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Abbreviations 

 

Arf, ADP-ribosylation factor 

ARNO, Arf nucleotide-binding site opener 

AST, Aspartate aminotransferase  
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p-Akt, Phosphorylated Akt 

p-Erk, Phosphorylated Erk 

PH, Partial hepatectomy  
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PIP5K, Phosphatidylinositol 4-phosphate 5-kinase 

PIP2, Phosphatidylinositol (4,5)-bisphosphate 



4 
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Introduction 

 

1. Hepatocyte proliferation and hepatocyte growth factor (HGF)  

Hepatocyte proliferation is a fundamental process for fetal liver development 

and regeneration, the unique property of this organ in mammals, which is induced in 

response to liver mass loss caused by physical, infectious or toxic injury. Precious 

review indicates, the hepatocytes have a unique stem-cell likely proliferate ability 

comparing to differentiated parenchymal cells, which features the remarkable 

regeneration capacity of liver1. In the liver regeneration process, the hepatocyte 

proliferation is required for repair the damage liver, and the partial hepatectomy (PH) 

is the most common model for examining liver regeneration capacity in vivo. In 

adult liver, hepatocytes are normally stayed in the G0 phase, and enter the cell cycle 

for proliferation following the injury to restore the loss mass in a quick manner. 

After PH in the rat or mice, the great stimulation of DNA replication (peak at 24 h) 

in hepatocytes is occurred, and the original liver mass then repaired within 5-10 

days2. The hepatocyte proliferation is tightly regulated by various growth factors 

and cytokines, including the hepatocyte growth factor (HGF)3.  

HGF was originally identified from the serum and platelets of rat in three 

independent studies, which were investigating the factor regulating liver 

regeneration of partially hepatectomized rat4-6. It is now known that HGF is a potent 

mitogen acting on various cell types to regulate their cellular growth, morphogenesis 

and motility through activation of the tyrosine kinase receptor c-Met. It has been 

shown that HGF/c-Met signaling is essential for embryonic organ development, 

adult organ regeneration and wound healing7. The activated c-Met triggers multiple 
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signaling pathways including phosphoinositide 3-kinase (PI3K)/Akt and 

Ras/Raf/ERK cascades to regulate multiple cellular functions8. In addition to these 

downstream targets, our lab and others have reported that the small Guanosine 

triphosphatase (GTPase) ADP-ribosylation factor 6 (Arf6) is involved in 

HGF-stimulated signaling pathways to regulate epithelial tubule development9, 

glioma cell invasion10, tumor angiogenesis11 and hepatocyte cord formation12.  

 

2. Small GTPases 

Small GTPases are group of proteins with molecular masses of 20-40 kDa, 

which can bind and hydrolyze guanosine triphosphate (GTP). There are more than 

100 proteins in the small GTPase superfamily, which are classified into five 

families based on their primary structures: Ras, Rho, Rab, Ran and Arf13. These 

five families of small GTPases play fundamental and conserved roles in various cell 

functions, including cell proliferation, differentiation, reorganization of the actin 

cytoskeleton, cell polarity development and vesicular trafficking13. 

  

2.1.  Arf family  

In mammals, the Arf family contains six members, Arf1-6, which are 

divided into three classes based on their amino acid sequence similarities: class 

I contains Arf1 to Arf3, class II Arf4 and Arf5, and class III Arf614 (Fig.1). 

Both Class I and II of Arfs localize at the endoplasmic reticulum (ER) and the 

Golgi apparatus, which mainly regulate vesicular trafficking between the 

perinuclear area and endosomes15. In contrast, Arf6, the sole member of class 

III, primarily localizes at the plasma membrane and endosomal compartments 

https://en.wikipedia.org/wiki/Hydrolyze
https://en.wikipedia.org/wiki/Guanosine_triphosphate
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to regulate multiple cellular events, including phosphoinositide metabolism, 

intracellular membrane trafficking and actin cytoskeleton reorganization15.  

 

2.2.  Arf6 activation cycle 

Arf6 cycles between GTP-bound active and GDP-bound inactive forms 

to function as a molecular switch in the signal transduction (Fig. 2). At the 

resting state of cells, Arf6 exists as the GDP-bound inactive form. Upon agonist 

[e.g. HGF and vascular endothelial growth factor (VEGF)] stimulation of the 

cell, GDP is exchanged to GTP by the action of GEFs, resulting in activation of 

Arf6. This exchange induces conformational change of Arf6 and increases its 

affinity to various effector proteins16, through which Arf6 regulates a wide 

variety of cellular functions. Thereafter, GTP bound to Arf6 is hydrolyzed by 

the intrinsic GTPase activity of Arf6 with the support of GTPase-activating 

proteins (GAPs), thereby Arf6 returns to the inactive form17. 

 

2.3. Arf6 GEF 

As described above, activity of Arf GTPases is regulated by a large 

family of GEFs. In human genome, 15 Arf GEFs have been identified, which 

can be classified into five families by sequence similarity and the presence of 

functional domains: Golgi brefeldin A (BFA)-resistance factor1/BFA-inhibited 

GEF (GBF/BIG), Arf nucleotide binding site opener (ARNO)/cytohesin, 

exchange factor for Arf6 (EFA6), brefeldin-resistant Arf GEF (BRAG), and 

F-box only protein 8 (Fbx) (Fig. 3). Of these Arf GEFs, seven GEFs have been 

demonstrated to be involved in Arf6 activation: ARNO/cytohesin2, 
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Grp1/cytohesin 3, EFA6A-D, and BRAG217,18. 

 

2.4. Effectors of Arf6 

Arf6 regulates various cellular functions through the interaction with its 

downstream effectors listed below (see also Table 1).  

 

(1) Phospholipid-metabolizing enzymes 

Arf6 has been shown to activate two phospholipid-metabolizing enzymes, 

phospholipase D (PLD)19,20 and phosphatidylinositol 4-phosphate 5-kinase 

(PIP5K1)21. PLD hydrolyzes the major component of cellular membranes, 

phosphatidylcholine, to produce phosphatidic acid (PA), which is involved in 

multiple physiological processes, such as membrane trafficking, 

cytoskeletal reorganization, receptor-mediated endocytosis, exocytosis, 

and cell migration. PIP5K1 phosphorylates phosphatidylinositol 4-phosphate 

[PI(4)P] at the D5 position of the inositol ring to produce the versatile lipid 

second messenger phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2 or PIP2], 

which is involved in a wide variety of cellular events22. Interestingly, PLD and 

PIP5K1 signaling pathways are closely interconnected by their products: PA 

generated by PLD activates PIP5K1, and PIP2 generated by PIP5K1 activates 

PLD23. Therefore, orchestrated regulation of PLD and PIP5K1 by Arf6 plays 

pivotal roles in various cellular events. 

 

(2) Arf6 GAPs 

GAPs are recruited to GTP-bound Arf6 and promote its intrinsic 

https://en.wikipedia.org/wiki/Cytoskeleton
https://en.wikipedia.org/wiki/Cell_migration
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GTP-hydrolyzing activity, thereby, turning off the Arf6 activity. In addition to 

the GAP function, several Arf6 GAPs have been also suggested to function as 

effectors of Arf624. Of the ten Arf6 GAPs identified in human, ACAP1, 

ARAP2, SMAP1/2 and ASAP1 have been shown to act as Arf6 effectors25-31. 

These Arf6 GAPs are suggested to recruit their binding proteins to the 

activated Arf6. For examples, the SMAP1/2 as Arf6 GAPs could directly 

interact with clathrin through clathrin heavy chain to regulate clathrin-depedent 

endocytosis, the studies concluded the possibility of SMAP1/2-clathrin-Arf6 

complex30,31. A unique Arf6-ARAP2-leucine zipper motif (APPL) endosomal 

compartment was identified in the previous study, which ARAP2 associated 

with Arf6-APPL positive compartment through forming complex with APPL1, 

and this complex controlled the traffic of integrins from APPL endosomes25. , 

Another previous study indicated the effector function of ACAP1 in Arf6 

Arf6-regulated actin cytoskeleton remodeling upon aluminum fluoride (AIFx) 

stimulation, that ACAP1 formed a complex with GDP-Arf6 and AIFx. 

 

(3) Other proteins 

In addition to Afr6 effectors described above, several proteins have also 

been suggested to function as effectors of Arf6. The previous study 

demonstrated that GTP-bound Arf6 interacts with an exocyst complex subunit, 

Sec10, through which Arf6 controls endocytic membrane recycling to the 

dynamic region of the plasma membrane32. Secretory carrier membrane protein 

2 (SCAMP2) mediates the formation of fusion pores during the process of 

exocytosis through the interaction with Arf6 and PLD in neuroendocrine cells33. 
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Arf6 recruits AP-2, the adaptor protein of clathrin-coated vesicles, to the 

plasma membrane to regulate clathrin-dependent endocytosis34. The signaling 

scaffold protein JIP3 acts as a downstream effector of Arf6 in mouse cortical 

neurons to regulate neurite morphogenesis35. Arfophilin has been reported to 

serve as a downstream effector of both Arf6 and Arf536, and functions in 

neuronal migration and breast cancer cell motility37,38. These multiplicity of 

downstream effectors enables Arf6 to regulate versatile cellular events.  

 

3. PIP5K1 

Our group has previously identified PIP5K1 as a direct downstream effector of 

Arf621. In mammals, three isoforms of PIP5K1 have been identified to date, namely 

PIP5K1A (corresponding to human PIP5Kα and mouse PIP5Kβ), PIP5K1B 

(corresponding to human PIP5Kβ and mouse PIP5Kα) and PIP5K1C 

(corresponding to human and mouse PIP5Kγ) (Fig. 4), all of which catalyze 

phosphorylation of PI(4)P to generate the pleiotropic lipid messenger PIP2 (Fig. 5). 

PIP2 directly binds to and regulates various target proteins, which are involved in 

multiple cellular events22. PIP2 also serves as a precursor of lipid second 

messengers. It is hydrolyzed by phospholipase C to generate two second 

messengers, diacylglycerol and inositol 1,4,5-triphosphate (Fig. 6). PIP2 is also 

phosphorylated by phosphoinositide 3-kinase (PI3K) to yield phosphatidylinositol 

3,4,5-trisphosphate (PIP3), which recruits the protein kinase Akt to the plasma 

membrane and promotes its activation, thereby activates downstream signaling 

pathways required for cell proliferation, growth and survival39,40 (Fig. 7). Therefore, 

Arf6 regulates various cellular functions through the activation of PIP5K1. 
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3.1. Localization of PIP5K1 isozymes 

Each PIP5K1 isozyme localizes at different subcellular compartments. 

PIP5K1A localizes at the nucleus and the cytosol, PIP5K1B localizes to punctate 

structures in the perinuclear region, and PIP5K1C localizes to adherens junctions 

in epithelial cells and to focal adhesions41-43. When cells are stimulated, both 

PIP5K1A and PIP5K1B translocate to the plasma membrane21,44. The different 

localization of each PIP5K1 isozyme is suggested to be responsible for the 

generation of PIP2 in different compartments of the cell, thereby PIP5K1 

isozymes regulate various cellular functions22.  

 

3.2. Regulation by phosphorylation 

Activities of PIP5K1 isozymes are known to be regulated by 

phosphorylation of their Ser/Thr and Tyr residues. Park et al. have suggested that 

PIP5K1A, B and C are phosphorylated and suppressed by PKA45. They also 

demonstrated that Ser214 of PIP5K1A is phosphorylated by PKA and 

dephosphorylated by PP1:  phosphorylation decreases its lipid kinase activity, 

while dephosphorylation increases it45. A tyrosine residue of PIP5K1A is also 

phosphorylated: H2O2 stimulation induces tyrosine phosphorylation of PIP5K1A, 

which leads to inhibition of PIP5K1A lipid kinase activity and translocation of 

PIP5K1A away from its substrate at the plasma membrane46. Phosphorylation of 

PIP5K1C at Ser645 suppresses the binding of PIP5K1C to Talin and AP-2, both 

of which are activators of PIP5K1C47. Phosphorylation of PIP5K1C at Ser264, 
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which is in the kinase homology domain, also decreases its lipid kinase activity48. 

Conversely, phosphorylation of Tyr644 by the Src kinase activates PIP5K1C47.  

 

3.3. Structural differences of PIP5K1 isozymes  

All PIP5K1 isozymes contain a highly conserved kinase core domain (KCD) 

at their center, which catalyzes phosphorylation of PI(4)P49 (Fig. 5). In addition 

to the KCD domain, they possess the N- and C-terminal domains, which are 

specific for each PIP5K1 isozyme50. N- and C-terminal domains are suggested to 

modulate kinase activity and localization of each isozyme, thereby conferring 

isozyme-specific activation and functions. 

The previous study has suggested the model for conformational change of 

PIP5K1C which modulates its activation by Arf6: Arf6 binding region of 

PIP5K1C located in the KCD is masked by its N-terminal domain, and 

stimulation of the cell induces conformational change to release this masking, 

which allows binding of and activation by Arf651. 

 

3.4. Proteins regulating PIP5K1  

Activity of PIP5K1 is regulated by several small GTPases. Rho family 

proteins, RhoA, Rac1 and Cdc42, which regulate actin cytoskeleton 

reorganization, have been shown to activate lipid kinase activities of all three 

PIP5K1 isozymes52-54. As described above, Arf6 directly activates all PIP5K1 

isozymes21,22,48,55. 

In addition to small GTPases, several proteins serve as binding partners and 

activators of PIP5K156. Talin specifically binds to C-terminal tail of PIP5K1C 
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and activates its lipid kinase activity. Interestingly, Talin binding to PIP5K1C 

depends on phosphorylation/dephosphorylation of PIP5K1C at Ser645: Talin can 

only bind to and activate dephosphorylated PIP5K1C57. Similarly, AP-2, the 

adaptor protein of clathrin-coated vesicles, also binds to C-terminal tail of 

PIP5K1C dephosphorylated at Ser645 and activates it in mouse hippocampal 

neurons58. Phosphorylation and dephosphorylaiton of Ser645 are catalyzed by 

cyclin-dependent kinase 5 (Cdk5) and calcineurin, respectively. PIP5K1 can be 

also activated by the co-stimulatory receptor CD28 in T lymphocytes: stimulation 

of CD28 at the immunological synapse induces recruitment of PIP5K1A to CD28 

with the aid of the Rho GEF Vav1, and there PIP5K1A is activated to produce 

PIP2, which induces lipid raft clustering through actin cytoskeleton remodeling 

and is also converted to PIP3 by PI3K to activate Akt signaling, thereby 

activating T cells56,58,59,60. 
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Rationale 

 

As described above, the pleiotropic growth factor HGF regulates multiple cellular 

events through the activation of Arf6 in various types of cell. In the previous study in 

our laboratory, it has been demonstrated that Arf6-knockout mice exhibit embryonic 

lethality with a severe defect in liver development. Furthermore, it has also been shown 

that HGF-dependent in vitro cord formation by primary cultured hepatocytes is 

significantly impaired in Arf6-deleted hepatocytes12. These observations strongly 

suggest that Arf6 plays a crucial role in the HGF signaling pathway in hepatocytes. 

However, the molecular mechanisms of how Arf6 regulates HGF signaling in 

hepatocytes have not yet been fully understood. In this study, I investigated functions of 

Arf6 and its downstream effector PIP5K1 in HGF-stimulated hepatocytes.  

 

  



15 
 

Experimental procedures 

 

1. Reagents and antibodies  

Reagents used: 

Protein G/protein A sepharose beads: GE healthcare Japan.  

Anti-Flag affinity gel: SIGMA. 

Protease inhibitor cocktail: Nacalai tesque.  

COSMOGEL GST-Accept: Nacalai tesque. 

DMEM (4.5g/l glucose): Nacalai tesque.  

FBS: Gibco. 

Penicillin-Streptomycin Mixed solution: Nacalai tesque. 

OPTI-MEM: Gibco. 

Lipofactamine 2000 (1 mg/ml): Invitrogen. 

siRNA Arf6: Invitrogen. 

siRNA human PIP5K1A: GE Healthcare Dharmacon Inc. 

TRIzol reagent: Invitrogen. 

SuperScript III Reverse Transcriptase: Invitrogen. 

Blend Taq DNA polymerase: TOYOBO. 

 

Antibodies for Western blot analysis and immunofluorescence staining: 

Rabbit anti-AKT: Cell Signaling Technologies. 

Rabbit anti-phospho-AKT (S473): Cell Signaling Technologies. 

Rabbit anti-phospho-Erk1/2 (Thr202/Tyr204): Cell Signaling Technologies. 

Rabbit anti-Erk1/2: Cell Signaling Technologies. 
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Rabbit anti-phospho-c-Met: Cell Signaling Technologies. 

Rabbit anti-Actin: SIGMA. 

Mouse anti-α-tubulin: SIGMA.  

Mouse anti-Flag: SIGMA. 

Mouse anti-BrdU: SIGMA.  

Rabbit anti-Ki67: Abcam.  

Rabbit anti-c-Met: Santa Cruz.  

Goat anti-PIP5K1B: Santa Cruz.    

Goat anti-PIP5K1C: Santa Cruz.  

Goat anti-Albumin: Bethyl.  

Mouse anti-PIP3: Echelon Biosciences. 

Mouse anti-PIP2: Echelon Biosciences. 

Rabbit anti-Arf6, rabbit anti-PIP5K1A and rabbit anti-PIP5K1B: Self-prepared 

antibodies 61. 

Horseradish peroxidase-conjugated anti-rabbit secondary antibody: Cell Signaling . 

Horseradish peroxidase-conjugated anti-mouse secondary antibody: Cell Signaling.  

Alexa488-conjugated anti-rabbit IgG: Invitrogen.  

Alexa488-conjugated anti-mouse IgG: Invitrogen. 

Alexa647- conjugated anti-goat IgG: Invitrogen. 

Cy3-conjugated anti-mouse IgM; Invitrogen. 

 

2. Mice 

Generation of Pip5k1a-/- mice with C57B1/6 background is described 

previously61,62. Female mice of 8-10 weeks old were used for experiments. Mice 
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were kept under a controlled humidity and lighting schedule as 12 h dark with free 

access to food and water. All experiments with mice were conducted according to 

the Guidelines for Proper Conduct of Animal Experiments, Science Council of 

Japan, and protocols were approved by the Animal Care and Use Committee, 

University of Tsukuba. 

 

3. Isolation and culture of primary hepatocytes 

Hepatocytes of wild type and Pip5k1a -/- mice (10-12 weeks old) hepatocytes 

were isolated as described previously63. Isolated hepatocytes showed >80% cell 

viability assessed by trypan blue exclusion. Cells were plated on collagen-coated 

plates and cultured in Dulbecco's modified Eagle's medium (DMEM) (Invitrogen, 

Carlsbad, CA, USA) containing 10% fetal bovine serum (FBS) and 2 % antibiotic 

solution (20,000 units/ml penicillin and 20 mg/ml streptomycin) in an atmosphere 

of 5% CO2 at 37 °C. The primary hepatocytes were stimulated with 10 ng/ ml HGF 

for indicated time.   

 

4. Cell culture, plasmid and siRNA transfection and HGF treatment of the Cell 

The human hepatocellular cell line HepG2 cells were maintained in DMEM 

supplemented with 10 % FBS and 1% antibiotic solution (10,000 units/ml penicillin 

and 10 mg/ml streptomycin) in an atmosphere of 5% CO2 at 37°C. They were 

transfected with plasmid DNAs or siRNA using Lipofactamine 2000 (Invitrogen) 

according to the manufacturer’s instructions. For siRNA-mediated knock down 

experiments, HepG2 cells were transfected with 10 nM siRNA. After 48 h 

incubation, the cells were serum-starved for 12 h, and then treated with 10 ng/mL 
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HGF for the indicated time. For overexpression experiments, FLAG-tagged Arf6 

or an Arf6 mutant (Q67L or T44N; kind gifts provided by Dr. K. Nakayama from 

Kyoto University) was transfected into HepG2 cells. After 48 h incubation, cells 

were harvested and subjected to immunoprecipitation. 

 

5. Immunopreciptaiton and Western Blotting  

Cells were lysed in lysis buffer (25 mM Tris-HCl, pH7.5, 1% Triton X-100, 10 

mM NaCl, 1 mM EGTA and 5 mM MgCl2) containing protease inhibitor cocktail 

(Nacalai) at 4 °C for 30 min, and centrifuged at 10,000 ×g for 10 min. The cell 

lysates were incubated with the indicated antibodies and protein G/protein A 

sepharose beads (GE healthcare) or Anti-Flag affinity gel (SIGMA) at 4 °C for 4 h. 

The immune complexes captured on beads were washed with lysis buffer and 

eluted with the SDS-PAGE sample buffer [4x sample buffer: 25% 0.5M Tris-HCl 

(pH 6.8), 8% sodium dodecyl sulfate, 20% 2-mercaptoethanol, 0.04% bromophenol 

blue, and 40% glycerol] by boiling. Eluted proteins were separated by SDS-PAGE, 

transferred onto a PVDF membrane, and then detected by specific primary 

antibodies and horseradish peroxidase-conjugated secondary antibodies. Images 

were quantified using the Image J software (http://rsb.info.nih.gov/ij/).  

 

6. Assay for measuring the cell number 

The number of viable cells was assessed by the trypan blue exclusion assay. 

Cells were seeded in 12 well plates (5 × 104 cells/well) and transfected with siRNA. 

After 48 h incubation, cells were treated with HGF for the indicated time, 

trypsinized and stained with trypane blue. The number of viable cells was 
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counted with a hemocytometer. Five counts were performed per well for three 

independent experiments.  

 

7. Analysis for activation of Arf6 

Activation of Arf6 was assessed by the Arf6-GTP pulldown assay as described 

in the previous report by Santy et al (2001)64. Briefly, HepG2 cells were seeded on 

3.5 cm dishes at 3 × 105 cells/dish and incubated overnight. After 12 h starvation, 

cells were stimulated with or without 10 ng/mL HGF for 10 min. Cells were 

harvested in lysis buffer [50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 2 mM MgCl2, 

0.1% sodium dodecyl sulfate, 0.5% sodium deoxycholate, 1% Triton X-100, 10% 

glycerol, 1 µg/ml aprotinin, and 1 µg/ml leupeptin] and lysed at 4°C for 30 min. 

The cell extracts were mixed with glutathione S-transferase 

(GST)-GGA3-conjugated glutathione-Sepharose beads and incubated for 30 min 

with gentle rotation. The beads were washed three times with the washing buffer 

[50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 2 mM MgCl2, 1% NP-40, 10% glycerol, 

1 µg/ml aprotinin, and 1 µg/ml leupeptin]. The Arf6-GTP bound to 

GST-GGA3 beads was eluted by SDS sample buffer, and detected by Western 

blotting. 

 

8. Lipids extraction and quantification of PIP3 

Cell Lipids were extracted by the method reported by Gray et al.65. Cells at 

5×106 cells/15 cm dish were transfected with siRNA and treated with HGF as 

described above. Cells were incubated with ice-cold 0.5 M TCA for 5 min, scraped, 

and centrifuged at 10,000 ×g for 5 min. The pellet was resuspended in 5% TCA/1 



20 
 

mM EDTA and centrifuged, then the supernatant was removed. Neutral lipids were 

extracted from the pellet with MeOH : CHCl3 (2:1) and the supernatant was 

discarded. Acidic lipids were then extracted from the pellet with MeOH : CHCl3 : 

12 N HCl (80:40:1). After centrifugation, chloroform and 0.1 M HCl were added to 

the supernatant and vortexed, followed by centrifugation to separate the organic and 

aqueous phases. The organic phase was collected and dried in a vacuum dryer. To 

detect PIP3 levels, the extracted lipids were dissolved in 20% DMSO, and spotted 

on nitrocellulose membranes. The dot membranes were blocked in TBS + 0.05% 

Tween-20 with 5% BSA for 1 h at room temperature and further incubated with 

anti-PIP3 antibody (1:50 dilution; MBL international) for 1 h at room temperature, 

followed by incubation with horseradish peroxidase-conjugated secondary 

antibodies. Chemiluminescence reagents (Nacalai and Thermo Scientific) were 

used for detection and the level of PIP3 was quantified by the Image J software.   

 

9. Immunocytochemistry 

HepG2 cells or primary hepatocytes at 5×104 cells/12 cm dish were seeded on 

gelatin-coated coverslips in the dish and transfected with siRNAs. After incubation 

at 37°C for 48 h, cells were stimulated with HGF as described above, fixed with 4% 

paraformaldehyde and permeabilized with 0.5% Triton-X100. Cells were then 

blocked with 1% BSA in PBS and immunostained with indicated primary 

antibodies. The fluorescent-labeled secondary antibodies and DAPI were used to 

detect target proteins and the nucleus, respectively. 
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10. Partial Hepatectomy 

Eight weeks old female mice were used for PH. Mice were anesthetized with 

isoflurane and subjected to 70% liver resection of the median and left lateral lobes 

as previously described66. The mice were euthanized at days after PH described in 

the figure 18 and 19. Livers were isolated from the mice, and liver weight/body 

weight was determined. A part of the liver tissue was fixed in 4% 

paraformaldehyde/PBS and then embedded in O.C.T. (Tissue-Tek®). For 

measuring serum aspartate aminotransferase (AST) and alanine transaminase 

(ALT) activities, blood was collected from the submandibular vein before sacrifice. 

AST and ALT activities were measured by the AmpliteTM fluorimetric assay kit 

(AAT Bioquest, Inc.). 

To measure hepatocyte proliferative activity, the livers removed from mice in 

the indicated times (0, 2 and 5 days) were fixed in 4% paraformaldehyde/PBS at 

4°C overnight, embedded in O.C.T., and sliced into 10 µm sections. Sections were 

permeabilized and blocked with 0.1% Triton-X/5% BSA/PBS for 30 min at room 

temperature, and then stained with anti-Ki-67 antibody (Abcam, 1:150 in 

5%BSA/PBS) and anti-albumin antibody (Bethyl, 1:150 in 5%BSA/PBS) at 4°C 

overnight. After washing with PBS, sections were stained with secondary 

antibodies and DAPI. The Ki-67-positive cells were counted and analyzed using the 

BZ-II Analyzer (KEYENCE). 

 

11. Statistical analyses 

All quantified data were expressed as means ± SEM and analyzed by Student 

t-test, one-way ANOVA with post hoc Tukey’s test, or two-way ANOVA with post 
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hoc Bonferroni’s test using the Graphpad Prism 5 software. 

  



23 
 

Results 

 

Arf6 is essential for Akt activation to promote HGF-dependent proliferation of 

HepG2 cells 

 

  To investigate the role of Arf6 in HGF-dependent cell functions of hepatocytes, I 

employed the human hepatocellular carcinoma cell line HepG2 cells as a model system. 

As our lab has previously demonstrated with fetal mouse hepatocytes12, Arf6 in HepG2 

cells was also activated in response to HGF stimulation (Fig. 8A). Knockdown of Arf6 

in these cells attenuated HGF-stimulated cell proliferation as assessed by counting cell 

number and immunostaining the proliferation marker Ki-67 (Fig. 8B-D). These results 

demonstrate that Arf6 mediates HGF signaling to regulate cell proliferation in HepG2 

cells. 

The PI3K/Akt axis is a key pathway of HGF-dependent cell proliferation39. Since 

Akt is recruited to the plasma membrane and phosphorylated by 

phosphoinositide-dependent kinase 1 to be activated, I examined the involvement of 

Arf6 in this process. HGF-stimulated Akt phosphorylation and increase in the 

phosphorylated-Akt (p-Akt) level at the plasma membrane were significantly 

suppressed by knockdown of Arf6 (Fig. 9A, B). On the other hand, HGF-dependent 

phosphorylation of Erk was not affected by knockdown of Arf6 (Fig. 9C), ruling out the 

involvement of Arf6 in the Ras/Raf/Erk pathway, another key pathway downstream of 

c-Met. The inhibition of Akt phosphorylation is unlikely to be attributable to the 

suppression of c-Met: the HGF-stimulated phosphorylation level of c-Met was not 

affected by Arf6 knockdown (Fig. 9C). These results, taken together, demonstrate that 



24 
 

Arf6 regulates the HGF-dependent Akt recruitment to the plasma membrane and its 

subsequent activation to promote hepatocyte proliferation. 

 

Arf6 promotes PIP2 and PIP3 generation by activating PIP5K1A upon HGF 

stimulation 

 

  Since the recruitment of Akt to the plasma membrane is mediated by PIP3 generated 

in response to various agonists including HGF67, I examined whether Arf6 is involved 

in the HGF-dependent PIP3 generation. HGF stimulation of HepG2 cells markedly 

increased the PIP3 production, which was almost completely suppressed by knockdown 

of Arf6 (Fig. 10A), suggesting that Arf6 is involved in HGF-dependent PIP3 production. 

PIP3 is generated by phosphorylation of PIP2 by PI3K. Our lab have previously 

demonstrated that the PIP2-generating enzyme PIP5K1 is directly activated by Arf621. 

These observations led me to speculate that Arf6 activates PIP5K1 to generate the PI3K 

substrate PIP2 upon HGF stimulation, thereby contributing to the increase in the PIP3 

levels. To address this assumption, effects of Arf6 knockdown on the PIP2 level were 

analyzed by immunocytochemistry with the PIP2-specific antibody. As was expected, 

HGF stimulation of HepG2 cells increased the PIP2 level at the plasma membrane, and 

knockdown of Arf6 significantly suppressed the production of PIP2 (Fig. 10B). 

Furthermore, it was found that PIP5K1A, but not PIP5K1B and PIP5K1C, interacted 

with Arf6 upon HGF stimulation of HepG2 cells (Fig. 11). These results, taken together 

with the result shown in Fig. 8A, suggest that Arf6 activated by HGF stimulation 

interacts with and positively regulates PIP5K1A to produce the PI3K substrate PIP2 at 

the plasma membrane, thereby increasing the PIP3 level. 
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Arf6 activated by HGF stimulation forms a complex with PIP5K1A and c-Met 

 

  The results obtained above, taken together with the report that Arf6 recruits its 

effector protein GGA3 (golgi-localized, gamma adaptin ear-containing, Arf-binding 3) 

to c-Met68, raised a possibility that activated Arf6 forms a complex with PIP5K1A and 

c-Met. To address this issue, interaction of c-Met with PIP5K1A and Arf6 was assessed 

by immunoprecipitation assay. As expected, interaction between c-Met and PIP5K1A 

was markedly enhanced by HGF stimulation, and knockdown of Arf6 drastically 

inhibited this interaction (Fig. 12A). Interestingly, under these conditions, Arf6 

constitutively interacted with c-Met (Fig. 12A). Consistent with the results obtained by 

immunoprecipitation assay, PIP5K1A predominantly locating in the cytosol in the 

resting state of the cell translocated to the plasma membrane and colocalized with c-Met 

upon HGF stimulation, which was again attenuated by knockdown of Arf6 (Fig. 12B). 

As Arf6 was activated by HGF stimulation as shown in Fig. 8A, the results shown 

above indicate that Arf6 activated by HGF stimulation is responsible for the PIP5K1A 

recruitment to the plasma membrane to form a complex with c-Met. To test this 

assumption, Q67L and T44N mutants of Arf6, which mimic GTP-bound active and 

GDP-bound inactive forms of Arf669, respectively, were expressed in HepG2 cells and 

their effects on the interaction of PIP5K1A with c-Met were analyzed. The interaction 

was observed in the cell overexpressed with Q67L but not with T44N (Fig. 13), 

supporting the notion that the active form of Arf6 recruits PIP5K1A to c-Met. 

Consistent with the result shown in Fig. 12A, Q67L and T44N mutants were both found 

to interact with c-Met (Fig. 13). 
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PIP5K1A is required for HGF-dependent Akt activation and subsequent 

proliferation of hepatocytes 

 

  To confirm the notion that PIP5K1A is involved in the PIP2 and PIP3 generation, Akt 

phosphorylation and cell proliferation through the production of the PI3K substrate PIP2 

upon HGF stimulation, I employed siRNAs that efficiently knocked down PIP5K1A in 

HepG2 cells (Fig. 14A). Knockdown of PIP5K1A significantly suppressed the 

HGF-dependent PIP2 and PIP3 production (Fig. 14B, C) suggesting that PIP5K1A is the 

major enzyme to provide the PI3K substrate PIP2. Consistent with our notion, Akt 

phosphorylation and the accumulation of p-Akt at the plasma membrane induced by 

HGF stimulation were significantly suppressed in PIP5K1A-knocked-down cells, while 

phosphorylation of c-Met and Erk were not affected (Fig.15A, B). Finally, 

HGF-dependent proliferation of HepG2 cells, which was assessed by cell number (Fig. 

16A) and Ki-67 staining (Fig. 16B), was also inhibited by PIP5K1A knockdown. Thus, 

these results strongly support our notion described above. 

To investigate whether the results obtained above with HepG2 cells are also the 

case in hepatocytes, I isolated hepatocytes from adult Pip5k1a-/- mice and analyzed Akt 

phosphorylation and proliferation stimulated by HGF. Consistent with the results 

obtained with HepG2 cells, these HGF-dependent phenomena were impaired in 

Pip5k1a-/- primary hepatocytes, whereas levels of p-c-Met and p-Erk1/2 were 

comparable to those of control cells (Fig. 17A, B). These results provide evidence that 

PIP5K1A plays an important role in HGF-dependent hepatocyte proliferation through 

the activation of Akt. 
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PIP5K1A is involved in liver regeneration after partial hepatectomy.  

 

  Arf6-/- mice exhibit severe defect in liver development12, while Pip5k1a-/- mice did 

not show obvious defects in embryonic liver development62. Nevertheless, the results 

obtained above demonstrate that PIP5K1A functions as a downstream effector of Arf6 

in the HGF-dependent cellular signaling pathway regulating hepatocyte proliferation. 

This conclusion and the fact that HGF plays a pivotal role in liver regeneration70,71, 

which absolutely requires hepatocyte proliferation, led me to speculate that PIP5K1A is 

involved in liver regeneration after liver injuries, but not in embryonic liver 

development. To address this issue, partial hepatectomy was employed to examine the 

significance of PIP5K1A in liver regeneration. In control mice, the liver weight 

recovered to 77.7 ± 1.57% of the non-resected liver weight after 5 days of 70% 

hepatectomy, while the recovery was slower in Pip5k1a-/- mice (Fig. 18A): the liver 

weight at 5 days after hepatectomy was 55.6 ± 3.86% of the non-resected liver weight. 

Analyses of the levels of alanine transaminase (ALT) and aspartate aminotransferase 

(AST), the liver injury markers released from hepatocytes into the serum, also revealed 

that repair of the injured liver was slower in Pip5k1a-/- mice (Fig. 18B, C): AST and 

ALT activities in sera of control mice were elevated at 1 day after partial hepatectomy 

and gradually decreased, reaching the basal level after 5 days, while they were 

significantly higher at 2 days and higher levels sustained till 5 days in Pip5k1a-/- mice. 

Finally, the increase in the number of proliferating hepatocytes observed after partial 

hepatectomy was significantly suppressed in Pip5k1a-/- mice (Fig. 19). Nevertheless, 

these results demonstrate that PIP5K1A is required for liver regeneration after partial 
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hepatectomy and hepatocyte proliferation during this event.
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Discussions 

 

In the present study, I provide evidence that Arf6 directly or indirectly bound to c-Met 

is activated by HGF stimulation of hepatocytes, and activated Arf6 recruits PIP5K1A to 

c-Met and activates it to produce the PI3K substrate PIP2, which is converted to PIP3 to 

activate Akt, thereby stimulating the HGF-dependent hepatocyte proliferation (Fig. 20). 

This model for the HGF signaling pathway mediated by Arf6 and PIP5K1A in 

hepatocyte proliferation gives insight into the molecular mechanism for liver 

regeneration after the liver injury. 

 

Recruitment of PIP5K1A to c-Met 

 

In this HGF signaling pathway, I speculated that Arf6, which constitutively 

interacts with c-Met, recruits PIP5K1A to c-Met, when it is activated by HGF 

stimulation. Although the active form of Arf6 can directly activate PIP5K121, I cannot 

totally exclude a possibility that another protein(s), which functions as a downstream 

effector of c-Met, facilitates or mediates the PIP5K1A recruitment to c-Met. This 

possibility is supported by the report that Arf6 and the c-Met adaptor protein Crk, which 

is involved in c-Met signaling by interacting with multiple downstream signaling 

molecules68, cooperate to recruit the Arf6 effector protein GGA3 to c-Met. GGA3 is an 

adaptor protein, which belongs to GGA family. In previous study, the HGF-dependent 

Arf6 activation was suppressed by transfecting GGA3-N194A mutant that unable to 

interact with Arf6-GTP68. Further, the study also showed the Crk binds with GGA3 in 

an HGF-independent manner, and this binding is required for GGA3 to bind with c-Met. 
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Thus, in the present study, it's possible an unidentified adaptor protein of c-Met may be 

a key determinant to recruit PIP5K1A to HGF-stimulated c-Met. Arf6 is capable of 

activating all PIP5K1 isozymes in vitro21. If our assumption is true and there exist 

several adaptor proteins of c-Met, each of which specifically interacts and recruits each 

of three PIP5K1 isozymes to cellular compartments in cooperation with Arf6, adaptor 

proteins determine PIP5K1 isozymes to be spatiotemporally activated by Arf6 in an 

agonist type-dependent manner. It is of interest to identify whether there exist adaptor 

proteins, which specifically interact with PIP5K1 isozymes to regulate their 

translocation dependently upon the types of agonists.  

 

Potential GEFs activating Arf6 upon HGF stimulation 

 

Another question raised in this study is how Arf6 is activated by HGF stimulation. 

Arf6 activation upon agonist stimulation is precisely regulated by Arf6-specific GEFs, 

which promote the exchange of GDP on Arf6 for GTP. Our lab have recently suggested 

that Grp1, EFA6B and EFA6D, of 7 Arf6-specific GEFs so far identified in mammalian 

cells, spatiotemporally activate Arf6 in the HGF-stimulated vascular endothelial cell to 

regulate β1 integrin recycling that is the critical cellar event for the HGF-induced tumor 

angiogenesis11. Attar et al., have shown that ARNO activates Arf6 in HGF-stimulated 

epithelial cells to regulate cell migration72. In addition, inhibition of cytohesins such as 

ARNO and Grp1 by the specific cytohesin inhibitor SecinH3 revealed that these 

cytohesin family members are required for the Arf6 activation in the signaling pathway 

for the HGF-mediated renal recovery after acute kidney injury73. Thus, several 

Arf6-sepcific GEFs are the possible candidates for the Arf6 activation in the signaling 
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pathway of HGF-stimulated hepatocyte proliferation. Further investigation, e.g., effects 

of knockdown of Arf6-specific GEFs on HGF-stimulated hepatocyte proliferation and 

analysis of their subcellular localization by immunocytochemistry, would identify an 

Arf6-specific GEF involved in the activation of Arf6 in response to the HGF stimulation 

of hepatocytes. 

 

 

Hepatocyte proliferation regulated by the Arf6-PIP5K1A axis might be a limited 

event for liver regeneration 

 

HGF-stimulated hepatocyte proliferation through the Arf6-PIP5K1A axis is 

strongly suggested to be a crucial cell event for liver regeneration as demonstrated in 

this study (Fig. 18). Although Arf6-/- mice exhibit embryonic lethality with a severe 

defect in liver development12, Pip5k1a-/- mice did not show obvious histological 

abnormality in the fetal liver up to 12 months62. These observations, taken together with 

the results obtained in this study, suggest that the Arf6-PIP5K1A axis is an important 

signaling pathway downstream of HGF/c-Met for liver regeneration in adult mice, but 

not for the fetal liver development: Arf6 activated by HGF stimulation of hepatocytes or 

hepatoblasts utilizes another unidentified downstream molecule(s) in the fetal liver 

development. This idea is supported by observations obtained in this study that before 

the liver injury by partial hepatectomy, weight, histological structure and proliferating 

cells of the liver in Pip5k1a-/- mice did not show obvious differences from those of 

control mice (Fig.18A and 19). Thus, it is plausible that hepatocyte proliferation 

regulated by the Arf6-PIP5K1A axis downstream of HGF/c-Met might be a limited and 
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crucial event for regeneration after liver damages, but not for fetal liver development. 

Our lab have previously demonstrated that fetal hepatocytes isolated from Arf6-/- 

embryos exhibit a defect in in vitro cord formation, whereas no defect was observed in 

HGF-stimulated proliferation12. On the other hand, I found that knockdown of Arf6 or 

its downstream effector PIP5K1A and deletion of PIP5K1A significantly suppressed 

HGF-stimulated cell proliferation of HepG2 cells (Fig. 8C and D, and Fig. 16A and B) 

and hepatocytes isolated from adult mice (Fig. 17B), respectively. These observations 

suggest that Arf6 and PIP5K1A are both dispensable for HGF-regulated cell 

proliferation of fetal hepatocytes, while HGF-dependent cell proliferation of adult 

hepatocytes absolutely requires the Arf6-PIP5K1A axis for liver regeneration. It is of 

interest to clarify a downstream effector of Arf6 functioning in the fetal liver 

development; its clarification would provide insight into the molecular mechanism of 

liver development. 

HGF is a critical growth factor regulating liver regeneration after liver injuries as 

well as liver development. Here, I defined a novel HGF signaling pathway regulating 

adult hepatocyte proliferation that is an essential cell phenomena for the recovery from 

liver damage. Our findings could provide insight into molecular mechanisms of liver 

regeneration and into novel therapeutic strategies for hepatic injury caused by infections, 

toxic materials and surgical resection. In addition, it is of interest to investigate the 

involvement of c-Met-Arf6-PIP5K1A signaling in hepatocellular carcinoma, since 

dysregulation of HGF/c-Met is highly related to this disease8.



33 
 

Conclusions 

 

In this study, I demonstrated that the Ar6-PIP5K1A axis plays an important role in 

HGF-stimulated hepatocyte proliferation. I found that depletion of Arf6 or PIP5K1A in 

HepG2 cells suppresses HGF-stimulated proliferation, PIP2 and PIP3 generation, and 

activation of Akt. Similar phenomena were observed in Pip5k1a-/- mouse hepatocytes. I 

also showed that Arf6 recruits PIP5K1A to c-Met in response to HGF stimulation. 

Finally, I demonstrated that hepatocyte proliferation and liver regeneration after acute 

liver injury was impaired in Pip5k1a-/- mice. From the result obtained, I proposed the 

model shown in Figure 20: Arf6 activated by HGF stimulation recruits PIP5K1A to 

c-Met and activates it to produce PIP2 and PIP3, which in turn activates Akt to promote 

hepatocyte proliferation, thereby facilitating liver regeneration after liver injury. The 

present study provides novel insights into the hepatic response to HGF stimulation and 

its molecular mechanism. Furthermore, since HGF is involved in liver regenerations 

after acute liver failures, this work may provide novel therapeutic strategies for 

promoting liver regeneration after hepatic injury.   
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Figure 1. Arf isoforms and their intracellular localization. Arf family proteins are classified into 
three classes: class I Arf1 to Arf3, class II Arf4 and Arf5, and class III Arf6. Class  I and class II of 
Arfs localize at the golgi apparatus and the endoplasmic reticulum. Arf6, the sole member of class 
III localizes at the plasma membrane end endosomes.	
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Figure 2. A model for the activation-inactivation cycle of Arf6. GDP-bound inactive Arf6 is 
activated by the exchange of GDP to GTP. This process is promoted by guanine nucleotide 
exchange factors (GEFs). Activated Arf6 binds to effector proteins to regulate various cellular 
functions. Thereafter, GTP bound to Arf6 is hydrolyzed by the intrinsic GTPase activity of Arf6 
with the aid of GTPase-activating proteins (GAPs).  	
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Figure 3. The list of Arf GEF families. There have been 15 Arf GEFs identified in human, which 
are classified into 5 families. Among them, 7 GEFs have been shown to act on Arf6.	



Phospholipid-
metabolizing enzymes	

GTPase-activating protein 
(GAP)	 Other proteins	

•  PLD1/2 
•  PIP5K1A/B/C 	

•  ACAP1/2 
•  ARAP2/3 
•  ASAP1/2 
•  SMAP1/2 
•  GIT1/2 	

•  Sec10 
•  SCAMP2 
•  AP-2 and Clathrin 
•  JIP3  
•  Arfophilin 	

Table 1. Arf6 effector proteins. Arf6 regulates various cellular functions through interacting with 
these effector proteins.	



Figure 4. Schematic diagram of primary structures of PIP5K1 isozymes and their 
nomenclatures. There are three isozymes of  PIP5K1 and several splicing variants of PIP5K1C in 
mouse and human. Indicated numbers correspond to the amino acid positions in the mouse or 
human isozymes.	
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Figure 8. Arf6 is essential for HGF-dependent proliferation of HepG2 cells. (A) After HepG2 
cells were stimulated without or with 10 ng/mL of HGF at 37°C for 10 min, active GTP-Arf6 in the 
cell was analyzed by Western blotting with anti-Arf6 antibody (left panels) and quantified (right 
panel). (B) HepG2 cells were transfected with 10 nM of control siRNA (siCtrl) or siRNAs for Arf6 
(siArf6 #1 and siArf6 #2). After 48 h of transfection, Arf6 protein levels were detected by Western 
blotting (left panels) and quantified (right panel). (C) HepG2 cells transfected with 10 nM of 
siRNAs for control and Arf6s were stimulated without or with 10 ng/mL of HGF at 37°C for the 
indicated time, and the cell number was counted. (D) HepG2 cells transfected with siRNAs for 
control and Arf6 were stimulated with HGF for 24 h and stained for the proliferation marker Ki-67 
(green) and for nuclei with DAPI (blue) (upper panels), and Ki-67-positive cells were counted 
(lower panel). Scale bar, 20 mm. Statistical analyses: Student t-test (A), one-way ANOVA with post 
hoc Tukey’s test (B), and two-way ANOVA with post hoc Bonferroni’s test (C and D). *p<0.05; 
**p<0.01; ***p<0.001.
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Figure 9. Arf6 is required for Akt activation in HepG2 cells. (A) HepG2 cells transfected with 
siRNAs for control and Arf6 were stimulated with HGF as in Fig. 8A. Proteins in cell lysates were 
immunoblotted with antibodies for the indicated proteins (left panels), and p-Akt levels were 
quantified (right panel). (B) HepG2 cells transfected with siRNAs for control and Arf6s were 
stimulated with HGF as in Fig. 8A, and immunostained for p-Akt (green) and for nuclei with DAPI 
(blue). Scale bar, 10 mm. (C) HepG2 cells transfected with siRNAs for control and Arf6 were 
stimulated with HGF as in Fig. 8A. Proteins in cell lysates were immunoblotted with antibodies for 
the indicated proteins (left panels), and levels of p-c-Met and p-Erk were quantified (middle and 
right panels, respectively). All quantification data represent means ± SEM from at least three 
independent experiments. Statistical analyses: Two-way ANOVA with post hoc Bonferroni’s test (A 
and C). **p<0.01; ***p<0.001.
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Figure 10. Arf6 promotes PIP2 and PIP3 production upon HGF stimulation of HepG2 cells. 
(A) HepG2 cells transfected with siRNAs for control and Arf6 were stimulated with HGF as in Fig. 
8A. After lipids were extracted from the cells, PIP3 was detected by dot blotting with anti-PIP3 
antibody (left panels). Arf6 and actin in cell lysates were also detected by Western blotting. PIP3 
levels were quantified (right panel). (B) HepG2 cells transfected with siRNAs for control and Arf6 
were stimulated with HGF as in Fig. 8A, and immunostained for PIP2 (green) and stained for nuclei 
with DAPI (blue) (left panels). The number of PIP2 puncta shown by arrow heads in the images was 
counted and normalized by cell number (right panel). Scale bar, 10 mm. All quantification results 
represent means ± SEM from at least three independent experiments. Statistical analyses: two-way 
ANOVA with post hoc Bonferroni’s test (A and B). **p<0.01; ***p<0.001.
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Figure 12. PIP5K1A binds to HGF-stimulated c-Met in a manner dependent on Arf6. (A) After 
HepG2 cells transfected with siRNAs for control and Arf6 were stimulated with 10 ng/mL of HGF 
for the indicated time, c-Met was immunoprecipitated with anti-c-Met antibody, and co-precipitated 
Arf6 and PIP5K1A were assessed by Western blotting with anti-Arf6 and anti-PIP5K1A antibodies, 
respectively (upper panels). Signal intensities of co-precipitated PIP5K1A (lower-left panel) and 
Arf6 (lower-right panel) were quantified. Shown are means ± SEM from three independent 
experiments. Statistical analyses: two-way ANOVA with post hoc Bonferroni’s test (for PIP5K1A 
bound to c-Met) and one-way ANOVA with post hoc Tukey’s test (for Arf6 bound to c-Met). 
*p<0.05. (B) HepG2 cells transfected with siRNAs for control and Arf6 were stimulated with HGF 
as in Fig. 8A, and immunostained for c-Met and PIP5K1A. Nuclei were also stained with DAPI. 
Area of squares in images were magnified and shown in the bottom. Scale bar, 10 mm. Green, c-
Met; Red, PIP5K1A; Blue, DAPI. 
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transfected with a control plasmid and plasmids for Flag-tagged Arf6 mutants, Q67L and T44N. 
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assessed by Western blotting with anti-PIP5K1A and -Flag antibodies, respectively. 
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Figure 14. Knockdown of PIP5K1A in HepG2 cells suppresses HGF-dependent PIP2 and PIP3 
production. (A) HepG2 cells were transfected with 10 nM of siRNAs for control and for PIP5K1A, 
and the PIP5K1A protein levels were detected by Western blotting (upper panels) and quantified 
(lower panel). (B and C) HepG2 cells transfected with siRNAs for control and PIP5K1A were 
simulated with HGF as in Fig. 8A, and PIP2 production (B) and PIP3 production (C) were assessed 
as in Fig 10B and Fig 10A, respectively.  Green, PIP2; Blue, DAPI; Scale bars, 10 mm in (B). The 
quantification results shown are means ± SEM from at least three independent experiments. 
Statistical analyses: two-way ANOVA with post hoc Bonferroni’s test. **p<0.01; ***p<0.001. 
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Figure 15. Knockdown of PIP5K1A in HepG2 cells suppresses HGF-dependent Akt activation. 
HepG2 cells transfected with siRNAs for control and PIP5K1A were simulated with HGF as in Fig. 
8A. Phosphorylation of Akt, c-Met and Erk (A), and subcellular localization of p-Akt (B) were 
assessed as in Fig. 9A and 9B, respectively. Green, p-Akt; Blue, DAPI; Scale bar, 10 mm in (B). 
The quantification results shown are means ± SEM from at least three independent experiments. 
Statistical analyses: two-way ANOVA with post hoc Bonferroni’s test. **p<0.01.
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Figure 16. Knockdown of PIP5K1A in HepG2 cells suppresses HGF-dependent cell 
proliferation. HGF-dependent proliferation of PIP5K1A-knocked-down HepG2 cells was 
assessed by counting cell number (A) and staining Ki-67 (B). Scale bar, 20 mm. Green, Ki-67; 
Blue, DAPI. The quantification results shown are means ± SEM from at least three independent 
experiments. Statistical analyses: two-way ANOVA with post hoc Bonferroni’s test. **p<0.01; 
***p<0.001. 
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Figure 17. HGF-promoted Akt phosphorylation and cell proliferation are impaired in 
Pip5K1a-/- hepatocytes. Primary hepatocytes prepared from adult Pip5k1a+/+ (control) and 
Pip5k1a-/- mice were stimulated with 10 ng/mL of HGF for the indicated time, and Akt 
phosphorylation (A) and cell proliferation (B) were assessed as in Fig. 9A and 8D, respectively. 
Phosphorylation of c-Met and Erk (A) were also assessed as in Fig. 9C. Quantification results 
represent means ± SEM from at least three independent experiments. Scale bar, 50 mm. Statistical 
analyses: two-way ANOVA with post hoc Bonferroni’s test. ***p<0.001. 
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Figure 18. Deletion of Pip5k1a impairs liver regeneration after partial hepatectomy. (A) 
Livers of Pip5k1a+/+ and Pip5k1a-/- mice were resected by 70% as described in Materials and 
Methods. At the indicated time after partial hepatectomy, livers were excised from mice, and 
ratios of liver weight/body weight were calculated. (B, C) Sera were collected from the mice in 
(A) at the indicated time after partial hepatectomy, and ALT (B) and AST (C) activities in sera 
were measured. All quantification results represent means ± SEM (n = 4 for each genotype). 
Statistical analyses: two-way ANOVA with post hoc Bonferroni’s test. *p<0.05; ***p<0.001. 
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Figure 19. Hepatocyte proliferation during liver regeneration is impaired in Pip5k1a-/- mice. 
Frozen liver sections prepared from control and Pip5k1a-/- mice at the indicated time after partial 
hepatectomy were subjected to immunostaining for Ki-67 (green) and albumin (red) (left panels). 
Nuclei were also stained with DAPI (blue). Scale bar, 100 mm. The number of Ki-67-positive 
hepatocytes were counted (right panel). All quantification results represent means ± SEM (n = 4 
for each genotype). Statistical analyses: two-way ANOVA with post hoc Bonferroni’s test. 
*p<0.05; ***p<0.001. 
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Figure 20. A model for molecular mechanisms of HGF-induced hepatocyte proliferation. In 
this model, it is not clarified whether Arf6 directly interacts with c-Met or an unidentified factor 
mediates the interaction between Arf6 and c-Met.


