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Abstract

Ubiquitin system controls various physiological functions in cells by modulating
cellular processes such as protein degradation and signaling pathway. Recent studies
have implied that deubiquitinating enzyme (DUB) responsible for the removal of
ubiquitin from substrate is important as a regulator of neurological function. For
example, dysfunction or deficiency of certain DUBs results in neurodegenerative and
psychiatric disorders. Furthermore, it is also revealed that ubiquitin specific protease
15 (USP15), a member of large family of DUBS, is involved in several neurological
disorders including autism, ataxia, Parkinson's disease and glioblastoma, providing a
clue about the close relationship between USP15 and nervous system. However, the
detailed molecular mechanism of how USP15 works on nervous system is yet to be

elucidated.
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Introduction

Ubiquitin (Ub) system is responsible for regulating various cellular processes such as
protein degradation, DNA transcription, signal transduction and protein quality
control [1]. Ub is covalently attached to a target protein through a sequential action
of Ub activating enzyme (E1), Ub conjugating enzyme (E2), Ub ligase (E3), and is
removed from the target by deubiquitinating enzymes (DUBs). This reversible
reaction, which governs a balance of ubiquitination status of target proteins, is also
important for the control of nervous system functions including neurite growth [2],
synaptic transmission [3-5], receptor turnover [6, 7] and synaptic plasticity [8, 9] and
receive attention as a key regulator of nervous system functions.

DUBs have also attracted attention as therapeutic targets for
neurodegeneration. The importance of DUB function at nervous system was first
highlighted by specific mutation of DUB genes that link to several neurological
disorders [10, 11]. Furthermore, it has been established that dysfunction or
deficiency of DUBs results in disruption of synapse development and function,
neurodegenerative disorders and psychiatric disorders [12], indicating that DUBs
perform crucial functions in both the central and peripheral nervous system. DUBs
are composed of five distinct subfamilies: ubiquitin-specific proteases (USPs),
ubiquitin C-terminal hydrolases (UCHs), ovarian tumor protease (OTUs), Josephin
proteases, and JAB1/MPT/Mpv43 metalloenzymes (JAMMs) [12]. One of this

subfamily, USPs, which form a large family of deubiquitinating enzymes, is also



involved in several neurological disorders such as spinocerebellar ataxia type 1 [13],
Down’s syndrome [14, 15] and Parkinson’s disease [16, 17].

USP15 is a member of the USP family. Recent studies have revealed that
USP15 promotes oncogenesis in glioblastoma by activation of the TGF-f signaling
pathway [18] and the expression levels of both USP15 mRNA and protein decreases
in mouse models of spinocerebellar ataxia type 3 and Huntington’s disease [19].
These suggest that USP15 may play important roles in neuromuscular functions.
However, the detailed molecular mechanism of how USP15 functions in nervous and

muscle systems were yet to be elucidated.



Materials and Methods

Rotarod performance test
2-month old wild-type and USP15 deficient mice were placed on rod. Rotation speed
was 5 r.p.m. at the beginning and then gradually accelerated to 40 r.p.m. The time to

fall from the rod was measured for 240 seconds.

Plasmids

Antibodies
For immunoblot analyses, anti-USP15 (Bethyl, A300-923A), anti-SART3
(Proteintech, 180251AP), anti-Tubulin (SIGMA, DM1A), anti-FLAG (SIGMA, M2),

anti-cMyc (Santa Cruz, 9E10), anti-GFP (MBL, 598) and anti-His (GE Helthcare,



27-4710-01) were used as primary antibodies. The peroxidase-conjugated anti-mouse
and anti-rabbit antibodies (SeraCare) were used as secondary antibodies.
Anti-Calbindin (SIGMA, CB-955) was used for immunohistochemistry as
primary antibodies. For immunofluorescence analyses, anti-Flag (SIGMA, M2), anti-
Flag (SIGMA, F7425), anti-HA (Roche, Roche) were used as primary antibodies.
Anti-NPM antibody was provided by Dr. Mitsuru Okuwaki [22]. Alexa Fluor 488
and 594 conjugated anti-rabbit, anti-rat and anti-mouse antibodies were used as

secondary antibodies.

Cell culture

Wild type and USP15 deficient MEFs, HEK293, HEK293T and HeLa cells were
cultured in Dulbecco's modified Eagle's medium (high glucose) (WAKO)
supplemented with 10% fetal bovine serum, 1% penicillin streptomycin (Gibco) in a

37°C incubator with 5% CO,.

Histology

Brains and skeletal muscles of 3-month-old and brains of 9-month-old mice were
perfused with 4% paraformaldehyde in phosphate buffered saline (PBS). Tissues
were fixed in the same fixative for 48 hours and then embedded in paraffin. Sections
were stained with Meyer's Hematoxylin and Eosin or subjected to

immunohistochemical analyses.

Immunohistochemistry



Deparaffinized tissue specimens were immersed in 0.01 M citrate buffer (10mM
Citric Acid, 0.05% Tween 20, pH 6.0) and boiled in microwave oven for 10 minutes.
After antigen retrieval, tissue sections were blocked for an hour in 3% bovine serum
albumin (BSA) in TBST (25 mM Tris-HCI (pH 7.5), 0.14 M NacCl, 0.1% TritonX-
100) and incubated with a primary antibody, mouse anti-Calbindin antibody diluted
1/300 in TBST for overnight at 4°C. Following wash with TBST, tissue sections
were incubated with a secondary antibody (Alexa Fluor 594 anti-mouse IgG) diluted
1/500 in TBST for an hour at room temperature. Tissue specimens were observed

using a fluorescence microscope (Keyence, BIOREVO BZ-9000).

Immunoprecipitation

Cells were lysed with ice-cold lysis buffer (20 mM Tris-HCI (pH 7.5), 150 mM NacCl,
I mM EDTA, 0.5% NP-40, 1 mM DTT) and centrifuged at 14,000 r.p.m. for 10
minutes. The supernatant was subjected to immunoprecipitation with anti-USP15 or
anti-cMyc antibodies and protein G agarose beads (Thermo Scientific), or anti-Flag
M2-agarose beads (SIGMA). Samples were incubated at 4°C overnight. The beads
were then washed with lysis buffer. The protein samples were added to 4 X SDS
sample buffer (250 mM Tris-HCI (pH 6.8), 40% Glycerol, 10% SDS, 0.04%
bromophenol blue, 20% B-mercaptoethanol), boiled for 3 minutes and subjected to

immunoblot analysis.

His-Ub Pull down assay



Cells were washed with PBS and lysed in extraction buffer (6M guanidinium-HCI,
50 mM sodium phosphate buffer (pH 8.0), 300 mM NaCl and 5 mM imidazole). Cell
lysates were sonicated for 30 seconds on ice, centrifuged and then incubated with
Talon metal affinity resin (Clonetech) at 4°C overnight. The precipitants were
washed with buffer (50 mM sodium phosphate buffer (pH 8.0), 300 mM NaCl and 5

mM imidazole) and subjected to immunoblot analysis.

Immunoblot

The protein samples after immunoprecipitation and his-tagged pull down assay were
separated by SDS-PAGE, transferred to PVDF membranes (Millipore). Membranes
were incubated overnight at 4°C with primary antibodies. The proteins on membrane
were detected with HRP-conjugated secondary antibodies and chemiluminescence
reagent (Amersham ECL Prime Western Blotting Detection Reagents, GE

Healthcare).

Immunocytochemistry

HeLa cells were cultured on cover slips and after 18 hours, transfected with indicated
plasmids. The cells were fixed with 4% paraformaldehyde in PBS for 10 min at room
temperature. The cells on coverslips were blocked in 0.4% Triton X-100 in blocking
solution (3% BSA in PBS) for 30 min at room temperature, and then incubated with
primary antibodies diluted in blocking solution for an hour or overnight at 4 °C.
After washing with PBS, the cells were incubated with secondary antibodies diluted

in blocking solution for 30 minutes at room temperature. Nuclei were stained with

10



Hoechst 33342 (Life Technologies). The coverslips were then mounted onto slides
using the Fluoromount Plus mounting solution (Diagnostic BioSystems). Images

were obtained using a fluorescence microscope (Keyence model BZ-9000).

Quantitative real-time PCR (qPCR)

Total RNAs from wild-type and USP15 deficient cerebellum, cortex, skeletal muscle,
liver, spleen, kidney, heart and MEFs were prepared by ISOGEN II (NIPPON
GENE). The cDNA were synthesized by SuperScript III CellsDirect cDNA
Synthesis Kit (Life Technologies) using random hexamer primer. qPCR was
performed with THUNDERBIRD SYBR qPCR Mix (TOYOBO). The data were
analyzed using Thermal Cycler Dice Real Time System Software (TAKARA).

Following Primers were used.

Exon array

One-month-old mice of wild type and USP15 deficient mice (n=3) were euthanized
using carbon dioxide. Their cerebellum and skeletal muscles were then dissected and
snap frozen in liquid nitrogen. Total RNAs were extracted from each tissue using
ISOGEN II (NIPPON GENE) according to the manufacture’s instructions.

Fragmented and labelled total RNA of each sample were hybridized on Affymetrix
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GeneChip mouse exon 1.0 ST arrays. After hybridization, each probe array was
washed and stained with Affymetrix GeneChip Fluidics Station 450 and scanned by
Affymetrix GeneChip Scanner 3000. Data were analyzed with GeneSpring 12.6
Software and filtered by more than Splicing Index 0.5 and with P-value<0.05.
Splicing Index was calculated with following calculation:
Splicing index = log, (NI;;/NI;,)
NI = E;i/G;
NIjmeans normalized intensity (NI) for exon i in experiment j. Ej; is the estimated

intensity level for exon i in experiment j. G; is the estimated gene intensity.
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KLHL?7 leads to relocation of TUT1 in nucleus.
In our preliminary study, KLHL7 is shown to interact with USP15 and several
proteins involved in mRNA splicing machinery. KLHL7 is a component of Cul3-

based ubiquitin ligase [21] and its mutations cause retinitis pigmentosa [29, 30].

To
test this assumption, I analyzed TUT1 subnuclear localization. Flag-TUT1 was co-
expressed with Myc-KLHL7 WT or disease-causative mutants (A153T, A153V and

S150N) in HeLa cells, and stained with anti-Myc and anti-Flag antibodies. TUT1

22



was localized in nucleoplasm with expression of KLHL7 WT and S150N mutant. On
the contrary, TUTT still stayed in nucleolus with expression of KLHL7 A153T and
A153V mutants (Figure 24). Given that KLHL7 A153 mutations inhibit Cul3
interaction but A150N does not [21], these data indicate that KLHL7 activity, as an

ubiquitin ligase seems to be important for TUT1 translocation to nucleoplasm.
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Discussion

Alternative mRNA splicing plays an important role in generating enormous
proteomic diversity. It allows eukaryotic cell to produce a huge number of proteins
from the limited number of genes (20,000~25,000 in the human genome) through
selective elimination of introns and exon joining and may thereby contribute to
tissue-specific functions. In brain, alternative splicing is involved in neuronal
functions through the regulation of gene expression, which acts in the synapse such
as neurotransmitter receptors, cation channels, adhesion and scaffold proteins [31].
Given the importance of alternative mRNA splicing in regulating neuronal functions,
it is not surprising that disruption of RNA splicing leads to neuronal dysfunction, and
thereby neurodegenerative disorder. Indeed, recent studies have indicated that
disruption and misregulation of RNA splicing results in neuromuscular disorders
such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) [32-
34]. However, the biological mechanisms of how the failure in RNA splicing leads to

neuromuscular diseases remains unclear.
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Table 2. USP15 interacting proteins identified by mass spectrometry.

Gene symbol Gene title
LSm4 * U6 snRNA-associated Sm-like protein LSm4
LSmS5 * U6 snRNA-associated Sm-like protein LSm5
LSm6 * U6 snRNA-associated Sm-like protein LSm6
LSm7 * U6 snRNA-associated Sm-like protein LSm7
LSmS8 * U6 snRNA-associated Sm-like protein LSm8
SART3 * Squamous Cell Carcinoma Antigen Recognized By T-Cells 3
TUTI * U6 SnRNA-Specific Terminal Uridylyltransferase 1
PRS6 26S protease regulatory subunit 6B
PSRS 268 protease regulatory subunit 8
PSAIl Proteasome subunit alpha type 1
PSD3 26S proteasome non-ATPase regulatory subunit 3
PSD6 26S proteasome non-ATPase regulatory subunit 6
PSDB 268 proteasome non-ATPase regulatory subunit 11
PSDC 26S proteasome non-ATPase regulatory subunit 12
PSDD 26S proteasome non-ATPase regulatory subunit 13
ERdj5 ER-resident protein ERd;j5
MycBP2 Myc binding protein 2
BIR4 Baculoviral IAP repeat-containing protein 4
UBIQ Ubiquitin

* Proteins involved in RNA spliceosomal functions
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FL-TUTT

Figure 17. TUT1 is localized at nucleolus.
HeLa cells transfected with Flag-TUT1 were stained with anti-NPM (nucleophosmin)
and anti-Flag antibodies and Hoechest 33342. Scale bar, 20 um.
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Figure 24. Overexpression of Wild-type KLHL7 and KLHL7 SN mutant
induces relocation of TUT1 from nucleolus to nucleoplasm.

A, Fluorescent images of HeLa cells expressing Myc-TUT1 together with each
KLHL7 wild-type and dieses causative mutant plasmids. Scale bar: 20 pm. B,
Quantification of the data in (A). Subnuclear localization of Myc-TUT1 was
examined. Cells that express Flag-TUT1 in nucleolus (Type 1) and in diffusely
distribution (Type 2) were counted. n=30 ~ 34.
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