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Actin is one of the most important eukaryotic proteins, playing critical roles in 

a variety of cellular functions. Higher plants express multiple actin isoforms in a manner 

dependent on tissues and organs, and also on the stage of development. Genetic analyses 

suggested that individual actin isoforms have specific roles in cells. Moreover, it was 

demonstrated that different Arabidopsis actin isoforms possess distinct biochemical 

properties. These results suggest that plants developed a mechanism to diversify actin 

functions by expressing multiple functionally non-equivalent actin isoforms. However, it 

is unclear if and how multiple actin isoforms perform specific functions in plant cells. 

In this study, I constructed plasmids that express major Arabidopsis vegetative 

actin isoforms (AtACT2 and AtACT7) directly fused to a fluorescent protein. By 

optimizing the linker sequence between actin and the fluorescent protein, I succeeded in 

transiently expressing and observing filaments containing expressed actin isoforms 

directly fused with the fluorescent protein in Arabidopsis protoplasts.  

Different coloristic fluorescent proteins fused with AtACT2 and AtACT7 co-

expressed in Arabidopsis protoplasts showed filaments containing both of the vegetative 

actin isoforms and those containing either one of the two vegetative actin isoforms. In 

leaf mesophyll cells of Nicotiana benthamiana, AtACT2 and AtACT7 were co-

polymerized in a segregated manner along the filaments. In epidermal cells, actin 

filaments with different thicknesses were observed. I speculate that thick filaments are 

bundles, on the other hand, thin filaments are individual filaments or bundles of a small 

number of filaments. Surprisingly, AtACT2 and AtACT7 tended to polymerize into 

different thicknesses of filaments. AtACT2 was incorporated into thinner filaments than 

AtACT7, whereas AtACT7 was incorporated into thick bundles. I concluded that 

different actin isoforms are capable of constructing unique filament arrays, depending on 

tissues. These observations will help to understand the function of individual actin 

isoforms in plants. 

Interestingly, staining patterns by two generic actin filament probes, Lifeact and 



mTalin1, were different between filaments containing AtACT2 and those containing 

AtACT7 in leaf epidermal cells. Especially, Lifeact only partially labeled actin filaments 

containing AtACT2 in vivo. The binding analyses of Lifeact in vitro revealed that Lifeact 

was capable of binding to purified AtACT2 filaments, suggesting the competition of 

Lifeact with endogenous actin binding proteins along AtACT2 filaments in vivo. Because 

the two probes consist of the actin binding domains of different actin binding proteins, it 

was further suggested that filaments containing different actin isoforms bind specific 

actin binding proteins in vivo.  

Finally, I attempted to establish plant lines expressing AtACT7 fused with GFP. 

However, expression of GFP-AtACT7 caused growth defects. The negative effect caused 

by expressing actin fused with a fluorescent protein has been reported in various 

organisms. Nevertheless, the direct actin observation method developed in this study is a 

powerful tool for imaging of not only actin isoforms but also mutant actins, and to 

broaden the range of research about actin cytoskeleton in plants. Hopefully, this problem 

can be alleviated by reducing the expression level of actin fused with a fluorescent protein 

within the detection range of the camera of the microscope, when establishing a plant line 

expressing actin fused with a fluorescent protein. 
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Actin 
 

Actin was first discovered in 1942 by Straub from rabbit skeletal muscle1. Each 

actin molecule binds nucleotide: ADP, ADP + Pi or ATP, complexed with a divalent ion 

(Mg2+ or Ca2+). Monomeric or globular actin (G-actin) reversibly assembles into 

filamentous actin (F-actin). The actin filament is a double helical chain and has a distinct 

polarity2. One end is called the barbed end and the other is called the pointed end. The 

elongation rates from these two ends are different, and the barbed end grows faster than 

the pointed end3. As the polymerization progresses, the concentration of G-actin in 

solution is reduced until an equilibrium is reached. In this steady state, association and 

dissociation of G-actin continue, and in the presence of ATP, an asymmetric 

polymerization/depolymerization process called treadmilling occurs4,5. During 

treadmilling, G-actin bound with ATP associates with actin filaments preferentially at the 

barbed end, and the ATP bound to G-actin is hydrolyzed to ADP and phosphate. Actin 

bound with ADP dissociates from the pointed end after phosphate is released6. 

In all eukaryotes including fungi, animals and plants, actin is involved in a large 

variety of cellular functions. In plant cells, actin participates in activities such as cell 

division and morphogenesis, tip growth, movement and repositioning of organelles, 

cytoplasmic streaming, fertilization, hormone transport and responses to external 

signals7–11. In this way, actin is one of the most important proteins to fulfill various 

cellular functions. Arabidopsis actin consists of 376 or 377 amino acid residues. It is well 

known that the amino acid sequence of actin is highly conserved among most of the 

eukaryotic actins. For example, the sequence homology between rabbit skeletal muscle 

actin and Arabidopsis AtACT2 actin is 86%.  
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Actin binding proteins 
 

Actin achieves above-mentioned diverse and complex functions by interaction 

with various actin-binding proteins (ABPs). ABPs regulate actin structures and dynamics 

by modifying the rates of polymerization, depolymerization and nucleation, and by 

inducing branching, bundling, unbundling, severing, capping, etc. (Fig. 1). Myosin moves 

various cargos along actin filaments or use them as scaffolds to change the cell shape and 

cell motility12. Profilin is one of the most important ABPs13,14. Profilin binds to G-actin 

and forms a heterodimeric complex. Actin bound with profilin is unable to spontaneously 

nucleate polymerization of actin filaments and to associate with the pointed ends of 

filaments. Therefore, profilin acts as a sequestering protein, which maintains high levels 

of G-actin pool when the barbed ends are capped15,16. Cyclase-associated protein (CAP) 

is also a G-actin binding protein. CAP increases the rate of nucleotide exchange on actin 

in plants17. Formin is another group of important ABPs and promotes incorporation of G-

actin bound with profilin to the barbed ends of filaments18. Actin depolymerization factor 

(ADF)/cofilin is a major group of actin severing factors. ADF is probably more abundant 

in plant cells than in other eukaryotes, since ADF is present at a 1:3 molar ratio with actin 

(ADF: actin) in Arabidopsis leaf cells19 whereas in platelets, the molar ratio of cofilin to 

actin is 1:1020. ADF/cofilin binds to both G-actin and actin filaments to promote actin 

dynamics. Severing actin filaments results in generation of new filament barbed ends for 

polymerization21. Polymerization is usually terminated by capping of the barbed end with 

a capping protein22. Thus, polymerization of actin in vivo is strictly regulated in a manner 

different from that in vitro. In addition, a cell contains many more ABPs including villin23, 

fimbrin24 and Arp2/3 complex25, each of which confers specific functions on actin 

filaments by modifying network structures of the filaments such as bundling or branching. 

However, it is poorly understood how each ABP selectively binds to appropriate actin 

molecules for performing specific functions in a cell, although several mechanisms have 

been suggested, as described below. 

 



Regulation of actin binding proteins 
 

 The regulation mechanisms for binding of ABPs to actin molecules are broadly 

separated into following two mechanisms. One mechanism is the biochemical regulation 

of ABPs including phosphorylation, and binding of a small molecule such as Ca2+ and 

nucleotide7. For example, biochemical study revealed that the activities of gelsolin and 

villin are regulated by Ca2+26,27 and inhibited by PPI, polyphosphoinositide, which is the 

second messenger involved in cellular signaling28. Activity of cofilin is suppressed by 

phosphorylation at the N-terminal Ser-329. Another mechanism is that actin itself affects 

the binding of ABPs. Actin is subject to various posttranslational modifications which 

affect the interaction with ABPs30. For example, the N-terminal acetylation of actin 

molecules facilitates actomyosin interactions31. Moreover, the affinity of certain ABPs, 

such as cofilin and profilin, varies with the nucleotide state of actin molecules32,33. The 

conformational flexibility of actin filaments is also important to regulate the affinity for 

or activity of ABPs. Restriction of conformational changes of actin filaments inhibits the 

motility of myosin34. Moreover, it is suggested that conformational changes of actin 

filaments induced by binding of ABPs such as myosin and cofilin affect the affinity for 

these ABPs35. In this study, I focus on actin isoforms as the component in the latter 

mechanism.  

 

  



Actin isoforms 
 

 Here, isoform is defined as a set of highly similar proteins that have a certain 

number of amino acid substitutions, but excluding splicing isovariants. Higher plants and 

animals have actin isoforms in this sense. The model plant, Arabidopsis thaliana, has 

eight actin isoforms that are grouped into two classes, vegetative (AtACT2, 7 and 8) and 

reproductive (AtACT1, 3, 4, 11 and 12) actins, according to their expression patterns (Fig. 

2)36,37. Interestingly, the Arabidopsis actin isoforms have more non-conservative amino 

acid substitutions than do mammalian actin isoforms, and these amino acid substitutions 

in Arabidopsis actin isoforms are frequently located on the surface of the molecule36. For 

example, there are 28 amino acid substitutions between AtACT2 and AtACT7 which are 

scattered throughout the molecule (Fig. 3)36. This is in sharp contrast to the difference 

between human cytoplasmic β and γ actin isoforms, the two major actin isoforms in non-

muscle cells, that have only four conservative changes at the N-terminus (Fig. 3)38.  

Previous genetic studies showed distinct expression patterns of actin isoforms 

and their possible specific functions39. Loss of function of the reproductive AtACT11 

caused delayed pollen germination and enhanced pollen tube growth, accompanied by an 

increase in the rate of actin turnover40. The AtACT7-, but not AtACT2-, knock down 

plants were slow to produce callus tissues from roots or leaf tissues in response to 

hormones to induce callus41. A defect in root hair growth caused by the AtACT2 knock-

out was not complemented by over-expression of AtACT742. Ectopic expression of a 

reproductive actin isoform in vegetative tissues caused abnormal growth by accumulating 

aberrant bundled filaments43. These phenotypes, which resulted following the ectopic 

expression of a reproductive actin, were suppressed by the ectopic co-expression of 

corresponding reproductive ABPs, profilin or ADF/cofilin44,45. These reports imply that 

individual actin isoforms interact with specific ABPs to fulfill a specific cellular function.  

Moreover, different Arabidopsis actin isoforms, more specifically, major 

vegetative actin isoforms, AtACT2 and AtACT7, and major reproductive actin isoforms, 

AtACT1 and AtACT11, have significantly different biochemical properties as mentioned 



below (Table. 1)46. Phalloidin bound normally to the filaments of the two reproductive 

actins as well as to the filaments of skeletal muscle actin. However, phalloidin bound only 

weakly to AtACT7 filaments and hardly at all to AtACT2 filaments, despite the conserved 

sequence of the phalloidin-binding site. Polymerization and phosphate release rates 

among these four actin isoforms were also significantly different. Moreover, interactions 

with profilin were also different among the four Arabidopsis actin isoforms. Two profilin 

isoforms, PRF1 and PRF2, inhibited the polymerization of ACT1, ACT11 and ACT7, 

while ACT2 was only weakly affected.  

These genetic and biochemical studies suggested that individual actin isoforms 

fulfill specific roles in plant cells. In other words, actin isoform is one important factor to 

consider for understanding the actin regulation mechanism. However, little is known 

about how differently actin isoforms work in plant cells. In this study, I attempted to 

reveal the subcellular distribution of different actin isoforms and between actin isoforms 

and ABPs. In Chapter I, new actin probes which are fusion proteins of actin and a 

fluorescent protein were developed for direct imaging of individual actin isoforms in plant 

cells. The expression of actin fused with a fluorescent protein revealed the distributions 

of different vegetative actin isoforms in plant leaf cells. In Chapter II, I analyzed the 

binding of actin binding domain derived from ABPs to actin filaments of each vegetative 

actin isoform by imaging and biochemical experiments, in order to understand the 

relationship between ABPs and actin isoforms. This observation suggested the presence 

of ABPs that prefer actin filaments containing particular actin isoforms. In Chapter III, I 

applied the actin fused with a fluorescent protein to investigate the nature of a mutant 

actin in plants, with a combination of a biochemical approach. Moreover, I attempted to 

establish a transgenic plant line expressing actin fused with a fluorescent protein, with 

the aim of observing the localization of individual actin isoforms or mutant actin in 

various tissues under various conditions in plants. 

 

 

  



 
 
 
 
 
 
 
 
 
 
 
 

General Discussion 
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In Chapter I, I compared the intracellular distribution between the two 

vegetative actin isoforms, AtACT2 and AtACT7, in N. benthamiana leaf cells. This study 

revealed that different actin isoforms form unique filament arrays in leaf epidermal and 

spongy mesophyll cells. It is speculated that another vegetative actin isoform, AtACT8, 

behaves the same way as AtACT2, because the difference of amino acid sequences 

between AtACT2 and AtACT8 is only one residue (Glu-3 to Asp) and previous genetic 

study demonstrated functional equivalent between AtACT2 and AtACT842. Gunning et 
al. proposed that there are two different types of relationships between function and 

isoform of actin; a one-filament-one-function system and a universal force provider 

system67. Many bacteria have major three types of actin-like proteins, MreB, FtsA and 

ParM, whose amino acid sequences are dramatically different among these actin-like 

proteins (e.g., only~20% identity between ParM and MreB)118. MreB is involved in 

maintenance of the cell shape and cell wall synthesis119. FtsA participates in cell division 

together with a tubulin homolog, FtsZ, for forming Z-rings120. ParM (also called StbA) is 

responsible for plasmid segregation and stability121. In this way, individual actin-like 

proteins, which have completely different roles, are referred to as “a one-filament-one-

function system”. In contrast, in eukaryotes such as fungi and animals, actin is referred 

to as “a universal force provider”67. In these organisms, actin fulfills various complex 

functions through interactions with a variety of ABPs. Gunning et al. emphasized that 

diversified tropomyosins increase the actin functions67. In addition to the regulation by 

ABPs, the importance of the regulation by actin itself such as flexibility of actin filaments 

has also attracted attention122,123. For example, it is suggested that cooperative 

conformational changes within actin filaments alter affinities for different ABPs35. In 

other eukaryotes, plants, Gunning et al. focused on the diversification in actin isoforms67. 

However, the relationship between actin isoforms and these actin regulation systems in 

plant cells has been unclear. I propose the following hypothesis through this study. In leaf 

spongy mesophyll cells, AtACT2 and AtACT7 co-polymerized in a segregated manner 

and appear to function cooperatively. Thus, the regulation system of vegetative actin in 

mesophyll cells seems to belong to the universal force provider system. In contrast, 

AtACT7 and AtACT2 were incorporated into obviously different types of filaments in 

epidermal cells. In leaf epidermal cells, AtACT2 and AtACT7 might have taken an 

evolutionary route toward partially isoform-specific functions, although not quite to the 

state of one-filament-one function system as seen in bacteria. Since genetic study showed 
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both functional redundancy and specificity of Arabidopsis actin isoforms42, it is 

reasonable to suppose that plant actins employee both actin functionalization systems of 

bacteria and fungi/animal actin. Our observations about the localization of different 

Arabidopsis actin isoforms should provide platforms to understand functions of actin 

isoforms in plant cells. 

Genetic studies suggested that, in addition to leaf epidermal cells discussed 

above, root hair also employs the one-filament-one-function like system42. To provide the 

basis for a one-filament-one-function like system in plants, it is considered that plants 

diverged actin isoforms to fulfill complex actin functions. Šlajcherová et al. described 

that the total number of actin family members partially reflects the complexity of the 

organisms; e.g., algae contain only 2-3 actin isoforms while gymnosperms and 

angiosperms have 8 or more isoforms (Table 2)39. Perhaps those diversified actin isoforms, 

which presumably perform specific functions in specific tissues, may be the products of 

an evolutionarily acquired strategy for immobile plants to respond to various 

environmental stresses.  

In Chapter II, I analyzed the binding between each actin isoform and ABD, 

mTalin1 and Lifeact, in vivo and in vitro, for understanding the relationship between actin 

isoforms and ABPs. The results suggested some ABPs bind specifically to specific actin 

isoforms. As mentioned in General Introduction, the amino acid substitutions among 

Arabidopsis actin isoforms are more frequently located on the surface of the molecule 

than human actin isoforms36. Actually, there are amino acid substitutions between 

AtACT2 and AtACT7 in the residues implicated in interaction with major ABPs (Fig. 26). 

In the previous study, I demonstrated that the extent of phalloidin binding is significantly 

different between purified AtACT2 and AtACT7 filaments, even though the amino acid 

sequences of phalloidin binding site are identical46. This result suggested that the amino 

acid substitutions between these vegetative actins allosterically affect the global structure 

of the actin molecules, resulting in different conformations at the phalloidin binding site. 

These different filamentous structures also would affect the affinities for the ABPs. 

Further research on the relationship between actin isoforms and ABPs would clarify the 

molecular regulation mechanism of individual actin isoforms. However, the interactions 

between actin isoforms and ABPs are probably complex because ABPs also have multiple 

isoforms (e.g., Arabidopsis has 12 ADF, 5 profilin and 21 formin isoforms)39,67.  

The direct actin observation method in plant cells, which I developed in this 



(

study, is useful to study not only isoforms but also mutant actin. Moreover, the method 

will allow observation of phenomena which an indirect observation method using ABD 

is unable to detect, such as treadmilling and direct actin dynamics including elongation, 

depolymerization, annealing, and severing. Although the expression of the GFP-actin 

fusion protein currently causes the dwarf phenotype in plants, this problem should be 

solved in the near future. I believe that this novel observation method of individual actin 

isoforms will be a powerful tool for future actin research in plants.  
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Table	1.	Biochemical	properties	of	Arabidopsis actin	isoforms	in	comparison	with	
skeletal	muscle	actin.	
The	kinetics	of	polymerization	and	phosphate	release	rates	were	normalized	by	
dividing	by	the	rates	of	skeletal	muscle	actin.	This	table	is	modified	from	Kijima	et	al.	
(2016).	
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Species
The	number	
of	actin	
genes

Algae

Volvox carteri 2

Chlamydomonas reinhardtii 1-2

Porphyra purpurea 2-3

Moss	 Physcomitrella patens 10

Gymnosperms Pinus taeda 10

Monocots
Zea mays	 21

Oryza sativa 8-10

Dicots	

Populus trichocarpa 8-9

Glycine	max 17

Arabidopsis	thaliana 10

Table	2.	The	number	of	actin	genes	in	representative	plant	species.
The	total	number	of	actin	gene	family	members	partially	reflects	the	complexity	of	the	
organisms.	Modified	from	Slajcherová et	al.	(2012).
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Figure	1.	The	functions	of	actin	binding	proteins.	
Intracellular	actin	functions	are	regulated	by	various	actin-binding	proteins.	Actin-
binding	proteins	regulate	actin	structures	and	dynamics	by	modifying	the	rates	of	
polymerization,	depolymerization and	nucleation,	and	by	inducing	branching,	bundling,	
unbundling,	severing,	capping,	etc..	Myosin	moves	various	cargos	along	actin	filaments	
or	use	them	as	scaffolds	to	change	the	cell	shape	and	cell	motility.
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Figure	2.	Actin	isoforms	of	plants.	
(A)	Arabidopsis	thaliana	has	eight	actin	isoforms.	These	isoforms	are	divided	into	two	major	
classes,	reproductive	(Rep)	and	vegetative	(Veg),	and	five	subclasses	that	are	numbered	1-5.	This	
actin	family	tree	is	modified	from	Kandasamy et	al.	(2002).	(B)	Phylogenetic	relationships	among	A.	
thaliana,	Populus trichocarpa,	Oryza sativa	and	Physcomitrella patens	actin	isoforms.	Red	and	
green	boxes	indicate	reproductive	and	vegetative	A.	thaliana actin	isoforms,	respectively.	The	last	
“_PT”,	“_OS”	and	“_PP”	of	individual	accession	numbers	indicate	Populus trichocarpa,	Oryza sativa	
and	Physcomitrella patens	actin	isoforms,	respectively.	This	phylogenetic	tree	was	constructed	
using	Clustal W	website	(http://www.genome.jp/tools-bin/clustalw)	and	visualized	by	Fig	Tree	
1.4.3.	The	accession	numbers	and	amino	acid	sequences	of	all	actins	were	acquired	from	the	NCBI	
Protein	database	(https://www.ncbi.nlm.nih.gov/protein/).	

types, when plants were grown on soil under normal
growth conditions (Gilliland et al., 1998). However, it still
seemed possible that ectopic expression of actins in trans-
genic plants would produce strong phenotypes and provide
valuable information regarding the physiological roles of the
actin subclasses. Ectopic expression has been widely used to
analyze the role of a variety of novel gene products, includ-
ing that of floral homeotic or organ identity genes in plants
(Mizukami and Ma, 1992; Uberlacker et al., 1996; Jack et al.,
1997; Kirk et al., 1998; Jang et al., 1999; Kater et al., 2000).
However, this type of misexpression study has not been
used to dissect the function of isovariants encoded by plant
cytoskeletal gene family members, although this method has
been successfully used to analyze the role of fly and animal
cytoskeletal gene products (Hutchens et al., 1997; Kumar et
al., 1997; Fyrberg et al., 1998). Herein, we examine the effects
on plant growth and development of ectopic expression of a
reproductive actin (ACT1) under the control of a vegetative
actin gene (ACT2) promoter. We chose ACT1 and ACT2

because they are the two most divergent and strongly ex-
pressed reproductive and vegetative actins, respectively, in
Arabidopsis. Therefore, the broad aim of our investigation is
to test the hypothesis that plant actin gene families contain
ancient and divergent isovariant subclasses that have spe-
cialized protein functions linked to their specific expression
patterns.

The data presented herein show that misexpression of
ACT1 in vegetative tissues is very toxic, when it makes up
significantly high level of the total actin pool, inducing
alterations in the organization of actin filaments and causing
severe structural and developmental perturbations in the
transgenic plants. The ACT1 misexpression-induced dwarf-
ism in plants, in addition to delayed flowering, significantly
reduced organ size and altered branching pattern of the leaf
trichomes and inflorescence stem. On the other hand, control
plants overexpressing ACT2 isovariant to similar levels did
not reveal any obvious phenotype. Our studies suggest that
even though ACT1 and ACT2 are structurally similar, hav-
ing !94% amino acid identity, they must have different
functional capabilities. Isovariant specialization and interac-
tion with the actin-associated proteins control F-actin assem-
bly and organization and thereby plant growth and mor-
phogenesis.

MATERIALS AND METHODS

Plant Material
Arabidopsis thaliana (ecotypes RLD and Columbia) plants were
grown on germination medium (Murashige and Skoog salts [Life
Technologies, Rockville, MD] and vitamins [Sigma, St. Louis, MO]
supplemented with 1% sucrose and 0.8% Phytagar [Life Technolo-
gies]) or on soil and maintained in growth chambers at 22°C with a
16-h photoperiod. Phenotypic assessments of wild-type and kana-
mycin-resistant transgenic plants were made at different stages of
development. For leaf length measurement, we used the two largest
rosette leaves from 15 plants each of dwarf, medium, and normal
transgenic plants at the time of bolting. To determine silique size,
we measured the length of two mature siliques from 10 plants
belonging to each category.

Construction of Binary Vectors and Plant
Transformation
Two constructs were made for the present ectopic expression study:
1) A2P-A1, a misexpression construct that contains the 1.1-kb full-
length ACT1 cDNA inserted between a 1.3-kb promoter and the
terminator region of ACT2 (Figure 1B); 2) A2P-A2, a control con-
struct in which the ACT1 cDNA was replaced with a 1.1-kb full-
length ACT2 cDNA (Figure 1B). The ACT2-promoter was polymer-
ase chain reaction (PCR) amplified from a genomic subclone
pACT2-H, and the ACT1 and ACT2 cDNAs were PCR amplified
from a mature flower library in the plasmid vector pCDNAII (In-
vitrogen, Carlsbad, CA) and ACT2 pCDNAII clone 3A1, respec-
tively. The expression plasmids were mobilized into the Agrobacte-
rium tumefaciens strain C58C1 and transformed into wild-type
Arabidopsis plants by vacuum infiltration. Transformants were se-
lected by plating the seeds on medium containing 35 mg/l kana-
mycin and examined for alterations in morphology.

Antibodies
We used the following three monoclonal antibodies to detect actin
either by Western blot analysis or by fluorescence microscopy: 1)
MAbGPa, a general plant-actin–specific antibody that detects all

Figure 1. Arabidopsis actin family and the specificity of anti-actin
antibodies. (A) Actin tree showing two major classes, reproductive
(Rep) and vegetative (Veg), and five subclasses of actin isovariants
that are encoded by eight expressed genes. Specificity of antibodies
is shown to the right. (B) Actin misexpression (A2P:A1) and over-
expression (A2P:A2) constructs used in the present study.
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Figure	3.	Amino	acid	substitutions	between	human	cytoplasmic	β	and	γ actins	and	
Arabidopsis vegetative	actins,	AtACT2	and	AtACT7.	
The	colored	residues	indicate	actin	amino	acid	substitutions.	Since	the	structure	of	the	
N-terminus	of	actin	is	not	determined,	the	neighborhood	of	the	N-terminus	is	
surrounded	with	a	yellow	circle.	Amino	acids	are	grouped	into	4	groups	depending	on	
the	natures	of	their	side	chains,	which	are	hydrophobic	side	chains,	polar	uncharged	
side	chains,	positive	charged	side	chains	or	negative	charged	side	chains.	Red	residues	
indicate	the	amino	acid	substitutions	between	two	different	groups,	such	as	Ala-Ser.	
Green	residues	indicate	the	amino	acid	substitutions	within	the	same	group,	such	as	
Val-Leu.	Yellow	residues	indicate	the	amino	acid	substitutions	that	likely	change	the	
bulkiness	within	the	same	group,	such	as	Tyr-Ser.	The	structure	of	actin	monomer	was	
obtained	from	the	Protein	Data	Bank	(PDB)	(PDB	ID:	1ATN).

ACT2-ACT7 β-γ actin
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Figure	26.	Alignment	of	amino	acid	residues	among	Arabidopsis actin	isoforms.
The	alignment	shows	the	major	Arabidopsis actin	isoforms	(ACT1,	2,	7	and	11)	and	human	a skeletal	
muscle	actin	(Skeletal	actin),	with	the	interaction	properties	of	each	amino	acid	residue	indicated	
below	the	alignment.	The	sequence	of	AtACT8	has	only	Glu to	Asp	substitution	at	residue	3	of	that	
of	AtACT2.	“Buried”	indicates	buried	residues	in	the	G-actin	structure,	“F-actin”	indicates	residues	
interfacing	neighboring	actin	molecules	in	the	actin	filaments,	“Arp2/3”,	“Profilin”,	“Formin”,	
“Myosin”,	“Cofilin”	and	“Phalloidin”	indicate	residues	implicated	in	interaction	with	each	protein	or	
phalloidin	peptide.	These	amino	acid	residues	with	the	interaction	properties	were	organized	by	
Gunning	et	al.	(2015).	The	phalloidin binding	site	in	actin	filaments	was	identified	by	Lorenz	et	al.	
(1993)	and	Oda	et	al. (2005).
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