorganization, vesicle trafficking, nucleocytoplasmic transport, and 

microtubule organization (Figure 1B). In the resting state of the cell, they exist as the 

GDP-bound inactive form. Upon stimulation of the cell by  

 

 
Figure 1. Small G protein superfamily 

(A) Small G protein superfamily. Five families of small G protein including Ras, 

Rho, Rab, Ran, and Arf are categorized based on their functions. (B) Small G 

protein functions as molecular switches in signal transduction pathways by cycling 

between GDP-bound inactive and GTP-bound active states, which are precisely 

regulated by GEFs and GAPs. The activated small G protein transduces signals 

downstream. Thereafter, GTP on small G protein is hydrolyzed to GDP by the 

GTPase activity of small G protein, which is activated by GAPs, to become 

inactive. 

A 

B 
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agonists, such as hormones and growth factors, GDP on small G proteins is replaced for GTP 

to become active, which is accelerated by the guanine nucleotide exchange factors (GEFs). 

Activated small G protein interacts with their downstream effectors to transduce signals by 

regulating the cellular location and activity of effectors. Thereafter, GTP bound to small G 

proteins is hydrolyzed by their GTPase activity. Since the GTPase activities of small G 

proteins are very low, GTPase-activating proteins (GAPs) function to stimulate the GTPase 

activity of small G proteins. Thus, GEFs and GAPs support cycling of small G proteins 

between the inactive and active status for small G proteins to regulate signaling transduction 

and small G proteins function as molecular switches in signal transduction pathways. 

 

1.2. Arf family 

Arf proteins were first identified by Kahn, et al. as cofactors for cholera toxin-catalyzed 

ADP-ribosylation of α-subunit of the heterotrimeric GTP-binding protein Gs, which 

stimulates adenylyl cyclase [2]. At present, Arfs are known to regulate membrane traffic by 

recruiting coat proteins, phospholipid metabolism and reorganization of actin cytoskeleton [3, 

4]. Arf family is composed of Arf proteins, structurally resemble Arf-like proteins (ARLs) 

and Arf-related proteins (ARPs), and the secretion-associated and Ras-related protein (SAR) 

[5]. The mammalian Arf proteins consist of Arf1-6, which are classified into three classes 

based on their sequence homology: Class I includes Arf1, Arf2, Arf3, class II Arf4 and Arf5, 

and class III (Arf6) (Figure 2) [4]. Class I and II of Arfs localize on the endoplasmic 

reticulum and Golgi apparatus. The sole member of class III, Arf6, localizes at the plasma 

membrane and endosomal compartments, such as early endosome and recycling endosome. 

These spatially specific locations of Arfs differentiate their functions in the cell. Class I and II 

of Arfs regulate the assembly of different types of coat protein complexes on budding vesicles 

along the secretory pathway [6] and recruitment of coat components to trans-Golgi 

membranes [7, 8]. On the other hand, Arf6 plays pivotal roles in endosomal membrane 

trafficking and actin cytoskeleton reorganization [4, 9, 10]. 
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Figure 2. Mammalian Arf proteins and their cellular localization 

Arf proteins are composed of 6 isoforms, Arf1-6, which are classified into 3 classes 

based on their sequence homology. Class I and II of Arfs localize to the Golgi 

apparatus and endoplasmic reticulum. Arf6, the sole member of class III, localizes 

at the plasma membrane and endosome. 

 

The structure of Arf6 contains the N-terminal amphipathic helix, the effector-binding 

regions, switch1 (SW1) and SW2, and an interswitch region (Figure 3) [11]. Arf6 is 

post-translationally myristoylated at the N terminus, and this modification is essential for 

membrane binding and biological activity of Arf6 [11]. The myristoyl chain and associated 

N-terminal amphipathic helix are inserted into the membrane when Arf6 is activated [12]. 

SW1 and SW2 regions change their conformations in response to the Arf6 activation and are 

involved in interactions with Arf6 effectors [13]. Therefore, Arf6 effectors are expected to 

localize cellular components where the GTP-bound active form of Arf6 localizes. 

 

 

 
 

Figure 3. Scheme of structure domains of Arf6 

Arf6 contains an amphipathic helix at N-terminal, which is post-translationally 

myristoylated, two effector-binding regions of switch1 (SW1) and SW2, and an 

interswitch region between the two effector-binding regions. 
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1-3. Arf6 GEFs and GAPs 

To date, 14 members of Arf GEFs family, which are classified into exchange factor for Arf6 

(EFA6), cytohesin, brefeldin A-resistant Arf-guanine nucleotide exchange factor (BRAG), 

Golgi-specific brefeldin A-resistant Arf-guanine nucleotide exchange factor 1 (GBF1), and 

brefeldin A-inhibited GEF (BIG) subfamilies, have been identified (Figure 4) [14, 15]. Of 

these Arf GEFs, 8 members have been identified to be specific to Arf6. Their structures 

conserve the Sec7 domain, which is responsible for GEF activity to Arfs. The mammalian 

EFA6 family is composed of four proteins, EFA6A, EFA6B, EFA6C and EFA6D [16], which 

are highly selective for Arf6 [17]. Three BRAGs are BRAG1 (IQSec2), BRAG2 

(IQSec1/GEP100) and BRAG3 (IQSec3/synArf6 GEF) [15], but only BRAG2 is specific for 

Arf6 [18]. Cytohesins are expressed in all vertebrates in four isoforms, cytohesin1, 

cytohesin2/ARNO, cytohesin3/Grp1 and cytohesin4 [15]. 

Arf GAP family so far identified includes 31 members, which are classified into ACAP, 

ARAP, ASAP, GIT, SMAP, ADAP, ArfGAP1, ArfGAP2, AGAP and AGFG subfamilies 

(Figure 4). They conserve the zinc-finger Arf GAP domain, which is responsible for 

stimulating GTPase activity of Arfs. Although the specificity of each member of Arf GAPs to 

Arf isoforms has not yet been fully clarified, in vitro analyses have revealed that at least 9 

members of Arf GAPs are specific to Arf6. 

 

 
 

Figure 4. Arf6 GEF and GAP family members 

To date, 8 members of Arf6 GEFs, which belong to BRAG, cytohesin, and EFA6 

families, and 9 members of Arf6 GAPs, which belong to GIT, ARAP, ACAP, and 
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SMAP families, have been identified. They are shown in red color. 

 

1.4. Arf6 effectors 

Arf6 effectors so far identified, which are classified into three groups, 

phospholipid-metabolizing enzymes, Arf6 GAPs and others, are shown in Figure 5. The 

active form of Arf6 regulates a wide variety of cellular functions through the regulation of 

locations and activities of these effectors. 

 
Figure 5. Effector proteins of Arf6 

Three types of Arf6 effector proteins are described, including 

phospholipid-metabolizing enzymes, Arf6 GAPs, and others.  

 

1-4-1. Phospholipid-metabolizing enzymes 

Arf6 has been shown to activate two lipid-metabolizing enzymes, phospholipase D (PLD) 

(Figure 6) [19, 20] and phosphatidylinositol 4-phosphate 5-kinase (PIP5K) [21, 22]. PLD 

catalyzes the hydrolysis of phosphatidylcholine (PC) to the lipid messenger phosphatidic acid 

(PA), which controls membrane ruffling, endocytosis, exocytosis, stress fibers induction, 

respiratory burst, and Golgi transport (Figure 6) [23]. PIP5K generates the pleiotropic 

phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] by phosphorylating 

phosphatidylinositol 4-phosphate (PI4P) at the 5 position of the inositol ring: PI(4,5)P2 

regulates membrane channel activity [24], membrane trafficking [25], Golgi structure and 
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function [26, 27], actin dynamics [28], and nuclear activities (Figure 6) [29]. Interestingly, PA 

functions as a cofactor in the activation of PIP5K by Arf6, and PI(4,5)P2 interacts with and 

activates PLD (Figure 6) [30]. This crosstalk explains these two Arf6 downstream effectors 

share the regulation of the same cellular functions. Thus, Arf6 mediates multiple cellular 

functions through regulating PLD and PIP5K activities. 

 

 
Figure 6. Arf6 activates PLD and PIP5K to regulate a wide variety of cellular 

functions 

Arf6 activates PLD and PIP5K to produce PA and PI(4,5)P2, respectively, to 

regulates cellular functions described in the figure. PA and PI(4,5)P2 support the 

activation of PIP5K and PLD by Arf6, respectively. 

 

1-4-2. Arf6 GAPs 

Arf6 GAPs are listed in Figures 4 and 5. In addition to the function of Arf6 GAPs to support 

the hydrolysis of GDP on Arf6 by stimulating the GTPase activity of Arf6, Arf6 GAPs seem 

to function as a recruiter of signaling molecules (Figure 7) [31-34]. For instance, ACAP1 is 

involved in β1 integrin recycling by associating endosomal β1 integrin [35]. Moreover, 

SMAP1 has been reported to participate in the clathrin-dependent and constitutive 

endocytosis of transferrin receptor (TfnR) [31]: Arf6-bound SMAP1 recruits clathrin and the 

adaptor protein complex-2 (AP-2) to the plasma membrane, thereby stimulating endocytosis 

of TfnR. Additionally, ASAP1 interacts with cortactin and paxillin to form a trimeric protein 

complex, which is critical for the formation of invadopodia [36]. In this sense, Arf6 GAPs 
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function as effector proteins of Arf6 in a wide variety of signaling pathways. 

 

 
Figure 7. Arf6 effectors including Arf6 GAPs and other signaling molecules 

Arf6 regulates cellular functions through a wide variety of effectors, such as Arf6 

GAPs, lipid-metabolizing enzymes, and other effectors, to regulate membrane 

traffic of receptors, cadherins, and integrins. The cellular signaling through these 

effectors control cell motility, and membrane ruffle formation by reorganization 

of the actin cytoskeleton. 

 

1-4-3. Other Arf6 effector proteins 

In addition to the phospholipid-metabolizing enzymes and GAPs, other proteins also function 

as downstream effectors for Arf6 to regulate cellular functions (Figure 7). For example, 

monomeric clathrin adaptors β-arrestin1/2 that bind clathrin and PI(4,5)P2 to recruit cargo and 

promote clathrin-dependent endocytosis functions as an Arf6 effector [37]. The nucleoside 

diphosphate (NDP) kinase Nm23-H1 is recruited to the cell-cell contact region and provides a 

source of GTP during dynamin-dependent vesicle fission in an Arf6-dependent manner [38, 

39]. The secretory carrier membrane protein, SCAMP2, functions in setting up the soluble 

NSF attachment protein (SNAP) receptor (SNARE) interactions with the secretory vesicle 
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and plasma membranes, and facilitates fusion pore formation in the SNARE-mediated fusion 

of the vesicle exocytosis [40]. The c-Jun-N-terminal-kinase interacting protein 3 (JIP3) and 

JIP4 interact with kinesin-1 and dynactin complex to control the trafficking of recycling 

endosomes during cytokinesis in an Arf6-dependent manner [41]. Sec10, the subunit of the 

exocyst complex, is involved in docking of vesicles with the plasma membrane and regulates 

the post-endocytic recycling downstream of Arf6 [42, 43]. The dual Rab11/Arf6 binding 

proteins, FIP3/Arfophilin-1 and FIP4/Arfophilin-2, regulates cytokinesis through coupling 

with Rab11-positive vesicle traffic from recycling endosomes to the cleavage furrow [44]. 

Arfaptin-2, to which Arf6 binds to, is known as the partner of Rac1 and regulates cytoskeletal 

rearrangements at the cell periphery [45]. The Rac1 GEF Dock180 and Kalirin were both 

indicated to mediate cytoskeletal and focal adhesion regulation through control the activity of 

Rac1 downstream of Arf6 [46]. Tre-2/Bub2/Cdc16 (TBC) domain-containing protein TRE17 

regulates plasma membrane-endosome trafficking via promoting the localization of Arf6 to 

the plasma membrane and Arf6 activation [47]. Thus, these molecules are believed to be Arf6 

effectors. 

 

 

1-5. Cellular functions of Arf6 

1-5-1. Endocytosis 

Arf6 mediates clathrin-dependent endocytosis of membrane proteins, such as TfnR [9], 

β2-adrenergic receptor [48], E-cadherin [49] and G-protein-coupled receptors (GPCRs) 

(Figure 7) [50]. The initial step of endocytosis of cell membrane proteins is the translocation 

of the active form of Arf6 from the cytosol to the plasma membrane. In the clathrin-mediated 

endocytosis, the active form of Arf6 binds to and activates PIP5K to produce PI(4,5)P2 [21], 

which regulates clathrin-mediated endocytosis [51] via the recruitment of AP-2 and clathrin 

on coated pits formed at the plasma membrane [22, 52]. Thereafter, Arf6 GAPs trigger the 

budding of vesicles from the plasma membrane by inactivating Arf6 [31]. Interestingly, 

vesicle formation and budding from the plasma membrane are determined by a cargo protein. 

For example, the Arf6 GAP SMAP1 functions in the endocytosis of TfnR [53]. GIT1 plays a 

role in the interleukin (IL)-mediated endocytosis of GPCRs and epidermal growth factor 

receptors (EGFRs) [50]. Thus, the GTP/GDP cycling of Arf6 coordinates the recruitment of 

AP-2 and clathrin to activated receptors during the endocytic process [54]. 

Arf6 also regulates the clathrin-independent endocytosis (CIE) pathway (Figure 7). The 
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cargo proteins include the major histocompatibility complex class I protein (MHC class I), 

M2-muscarinic acetylcholine receptors, and the peripheral myelin-membrane protein [4]. 

Cargos through Arf6-associated CIE are sorted to recycling or degradation pathway based on 

specific cytoplasmic sequences [55, 56] and ubiquitination of the cytoplasmic tails of these 

cargo proteins [57]. However, the detailed mechanism of the CIE pathway is still unclear and 

requires more investigation. 

 

1-5-2. Cell adhesion 

In epithelial cells, Arf6 modulates the cell-cell contact through recruiting Nm23-H1 for 

facilitating dynamin-dependent endocytosis of E-cadherin (Figure 7) [39]. This endocytosis of 

E-cadherin leads the disassembly of adherens junctions, thereby regulating epithelial cell 

scattering and the epithelial-mesenchymal transition (EMT) of cancer cells. Arf6 also 

regulates the contact of cell-extracellular matrix (ECM) via trafficking of β1 integrin and 

syndecan-2 (Figure 7) [58-60]. 

 

1-5-3. Invadopodia formation and microvesicle releasing 

It has been reported that Arf6 is involved in cancer invasion and GTP/GDP cycle of Arf6 is 

critical for the invasion of melanoma, glioma, and breast cancer cells (Figure 7) [4, 55, 61-63]. 

Moreover, Arf6 has been implicated in the regulation of invadopodia formation/turnover [4] 

and protease secretion to degrade ECM [62]. Invadopodia are actin-rich membrane 

protrusions with integrins and associated signaling proteins. In order to form the invadopodia, 

Arf6 recruits the Arf6 GAP ASAP1 to link paxillin and cortactin in malignant breast cancer 

cells [34]. For the protease release from tumor cells to degrade ECM, Arf6 modulates the 

shedding of plasma membrane-derived microvesicles with protease cargo into the surrounding 

environment through phospholipid metabolism and the activation of extracellular 

signal-regulated kinase (ERK) [62]. 

 

1-5-4. Exocytosis 

Arf6 has been implicated in the regulation of protein secretion (Figure 7). For instance, the 

secretion of adipsin from adipocytes [64], neurotransmitters and human growth hormones by 

Ca2+-dependent dense-core vesicle (DCV) exocytosis from PC12 cells [65, 66], and insulin 

from pancreatic β cells [67]. SCAMP2 interacts with PLD1, Arf6, and ARNO, and this 

association is crucial for the SNARE-mediated fusion of vesicles with the plasma membrane 
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for exocytosis [40]. Arf6-mediated exocytic pathway also requires activation of PIP5K by 

Arf6 to increase PI(4,5)P2 level on the plasma membrane [67]. 

 

1-5-5. Membrane ruffle formation 

Membrane ruffle formation requires activation of peripheral PIP5K through Arf6 to produce 

PI(4,5)P2 (Figure 7) [21], which induces reorganization of actin cytoskeleton. In addition, 

Arf6 effectors, the Rac1 GEF Dock180 and Kalirin, activate Rac1 [68, 69], leading to the 

rearrangement of actin cytoskeleton in the signaling pathway for membrane ruffle formation. 

 

1-5-6. Phagocytosis 

During phagocytosis, membranes are delivered from internal stores to particle internalization 

sites of the plasma membrane to accommodate pseudopod extension and ingest particles. Arf6 

is involved in Fc receptor (FcR)-regulated phagocytosis, which is thought to require actin 

cytoskeleton reorganization (Figure 7) [70-73] and occur through the activation of the Rac1 

and lipid metabolism [74]. 

 

1-5-7. Macropinocytosis 

Macropinocytosis is the process to engulf the large volumes of fluid by extension, folding and 

closure of the plasma membranes [75]. To drive internalization, the actin filaments generate 

forces by modulating dynamics of actin assembly [76, 77], which form the dorsal ruffles. It 

has been shown that the Arf6 effector domain-containing proteins regulate membrane 

trafficking (Figure 7) [78]. The primate-specific TBC1D3 regulates EGF-mediated 

macropinocytosis in an Arf6-dependent manner [79]. In addition, TBC1D3 interacts and 

coordinates with Golgi-localized, gamma adaptin ear-containing, Arf-binding protein 3 

(GGA3) to facilitate the macropinocytotic process. Interestingly, TBC1D3 lacks the arginine 

residue that is responsible for the Rab-GAP activity, but there is no clear evidence of its 

Arf6-GAP activity. Interestingly, another TBC protein TRE17 has been shown to bind to the 

GDP-form of Arf6 and activate Arf6 for regulation of the plasma membrane-endosome 

trafficking via cooperating with Arf6 GEFs [47]. 

 

1-5-8. Proliferation 

Arf6 has been indicated to regulate cell proliferation and mitosis (Figure 7) [80-82]. Arf6 

induces cell proliferation through activating PLD and S6K1 kinase in a 
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PLD-mTORC1-dependent manner, thereby contributing to mitosis [83]. In addition, P38 

MAPK accelerates the Arf6-mediated cell proliferation. It has been revealed that 

EGF-induced Arf6 expression plays an important role in the proliferation of glioma cells [84]. 

Arf6 also regulates hedgehog (Hh) signaling through cooperating with EGFR to induce Ras 

tumor growth [85]. Arf6 activates TRE17 to promote cell proliferation [86]. Arf6 activation 

induces the trafficking of β-catenin and guanine nucleotide-binding protein G(q) subunit α 

(GNAQ) from the plasma membrane to the nucleus and cytoplasmic vesicles, receptively [87]. 

Thereafter, multiple signaling pathways through Rho/Rac, YAP, and PLC/PKC are activated, 

which are involved in the proliferation of melanoma cells. 

 

1-6. Physiological functions of Arf6 

Although the functions of Arf6 at the cellular level have been well studied, the physiological 

significance of Arf6 remain unclear. To address this issue, the laboratory to which I belong 

had generated Arf6 knockout (Arf6-/-) mice, and analyzed them. Kanaho and his colleagues 

have reported that Arf6-/- mice are embryonic lethal at midgestation with defect in the liver 

development [88]. Moreover, they have generated several tissue- and cell type-specific 

conditional knockout (cKO) mice, and found that endothelial-specific Arf6 cKO mice show 

the defect in tumor angiogenesis [60] and that keratinocyte-specific Arf6 cKO mice show a 

significant delay in the wound healing of the skin [89]. Neuron-specific Arf6 cKO mice 

display the defect in the oligodendrocyte myelination in the hippocampal fimbria and the 

corpus callosum [90]. Platelet-specific Arf6 cKO mice show the defect in platelet spreading 

and blood clot by causing the aberrant αIIbβ3 integrin trafficking [91]. 

 

1-7. Lymphangiogenesis 

The lymphatic system is comprised of a blind-ended network of lymphatic vessels, which 

collect and transport the interstitial fluid and lymph, and plays critical roles in homeostasis of 

tissue fluid, lipid absorption, and immune surveillance. Malfunction of lymphatic vessels is 

pivotal and associate with a wide variety of diseases such as inflammation, fibrosis, 

metastasis, and lymphedema [92]. Development of lymphatic vasculature in the embryo 

initiates from a subset of venous endothelial cells that follow by the specification of lymphatic 

endothelial cell fate, sprouting, morphogenesis, and network formation (Figure 8). Venous 

endothelial cells expressing the lymphatic vessel hyaluronan receptor-1 (LYVE-1) in the 

central veins serve as lymphatic endothelial cell (LEC) precursors, which express the 



 
 

13 

transcription factor SRY-box 18 (Sox18) to express the key transcription factor 

prospero-related homeobox gene 1 (Prox1), the marker for LECs, in mice at approximately 

embryonic day (E) 9.5 [93]. Prox1-expressing LECs in the cardinal vein assemble the 

pre-lymphatic clusters, migrate away from the cardinal vein wall to form the lymph sacs and 

superficial lymphatic vessels at E10.5-13.5 [93-96]. The sprouting of lymphatic vessels from 

the lymph sac is induced by VEGF-C through its receptor VEGFR3 [97], which regulates 

receptor modulators such as Neuropilin 2 (Nrp2) [98], Ephrin B2 [99] and β1 integrin 

[100-102] to generate the lymphatic vascular network in mouse embryos within E14.5. In 

addition, LECs express the membrane glycoprotein podoplanin [103, 104], which activates 

the Syk tyrosine kinase through C-type lectin receptor 2 (CLEC-2) in platelets [105, 106]. 

This activation leads to platelet aggregation [106, 107]. From E15.5 to postnatal stage, the 

primary lymphatic networks undergo remodeling to form a mature lymphatic network 

composed of initial lymphatic vessels, pre-collectors and collecting lymphatic vessels [108]. 

Finally, these lymphatic network forms intraluminal valves, recruits smooth muscle cells, 

develop continuous inter-endothelial junctions, and produce a basement membrane [92]. 

 

 
Figure 8. Lymphangiogenesis during mouse embryonic development 

During embryonic lymphatic vessel development, a subset of LECs in cardinal vein 

expresse Prox1, and migrate out to form the lymph sac. Thereafter, lymphatic 

vessels are formed and then initiate outgrowth in response to VEGF-C to construct 

the lymphatic network. Various markers are identified and specifically expressed in 

developing cells. 
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1-8. Tumor lymphangiogenesis 

It has been known that cancer cells disseminate or metastasize to distal organs via either 

angiogenesis or lymphangiogenesis (Figure 9). Since the lymphatic vessels are single thin 

layers and have larger diameters than blood vessels [92], cancer cells easily invade into the 

lymphatic system. More evidence revealed that the density of lymphatic vessels correlates 

with the incidence of lymph node metastasis and poor prognosis in some human cancers [109, 

110], indicating that tumor lymphangiogenesis is a pivotal process for cancer progression and 

metastasis. Tumor lymphangiogenesis is mediated by lymphangiogenic factors, VEGF-C and 

VEGF-D, that are produced by tumors, stromal cells, macrophages, and activated platelets 

[111-114]. These factors stimulate growth and dilation of the peritumoral lymphatic vessels, 

thereby enhancing tumor cell invasion into lymphatic vessels and lymph node, and facilitating 

dissemination of tumor cells to distal organs [109, 115-117]. Therefore, blockage of 

lymphangiogenic factors has been implied in the suppression of metastasis: blockage of 

VEGFR3 signaling in mice significantly reduces tumor lymphangiogenesis and lymphatic 

metastasis [118-121]. Inhibition of neuropilin-2 inhibits lymphatic endothelial cell migration, 

resulting in the suppression of tumor lymphangiogenesis and metastasis to sentinel lymph 

nodes [122]. 

 

 
Figure 9. Tumor lymphangiogenesis 

In tumor environment, not only tumor cells but also inflammatory cells and 

stromal cells secret various lymphatic growth factors. These factors stimulate 

tumor lymphangiogenesis, which facilitates the invasion of cancer cells into the 

lymphatic system. 
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1-9. Lymphatic disorder 

Several lymphatic genes have been identified by lineage-tracing studies in mice to validate 

the development of lymphatic vessel and association with human lymphatic disorders. For 

example, the VEGFR3 mutation causes Milroy disease [123], and mutation in its ligand 

VEGF-C is associated with autosomal dominant Milroy-like lymphedema [124]. 

Hypotrichosis-lymphedema-telangiectasia patients have a mutation in transcription factor 

SOX18, which has been identified to induce Prox1 expression in venous LEC progenitors 

[125, 126]. Collagen and calcium binding EGF domains 1 (CCBE1) mutations cause lymph 

vessel dysplasia that associate with Hennekam syndrome [127, 128]. Mutation of Forkhead 

box protein C2 (FOXC2), which regulates lymphatic valves formation and lymphatic 

remodeling, was found in lymphedema-distichiasis syndrome [129]. 

Although various guidance molecules, cellular interactions, and extrinsic forces are 

involved in embryonic lymphangiogenesis [130], the molecular mechanisms for lymphatic 

vascular network formation are poorly understood and require more research to elucidate it.  
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2. Aim 

Since the small G protein Arf6 plays pivotal roles in a wide variety of cellular events, such as 

endocytosis, exocytosis, and actin cytoskeleton reorganization [14, 21], the physiological 

functions of Arf6 at the whole animal level have not been well elucidated. In the previous 

study, it has been demonstrated that Arf6-/- mice are embryonic lethal at midgestation with 

liver development defect [88]. Here, I aim to re-examine the different stages of Arf6-/- 

embryos in depth and clarify the cause of edema in Arf6-/- embryos. In addition, I aim to 

elucidate the physiological and pathological functions of Arf6 in LECs by generating 

LEC-specific Arf6 cKO mice and analyzing them.  
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3. Materials and methods 

Mice 

Arf6-/- and Arf6flox/flox mice were generated as described previously [60, 88, 90]. LEC-Arf6 

cKO mice were generated by mating Arf6flox/flox and Prox1-CreERT2 mice, which were kindly 

provided by Dr. S. Ito (Showa Pharmaceutical University, Japan) [94]. To initiate 

Cre-mediated recombination in embryos, pregnant mice were intraperitoneally injected with 3 

mg of tamoxifen  dissolved in sunflower oil every day from E10.5 [94]. 

ROSA26-CAGp-loxP-EGFP-loxP-tdsRed (R26GRR) mice provided by Dr. S. Takahashi 

(University of Tsukuba, Japan) were used to validate the Cre activity in LECs [131, 132]. All 

experiments using mice were performed according to the Guidelines for Proper Conduct of 

Animal Experiments, Science Council of Japan, and the protocols were approved by the 

Animal Care and Use Committee of University of Tsukuba. 

 

Whole-mount immunofluorescence staining of embryonic dorsal skin 

After mouse embryos were fixed with 4% paraformaldehyde (PFA)/PBS at 4°C and 

subsequently dehydrated in methanol, the dorsal skin was dissected, rehydrated in PBST 

(0.2% Tween-20/PBS), and incubated in the blocking buffer consisting of 0.1 M Tris-HCl, 

pH7.5, 0.5% blocking reagent (PerkinElmer Life Sciences) and 0.15 M NaCl for 1 hr at room 

temperature (r.t.). The skin samples were incubated with the primary antibodies against 

LYVE-1 (Abcam), Prox1 (R&D Systems), PECAM-1 (BD Biosciences), or Ki67 (Abcam) at 

4°C overnight and subsequently with Alexa Fluor®-488-, Alexa Fluor®-546-, Alexa 

Fluor®-594-, Cy3-, and Cy5-conjugated secondary antibodies (Thermo Fisher Scientific). 

Immunofluorescence images were obtained with Biozero BZ-X700 microscope (Keyence, 

Japan) or Leica TCS SP5 confocal microscope. The branch number, total vessel length, and 

width of lymphatic vessels were analyzed by NIH ImageJ software. 

 

Tissue sections and immunohistochemical analysis 

Embryos were fixed with 4% PFA/PBS at 4°C overnight, equilibrated in 30% sucrose/PBS, 

then embedded in OCT compound. Embedded embryos were cryosectioned at 14-16 µm, and 

subjected to immunohistochemical analysis. For the immunohistochemical analysis, sections 

were washed with PBS, and blocked with the blocking buffer at r.t. for 1 hr. Sections were 

then incubated with anti-Arf6, which was kindly provided by Dr. H. Sakagami (Kitasato 

University, Japan), anti-LYVE-1, anti-Prox1, or anti-PECAM-1 antibody at 4°C overnight. 
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After washing with PBST, sections were incubated with Alexa Fluor®-488 goat 

anti-rabbit IgG antibody at r.t. for 1 hr, and counterstained with DAPI. Images were 

obtained with Biozero BZ-X700 microscope. 

 

Isolation of primary mLECs and mVECs 

Skins dissected from E16.5 embryos were digested with the solution consisting or 1 mg/ml of 

deoxyribonuclease I, 2.5 mg/ml of collagenase type II and type IV, 20% FBS, and 10 mM 

HEPES buffer in DMEM. Macrophages and hematopoietic cells were removed by incubating 

the cell suspension with rat anti-F4/80 (MCA497GA, Bio-Rad) and -CD45 antibody 

(B122583, BioLegend) and subsequently precipitating with goat anti-rat IgG microbeads 

(Miltenyi Biotec). Mouse LECs (mLECs) and mouse VECs (mVECs) in the cell suspension 

were captured by rabbit anti-LYVE-1 (ab14917, Abcam,) and rat anti-PECAM-1 antibody 

(102501, BioLegend), and precipitated with goat anti-rabbit IgG microbeads (Miltenyi 

Biotec). Captured mLECs and mVECs were sorted using The MiniMACSTM kit (Miltenyi 

Biotec) as described previously.[133] Isolated mLECs and mVECs were immediately used for 

detection of mRNAs and proteins. 

 

Reverse transcription and quantitative real-time PCR 

Total cellular RNA was extracted from the cells using the TRIzol® Reagent (Life 

Technologies, Carlsbad, CA). The reverse transcription of the RNA (1.5 µg) was performed in 

a 30 µl reaction mixture using SuperScriptTM III Reverse Transcriptase (Thermo Fisher 

Scientific) and oligo-dT primers. Quantitative real-time PCR (qRT-PCR) reactions were 

conducted in Applied Biosystems 7500/7500 Fast Real-Time PCR System (Thermo Fisher 

Scientific) using THUNDERBIRDTM SYBR® qPCR Mix (TOYOBO) according to 

manufactory’s instruction. The thermal profile of PCR was at 95°C for 3 min, followed by 40 

cycles at 95°C for 30 sec and 60°C for 30 sec. The sequences of paired primers for qRT-PCR 

are as follows: 

Actin beta (Actb) forward: 5’-GATCATTGCTCCTCCTGAGC-3’ 

Actb reverse: 5’-GTCATAGTCCGCCTAGAAGCAT-3’ 

Prox1 forward: 5’-CTGGGCCAATTATCACCAGT-3’ 

Prox1 reverse: 5’-GCCATCTTCAAAAGCTCGTC-3’ 

Lyve1 forward: 5’-TGGTGTTACTCCTCGCCTCT-3’ 
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Lyve1 reverse: 5’-TTCTGCGCTGACTCTACCTG-3’ 

Flt1 forward: 5’-AGCACCTTGACCTTGGACAC-3’ 

Flt1 reverse: 5’-CAGGGGATGATGAGCTGTCT-3’ 

Arf6 forward: 5’-TGCCTAAACTGGAGGAAACTTGAA-3’ 

Arf6 reverse: 5’-ACCACATCTCACCTGCAACATT-3’ 

GAPDH forward: 5’-AAGGTGAAGGTCGGAGTC-3’ 

GAPDH reverse: 5’-TGTAGTTGAGGTCAATGAAGG-3’ 

 

Cell culture and siRNA transfection 

Human LECs (hLECs; Lonza) were cultured in EGMTM-2 MV Medium (Lonza) and 

maintained within 5 passages. siRNAs for Arf6 (Dharmacon) were transfected with 

Lipofectamine 2000 (Thermo Fisher Scientific) according to the manufacturer’s instruction. 

B16 melanoma cells were maintained in Dulbecco’s modified Eagle medium (DMEM; 

Nacalai Tesque, Japan) supplemented with 10% fetal bovine serum, penicillin, and 

streptomycin. 

 

Cell proliferation assay 

For the cell proliferation assay, siRNA-transfected hLECs were cultured in EGMTM-2 MV 

Medium on 35-mm dishes for two days and harvested by Accutase treatment (Nacalai 

Tesque), and the cell number was counted. 

 

In vitro capillary tube formation by hLECs 

hLECs cultured on 24-well plates coated with the growth factor-reduced Matrigel (BD 

Biosciences) at 1.5 × 105 cells per well were starved, transfected with siRNAs for Arf6, and 

stimulated with 200 ng/ml of VEGF-C (R&D Systems). After 12 hr of the stimulation, cell 

images were obtained using the Biozero BZ-X700 microscope, and the capillary tube length 

was measured by NIH ImageJ software. 

 

Assays for wound healing and cell migration 

For the wound healing assay, hLECs transfected with siRNA for Arf6 were grown on 24-well 

plates to full confluency and starved in serum-free EBMTM-2 Basal Medium (Lonza) 

overnight. Monolayers of the cells were scratched with pipette tips and stimulated with 200 

ng/ml of VEGF-C. Cell images were obtained with the Biozero BZ-X700 microscope, and 
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wound closure was analyzed by NIH ImageJ software. 

For the transwell migration assay, hLECs starved as described above were seeded in the 

upper chamber of transwell migration chamber (8 µm pore size; Corning) at 2 × 104 cells per 

chamber. The lower chamber was filled with 200 ng/ml of VEGF-C/EBMTM-2 Basal Medium. 

At 12 hr after seeding, membrane filters were fixed with 4% PFA/PBS and stained with DAPI. 

hLECs migrated to the lower surface of the membrane filter were imaged using the Biozero 

BZ-X700 microscope, and the cell number was counted. 

For time-lapse analysis of wound-induced cell migration, hLECs transfected with 

siRNA for Arf6 were cultured on the µ-Dish dish (ibidi, Germany) to full confluency, and 

starved in serum-free EBMTM-2 Basal Medium overnight. The monolayer of the hLECs was 

scratched with pipette tips, and then incubated in the humidified chamber of a time-lapse 

microscopy (FLUOVIEW FV10i, Olympus) in the presence or absence of 200 ng/ml of 

VEGF-C at 5% CO2 and 37°C. Cell migration at the wounded area was recorded every 10 

min for 20 hr by tracking the nucleus using the manual-tracking tool of NIH ImageJ. Cell 

trajectories were analyzed using the Chemotaxis and Migration Tool Software (ibidi). 

Accumulated distance was calculated as the sum of all cell movement. Euclidean distance 

represents the straight distance between the start and end point of cell migration. 

Directionality was calculated by dividing euclidean distance by accumulated distance. 

 

Western Blotting 

Western blotting was carried out as previously reported [60], using anti-Arf6 that was 

previously generated by us [134], anti-β1 integrin TS2/16 (Santa Cruz) and anti-α-tubulin 

(Sigma-Aldrich) antibodies. 

 

Assay for the activated β1 integrin level and focal adhesion formation 

To evaluate the activated β1 integrin levels at the plasma membrane, control and 

Arf6-knocked-down hLECs were stimulated with VEGF-C. Cells were fixed with 4% 

PFA/PBS, blocked with the blocking buffer, then immunostained by sequential incubation 

with anti-active β1 integrin (9EG7, BD Biosciences) and Alexa Fluor®-488-conjugated 

secondary antibodies (Thermo Fisher Scientific). Immunofluorescence images were obtained 

with Biozero BZ-X700 microscope, and the fluorescence intensities for the activated β1 

integrin were analyzed by NIH ImageJ software. 

For focal adhesion formation assay, control and Arf6-knocked-down hLECs were 
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stimulated with VEGF-C for the indicated times. Cells were fixed, blocked, and stained with 

anti-paxillin (BD Biosciences) and Alexa Fluor®-488-conjugated secondary antibodies. 

Images were obtained by Leica TCS SP5 confocal microscope, and the focal adhesion 

formation was analyzed by ImageJ software. 

 

Internalization of β1 integrin 

Control and Arf6-knocked-down hLECs were incubated with anti-β1 integrin TS2/16 

antibody for 30 min on ice. The β1 integrin/antibody complex on the plasma membrane was 

allowed to be internalized by incubating with 200 ng/ml of VEGF-C at 37°C for the indicated 

time in the presence of 0.6 µM of primaquine, an inhibitor for the recycling of β1 integrin to 

the plasma membrane. Anti-β1 integrin antibody on the cell surface was removed by washing 

with the ice-cold stripping solution (0.5% acetic acid, 0.5 M NaCl and 0.05% BSA). The cells 

were fixed with 4% PFA/PBS, permeabilized with 0.1% Triton X-100/PBS, and visualized 

for the internalized β1 integrin with Fluor®-488-labeled secondary antibody. Z-stack 

fluorescence images were obtained with Leica TCS SP5 confocal microscope, and the 

fluorescence intensities of internalized β1 integrin were analyzed by NIH ImageJ software. 

 

Tumor lymphangiogenesis and tumor progression 

LEC-Arf6 cKO mice were administered with 3 mg of tamoxifen into peritoneal cavity once a 

day for 7 days and subcutaneously transplanted with B16 melanoma cells (2 × 106 cells) 

suspended in 100 µl of serum-free DMEM into the dorsal flank. From day 6 after the 

transplantation, tumor volumes were measured by digital caliper and calculated using the 

following formula: tumor volume = length × width2 × 0.52. After 14 days of the 

transplantation, tumors were dissected, fixed with 4% PFA/PBS and subjected to assay for 

tumor lymphangiogenesis. 

 

Statistical analysis 

Student’s t-test and ANOVA were used to calculate the statistical significance between two 

experimental groups and more than two experimental groups, respectively. The value of P < 

0.05 was considered as statistical significance. Each result was obtained from at least three 

independent experiments, and all quantitated data are represented as mean ± SEM.  
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4. Results 

Ablation of Arf6 from lymphatic endothelial cells causes edema and defect in lymphatic 

vascular network formation 

As we have previously reported [60], the re-examination of Arf6-/- embryos confirmed that 

knockout of Arf6 induces the dorsal skin edema in E13.5 and E15.5 embryos (Figure 10A). 

Because impairment in lymphatic vascular formation causes hydrops fetalis with back skin 

edema [126, 135-137], we examined the lymphatic vascular network formation in the back 

skin of Arf6-/- embryos by immunofluorescent staining for the specific marker of mouse LECs 

(mLECs) LYVE-1 (Figure 10B). As expected, Arf6-/- embryos showed the aberrant 

morphology of the lymphatic vascular network: extension of the front tip of lymphatic vessels 

toward the dorsal midline was delayed in Arf6-/- embryos. Detailed analysis revealed the fewer 

branch points, shorter total vessel length, and enlarged lymphatic vessels in Arf6-/- embryos 

(Figure 10C). In support of these observations, embryonic Prox1+ and LYVE-1+ mLECs 

isolated from dorsal skins of E16.5 embryos (Figure 11A) expressed the Arf6 protein and its 

mRNA (Figure 11B,C). In addition, Arf6 was expressed in the lymph sac of E13.5 embryos 

(Figure 11D). 
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Figure 10. Arf6-/- and LEC-Arf6 cKO mice induce dorsal skin edema and 

abnormal lymphatic vascular network 

(A, D) Appearance of Arf6-/- and LEC-Arf6 cKO embryos in comparison with that 

of control Arf6+/+ and Arf6flox/flox embryos, respectively. Note that the edema (white 

arrows) on the back of E13.5 and 15.5 Arf6-/- embryos and of E15.5 LEC-Arf6 cKO 

were induced. (B, E) Aberration of dorsal subcutaneous lymphatic vascular network 

in E15.5 Arf6-/- and LEC-Arf6 cKO embryos. Lymphatic vessels were 

immunostained for LYVE-1 (green). White dashed lines indicate the dorsal midline 

of the embryo. (C, F) Immunostained images of lymphatic vessels shown in (A) 

were quantified for branch number of lymphatic vessels/area (left panel), lymphatic 

vessel length/area (middle panel), and width of lymphatic vessels/area (right panel) 

in control Arf6+/+ and Arf6-/- embryos (C) and control Arf6flox/flox and LEC-Arf6 cKO 

embryos (F). Area of 2250 × 1700 µm on both sides of the midline was measured. 

Each point represents individual value: n = 10 for both embryos in the left panel 

and n = 5 for both embryos in the middle and right panels of (C), and n = 8 for 

Arf6flox/flox embryos and n = 13 for LEC-Arf6 cKO embryos in (F). Statistical 

significance was assessed using student’s t-test. *P < 0.05, **P < 0.01, ***P < 

0.005. Scale bar, 200 µm.  
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Figure 11. Arf6 is expressed in mLECs 

(A) Verification of mLECs and mVECs purified from E16.5 embryos by qRT-PCR 

for the lymphatic markers Prox1 and Lyve-1, and the blood vessel marker Flt1. (B) 

The expression levels of Arf6 protein in hLECs, HUVECs, mLECs, and mVECs 

determined by Western blotting. (C) Arf6 mRNA expression levels in hLECs and 

HUVECs analyzed by qRT-PCR. The data were shown as mean ± SEM from three 

independent experiments. Statistical significance was assessed using unpaired 

Student’s t-test. *P < 0.05. (D) Expression of Arf6 (red) in LYVE-1-positive 

transverse jugular lymph sacs (purple) of E13.5 mouse embryos. Scale bars, 200 

µm.  
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The defect of lymphangiogenesis observed in Arf6-/- embryos and the expression of 

Arf6 in mLECs led us to hypothesize that Arf6 in mLECs functions in development 

lymphangiogenesis. To test this hypothesis, we generated LEC-Arf6 cKO mice. Arf6 would 

be successfully deleted from mLECs in LEC-Arf6 cKO mice since the tdsRed signal was 

detected in the lymphatic vessels of R26GRR;Prox1-CreER;Arf6flox/+ mice treated with 

tamoxifen (Figure 12). Consistent with the results obtained with Arf6-/- mice, E15.5 LEC-Arf6 

cKO mice showed edema, delay of the lymphatic vessel extension, and defects in the branch 

points, vessel length and vessel width (Figure 10D-F). The phenotypes observed in Arf6-/- and 

LEC-Arf6 cKO embryos were not due to the defect in blood vessel formation as was shown in 

Figure 13. Although heart development disorder is known to cause embryonic edema, 

LEC-Arf6 cKO embryos did not show any heart defect in the histological analysis (Figure 14). 

Taken together, these results strongly suggest that Arf6 in mLECs is essential for the 

developmental lymphangiogenesis. 
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Figure 12. Cre recombinase expression in mLECs of the jugular lymph sac 

Transverse jugular sections prepared from E13.5 and E15.5 GFP-expressing control 

R26GRR;Arf6flox/+ and R26GRR;Prox1-CreERT2;Arf6flox/+ embryos, which were 

administrated with tamoxifen, were stained for LYVE-1 (cyan) and DAPI (blue). 

tdsRed signal (red) indicates the tamoxifen-stimulated Cre recombinase activity. 

JLS, jugular lymph sac. JV, jugular vein. Scale bars, 200 µm.  
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Figure 13. mLEC-specific Arf6 knockout does not impair the blood vessel 

formation. (A) Confocal z-stack images of dorsal view of subcutaneous blood 

vessels stained for PECAM-1 in E15.5 control Arf6flox/flox and LEC-Arf6-cKO 

embryos. (B) Quantification of branch points of blood vessels/area (393 × 393 µm) 

in control Arf6flox/flox (n = 3) and LEC-Arf6-cKO (n = 3) embryos. (C) 

Quantification of total blood vessel length/area (393 × 393 µm) in control Arf6flox/flox 

(n = 3) and LEC-Arf6-cKO (n = 3) embryos. The data shown were the mean ± SEM 

from at least three independent experiments. Statistical significance was assessed 

using Student’s t-test. NS, not significant. Scale bar, 50 µm.  
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Figure 14. LEC-Arf6 cKO mice do not show heart failure. (A) Schematic 

anatomy of the heart in E15.5 embryos. LA, left atrium. LV, left ventricle. RA, 

right atrium. RV, right ventricle. (B) Hematoxylin & Eosin staining of transverse 

heart sections of E15.5 control Arf6flox/flox and LEC-Arf6-cKO embryos. (C) 

Quantification of the thickness of left ventricle apex wall (LVA), right ventricle 

apex wall (RVA), left ventricle middle wall (LVM), right ventricle middle wall 

(RVM) and interventricular septum (IVS) in E15.5 control Arf6flox/flox and 

LEC-Arf6-cKO embryos. The data shown are mean ± SEM from at least three 

independent experiments. Statistical significance was assessed using Student’s 

t-test. NS, not significant. Scale bar, 200 µm.  
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Arf6 plays a role in the formation of lymph sacs 

To examine the functions of Arf6 in an early event of developmental lymphangiogenesis, we 

analyzed primary lymph sac formation. In E13.5 and E15.5 LEC-Arf6 cKO embryos, 

LYVE-1+ and PECAM-1+ lymph sacs were enlarged compared with those in control 

Arf6flox/flox embryos (Figure 15). 

 

 

Figure 15. Jugular lymph sacs enlarge in LEC-Arf6 cKO mice 

Transverse jugular sections of E13.5 and E15.5 control Arf6flox/flox and 

LEC-Arf6-cKO embryos were immunostained for LYVE-1 (red), PECAM-1 

(green) and DAPI (blue). Note that the LYVE-1 positive JLS in LEC-Arf6 cKO 

embryos enlarged compared with that in control embryos. JV, jugular vein. JLS, 

jugular lymph sac. Scale bar, 200 µm.  
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Sprouting of the lymphatic vessel from lymph sacs is the second step in the 

developmental lymphangiogenesis to form the lymphatic vascular network. Arf6 appeared to 

play a function in the sprouting of lymphatic vessels, since LEC-Arf6 cKO embryos lacked 

any sprouting tips and showed enlarged LYVE-1+ and Prox1+ lymphatic vessels (Figure 16A). 

The enlargement of lymphatic vessels was not due to the enhancement of mLEC proliferation 

as assessed by immunostaining of developing lymphatic vessels for the proliferation marker 

Ki67 (Figure 17B). This result was supported by the finding that knockdown of Arf6 in 

hLECs was without effects on hLEC proliferation in vitro (Figure 17). Moreover, it was found 

that the nuclei of mLECs in LEC-Arf6 cKO embryos were spherical, while those of control 

mLECs were oval (Figure 16C), suggesting that Arf6 regulates sprouting by controling the 

cell migration. These results demonstrate that Arf6 in mLECs plays an important role in 

sprouting from the lymph sac to form the lymphatic vascular network.  



 
 

32 

 
Figure 16. Arf6 regulates lymphatic vessel sprouting and tip cell morphology 

(A) Representative images of sprouting lymphatic vessels in E15.5 control 

Arf6flox/flox (n = 4) and LEC-Arf6 cKO (n = 3) (left panels). Transverse jugular 

sections were co-immunostained for LYVE-1 (red) and Prox1 (green). Arrowheads 

indicate sprouts of lymphatic vessels. Immunostained images shown in the left 

panels were quantified for the number of Prox1+ lymphatic tip cells in the distal 

migration front area of lymphatic vessels (right panel). Scale bar, 200 µm. (B) 

Representative images of proliferating mLECs in the subcutaneous lymphatic 



 
 

33 

vessel of E15.5 control Arf6flox/flox (n = 5) and LEC-Arf6 cKO (n = 5) embryos 

co-immunostained for Prox1 (green) and Ki67 (red) (left panels). Arrowheads 

represent Prox1+/Ki67+ proliferating mLECs (left panel). Percentages of 

Prox1+/Ki67+ proliferative mLECs of total Prox1+ mLECs in the distal migrating 

front area of lymphatic vessels were quantified (right panel). (C) Representative 

images of subcutaneous lymphatic vessels in E15.5 control Arf6flox/flox (n = 3) and 

LEC-Arf6-cKO embryos (n = 3) co-immunostained for LYVE-1 (red) and Prox1 

(green). Lower panels are magnified images of the square area in the upper panels. 

Arrowheads in the magnified images indicate the oval nucleus. Immunostained 

images were quantified for sphericity of nucleus (width/length) (right panel). 

Statistical significance was assessed using student’s t-test. NS, not significant, *P < 

0.05, ***P < 0.005. Scale bar, 200 µm (A, B) and 25 µm (C). 

 

 
Figure 17. Arf6 is not involved in cell proliferation of hLECs 

(A) Knockdown of Arf6 in hLECs. (B) Effect of Arf6 knockdown on the cell 

proliferation of hLECs. After two days of cell culture, cell number was counted. 

The data shown are mean ± SEM from five independent experiments. Statistical 

significance was assessed using One-way ANOVA. NS, not significant.  
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Arf6 in mLECs promotes in vitro capillary tube formation by regulating cell migration 

upon VEGF-C stimulation 

It has been reported that VEGF-C signaling regulates lymphatic vascular development [138]. 

To address a question whether Arf6 regulates VEGF-C-dependent lymphatic vascular 

formation, we investigated the involvement of Arf6 on the VEGF-C-dependent in vitro 

capillary tube formation by hLECs. As was expected, knockdown of Arf6 in hLECs (Figure 

17) impaired the VEGF-C-induced tube formation (Figure 18A). 

Since VEGF-C signaling regulates migration of LECs [138, 139], which is an essential 

cell event for lymphatic vascular development, we examined whether Arf6 regulates hLEC 

migration by wound healing and transwell migration assays. At 24 hr after wounding, the 

VEGF-C-dependent wound closure was significantly delayed in Arf6-knocked-down hLECs 

(~40% closure) compared with control (~75% closure) (Figure 18B). Transwell migration of 

hLECs using VEGF-C as a chemoattractant was also markedly inhibited by knockdown of 

Arf6 (Figure 18C). Thus, Arf6 appeared to play an important role in the cell migration.
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Figure 18. Arf6 regulates in vitro capillary tube formation and cell migration 

of hLECs 

(A) Representative images of in vitro capillary tube formation by control and 

Arf6-knocked-down hLECs (left panels), and quantified data for total tube length 

(right panel). The control and Arf6-knocked-down hLECs were stimulated without 

or with 200 ng/ml of VEGF-C for 24 hr. Total vessel length was calculated in 4 
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fields/experiments of three independent experiments. (B) Representative images of 

wound healing by control and Arf6-knocked-down hLECs (left panels), and 

quantified data for percentages of wound closure (right panel). Confluent 

monolayers of hLECs transfected with control and Arf6 siRNAs were scratched and 

immediately treated without or with 200 ng/ml of VEGF-C, and images were 

obtained at 0 and 24 hr after wounding. Dotted lines in the images indicate the 

border of the wound. Wound closure was measured in 4 fields/experiment of four 

independent experiments and represented as percentages of wound distance during 

24 hr. (C) Cell migration of control and Arf6-knocked-down hLECs stimulated 

without or with 200 ng/ml of VEGF-C. Cells migrated to the lower surface of the 

membrane filter in transwell migration chamber were stained with DAPI. 

DAPI-positive cells in four fields per sample were counted, and the data were 

shown as means ± SEM from at least 3 independent experiments. Statistical 

significance was assessed using one-way ANOVA. *P < 0.05, **P < 0.01, ***P < 

0.005. Scale bar, 200 µm. 

 

 

Arf6 regulates directional cell migration of LECs 

To further investigate whether Arf6 regulates the directional cell migration, time-lapse 

tracking of hLEC movement in response to VEGF-C stimulation was analyzed (Figure 19A). 

Although knockdown of Arf6 did not affect accumulated distance, euclidean distance and 

directionality of cells were significantly reduced by Arf6 knockdown (Figure 19B). Thus, 

Arf6 is required for the directional cell migration but not for unsophisticated cell movement. 

Interference with the directed cell migration by Arf6 knockdown may be resulted from 

the disturbance of cell polarity, since Golgi orientation, which has been shown to be involved 

in the cell polarity [136, 137, 140], was randomized in Arf6-knocked-down hLECs (Figure 

19C): although migrating control cells at the wounded site elongated (left top panel, arrow 

heads), Arf6-knocked-down cells remained spherical (middle and right top panels), which is 

consistent with the results shown in Figure 16C that the nuclei of mLECs in LEC-Arf6 cKO 

embryos showed spherical shape while those of control mLECs was oval. Taken together, 

these results suggest that Arf6 in LECs regulates directional cell migration by controlling cell 

polarity.  
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Figure 19. Arf6 knockdown causes defect in directed cell migration of hLECs. 

(A) Tracking of cell migration during wound healing by time-lapse video 

microscopy. Control and Arf6-knocked-down hLECs were grown to the confluence, 

scratched, and stimulated with 200 ng/ml of VEGF-C. Images were obtained every 

10 min for 20 hr after wounding. Each line represents the trajectory of an individual 

cell. Red and black lines indicate the euclidean distance over and less than 100 µm, 

respectively. Dotted lines indicate the boarder of the wound. Each experiment was 

performed four times, and at least 60 cells per experiment were analyzed. (B) 
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Images shown in (A) were quantified for accumulated distance (left panel), 

euclidean distance (middle panel), and directionality (right panel), which was 

calculated by dividing euclidean distance by accumulated distance. (C) 

Representative phase contrast microscopic images of control and 

Arf6-knocked-down of hLECs (upper images) and immunostained images with 

anti-GM130 antibody (green), phalloidin (red), and DAPI (blue) (lower images) at 

the wounded edge (left panels). Arrowheads indicate elongated cells. Arrows 

indicate the migrating direction of the cell as decided by the location of Golgi. 

Images were quantified for cells with polarized Golgi (right panel). At least 200 

cells per experiment were analyzed, and data were shown as means ± SEM from at 

least 3 independent experiments. Statistical significance was assessed using 

one-way ANOVA. NS, not significant, *P < 0.05, **P < 0.01. Scale bar, 25 µm.  
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Arf6 regulates internalization of β1 integrin in LECs 

Impairment of the internalization of cell surfact β1 integrin in nascent endothelium disrupts 

arterial endothelial cell polarity and lumen formation [141-143]. In addition, it has been 

reported that Arf6 signaling regulates the internalization of β1 integrin [144, 145]. These 

reports led us to examine whether Arf6 is involved in the β1 integrin internalization in LECs. 

The total amount of β1 integrin in hLECs was not affected by knockdown of Arf6 (Figure 

20A). When the levels of active form of surface β1 integrin and the adhesion molecule 

paxillin were analyzed, levels of both molecules were significantly increased in 

Arf6-knocked-down hLECs (Figure 20B). In addition, β1 integrin internalization promoted by 

VEGF-C stimulation of hLECs in a time-dependent manner was almost completely inhibited 

by knockdown of Arf6 (Figure 20C). These results, taken together, suggest that Arf6 regulates 

VEGF-C-induced cell polarity and directional cell migration by controling β1 integrin 

internalization in LECs.  
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Figure 20. Arf6 regulates β1 integrin internalization in hLECs. (A) Western 

blots of β1 integrin levels in control and Arf6-knocked-down hLECs (left panel), 

and their quantified data (right panel). (B) Representative images of surface 

activated β1 integrin (green, upper panels) and paxillin (white, lower panels) in 

control and Arf6-knocked-down hLECs (left panels), and quantified data for their 

levels (right panels). (C) Representative images of time-dependent β1 integrin 

internalization (left panels) and its quantified data (right panel). The internalized β1 

integrin was shown in green. Data were shown as means ± SEM from at least 3 

independent experiments. Statistical significance was assessed using One-way 
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ANOVA. NS, not significant, * P < 0.05, **P < 0.01. Scale bar, 25 µm (B) and 50 

µm (C).  

 

 

Ablation of Arf6 from LECs interferes with tumor lymphangiogenesis and cancer 

progression 

Cancer progression and lymphatic metastasis are tightly related with tumor 

lymphangiogenesis [146, 147]. These reports and the results shown above raised a possibility 

that Arf6 in LECs is involved in tumor lymphangiogenesis and cancer progression. To 

address these issues, B16 melanoma cells were transplanted into tamoxifen-treated LEC-Arf6 

cKO mice (Figure 21A). The tumor volume produced was significantly reduced by knockout 

of Arf6 in mLECs (Figure 21B,C). Correlated to this result, tumor lymphangiogenesis was 

suppressed by Arf6 knockout (Figure 22). Thus, Arf6 in mLECs plays an important role in 

tumor lymphangiogenesis, thereby regulating cancer progression. These results provide a new 

cancer therapeutic opportunity. 

 

 
Figure 21. The effect of Arf6 ablation from LECs on tumor progression 

Scheme of the assay for the effect of Arf6 ablation from mLECs on tumor 

progression. Tamoxifen (3 mg) was daily injected into the peritoneal cavity of the 



 
 

42 

mice for one week, and B16 melanoma cells (2 × 104 cells) were subcutaneously 

transplanted into the right lower back region of the mice. The size of the tumor was 

measured by digital caliper every two days from day 6 after the transplantation. (B) 

Tumor volumes produced in vehicle-treated Arf6flox/flox, tamoxifen-treated Arf6flox/flox, 

and tamoxifen-treated LEC-Arf6 cKO mice were measured according to the 

schedule described in (A). (C) At 14 days of the transplantation, tumors were 

dissected, and 3 examples were shown. The data shown in (B) are mean ± SEM 

from three independent experiments. Statistical significance was assessed using 

One-way ANOVA. NS, not significant. **P < 0.01. 

 

 

 
Figure 22. Arf6 in mLECs positively regulates tumor lymphangiogenesis. 

Representative images of lymphatic vessels in B16 melanoma tumors produced in 

control Arf6flox/flox (n = 3) and LEC-Arf6 cKO mice (n = 3). Tumor sections were 

co-immunostained for LYVE-1 (red) and PECAM1 (green) (upper panels). Arrows 

and the letter T indicate the lymphatic vessel and the tumor, respectively. White 
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dashed lines are the border between the tumor and dermis. Quantification of 

percentages of lymphatic vessels/area (1525 × 1140 µm area) (lower panel) was 

calculated in 10 fields of images/experiments. Data shown were the mean ± SEM 

from at least 3 independent experiments. Statistical significance was assessed using 

student’s t-test, *P < 0.05. Scale bar, 200 µm.  
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Discussion 

The results obtained in this study demonsrate for the first time that the small G protein Arf6 in 

LECs plays an important role in the VEGF-C-induced directional cell migration, which is 

critical for lymphatic vascular network formation, by regulating β1 integrin internalization, 

providing insight into the molecular mechanism of developmental lymphangiogenesis. 

Furthermore, we clarified that Arf6 in LECs plays pivotal roles in tumor lymphangiogenesis 

and cancer progression, giving a new cancer therapeutic opportunity. Thus, our findings in 

this study provide insight into not only physiological but also pathological functions of Arf6 

in LECs. 

Although Arf6 has been well established to regulate the integrin recycling [58, 144, 

148], the molecular mechanisms for VEGF-C-dependent Arf6-mediated β1 integrin recycling 

in LECs still remained unclear. Activation of Arf6 in LECs in response to VEGF-C 

stimulation could be essential for the integrin recycling. This assumption is supported by the 

report that the Arf6-specific GEF GEP100 promotes the β1 integrin endocytosis to enhance 

the cell attachment to and spreading on the β1 integrin substrate fibronectin [144]. Recently, 

we have reported that Arf6 is activated by the GTPase dynamin2, which promotes scission of 

the invaginated plasma membrane in a manner dependent on its conformational change 

induced upon GTP hydrolysis [149]. The Arf6 activation by dynamin2 is mediated by the 

Arf6-specific GEFs such as EFA6A, EFA6B, and EFA6D during clathrin-mediated 

endocytosis [149]. If it is the case that these Arf6 GEFs are involved in VEGF-C-stimulated 

Arf6 activation in LECs, dynamin2 mediates VEGF-C-dependent Arf6 activation through an 

Arf6 GEF(s). This issue remains to be clarified. 

What is the cellular signaling downstream of the activated Arf6 coupling to the β1 

integrin endocytosis in VEGF-C-stimiulated LECs? It is plausible that the lipid kinase PIP5K, 

which is directly activated by the active form of Arf6 to produce the versatile signaling lipid 

PI(4,5)P2 at the plasma membrane [21], is involved in this cellular signaling as an effector 

molecule of Arf6 activated by VEGF-C stimulateion. The PIP5K product PI(4,5)P2 regulates 

activities of actin-binding proteins such as the actin severing and capping protein gelsolin, 

thereby reorganizing actin cytoskeleton to facilitate endocytosis of membrane proteins 

[150-152]. Alternatively, PLD1 which produces the signaling lipid PA may function as a 

mediator for the active form of Arf6 coupling to β1 integrin endocytosis. This idea is derived 

from the reports that PLD1 is directly activated by Arf6 in response to agonist stimulation 

[153, 154], and its product PA facilitates endocytosis by forming the membrane curvature at 
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the neck of the deeply invaginated membrane [155, 156]. In addition to these possible 

functions of PIP5K and PLD1 in β1 integrin endocytosis, these two lipid-metabolizing 

enzymes mutually accelerate their activation by a positive feedback mechanism: PA is 

necessary for the activation of PIP5K by Arf6 [156], and PI(4,5)P2 supports PLD1 activation 

by Arf6 [157]. 

Besides Arf6, other proteins may be involved in VEGF-C-stimulated β1 integrin 

endocytosis to regulate directional cell migration. For example, the endocytic adaptor protein 

Numb has been reported to bind β1 integrin and control integrin endocytosis for directional 

cell migration with aPKC and PAR-3 [158]. Thus, the molecular mechanism of β1 integrin 

endocytosis seems to be very complicated, and it is of interest to clarify the precise molecular 

mechanism for VEGF-C-dependent β1 integrin endocytosis, especially crosstalk of cellular 

signaling pathways in this cell event. 

Interestingly, it has been reported that in a model mouse of  

hypotrichosis-lymphedema-telangiectasia, Ragged Opossum, the Arf6 GAP ARAP3 in 

lymphatic vessels that is necessary for lymphatic vascular development is down-regulated 

[159]. Furthermore, this report demonstrated that Arap3-/- embryos show the lymphatic 

vascular network deficiency with enlarged lymphatic vessels, which are the same phenotypes 

observed in Arf6-/- and LEC-Arf6 cKO mice (Figure 10). These observations indicate that 

appropriate cycling of Arf6 between activation and inactivation that are precisely regulated by 

Arf6-specific GEFs and GAPs, respectively, is essential for the development of dermal 

lymphatic vasculature network. This idea is consistent with our recent report demonstrating 

that cycling between active and inactive states of Arf6 is required for promoting neurite 

outgrowth [160]. 

The edema on the back of Arf6-/- mice was observed at E13.5 (Figure 10A), while 

LEC-Arf6 cKO embryos showed the edema at E15.5 but not at E13.5 (Figure 10D). This 

difference in the embryonic days inducing edema between these two types of Arf6-deficient 

mice would be attributable to the involvement of another type(s) of cells distinct from LECs 

in an earlier step of lymphangiogenesis. This idea is supported by the report that the 

lymphatic vascular system predominantly originates from the vein at earlier stage of 

development (E7.5) before lymphatic vessels are formed at E9.5 in mouse embryos [161]. 

Moreover, it has been reported that non-venous mesenchymal cells also contribute to an 

earlier step(s) of lymphatic development as a source of LECs [162]. These observations 

explain well why we did not observe any defects in the lymphatic vessel formation in the 
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VEC-specific Arf6 cKO mice (data not shown), which had been generated previously [60], 

and why the edema was induced in Arf6-/- embryos earlier than in LEC-Arf6 cKO embryos: 

ablation of Arf6 from both venous and non-venous mesenchymal cells in Arf6-/- embryos 

might induce the lymphedema earlier than LEC-Arf6-cKO. 

Finally, we demonstrated in this study that Arf6 in LECs is a key molecule for tumor 

lymphangiogenesis and cancer progression (Figure 21 and Figure 22). Tumor 

lymphangiogenesis, as well as tumor angiogenesis, is a potential therapeutic target for cancer 

treatment [153, 154]. We have recently reported that Arf6 expressed in VECs plays an 

important role in tumor angiogenesis and cancer progression: ablation of Arf6 from mVECs 

inhibits tumor angiogenesis, therefore suppressing tumor growth [60]. Thus, Arf6 in 

pan-endothelial cells is a highly potential therapeutic target to prevent cancer progression. 

However, recent preclinical studies have suggested that anti-angiogenic therapy promotes 

cancer metastasis by inducing hypoxia in cancer cells [163, 164]. It is noteworthy that Arf6 

expressed in breast cancer cells is required for cancer metastasis [34]. Thus, Arf6 plays 

critical roles in tumor lymphangiogenesis/angiogenesis and cancer metastasis. These reports 

and our results obtained in this study suggest that an inhibitor(s) of Arf6 could efficiently 

prevent both tumor progression and metastasis. Specific inhibitors of Arf6 might provide a 

new cancer therapeutic opportunity.  
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