
FPGA Hardware Acceleration of Phylogenetic Tree

Reconstruction with Maximum Parsimony Algorithms

(FPGAを用いた最節約法による進化系統樹構築アルゴリズム

の高速化)

２０１８年 ３月

Henry Jose Block Saldana

FPGA Hardware Acceleration of Phylogenetic Tree

Reconstruction with Maximum Parsimony Algorithms

(FPGAを用いた最節約法による進化系統樹構築アルゴリズム

の高速化)

Henry Jose Block Saldana

システム情報工学研究科

筑波大学

２０１８年 ３月

i

Abstract

In this research, we investigate, propose, evaluate and implement
an FPGA-hardware approach for molecular phylogenetic tree recon-
struction under maximum parsimony. Phylogenetic reconstruction
has been investigated for many decades in different fields such as
biology and medicine. Several software algorithms and hardware
solutions have been proposed for phylogenetics. However, there is
still the need to reduce the time required to reach a reliable solution.
This research aims to contribute in this regard by proposing a gen-
eral approach, faster than current software or hardware approaches,
that can work for large phylogenetic problems.

We study different software algorithms and methods for accel-
erating the tree reconstruction and the heuristic search for the best
tree. First, we start from a basic approach and gradually improve it.
In total, we design and implement five FPGA hardware approaches
based on the software algorithms studied. Each approach uses a new
idea from a software algorithm or acceleration method, which helps
to improve the performance over the other approaches.

We evaluate the implementation of each approach for several real-
world biological datasets by comparing the results obtained with
those from previous approaches, and with those from the phyloge-
netic software TNT (Tree analysis using New Technology), known
as the fastest available parsimony program. We compare for each
dataset the total execution time, the execution time required for eval-
uating a single tree, and the best score obtained. The datasets used
are of medium to large size and each one of them consists of hun-
dreds of sequences, each of them with thousands of DNA characters.

Our fifth and current approach, the fastest of all five, achieves
acceleration rates between 2.66 and 31.94 against TNT for the eval-
uation of a single tree. These acceleration rates achieved are thanks
to a combination of using the Indirect Calculation of Tree Lengths
method, the Incremental Tree Optimization method, and the parallel
and pipeline processing used. In our proposed hardware approach,
all the DNA characters in a sequence are processed in parallel.

The main contribution of this work is to present an FPGA hard-
ware approach for phylogenetic tree reconstruction under maximum
parsimony that effectively addresses the evaluation of a single tree
rearrangement and the stochastic local search. For the first time in
the literature, an approach that covers both the complete and incre-
mental first- and second-pass optimization, as well as the tree rear-
rangement evaluation has been proposed.

iii

Acknowledgements

My greatest gratitude is for my supervisor Professor Tsutomu
Maruyama for his valuable guidance and unlimited support through
all these 6 years. He gave me the opportunity to be part of his labo-
ratory, where I found the ideal place to pursue the research I desired,
and kindly gave me advice whenever I needed. This thesis could not
have been possible without him.

I would also like to thank all the members in the Reconfigurable
Computing Systems Laboratory for their friendship and incredible
support. They always helped me without hesitation whenever I en-
countered any difficulties.

Finally, I would like to thank all my friends in Tsukuba and around
for the great moments we spent together. Thanks to them I felt home
since the first day, and motivated to work in my research.

v

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Phylogenetics . 1

1.1.1 Phylogenetic Trees 1
1.1.2 Phylogenetic Tree Inference Methods 2
1.1.3 The Maximum Parsimony Criterion 3
1.1.4 Relevance of Molecular Sequence Data 4
1.1.5 Applications of Phylogenetics 4

1.2 Background . 6
1.2.1 FPGAs . 6
1.2.2 Hardware Acceleration 7
1.2.3 Software Solutions for Phylogenetics 8
1.2.4 Hardware Solutions for Phylogenetics 8
1.2.5 Problem Statement 9

1.3 Purpose of this Research 9
1.4 Thesis Outline . 10

2 Algorithms for Phylogenetic Tree Reconstruction 11
2.1 Phylogenetic Tree Reconstruction 11

2.1.1 Stochastic Local Search 11
2.1.2 Subtree Pruning and Regrafting (SPR) 12
2.1.3 Tree Optimization 13

2.1.3.1 First-pass Optimization 13
2.1.3.2 Second-pass Optimization 14

2.2 Software Algorithms . 15
2.2.1 Progressive Tree Neighborhood 15
2.2.2 Indirect Calculation of Tree Lengths 17
2.2.3 Alternative Second-pass Optimization 18
2.2.4 Incremental Tree Optimization 20

2.2.4.1 Incremental First-pass Optimization . 21
2.2.4.2 Incremental Second-pass Optimization 22

3 Approach for the Progressive Tree Neighborhood 23
3.1 Algorithm Overview . 23
3.2 Phylogenetic Data Structure 24
3.3 Proposed Hardware Architecture 25

3.3.1 Prune and Reinsert Selection (PRS) unit 26
3.3.2 Tree Topology Update (TTU) unit 27

vi

3.3.3 Node Order Listing (NOL) unit 29
3.3.4 Tree Score Calculation (TSC) unit 31
3.3.5 Global Control (GC) unit 33

3.4 Implementation Results 34
3.4.1 Hardware Utilization and Performance Results 34

3.5 Comparison and Performance Evaluation 35
3.5.1 Execution Time for the Score Calculation 35
3.5.2 Local Search Results Comparison 35

3.6 Discussion . 37

4 Approach for the Indirect Calculation of Tree Lengths 39
4.1 Algorithm Overview . 39
4.2 Phylogenetic Data Structure 40
4.3 Proposed Hardware Architecture 41

4.3.1 Tree Topology Update (TTU) unit 43
4.3.2 Progressive Neighborhood Listing (PNL) unit . 45
4.3.3 Node Order Listing (NOL) unit 46
4.3.4 First-, Second-pass and Rearrangement Evalu-

ation (FSR) unit 48
4.3.4.1 First-pass Optimization (FSR-FP) . . . 50
4.3.4.2 Second-pass Optimization (FSR-SP) . . 51
4.3.4.3 Rearrangement Evaluation (FSR-RE) . 52

4.3.5 Global Control (GC) unit 53
4.4 Implementation Results 54

4.4.1 Hardware Utilization and Performance Results 54
4.5 Comparison and Performance Evaluation 55
4.6 Discussion . 57

5 Approach for the Alternative Second-pass 59
5.1 Algorithm Overview . 59
5.2 Phylogenetic Data Structure 60
5.3 Proposed Hardware Architecture 61

5.3.1 Tree Topology Update (TTU) unit 63
5.3.2 Progressive Neighborhood Listing (PNL) unit . 65
5.3.3 Node Order Listing (NOL) unit 67
5.3.4 First-, alternative Second-pass and Rearrange-

ment evaluation (FSR) unit 68
5.3.4.1 First-pass Optimization (FSR-FP) . . . 70
5.3.4.2 Alternative Second-pass Optimization

(FSR-ASP) 71
5.3.4.3 Rearrangement Evaluation (FSR-RE) . 72

5.3.5 Global Control (GC) unit 74
5.4 Implementation Results 74

5.4.1 Hardware Utilization and Performance Results 74
5.5 Comparison and Performance Evaluation 75
5.6 Discussion . 77

vii

6 Approach for the Incremental Tree Optimization 79
6.1 Approach One . 79

6.1.1 Algorithm Overview 79
6.1.2 Phylogenetic Data Structure 80
6.1.3 Proposed Hardware Architecture 82

6.1.3.1 Tree Topology Update (TTU) unit . . . 83
6.1.3.2 Node Order Listing (NOL) unit 85
6.1.3.3 First-, Second-pass and Rearrangement

Evaluation (FSR) unit 87
6.1.3.4 Global Control (GC) unit 96

6.1.4 Implementation Results 96
6.1.4.1 Hardware Utilization and Performance

Results 97
6.1.5 Comparison and Performance Evaluation 97
6.1.6 Discussion . 99

6.2 Approach Two . 101
6.2.1 Algorithm Overview 101
6.2.2 Phylogenetic Data Structure 102
6.2.3 Proposed Hardware Architecture 103

6.2.3.1 Tree Topology Update (TTU) unit . . . 104
6.2.3.2 First-, Second-pass and Rearrangement

Evaluation (FSR) unit 106
6.2.3.3 Global Control (GC) unit 114

6.2.4 Implementation Results 115
6.2.4.1 Hardware Utilization and Performance

Results 115
6.2.5 Comparison and Performance Evaluation 116

6.2.5.1 Logical Resources Utilization Compar-
ison . 116

6.2.5.2 Local Search Results Comparison . . . 117
6.2.6 Discussion . 119

7 General Discussion 121

8 Conclusions and Future Directions 125
8.1 Contributions of this Work 126
8.2 Future Directions . 126

Bibliography 127

ix

List of Figures

1.1 Phylogeny of True Flies (Diptera) [3] 2
1.2 Number of possible trees versus number of taxa [4] . . 3
1.3 A summary of some applications of phylogenetics [12] 5
1.4 Conceptual structure of an FPGA [14] 6
1.5 Conceptual diagram of a logic cell [14] 7

2.1 Example of Subtree Pruning and Regrafting (SPR) [35] 12
2.2 First-pass optimization algorithm [40] 13
2.3 Example of the first-pass optimization 14
2.4 Second-pass optimization algorithm [40] 14
2.5 Example of the second-pass optimization 15
2.6 Example of the progressive tree neighborhood 16
2.7 Difference Score Calculation [42] 17
2.8 Example of the rearrangement evaluation process . . . 18
2.9 Example of rerooting the tree 19
2.10 Rerooting the tree for the ICTL 19
2.11 Traversing the tree in all three different ways 20
2.12 Example of the incremental first-pass optimization . . . 21

3.1 First approach: memory data structure 24
3.2 First approach: general block diagram of the proposed

hardware architecture 26
3.3 First approach: general block diagram of the PRS unit . 26
3.4 First approach: general block diagram of the TTU unit . 28
3.5 First approach: example of the nodes modified by the

pruning and regrafting process 28
3.6 First approach: general block diagram of the NOL unit 29
3.7 First approach: example of the NOL unit listing process 30
3.8 First approach: general block diagram of the TSC unit . 31
3.9 First approach: general block diagram of the Score Unit 32
3.10 First approach: example of TSC unit processing 33
3.11 First approach: execution flow of the proposed hard-

ware architecture . 34

4.1 Second approach: memory data structure 41
4.2 Second approach: general block diagram of the pro-

posed hardware architecture 42
4.3 Second approach: general block diagram of the TTU

unit . 43
4.4 Second approach: example of the nodes modified by

the pruning process . 44

x

4.5 Second approach: example of the nodes modified by
the reinsertion process 44

4.6 Second approach: general block diagram of the PNL
unit . 45

4.7 Second approach: example of the PNL listing 46
4.8 Second approach: general block diagram of the NOL

unit . 47
4.9 Second approach: example of the NOL unit listing pro-

cess . 48
4.10 Second approach: general block diagram of the FSR unit 48
4.11 Second approach: general block diagram of the Pro-

cessing Element (PE) . 49
4.12 Second approach: example of the pipeline processing

during the FSR-FP . 50
4.13 Second approach: example of the pipeline processing

during the FSR-SP . 52
4.14 Second approach: example of the pipeline processing

during the FSR-RE . 53
4.15 Second approach: execution flow of the proposed hard-

ware architecture . 54
4.16 Second approach: acceleration rate for the local search . 56
4.17 Second approach: acceleration rate for the tree evalu-

ation . 56

5.1 Third approach: memory data structure 61
5.2 Third approach: general block diagram of the proposed

hardware architecture 62
5.3 Third approach: general block diagram of the TTU unit 63
5.4 Third approach: example of the nodes modified by the

pruning process . 64
5.5 Third approach: example of the nodes modified by the

reinsertion process . 65
5.6 Third approach: general block diagram of the PNL unit 65
5.7 Third approach: example of the PNL listing 66
5.8 Third approach: general block diagram of the NOL unit 67
5.9 Third approach: example of the NOL unit listing process 68
5.10 Third approach: general block diagram of the FSR unit 69
5.11 Third approach: general block diagram of the Process-

ing Element (PE) . 70
5.12 Third approach: example of the pipeline processing

during the FSR-FP . 71
5.13 Third approach: example of the pipeline processing

during the FSR-ASP . 72
5.14 Third approach: example of the pipeline processing

during the FSR-RE . 73
5.15 Third approach: execution flow of the proposed hard-

ware architecture . 74
5.16 Third approach: acceleration rate for the local search . 77

xi

5.17 Third approach: acceleration rate for the tree evaluation 77

6.1 Fourth approach: memory data structure 81
6.2 Fourth approach: general block diagram of the pro-

posed hardware architecture 82
6.3 Fourth approach: general block diagram of the TTU unit 83
6.4 Fourth approach: example of the nodes modified by

the pruning process . 84
6.5 Fourth approach: example of the nodes modified by

the reinsertion process 85
6.6 Fourth approach: general block diagram of the NOL

unit . 85
6.7 Fourth approach: example of the NOL unit listing pro-

cess . 86
6.8 Fourth approach: general block diagram of the FSR unit 87
6.9 Fourth approach: general block diagram of the Pro-

cessing Element (PE) . 88
6.10 Fourth approach: example of the pipeline processing

during the FSR-CFP (nodes) 90
6.11 Fourth approach: example of the pipeline processing

during the FSR-CFP (lengths) 90
6.12 Fourth approach: example of the pipeline processing

during the FSR-IFP (nodes) 92
6.13 Fourth approach: example of the pipeline processing

during the FSR-IFP (lengths) 92
6.14 Fourth approach: example of the pipeline processing

during the FSR-CSP . 94
6.15 Fourth approach: example of the pipeline processing

during the FSR-RE . 95
6.16 Fourth approach: execution flow of the proposed hard-

ware architecture . 96
6.17 Fourth approach: acceleration rate for the tree evalua-

tion . 99
6.18 Fifth approach: memory data structure 103
6.19 Fifth approach: general block diagram of the proposed

hardware architecture 104
6.20 Fifth approach: general block diagram of the TTU unit 105
6.21 Fifth approach: general block diagram of the FSR unit . 106
6.22 Fifth approach: general block diagram of the Process-

ing Element (PE) . 107
6.23 Fifth approach: example of the pipeline processing dur-

ing the FSR-IFP (nodes) 110
6.24 Fifth approach: example of the pipeline processing dur-

ing the FSR-IFP (lengths) 110
6.25 Fifth approach: example of the pipeline processing dur-

ing the FSR-SP . 112
6.26 Fifth approach: example of the pipeline processing dur-

ing the FSR-RE . 113

xii

6.27 Fifth approach: execution flow of the proposed hard-
ware architecture . 114

6.28 Fifth approach: comparison of logical resources uti-
lization . 117

6.29 Fifth approach: acceleration rate for the tree evaluation 119

xiii

List of Tables

3.1 First approach: 3-bit representation for DNA characters 24
3.2 First approach: example of the memory listing (1’b0 =

invalid, 1’b1 = valid) . 27
3.3 First approach: conversion of the 3-bit to 5-bit repre-

sentation for DNA characters 32
3.4 First approach: datasets used [45] 34
3.5 First approach: implementation results on a Kintex-7

FPGA . 35
3.6 First approach: results for the local search 36

4.1 Second approach: 5-bit representation for DNA char-
acters [44] . 40

4.2 Second approach: datasets used [45] 54
4.3 Second approach: implementation results on a Kintex-

7 FPGA . 55
4.4 Second approach: results for the local search 55

5.1 Third approach: 5-bit representation for DNA charac-
ters [44] . 60

5.2 Third approach: datasets used [45] 74
5.3 Third approach: implementation results on a Virtex-7

FPGA . 75
5.4 Third approach: results for the local search 76

6.1 Fourth approach: 5-bit representation for DNA char-
acters [44] . 80

6.2 Fourth approach: datasets used [45] 97
6.3 Fourth approach: implementation results on a Virtex-

7 FPGA . 97
6.4 Fourth approach: results for the local search 98
6.5 Fifth approach: datasets used [45] 115
6.6 Fifth approach: implementation results on a Virtex-7

FPGA . 115
6.7 Fourth approach: implementation results on a Virtex-

7 FPGA for N = 1, 024 and L = 829 116
6.8 Fifth approach: implementation results on a Virtex-7

FPGA for N = 1, 024 and L = 829 116
6.9 Fifth approach: results for the local search 118

xv

This work is dedicated to my beloved family, who has

constantly encouraged me to pursue my dreams, and

who in spite of the long distance separating us has given

me their unconditional support since I came to Japan.

Thanks for always loving me.

1

Chapter 1

Introduction

Thanks to rapid advancements in technology during the past years,
DNA sequencing has become a more easy, quick and inexpensive
process. Today, molecular sequence data obtained from DNA se-
quencing is used as the most reliable material to study living organ-
isms. As a result, molecular phylogenetics, which studies how living
organisms have evolved through the years, is now a growing field
with many applications in biology, medicine and bioinformatics.

Many software algorithms and tools have already been devel-
oped for phylogenetics. However, molecular phylogenetics involves
computational-intensive operations that can difficult obtaining solu-
tions in reasonable amounts of time. For this reason, new software
algorithms and hardware approaches are being proposed to ease and
accelerate molecular phylogenetic analysis.

In this regard, hardware platforms such as FPGAs offer great po-
tential for accelerating the different computational-intensive opera-
tions involved. Therefore, it is necessary to propose efficient hard-
ware approaches that can be implemented on FPGAs. This will con-
tribute to the growing field of phylogenetics and its applications.

1.1 Phylogenetics

Phylogenetics is the field that studies and attempts to reconstruct
the evolutionary relationships among biological entities. These en-
tities, which are commonly referred as taxa (singular: taxon), can
be species, genomes, genes, regions of a gene, protein sequences,
molecule sequences, etc. [1] [2].

1.1.1 Phylogenetic Trees

The evolutionary relationships among the taxa are graphically rep-
resented on a binary tree as ancestor-descendant relationships in a
branching pattern. The tree starts from a common ancestor, known as
the root of the tree, and branches into distinct lineages that descend
to the taxa that are being analyzed. An example of a phylogenetic
tree for the True Flies (Diptera) is shown in figure 1.1.

2 Chapter 1. Introduction

FIGURE 1.1: Phylogeny of True Flies (Diptera) [3]

As can be seen from figure 1.1, the current species of true flies
descend from a common ancestor called Nematocera. This common
ancestor evolved into distinct species of true flies, some of which are
intermediate ancestors, others of which are the current species.

1.1.2 Phylogenetic Tree Inference Methods

There are different methods used to infer phylogenetic trees, but they
can be classified into three main categories: Parsimony, Distance, and
Likelihood methods [4]:

• Parsimony methods are based on the principle of Occam’s Ra-
zor. This principle states that without any other information,
the simplest explanation should be chosen. For phylogenetics,
this means that the most likely tree to represent the true history
of the taxa is the one that requires the fewest number of evo-
lutionary changes. This is known as the maximum parsimony
criterion, and the optimal tree as the most parsimonious tree.

• Distance methods are based on the assumption that it should
be possible to infer a phylogenetic tree from the patterns of
similarity among organisms. In other words, organisms that
share a recent common ancestor should be more similar to each
other than organisms whose last common ancestor was more
ancient. The optimal tree is generated by using a distance ma-
trix that contains the estimated evolutionary distances between
all pairs of sequences.

1.1. Phylogenetics 3

• Likelihood methods are based on statistics. They resemble par-
simony methods in that different trees are compared and given
a score. However, the score is not based on the number of evo-
lutionary changes, but on how likely the taxa evolved on the
tree given a model of amino acid substitution probabilities. The
optimal tree is the one that has the highest probability among
all trees.

There is no strict consent on which method is better or preferred,
since each has its advantages and disadvantages. However, there are
several criteria used to evaluate the methods themselves and the re-
sults they produce. For example, two criteria that are always taken
into consideration are the efficiency of the method (i.e. how fast it
performs) and its consistency (i.e. how reliable it is to generate the
correct tree) are [4].

In this research, we are concerned with phylogenetic tree recon-
struction of molecular DNA sequence data using the maximum par-
simony criterion. We chose this criterion not only because of its
widely acceptance and use, but also because of its simplicity when
calculating the score of a tree, which makes it more suitable for a
hardware implementation on FPGA.

1.1.3 The Maximum Parsimony Criterion

As mentioned in section 1.1.2, the maximum parsimony criterion is
based on the assumption that the most likely tree is the one that
requires the fewest number of evolutionary changes to explain the
given data [4]. Theoretically, this means that all possible trees have
to be examined and evaluated [5]. However, this is not possible in
practice, because they are too many trees, as shown in figure 1.2.

FIGURE 1.2: Number of possible trees versus number
of taxa [4]

4 Chapter 1. Introduction

As can be seen from figure 1.2, as the number of taxa increases,
the number of possible trees (either rooted or unrooted trees) grows
exponentially. For this reason, phylogenetic tree reconstruction using
maximum parsimony has been proven to be an NP-complete prob-
lem [6] [7].

For the above reason, heuristic methods are used in practice [8].
The aim of these approximate methods is to find a sub-optimal so-
lution without having to evaluate all trees in the search space. Some
examples include local search, genetic and memetic algorithms [9].
In this research, we focus on algorithms using local search.

1.1.4 Relevance of Molecular Sequence Data

Even though there are different methods to infer phylogenetic trees,
today almost all of them use molecular sequence data [10]. This is
mainly because of the following three reasons [11]:

• DNA is the inherited material;

• Genetic material can now be sequenced easily, quickly, inex-
pensively and reliably;

• Sequences are highly specific and are often rich in information.

1.1.5 Applications of Phylogenetics

The importance of Phylogenetics relies not only in the fact that it
allows us to understand how species (molecular sequences in partic-
ular) evolved, but also in that it allows us to learn the general prin-
ciples that enable us to predict how they will change in the future.
This is very useful for many applications in areas such as biology,
medicine and others. For example, some of the applications listed by
The European Bioinformatics Institute (EMBL-EBI) can be summa-
rized as following [12]:

• Classification: Phylogenetics using molecular sequences pro-
vides accurate descriptions of patterns of relatedness. Thanks
to this, new species can be classified.

• Forensics: Phylogenetics is used to assess DNA evidence pre-
sented in court cases. This can clarify situations where some-
one has committed a crime, when food is contaminated, or
where the father of a child is unknown.

• Identifying pathogens: Phylogenetics can be used to learn more
about a new pathogen outbreak by finding out about which
species the pathogen is related to and the likely source of trans-
mission.

1.1. Phylogenetics 5

• Conservation: Phylogenetics can help conservation biologists
in deciding which species they should try to prevent from be-
coming extinct.

• Bioinformatics: Many of the algorithms developed for phylo-
genetics have been used to develop software in other fields.

These applications are illustrated in figure 1.3.

FIGURE 1.3: A summary of some applications of phy-
logenetics [12]

As can be seen from figure 1.3, the applications of phylogenetics
are diverse and of great utility to our society. This makes phyloge-
netics an important field of study and application that certainly will
continue to grow in the near future.

6 Chapter 1. Introduction

1.2 Background

1.2.1 FPGAs

Field Programmable Gate Arrays (FPGAs) are semiconductor de-
vices that are based around a matrix of configurable logic blocks con-
nected via programmable interconnects. Unlike Application Specific
Integrated Circuits (ASICs), FPGAs can be reprogrammed after man-
ufacturing [13]. To better understand the concept of an FPGA, we
will use the simplified structure shown in figure 1.4.

FIGURE 1.4: Conceptual structure of an FPGA [14]

As can be seen in figure 1.4, an FPGA is a two-dimensional array
of logic cells and programmable switches. Logic cells can be config-
ured to perform a specific function. They contain a combinational
circuit such as a look-up table (LUT) and a sequential circuit such
as a D-type flip-flop (D-FF). An n-input LUT can implement any n-
input combinational function, and a D-FF can implement a one-bit
sequential circuit synchronous to a clock signal [14]. An example of
a logic cell is shown in figure 1.5.

In addition, FPGAs usually contain other cells known as macro
blocks. These cells provide other complementary functions such as
memory blocks, multipliers, clock management circuits, I/O inter-
face circuits and even processor cores. A specific design of a digital
circuit or system can then be implemented by specifying the func-
tion of each logic cell and macro cell, and connecting them through
the programmable switches [14].

1.2. Background 7

FIGURE 1.5: Conceptual diagram of a logic cell [14]

Because FPGAs are very versatile, they are used in numerous ap-
plications. Some examples include the following areas [13]:

• ASIC Prototyping

• High Performance Computing and Data Storage

• Industrial and Consumer Electronics

• Video and Image Processing

• Wired and Wireless Communications

1.2.2 Hardware Acceleration

Besides FPGAs, there are other hardware platforms used for the ac-
celeration of software algorithms and applications. One accelera-
tor that is frequently used like FPGAs are GPUs. Both FPGAs and
GPUs can achieve better performance than CPUs on certain tasks.
On one hand, FPGAs are highly customizable, while, on the other
hand, GPUs provide massive parallel execution resources and high
memory bandwidth [15].

In this research, we propose an approach targeted at an FPGA
rather than at a GPU or other many-core accelerators, because the
algorithm under consideration, as we will see in section X, involves
detailed low-level hardware control operations and a lot of memory
accesses that are not suit for high-level languages. In addition, GPUs
or other many-core accelerators impose a fixed programming model,
whereas FPGAs do not; thus, they allow a higher level of customiza-
tion [15]. This means that we can aim to obtain a higher performance
by designing a specific circuit that best suits the phylogenetic tree
reconstruction algorithm under consideration.

8 Chapter 1. Introduction

1.2.3 Software Solutions for Phylogenetics

There are many programs available for phylogenetics, some of which
are free to use, others of which are not. Of the extensive list available
[16], some frequently-used free programs that include phylogenetic
tree reconstruction under maximum parsimony are PHYLIP (Phy-
logeny Inference Package) [17], PAUP (Phylogenetic Analysis Using
Parsimony) [18], MEGA (Molecular Evolution Genetic Analysis) [19]
and TNT (Tree analysis using New Technology) [20].

From the above mentioned programs, TNT is known to be the
fastest available parsimony program [21] [22]. Since we are inter-
ested in assessing how much acceleration our approach can provide
with respect to a software implementation, we compare our results
with the ones obtained from TNT.

1.2.4 Hardware Solutions for Phylogenetics

There have been several implementions of phylogenetic algorithms
in different parallel hardware architectures that include not only FP-
GAs, but also GPUs, multi-core processors and supercomputer sys-
tems [23]. Most of these implementations are for phylogenetic tree
reconstruction under maximum likelihood, while only a few have
been for the maximum parsimony problem [24]. In this research,
we are concerned with FPGA-hardware acceleration of phylogenetic
tree reconstruction under maximum parsimony.

From the few FPGA implementations proposed for the maximum
parsimony problem, particularly worth mentioning are the ones in
[25], [26] and [27].

First, in [25], an approach for whole-genome phylogenetic recon-
struction under maximum parsimony was proposed. It covered both
the generation of the tree by exploring the search space, and the tree
scoring by performing median computations over the internal ver-
tices of the tree. Results reported high acceleration rates against a
software implementation. However, given that the method used is
not based on heuristics and is highly computational-intensive, the
execution time would grow considerably with the number of taxa.

Second, in [26], an approach for phylogenetic analysis under max-
imum parsimony was proposed. In this case, the approach consisted
of a linear systolic array composed of 20 processing elements each
of which scores a different tree topology in parallel. Again, results
reported high acceleration rates against a software implementation.
However, given that the proposed array computes the scores of all
theoretically possible trees, the approach is limited to a small num-
ber of taxa.

Finally, in [26], an approach for computing the parsimony func-
tion on evolutionary trees for any number of taxa was proposed. The
approach was compared against a software implementation by the
same authors, and results reported acceleration rates not so high.

1.3. Purpose of this Research 9

1.2.5 Problem Statement

Even if heuristics or other approximate methods are used for phy-
logenetic tree reconstruction under maximum parsimony, a software
approach can still require a considerable amount of time for larger
phylogenetic problems.

As we saw in section 1.2.4, some FPGA hardware approaches
have been proposed to deal with this problem, but they are still lim-
ited or not efficient enough to compete with the best software solu-
tions available. In [25] and [26], the proposed approaches are not
based on a heuristic method, but on the direct evaluation of all pos-
sible tress. As a result, they are limited to a small number of taxa. In
[27], the approach is not restricted by the number of taxa, but it only
addresses the computation of the parsimony function, and does not
involve the search algorithm. In addition, it was only evaluated and
compared against a software solution by the same authors.

In general, none of the current hardware approaches provides a
solution for phylogenetic tree reconstruction under maximum par-
simony that covers any number of taxa and implements the whole
search algorithm. In addition, the approaches were not evaluated
against the fastest available parsimony program, TNT (Tree analysis
using New Technology) [20].

1.3 Purpose of this Research

The main purpose of this research is to propose an approach for
the hardware acceleration of a phylogenetic tree reconstruction with
maximum parsimony algorithm using an FPGA. The approach has
to be faster than current hardware and software approaches. Fur-
thermore, it has to be a general approach that can work for large
phylogenetic problems consisting of hundreds of taxa, each of them
having a sequence of hundreds or thousands of DNA nucleotides.

To achieve this purpose, we consider the following design re-
quirements. First, the hardware architecture has to be modular. This
is desirable not only to ease the design process, but to allow the dif-
ferent modules (units) to work in parallel. Second, the hardware ar-
chitecture has to maximize the level of parallelism while minimizing
the use of logical hardware resources. This means that it is necessary
to take into account that tasks, which cannot be executed at the same
time (i.e. in parallel), have to share as much as possible the same log-
ical resources. Third, the hardware architecture has to be portable.
This is important so it can be easily implemented on any FPGA with-
out having to modify the source code. Last, but not least, all tasks
that involve computational-intensive calculations have to work us-
ing pipeline processing to maximize the throughput of the hardware
architecture. Our design goal is to ultimately obtain a throughput of
one node per clock cycle.

10 Chapter 1. Introduction

Taking into consideration all of the before mentioned require-
ments, we propose, design and implement five hardware architec-
ture approaches based on the different software algorithms that we
explore. We evaluate our implementations by comparing them to
the phylogenetic software TNT [20] for several real-world biological
datasets, each of them consisting of hundreds of taxa and sequences.

1.4 Thesis Outline

This thesis is organized as follows. In chapter 2, we introduce the
algorithms and methods that we researched for phylogenetic tree re-
construction under maximum parsimony. These algorithms are the
base for all our hardware approaches that are detailed starting from
chapter 3 through the end of chapter 6. In chapter 3, we present our
first approach. In chapter 4, we present our second approach. In
chapter 5, we present our third approach. In chapter 6, we present
our fourth and fith approach. Finally, in chapter 7 we summarize all
the results achieved and discuss about them. Following this, in chap-
ter 8, we mention the overall conclusions and talk about the future
work.

Parts of this thesis have already been published. Most of the first
approach from chapter 3 has been published as a conference paper in
[28]. Most of the second approach from chapter 4 has been published
as a conference paper in [29] and as a journal paper in [30]. Most of
the third approach from chapter 5 has been published as a conference
paper in [31]. Finally, most of the fifth approach from section 6.2 of
chapter 6 has been published as a conference paper in [32].

11

Chapter 2

Algorithms for Phylogenetic
Tree Reconstruction

2.1 Phylogenetic Tree Reconstruction

2.1.1 Stochastic Local Search

In section 1.1.3, we saw the need for using heuristic methods for phy-
logenetic tree reconstruction. The idea of these approximate methods
is to find a near-optimal solution without having to evaluate all pos-
sible trees. The most well-known heuristic methods are based on
stochastic local search. Stochastic local search algorithms are among
the most successful methods for solving computationally difficult
problems in many areas of computer science [33].

Stochastic local search uses iterative improvements to find bet-
ter solutions. In general, every local search algorithm includes the
following four parts [9]:

• A search space composed of the candidate solutions.

• An evaluation function of a solution, also known as
the score function.

• A neighborhood function used to obtain a new solu-
tion by slightly modifying the current solution.

• A transition strategy to accept or reject a neighboring
solution.

In this research, we examine four algorithms that are a variant of
a basic stochastic local search algorithm. In simple terms, the algo-
rithm is based on the iterative descent, which is guided by the length
of the tree as the score function [34]. The length of the tree is equiva-
lent to the number of evolutionary changes in the tree. It starts from
a randomly generated tree in the search space, and tries to improve
it on each iteration. A neighbor tree is obtained by rearranging the
current tree by cutting a part of it and reinserting it elsewhere on the
tree. This is known as Subtree Pruning and Regrafting (SPR). Then,
the neighbor tree replaces the current one if it has a lower score (i.e.
if the score is better). The algorithm stops when there is no better
neighbor tree or when the maximum number of iterations of the al-
gorithm has been reached.

12 Chapter 2. Algorithms for Phylogenetic Tree Reconstruction

2.1.2 Subtree Pruning and Regrafting (SPR)

Subtree Pruning and Regrafting (SPR) is a rearrangement technique
used to obtain a new tree by slightly modifying the current one. It
consists of cutting a branch from the tree with a subtree attached to it,
and reinserting it into the remaining tree in all possible places. Each
reinsertion of the subtree creates a node into a branch of the remain-
ing tree [35]. An example of SPR-rearrangement for an unrooted tree
with 11 taxa is shown in figure 2.1.

FIGURE 2.1: Example of Subtree Pruning and Regraft-
ing (SPR) [35]

As can be seen from figure 2.1, a 5-taxa subtree is pruned from
the original tree, and it is inserted into the remaining tree of 6 taxa,
in one of the 9 possible places. If a tree of n1 + n2 species has a sub-
tree of n2 species pruned from it, there will be 2n1−3 possible places
to reinsert it. One of these is the original location [35].

The advantage of SPR is that it can produce drastic changes in the
tree topology. The resulting tree can have a greater variation from
the starting tree than in other simpler techniques such as Nearest-
Neighbor Interchange (NNI) [36], which consists in exchanging two
adjacent branches of the tree. This helps in finding the globally opti-
mal or near-optimal solution in the space of all trees [37].

2.1. Phylogenetic Tree Reconstruction 13

2.1.3 Tree Optimization

The tree optimization process consists of two phases. The first phase
is called the first-pass optimization. The second phase is called the
second-pass optimization. Both phases described here refer to a com-
plete optimization of all the nodes in the tree.

The first-pass optimization is used to obtain:
• the preliminary character states (DNA sequences) of

the nodes,

• the lengths of the nodes, and the total length (score) of
the tree.

The second-pass optimization is used to obtain:
• the final character states (DNA sequences) of the

nodes.

2.1.3.1 First-pass Optimization

The first-pass optimization is the phase where the preliminary char-
acter states (the preliminary DNA sequences) of the nodes, along
with their lengths (scores) are found. There are two widely used
methods that depend on the algorithm applied: Fitch’s algorithm
[38] and Sankoff’s algorithm [39]. Here, we use Fitch’s, because it is
less complex to implement in hardware.

The first-pass optimization proceeds from the tips of the tree (taxa)
by formulating a character state (DNA sequence) for each node in
the tree, working backwards, until the character state for the most
distant node (root) has been formulated. In addition, each time an
evolutionary change (a change in the DNA sequence) takes place in
a node, its length is increased by one. A node character state, along
with its length, is inferred by using the algorithm in figure 2.2 for
each of the characters in the node. This algorithm is based on Fitch’s
algorithm [38].

PA

PB PC

...

...

0. D = 0

1. PA = PB ∩ PC

2. If PA != 0 go to 5

3. PA = PB ∪ PC

4. D = D + 1
5. Store PA
6. LA = LB + LC + D
7. Store LA

FIGURE 2.2: First-pass optimization algorithm [40]

14 Chapter 2. Algorithms for Phylogenetic Tree Reconstruction

PA refers to the preliminary character state of the current node,
and PB and PC to that of its descendant nodes. D refers to the score
difference between PB and PC. LA refers to the length of node A,
LB to the length of node B, and LC to the length of node C. As can be
noted, the length of a node is obtained by summing up the individual
lengths of the descendant nodes and the score difference between
those nodes. Finally, the length of the tree is equivalent to the length
of the root node. An example of the first-pass optimization is shown
in figure 2.3 for a tree with 5 taxa. TL refers to the length of the tree.

T A C G

n1 n2

n3

n1FP=AT

n3FP=ACG

n2FP=AC

n4

A

n4FP=A

Ln1=1

Ln2=1

Ln3=2

Ln4=3

TL=Lroot=Ln4=3

(root)

FIGURE 2.3: Example of the first-pass optimization

2.1.3.2 Second-pass Optimization

The second-pass optimization is the phase where the final character
states (final DNA sequences) of the nodes are found. This pass pro-
ceeds in the reversed order, from the root to the tips of the tree. The
final character state of a node is obtained by applying the algorithm
in figure 2.4 for each of the characters in the node. This algorithm is
based on Fitch’s algorithm [38].

PA

PB PC

...

...

FD

...

1. FA = PA ∩ FD

2. If FA = FD go to 8
3. Load PB and PC

4. If (PB∩PC)=0 go to 7

5. FA = ((PB∪PC)∩FD)∪PA

6. Go to 8

7. FA = FD ∪ PA

8. Store FA

FIGURE 2.4: Second-pass optimization algorithm [40]

FA refers to the final character state of the current node PA, FD to
that of its parent node, and PB and PC to the preliminary character

2.2. Software Algorithms 15

states of its descendants. For the root of the tree, FA is the same as PA,
because the root has no parent node. An example of the second-pass
optimization is shown in figure 2.5.

FIGURE 2.5: Example of the second-pass optimization

As can be observed from figure 2.5, the final character states of
the nodes are not necessarily the same as the preliminary character
states.

2.2 Software Algorithms

In this research, we examine four algorithms for phylogenetic tree
reconstruction under maximum parsimony that are used to improve
the consistency and the efficiency of the local search. In the following
sections, we describe each one of them.

2.2.1 Progressive Tree Neighborhood

The Progressive Tree Neighborhood aims to combine the properties
of large and small neighborhoods by changing its size as the search
progresses. It starts with a large neighborhood and ends with a small
neighborhood. Starting the search with a large neighborhood al-
lows examining more neighbors, and ensures a more global search.
Then, as the search progresses the neighborhood gets reduced, so the
changes applied to the tree topology are more restricted [41].

A simple progressive tree neighborhood uses Subtree Pruning
and Regrafting (SPR) as the large neighborhood and Nearest-Neighbor
Interchange (NNI) as the small neighborhood. To change the size of
the neighborhood during the search, a distance parameter is used to
constrain the distance between the pruned branch and the branch
where it is reinserted [41]. The progressive tree neighborhood that
uses SPR and NNI can be described by Equations 2.1 and 2.2 [41].

NSPR
dinit
≡ NSPR

NSPR
dfinal

≡ NNNI
→

(
dinit
dfinal

)
=

(
maxδ(vi, vj)

1

)
(2.1)

16 Chapter 2. Algorithms for Phylogenetic Tree Reconstruction

where vi is the node at which the branch is pruned, vj is the node
at which the pruned branch is reinserted, and δ(vi, vj) is the distance
between these two nodes. It is given by

d = dinit(1−
i

M
), i < M (2.2)

where i is the ith local search iteration and M is the maximum num-
ber of local search iterations. The distance parameter starts at dinit
and ends at a value close to 1.

An example of how the distance parameter of the progressive tree
neighborhood is used when a branch of the tree is pruned is given in
figure 2.6. The distance parameter is equal to 3.

FIGURE 2.6: Example of the progressive tree neighbor-
hood

Figure 2.6 shows a tree with 10 taxa and 9 internal nodes. In this
example, the left branch of node n5, i.e. n3, is pruned from the tree, as
indicated by the dashed circle in figure 2.6. Then, all branches in the
remaining tree are given a value that corresponds to the distance be-
tween the respective branch and the pruned branch. In other words,
branches that are further away from the pruned branch have a higher
value than those which are closer. Finally, only those branches that
have a value equal or lower than the current value of the distance
parameter are chosen as candidates for reinserting the subtree in the
remaining tree. In this example, the distance parameter has a current
value of 3, so branches with a value of 4 or higher are considered to
be out of the neighborhood, and; thus, not chosen.

2.2. Software Algorithms 17

2.2.2 Indirect Calculation of Tree Lengths

The Indirect Calculation of Tree Lengths (ICTL) is a method used to
evaluate all possible neighbor tree rearrangements after a branch has
been pruned from the tree during the Subtree Pruning and Regraft-
ing step [42]. The ICTL method allows to evaluate all rearrangements
without having to actually reinsert the subtree in the remaining tree.
Thus, there is no need to do a first-pass optimization on every single
rearrangement to know the score of it. According to this method, the
score of a neighbor tree rearrangement can easily be calculated by
following Equation 2.3.

Snt = Smt + Sst +D.Score (2.3)

where Snt is the score of the neighbor tree rearrangement being
evaluated, Smt is that of the main tree (i.e. the remaining tree), Sst is
that of the subtree, and D.Score is that of the difference between the
subtree’s root and the insertion branch in the main tree.

Equation 2.3 means that for each rearrangement the only value
that has to be calculated independently is D.Score, since Smt and Sst

are common to all rearrangements.

Then, the difference score D.Score can be calculated as shown
in figure 2.7, where NZ is the final character state of the root of the
subtree, NX is the final character state of a node in the main tree,
and NY is that of its descendant. In other words, NX and NY form
the branch where NZ could be reinserted. This process is done for
each of the characters in the DNA sequence, and then the individual
differences are sum up together to get the overall difference score.

NX

NY

...

...

NZ

... ...

Clipped Tree (CT)

Root

Main Tree (MT)

If [NZ∩(NX∪NY)] = 0

 D.Score = 1
Else
 D.Score = 0

FIGURE 2.7: Difference Score Calculation [42]

To better understand the idea of how the Indirect Calculation of
Tree Lengths method is used, an example for evaluating all neighbor
tree rearrangements for a subtree with 3 taxa and a main tree with 7
taxa is shown in figure 2.8.

18 Chapter 2. Algorithms for Phylogenetic Tree Reconstruction

FIGURE 2.8: Example of the rearrangement evaluation
process

Figure 2.8 shows a main tree and a subtree resulting from pruning
a branch from the original tree with the subtree attached to it. The
main tree has 12 possible branches where the subtree can be rein-
serted. For each of these branches, the score of the neighbor tree
rearrangement for that branch is calculated by using Equation 2.3,
and the D.Score is calculated as indicated in figure 2.8. Finally, once
the score of all possible neighbor tree rearrangements has been cal-
culated, the branch that produces the rearrangement with the lowest
score can be chosen as the candidate branch for reinserting the sub-
tree into the main tree.

The ICTL method provides a fast technique to evaluate all tree re-
arrangements. In general, a first-pass optimization for a tree with T
taxa requires visiting each one of the T − 1 internal nodes. Thus, the
time required increases with T . On the other hand, the ICTL method
allows to evaluate all rearrangements that can be constructed after
pruning the tree without having to visit each one of them. The time
required is approximately 1/T , which does not increase with T . In
addition, this method is exact, i.e. it will always produce the right
score. However, it requires a second-pass optimization on top of the
first-pass optimization every time the tree is pruned, because the fi-
nal character states of all nodes are required [42].

2.2.3 Alternative Second-pass Optimization

In section 2.2.2 we mentioned that the Indirect Calculation of Tree
Lengths (ICTL) required a second-pass optimization on top of the
first-pass optimization, because the final character states of all the
nodes are required to calculate the difference score D.Score for a
neighbor tree rearrangement. Furthermore, as we saw in section
2.1.3.2, doing a second-pass optimization involves an algorithm that
is more complex than the algorithm for the first-pass optimization. If
the final character states are not needed during the search, then per-
forming a second-pass optimization might not be desirable due to

2.2. Software Algorithms 19

the computational complexity. In this regard, the alternative second-
pass optimization is a method that allows to use the ICTL with-
out having to do a second-pass optimization as described in section
2.1.3.2 [43].

Fitch’s algorithm [38] examines the evolution of only one DNA
character on the tree at a time. This means that each character evolves
independently; thus, the character states are reversible. As a conse-
quence of reversibility of character states, the tree may be rooted at
any point with no change in the tree length. An example of how a
tree can be rerooted with no change in its total length is shown in
figure 2.9.

FIGURE 2.9: Example of rerooting the tree

Figure 2.9 shows three rooted trees with 5 taxa and 4 internal
nodes each. The original tree is the one on the left. The tree in the
middle has been obtained by rerooting the original tree in the branch
formed by n2 and n3, as indicated by the arrow with a number 2
inside a box. Similarly, the tree on the right has been obtained by
rerooting the original tree in the branch formed by G and n3, as indi-
cated by the arrow with a number 3 inside a box. Both trees have the
same length as the original one. In general, no matter where the tree
is rooted, it will have the same length.

As we saw in section 2.2.2, the ICTL method uses the final char-
acter states of two nodes: NX and NY (see figure 2.7). Instead, we
can reroot the tree at N(X,Y) as illustrated in figure 2.10.

FIGURE 2.10: Rerooting the tree for the ICTL

Then we can do a first-pass optimization, and use the prelimi-
nary character states of NX and NY, and NZ to calculate the score

20 Chapter 2. Algorithms for Phylogenetic Tree Reconstruction

difference D.Score, because the final character states are the same as
the preliminary character states for the root of the tree, as we saw in
section 2.1.3.2.

Rerooting the tree means changing the order in which the original
tree is traversed. In other words, there is no need to actually change
the root of the tree and the tree topology every time the ICTL method
is used. We only need to traverse the tree in all three possible ways,
as shown in figure 2.11.

FIGURE 2.11: Traversing the tree in all three different
ways

The (*) symbol in figure 2.11 represents the operation used to cal-
culate the character state of a node during the first-pass optimization.
For each node, there are three node character states. The "normal-
path" character state, assuming that the root is above the node; the
"left-path" character state, assuming that the root is below on the left
side; and the "right-path" character state, assuming that the root is
below on the right side. The "normal-path" character state is cal-
culated during the first-pass optimization, and the "left-path" and
"right-path" character states are calculated during this alternative op-
timization. In this way, the complexity of performing a complete
second-pass optimization is reduced to that of performing two first-
pass optimization for all nodes in the tree as indicated in figure 2.11.

2.2.4 Incremental Tree Optimization

The Incremental Tree Optimization consists on optimizing only those
nodes that were affected by the pruning or reinsertion of a branch
during the Subtree Pruning and Regrafting (SPR). In other words,
only those nodes that might have changed character state (DNA se-
quence) and length (score) have to be recalculated. As a result, the
number of nodes that has to be updated during an incremental tree
optimization is much lower than during a complete tree optimiza-
tion.

In a similar way to the complete tree optimization (explained
in section 2.1.3), the incremental tree optimization consists of two

2.2. Software Algorithms 21

phases: the incremental first-pass optimization and the incremen-
tal second-pass optimization. Here we describe both of them as we
have applied them in our algorithm in section Y.Y.Y. For a more detail
and complete version of the Incremental Tree Optimization method,
please refer to the work in [42].

2.2.4.1 Incremental First-pass Optimization

The incremental first-pass optimization consists on recalculating pre-
liminary character states and node lengths only for those nodes that
were affected by the pruning or reinsertion process [42]. The char-
acter state of a node is still calculated with the same algorithm used
during the complete first-pass optimization (refer to figure 2.2). To
better understand how the incremental first-pass optimization works,
we show in figure 2.12 a simple example of how it is performed after
the pruning process for a tree with 7 nodes.

t2 t3 t4 t5

n1 n2

n4

n5

t1

n6

t8

n3

t7

n7

t2

t3 t4

t5

n1

n2

n5

t1

n6

t8

n3

t7

n7

Whole Tree (WT)

Sub Tree (ST)

Main Tree (MT)

Prune

t6

t6

FIGURE 2.12: Example of the incremental first-pass
optimization

As can be seen from Figure 2.12, pruning a branch from the whole
tree only affects the nodes above the node. All the other nodes will
have the same character states and lengths, because they have the
same descendants as in the whole tree. In this example, n5, n6 and
n7 can change, while n1 and n3 remain the same. Now, starting at
the parent node of the node that had one of its branches pruned, i.e.
n5, the new character states and the new length are calculated. Then,
we proceed to n6, the parent node of n5, and do the same. Similarly,
we proceed to n7 and do the same. Since n7 is the root of the tree,
we finish here. But, if during the incremental first-pass optimization
we find that the new character states of a node are the same as the
previous ones, we do not have to continue calculating the character
states for the other nodes, because they remain the same. Only the
node lengths will have to be recalculated.

22 Chapter 2. Algorithms for Phylogenetic Tree Reconstruction

This is an important fact, because the lowest node with unmod-
ified character states is the starting node in the incremental second-
pass optimization. The incremental first-pass optimization is done in
a similar way after the reinsertion process.

2.2.4.2 Incremental Second-pass Optimization

The incremental second-pass optimization consists on recalculating
final character states only for those nodes affected by the pruning or
reinsertion process [42]. The starting node is the lowest node with
unmodified preliminary character states that was found during the
incremental first-pass optimization. All nodes below this node, from
both left and right side lineages, might change character states, so
the incremental second-pass optimization has to cover them all. For
this reason, the incremental second-pass optimization can be seen
as a complete second-pass optimization that takes the lowest node
with unmodified preliminary character states as the root node. Then,
for each node we use the second-pass optimization algorithm shown
before in figure 2.4 to obtain the new final character states.

23

Chapter 3

Approach for the Progressive
Tree Neighborhood

3.1 Algorithm Overview

The algorithm is based on the stochastic local search algorithm de-
scribed in section 2.1.1, and uses the Progressive Tree Neighborhood
described in section 2.2.1. It is guided by the score function, i.e. the
length of the tree. First, a tree in the search space is randomly gener-
ated. For this initial tree, a complete first-pass optimization is done
to calculate the initial score of the tree. Then, at each iteration of the
algorithm a neighbor tree rearrangement replaces the current one if
it has a lower score, i.e. better score. For this, in each iteration, the
following steps are performed:

1 A branch to prune from the whole tree (WT) is chosen ran-
domly.

2 The main tree (MT) and the subtree (ST) derived from the pre-
vious pruning are created.

3 3.1 All possible branches from the MT where the ST can be
reinserted are listed, according to the distance parameter.

3.2 A branch is randomly chosen from the previous listing.

4 The ST is inserted in the MT to create a new WT.

5 A first-pass optimization is done on the WT.

If the score of the WT is greater (worse) than the current score,
go to step 6. Otherwise, go to step 1.

6 6.1 The previous tree topology is reconstructed.

6.2 Go to step 1.

The algorithm stops when there is no better neighbor tree or when
the maximum number of iterations has been reached.

24 Chapter 3. Approach for the Progressive Tree Neighborhood

3.2 Phylogenetic Data Structure

For a given phylogenetic tree reconstruction problem consisting of
N taxa, each of which has a sequence of L nucleobases, the sequence
matrix is an N rows × L columns matrix. The characters in the se-
quences might include not only the DNA nucleobases Adenine (A),
Cytosine (C), Guanine (G) and Thymine (T), but also the ’-’ charac-
ter, which represents a gap, and the ’?’ character, which represents an
undefined character. In total there are six characters, so a 3-bit binary
representation can be used instead of the 8-bit ASCII representation
to reduce the size of the memory. This is shown in table 3.1.

TABLE 3.1: First approach: 3-bit representation for
DNA characters

DNA character 3-bit representation
’A’ 000
’C’ 001
’G’ 010
’T’ 011
’-’ 100
’?’ 101

Hence, a memory of N × L × 3 bits is required to store the se-
quence alignment matrix. On the other hand, the tree topology shows
the connections between the internal nodes of the tree and the taxa.
A tree withN taxa hasN−1 nodes, including the root node. Since the
tree is a binary tree, each node has a left branch and a right branch,
and it has a parent node. Thus, the size of the memory required to
store the tree topology is (N − 1) × 3[log2(N)] bits. For example, the
tree topology memory and the sequence data memory for a tree with
6 taxa can be represented as shown in figure 3.1.

t0 t1 n2

t3 t4 n3

n0 t2 n4

n1 t5 n4

n2 n3 root

n0

n1

n2

n3

n4

Left
Branch

Right
Branch

Parent
Node

N
-
1

Tree Topology
Memory

t0

t1

t2

t3

t4

t5

GCAACACT ...

GCACAATT ...

ACAAAAC ...

GCAAAAC ...

AACAAAA ...

...........

N

L

Sequence Matrix
Memory

FIGURE 3.1: First approach: memory data structure

3.3. Proposed Hardware Architecture 25

Taxa are labeled according to their memory position on the se-
quence matrix memory. Likewise, nodes are labeled according to
their memory position on the tree topology memory. Since both
nodes and taxa appear on the same memory, we use an additional
bit to distinguish between the two of them: 0 for a node and 1 for a
taxon (singular form of taxa). The root node doesn’t have a parent.
Instead, a full sequence of 1s is used to identify it.

3.3 Proposed Hardware Architecture

In section 3.1, we mentioned the steps involved in each iteration of
the algorithm. To design the hardware architecture, we considered
that steps 1 and 3 can be performed by the same hardware unit, since
they are about choosing a branch from the tree. Similarly, steps 2
and 4 can be performed by the same hardware unit, since they are
about modifying the tree topology. On the other hand, step 5 can be
divided into two steps: listing the node order in which the score is
calculated, and calculating the actual score of the tree by following
that order. Each of these steps is carried out by a different hardware
unit.

As a result, we designed the following hardware units to imple-
ment the algorithm described in section 3.1:

1 Prune and Reinsert Selection (PRS) unit

2 Tree Topology Update (TTU) unit

3 Node Order Listing (NOL) unit

4 Tree Score Calculation (TSC) unit

5 Global Control (GC) unit

In addition to this, we considered that the hardware units can
work in parallel. Thus, more than one tree topology can be explored
at the same time. For this, we use three Tree Topology memories
instead of one. A general block diagram of the hardware architecture
proposed is shown in figure 3.2.

It consists of the following elements: the Tree Topology Mem-
ory (×3), the Sequence Alignment Matrix Memory, the Node Order
Memory (×2), the PRS unit, the TTU unit, the NOL unit, the TSC
unit, and the GC unit. Black bars on figure 3.2 make reference to
multiplexers. In the following sections, we explain how each of this
hardware units works.

26 Chapter 3. Approach for the Progressive Tree Neighborhood

FIGURE 3.2: First approach: general block diagram of
the proposed hardware architecture

3.3.1 Prune and Reinsert Selection (PRS) unit

The Pruning and Reinsert Selection (PRS) unit is in charge of decid-
ing which branch of the whole tree (WT) is pruned, and where the
pruned branch with the subtree (ST) attached to it is reinserted in the
main tree (MT). Its general block diagram is shown in figure 3.3.

FIGURE 3.3: First approach: general block diagram of
the PRS unit

As can be seen from figure 3.3, the PRS unit is implemented as a
Finite State Machine (FSM) with a Data Path. In addition to this, it

3.3. Proposed Hardware Architecture 27

has a linear-feedback shift register (LFSR), which works as a pseudo-
random number generator.

The PRS unit works as follows. First, using the LFSR, a branch
is randomly chosen to be pruned from the tree. Then, all possible
branches where the pruned branch can be reinserted are listed in a
memory (Listing Memory in figure 3.2). Since the distance between
the pruned branch and the branch where it is reinserted is restricted
by the distance parameter (refer to section 2.2.1), the branches are
listed as valid or invalid. Finally, a valid branch from the Listing
Memory is randomly selected for the pruned branch with the ST at-
tached to it to be reinserted in the MT. For this, the LFSR is used
again. An example of how the valid and invalid branches are stored
in the Listing Memory is shown in table 3.2 for the tree of figure 2.6
that has 9 nodes and a distance parameter with a current value of 3.

TABLE 3.2: First approach: example of the memory
listing

(1’b0 = invalid, 1’b1 = valid)

node LB RB
n0 1’b0 1’b0
n1 1’b0 1’b0
n2 1’b1 1’b1
n3 1’b1 1’b1
n4 1’b1 1’b1
n5 1’b1 1’b1
n6 1’b1 1’b1
n7 1’b1 1’b1
n8 1’b1 1’b1

As can be seen from table 3.2, only one bit is necessary to deter-
mine whether the left or right branch of a node is valid or invalid as
candidate branch for reinserting the ST into the MT.

The PRS unit requires an execution time that depends on the num-
ber of nodes that has to be listed. However, since one clock cycle is
required to list one node, the execution time never exceeds N − 2
clock cycles for the worst-case scenario where all nodes except one
have to be listed.

3.3.2 Tree Topology Update (TTU) unit

The Tree Topology Update (TTU) unit is in charge of modifying the
Tree Topology Memory to reflect the changes produced by the prun-
ing and regrafting process as determined by the PRS unit. Its general
block diagram is shown in figure 3.4.

28 Chapter 3. Approach for the Progressive Tree Neighborhood

FIGURE 3.4: First approach: general block diagram of
the TTU unit

As can be seen from figure 3.4, the TTU unit is implemented as a
Finite State Machine (FSM) with a Data Path. The FSM works basi-
cally as a memory controller that is used to modify the content of a
Tree Topology Memory.

Regardless of the number of taxa, when a branch with a subtree
(ST) attached to it is pruned from the tree and reinserted elsewhere,
at most 5 nodes are modified. An example is shown in figure 3.5 to
illustrate this.

FIGURE 3.5: First approach: example of the nodes
modified by the pruning and regrafting process

3.3. Proposed Hardware Architecture 29

Figure 3.5 shows a tree with 9 taxa. On the left is the tree before
pruning, and on the right is the tree after reinserting. The pruned
branch is the left branch (LB) of n6, and the reinsertion branch is the
right branch (RB) of n5. This pruning and reinsertion process causes
changes in the tree structure that affect a total of 5 nodes.

Thus, 5 memory positions are modified in the Tree Topology Mem-
ory accordingly. These positions correspond to the following nodes:

1 The node where the branch is pruned from: n6

2 The parent node of the previous mentioned node: n7

3 The node on the opposite branch to the pruned branch: n4

4 The node up where the pruned branch is reinserted: n5

5 The node down where the pruned branch is reinserted: n1

The process of pruning and regrafting a branch leads to a maxi-
mum number of 5 changes in the tree topology. This means that it is
not necessary to rewrite the whole Tree Topology Memory, but only
to update those 5 memory positions. Since it takes 2 clock cycles to
update a memory position, the TTU unit requires a maximum total
of 10 clock cycles.

3.3.3 Node Order Listing (NOL) unit

The Node Order Listing (NOL) unit has the task of listing all the
nodes in the tree in a post-order. Then, this listing can be used by
the Tree Score Calculation (TSC) unit to do a tree traversal for the
first-pass optimization. The general block diagram of the NOL unit
is shown in figure 3.6.

FIGURE 3.6: First approach: general block diagram of
the NOL unit

30 Chapter 3. Approach for the Progressive Tree Neighborhood

As can be seen from figure 3.6, the NOL unit is implemented as
a Finite State Machine (FSM) with a Data Path and a Stack, from
which the data is read or written in a last-in-first-out (LIFO) order.
The NOL unit is connected to a Tree Topology Memory and a Node
Order Memory, which is also a Stack. The following algorithm is
used to list all the nodes in the tree:

1 Read the memory position of the root node from the selected
Tree Topology Memory (TTM)

2 Repeat until all nodes are listed.
Push each node visited into the Node Order Memory.

Case (Left Branch (LB), Right Branch (RB))

2.1 (Node, Node): Push RB into the Stack, read LB from TTM

2.2 (Node, Leaf): Read LB from TTM

2.3 (Leaf, Node): Read RB from TTM

2.4 (Leaf, Leaf): Pop a node and read it from TTM

As a result of the above mentioned algorithm, the last node vis-
ited becomes the first node to be read from the Node Order Memory.
Thus, the desired post-order (reverse order of the visited nodes) is
obtained. To illustrate this, an example is shown in figure 3.7.

FIGURE 3.7: First approach: example of the NOL unit
listing process

Figure 3.7 shows a tree with 9 taxa and 8 nodes. The visited
nodes, the actions taken and the contents of the stack for every clock
cycle are detailed on the right of the tree. At the end, the Node Order
Memory has the reverse order of the visited nodes. This is the final
node order.

The NOL unit takes one clock cycle to list each node, so it requires
a total ofN−1 clock cycles to list all the nodes, whereN is the number
of taxa.

3.3. Proposed Hardware Architecture 31

3.3.4 Tree Score Calculation (TSC) unit

The Tree Score Calculation (TSC) unit computes the total length of
the tree (i.e. the score) by following the node order stored in the
selected Node Order memory. Its general block diagram is shown in
figure 3.8.

FIGURE 3.8: First approach: general block diagram of
the TSC unit

As seen in figure 3.8, the TSC unit is composed of L Score Units,
whereL is equivalent to the number of DNA characters in a sequence
(refer to figure 3.1), a Tree Adder, a Stack Memory, and a Control
Logic unit. It receives two DNA sequences from the Sequence Align-
ment Matrix Memory: sequence_a and sequence_b, and the node order
from the Node Order Memory. This allows to process one node at a
time. The Tree Adder is used at the end to add all individual scores
from each Score Unit in order to obtain the final score of the tree.

The TSC uses L Score Units to implement the first-pass optimiza-
tion algorithm (see section 2.1.3.1), which consists in obtaining the
character state and the length of the node. However, for this ap-
proach neither the character states nor the lengths of the nodes are
needed, so only the score is accumulated. The general block diagram
of a Score Unit is shown in figure 3.9.

As can be seen from figure 3.9, the Score Unit is composed of two
3-bit to 5-bit decoders, one AND and one OR logic gates, a compara-
tor, an accumulator that includes a D-type flip-flop, and a D-type
flip-flop-based register of 5 bits.

The decoders convert the 3-bit DNA characters to a 5-bit repre-
sentation, as shown in table 3.3. Thanks to this final representation,
the union can be performed by the binary OR operation, and the in-
tersection by the binary AND operation [44].

32 Chapter 3. Approach for the Progressive Tree Neighborhood

FIGURE 3.9: First approach: general block diagram of
the Score Unit

TABLE 3.3: First approach: conversion of the 3-bit to
5-bit representation for DNA characters

DNA character 3-bit DNA 5-bit DNA
’A’ 000 00010
’C’ 001 00100
’G’ 010 01000
’T’ 011 10000
’-’ 100 00001
’?’ 101 11111

The TSC unit works by using the algorithm listed below. This
algorithm uses the Stack Memory shown in figure 3.8, and the se-
quence output from all the Score Units. The (*) symbol represents
the operation performed by all the Score Units.

Repeat the following steps until all nodes are processed:

1 Pop a node from the Node Order Memory.
Read it from the Tree Topology Memory.

2 If both branches are leaves (taxa), push the sequence (seq) into
the Stack Memory (except for the first time).

3 Case (Left Branch (LB), Right Branch (RB))

3.1 (Node, Node): Pop a node from the Stack.
seq = seq (*) temporal sequence

3.2 (Node, Leaf): Read the sequence for RB (seq_RB).
seq = seq (*) seq_RB

3.3 (Leaf, Node): Read the sequence of LB (seq_LB).
seq = seq (∗) seq_LB

3.4 (Leaf, Leaf): Read both sequences from LB and RB.
seq = seq_LB (∗) seq_RB

3.3. Proposed Hardware Architecture 33

To illustrate the above mentioned algorithm, an example is given
in figure 3.10. This example is for the tree with 9 taxa shown in figure
3.7 of section 3.3.3.

FIGURE 3.10: First approach: example of TSC unit pro-
cessing

As can be seen from figure 3.10, processing a single node requires
one clock cycle thanks to the pipeline stages used in the TSC unit. As
a result, processing all nodes requires an approximate time of N − 1
clock cycles.

3.3.5 Global Control (GC) unit

The Global Control (GC) logic unit is a Finite State Machine (FSM)
that commands the other four units: PRS, TTU, NOL and TSC. The
GC unit controls these units so they work in pipelined stages as illus-
trated in figure 3.11, where TTMi refers to the Tree Topology Memory
i, and NOMi refers to the Node Order Memory i. At the beginning,
TTM0, TTM1 and TTM2 start with the same tree topology.

The pipelined flow in figure 3.11 was designed by taking into ac-
count that most of the time the new tree topology has a worse score
than that of the previous tree topology. For this reason, it is better to
explore more than one tree topology at a time. Thus, one tree topol-
ogy is stored in TTM1 and another one in TTM2.

If the score for a particular TTM is better, then the contents of it
is copied into the other TTMs. Otherwise, the TTM is rebuild to its
previous state, as shown in figure 3.11.

Updating or rebuilding a TTM takes less than 10 clock cycles, so
these added stages do not have a significant impact on the overall
performance. On the contrary, thanks to the pipelined flow, the pro-
cess of calculating the score of a tree is reduced by an approximate of
one third, in the worst-case scenario.

34 Chapter 3. Approach for the Progressive Tree Neighborhood

FIGURE 3.11: First approach: execution flow of the
proposed hardware architecture

3.4 Implementation Results

In this section we show implementation results for four real-world
biological datasets. The datasets were obtained from the repository
of phylogenetic information TreeBASE [45], see table 3.4.

TABLE 3.4: First approach: datasets used [45]

ID M972 M2355 M3452 M3875
#taxa 155 150 116 228
#characters 355 829 1,157 1,435

3.4.1 Hardware Utilization and Performance Results

The hardware utilization and performance results are shown in table
3.5. The targeted FPGA is a Kintex-7 XC7K325T-FF2-900.

The implementation covers any of the four datasets in table 3.4.
In other words, problems up to N = 1, 024 and L = 1, 435 can be
processed with this amount of hardware logical resources.

3.5. Comparison and Performance Evaluation 35

TABLE 3.5: First approach: implementation results on
a Kintex-7 FPGA

Logic Utilization Used Available Utilization
Number of Slices 16,821 50,950 34%
Number of Slice Registers 33,468 407,600 8%
Number of Slice LUTs 67,282 203,800 33%
Number of BRAMs (36 Kb) 224 445 50%
Maximum Frequency 157.031MHz

3.5 Comparison and Performance Evaluation

3.5.1 Execution Time for the Score Calculation

First, we compare the execution time required for calculating the
score of a single tree. In other words, the time required to do a first-
pass optimization. A theoretical software approach would require
an approximate time of that shown in Equation 3.1.

t ≈ (N − 1)(L)(F−1)(OP) (3.1)

whereN is the number of taxa, L is the number of characters, F is
the operational frequency of the CPU, and OP is the number of CPU
operations required per node calculation.

On the other hand, our hardware implementation takes the time
required by the NOL and TSC units together. This is shown in equa-
tion 3.2. Note that this is not the maximum throughput of the circuit.

t ≈ 2(N − 1)(F−1) (3.2)

whereN is the number of taxa, and F is the operational frequency
of the FPGA. From this equation, it should be noted that the exe-
cution time of the hardware implementation is independent of the
number of DNA characters.

For example, if we consider that a software implementation runs
at a frequency of 2.8 GHz, and requires around 30 CPU operations
per node in the best-case scenario, the FPGA implementation, con-
sidered that it runs only at a frequency of 157 MHz, will be in the
order of hundreds or thousands, and will increase with the number
of characters.

3.5.2 Local Search Results Comparison

Now, we compare the execution time required for the whole local
search. We compare our hardware approach to our C++ implementa-
tion, both of which implement the same local search algorithm with

36 Chapter 3. Approach for the Progressive Tree Neighborhood

the progressive tree neighborhood. In both cases the score of each
tree is evaluated by a complete post-order traversal.

Furthermore, we also make a comparison with TNT (Tree anal-
ysis using New Technology) [20]., the fastest available parsimony
program. To make the comparison as fair as possible, we use the
traditional search of TNT based on Subtree Pruning and Regrafting
(SPR). Moreover, since the total number of examined trees is not the
same, we show the execution time required for a single iteration.

The CPU used is an Intel Core i7 860@2.80GHz with 4 GB RAM.
The targeted FPGA runs at 153.8 MHz. The results are summarized
in table 3.6.

TABLE 3.6: First approach: results for the local search

Dataset SW C++ FPGA Accel. TNT

M972

Total time (s) 133.15 0.0622 2141
(1.23 clk
/taxa)

0.05
Time/tree (µs) 2661.27 1.2432 0.1841
Visited trees 50,031 ← 271,584
Score (Best: 1,529) 1,548 ← 1,551

M2355

Total time (s) 152.68 0.0555 2751
(1.14 clk
/taxa)

0.06
Time/tree (µs) 3051.71 1.1093 0.2750
Visited trees 50,032 ← 218,148
Score (Best: 2,748) 2,749 ← 2,757

M3452

Total time (s) 125.65 0.0499 2518
(1.32 clk
/taxa)

0.06
Time/tree (µs) 2510.69 0.9971 0.2809
Visited trees 50,046 ← 213,634
Score (Best: 3,608) 3,633 ← 3,638

M3875

Total time (s) 240.40 0.0828 2903
(1.11 clk
/taxa)

0.05
Time/tree (µs) 4791.54 1.6503 0.0991
Visited trees 50,172 ← 504,305
Score (Best: 561) 605 ← 565

In comparison to our C++ implementation, the FPGA accelera-
tion (Accel. in table 3.6) is in the order of thousands, and it increases
with the number of characters. The values between parentheses in
the Accel. column show the average number of clock cycles required
to calculate the score per taxa. The total number of clock cycles re-
quired to calculate the score of the tree can be obtained by multiply-
ing the number of taxa by these values. As can be seen, the values
are very close to 1.00 (the minimum number of clock cycles), which
shows that the pipeline works well. When the circuit continues to
fail to generate a tree with a lower score, the value becomes closer
to 1.00. On the contrary, when a better tree is found, the pipeline is
stalled; thus, the value becomes higher.

On the other hand, in comparison to TNT, there is no accelera-
tion. In fact, TNT is faster than our FPGA implementation. For ex-
ample, only 99 ns are required to evaluate the score of one tree in

3.6. Discussion 37

problem M3865. This is extremely fast, even if we consider that the
operational frequency is 2.8 GHz, and that multi-core processing (4
cores in this evaluation) with SIMD instructions is used. Here, the
following should be remarked. First, the search performed by TNT
is not based on the Progressive Tree Neighborhood, but on Random
Addition Sequences (RAS) with the Subtree Pruning and Regrafting
(SPR) neighborhood. Second, TNT’s search strategy does not require
a de-novo computation of the tree score in each iteration. TNT im-
plements optimization methods to reduce the evaluation time of tree
rearrangements. Hence, its execution time is not in accordance with
Equation 3.1.

Our implementation does not involve any optimization methods.
A post-order tree traversal is performed for each tree being evalu-
ated. Nevertheless, the scores obtained by our approach are compa-
rable to those obtained by TNT (the values between parentheses are
the lowest scores reported so far), as well as the total execution time.

3.6 Discussion

We first compared the execution time for the score calculation of a
single tree between a software and a hardware approach. In this re-
gard, the acceleration rate of our hardware approach can be in the
order of hundreds or thousands. This high performance is achieved
by parallel processing of all the characters in the Sequence Alignment
Matrix Memory by using L Score Units (see section 3.3.4), where L
is the number of DNA characters in the sequence. As a result, the
execution time for the tree score calculation is independent of the
number of characters in our approach.

Then, we compared the execution time required to perform the
whole local search for four real-world biological datasets, which con-
sist of hundreds of taxa and DNA characters. When compared to
our C++ implementation, acceleration rates in the order of thousands
were achieved. However, when compared to a highly optimized par-
simony program like TNT, there is no acceleration. In fact, TNT per-
forms faster.

From this approach we learned that to achieve faster execution
times than TNT with a hardware implementation, it is necessary to
consider that the score of the tree does not have to be recalculated
from the start in each iteration, since only a small portion of the tree
changes by the Subtree Pruning and Regrafting process.

39

Chapter 4

Approach for the Indirect
Calculation of Tree Lengths

4.1 Algorithm Overview

The algorithm is based on the stochastic local search algorithm de-
scribed in section 2.1.1. It uses both the Progressive Tree Neighbor-
hood, described in section 2.2.1, and the Indirect Calculation of Tree
Lengths, described in section 2.2.2.

The algorithm starts from a randomly generated tree in the search
space, and tries to improve it on each iteration. For the initial tree,
a list for all the branches is created. This list will denote which rear-
rangements have to be tried. Then, a first-pass optimization is done
to calculate the initial score of the tree. At each iteration of the al-
gorithm a neighbor tree rearrangement replaces the current one if it
has a lower score, i.e. better score. For this, in each iteration, the
following steps are performed:

1 1.1 A branch to prune from the whole tree (WT) is randomly
chosen from the list.

1.2 The main tree (MT) and the subtree (ST) derived from the
previous pruning are created.

2 All possible branches from the MT where the ST can be rein-
serted are listed, according to the distance parameter from the
Progressive Tree Neighborhood.

3 A first-pass optimization is done on the MT and the ST.

If the sum of the scores of the MT and the ST is greater (worse)
than the current score, go to step 7.

4 A second-pass optimization is done on the MT.

5 All rearrangements within the neighborhood are evaluated by
the ICTL.

If the sum of the scores of the MT, the ST and the difference
(D.Score) is greater (worse) than the current score, go to step 7.

40 Chapter 4. Approach for the Indirect Calculation of Tree Lengths

6 6.1 The ST is inserted in the MT to create a new WT.
6.2 All branches are added to the list again.
6.3 Go to step 1.

7 7.1 The previous tree topology is reconstructed.
7.2 The chosen branch is removed from the list. If there are

still branches in the list, go to step 1.

4.2 Phylogenetic Data Structure

For a given phylogenetic tree reconstruction problem consisting of
N taxa, each of which has a sequence of L nucleobases, the sequence
matrix is an N rows × L columns matrix. The characters in the se-
quences might include not only the DNA nucleobases Adenine (A),
Cytosine (C), Guanine (G) and Thymine (T), but also the ’-’ charac-
ter, which represents a gap, and the ’?’ character, which represents
an undefined character. These are the six basic characters, but a com-
bination of them is also possible thanks to the five-bit binary repre-
sentation shown in table 4.1.

TABLE 4.1: Second approach: 5-bit representation for
DNA characters [44]

DNA character 5-bit representation
’-’ 00001
’A’ 00010
’C’ 00100
’G’ 01000
’T’ 10000
’?’ 11111

As can be seen from table 4.1, each character is represented by a
power of 2, from 20 = 1 (5′b00001 for ’-’) to 24 = 16 (5′b10000 for ’T’),
except for ’?’, which is coded by the value 31 (5′b11111), since it can
represent any character. Thanks to this five-bit representation, the
union can be performed by the binary OR operation, and the inter-
section by the binary AND operation [44]. This eases the hardware
implementation of the first-pass optimization algorithm, described
in section 2.1.3.1 and shown in figure 2.2.

Hence, a memory of N × L × 5 bits is required to store the se-
quence alignment matrix. On the other hand, the tree topology shows
the connections between the internal nodes of the tree and the taxa.
A tree withN taxa hasN−1 nodes, including the root node. Since the
tree is a binary tree, each node has a left branch and a right branch,
and it has a parent node. Thus, the size of the memory required to
store the tree topology is (N − 1) × 3[log2(N)] bits.

4.3. Proposed Hardware Architecture 41

Finally, the size of the memory required to store the node charac-
ter states is of (N − 1) × L × 5 bits. For example, the tree topology,
the sequence data matrix memory and the node data matrix memory
for a tree with 6 taxa are represented in figure 4.1.

t0 t1 n2

t3 t4 n3

n0 t2 n4

n1 t5 n4

n2 n3 (root)

n0

n1

n2

n3

n4

Left
Branch

Right
Branch

Parent
Node

N
-
1

Tree Topology Memory

t0

t1

t2

t3

t4

t5

GCAACACT ...

GCACAATT ...

AACAAAAC ...

GGCAAAAC ...

AAACAAAA ...

...........

N

L

Sequence Data Matrix Memory

n0

n1

n2

n3

n4

ACAGAGAA ...

GCAACACT ...

ACAGAGAA ...

ACAGAGAA ...

GCAACACT ...

N
-
1

Node Data Matrix Memory

L

FIGURE 4.1: Second approach: memory data structure

Taxa are labeled according to their memory position on the se-
quence matrix memory. Likewise, nodes are labeled according to
their memory position on the tree topology memory. Since both
nodes and taxa appear on the same memory, we use an additional
bit to distinguish between the two of them: 0 for a node and 1 for a
taxon (singular form of taxa). The root node doesn’t have a parent.
Instead, a full sequence of 1s is used to identify it.

4.3 Proposed Hardware Architecture

In section 4.1, we mentioned the steps involved in each iteration of
the algorithm. To design the hardware architecture, we considered
that steps 1, 6 and 7 can be performed by the same hardware unit,
since they are about modifying the tree topology. Similarly, steps
3, 4 and 5 can be performed by the same hardware unit, since they
are about doing some operations on the nodes of the tree. However,
steps 3 and 4 are divided into two additional steps each: listing the
node order in which the first- and second-pass optimization is calcu-
lated, and performing the actual first- and second-pass optimization,
respectively. Listing the node order is performed by a different hard-
ware unit. Finally, step 2 is performed by a single hardware unit.

This leads to the following hardware units that we designed to
implement the algorithm described in section 4.1:

1 Tree Topology Update (TTU) unit

2 Progressive Neighborhood Listing (PNL) unit

3 Node Order Listing (NOL) unit

42 Chapter 4. Approach for the Indirect Calculation of Tree Lengths

4 First-, Second-pass and Rearrangement evaluation (FSR) unit

5 Global Control (GC) unit

The TTU unit is in charge of updating the tree topology memory
to reflect the changes produced by the Subtree Pruning and Rein-
serting (SPR) process. The PNL unit is in charge of listing all possi-
ble nodes in the main tree where the pruned branch with a subtree
(ST) attached to it can be reinserted in the main tree (MT). The NOL
unit has the task of listing the nodes of the tree for a post-order tree
traversal. The FSR unit has the most important tasks, which are do-
ing a first- and second-pass optimization, and evaluating all possible
rearrangements according to the Indirect Calculation of Tree Lengths
(ICTL) method. A general block diagram of the hardware architec-
ture proposed is shown in figure 4.2.

PNL
Unit

TTU
Unit

NOL
Unit

N
o
d
e

O
r
d
e
r

M
e
m
o
r
y

1

N
o
d
e

O
r
d
e
r

M
e
m
o
r
y

0

B
r
a
n
c
h

L
i
s
t

M
e
m
o
r
y

Global
Control
Unit

 Tree
Topology
 Memory

GCAACACT...

GCAACATT...

ACAGAGAA...

GCAAATCA...

Sequence Data
Matrix Memory

TTGACACT...

ACAGCAGT...

TCAGAGTG...

AAGCCTCC...

Node Data
Matrix Memory

Global
Registers
(Scores)

...

......

P
E

P
E

P
E

P
E

P
E

D
a
t
a

P
a
t
h

FSR Unit

Port 1 Port 0

Control signals

N
-
1

N
-
1

N

L L

5b x L 5b x L
NN

Scores
and other
signals

Line Buffer,Tree Adder

2
x
(
N
-
1
)

FIGURE 4.2: Second approach: general block diagram
of the proposed hardware architecture

It consists of the following elements: the dual-port Tree Topol-
ogy Memory (TTM), the dual-port Sequence Data Matrix Memory
(SDM), the dual-port Node Data Matrix Memory (NDM), two Node
Order Memories (NOM0 and NOM1), the Branch List Memory (BLM),
the TTU unit, the PNL unit, the NOL unit, the FSR unit, and a Global
Control unit with some registers. Black bars on the diagram make
reference to multiplexers. In the following sections, we explain how
each of this hardware units works.

4.3. Proposed Hardware Architecture 43

4.3.1 Tree Topology Update (TTU) unit

The Tree Topology Update (TTU) unit is in charge of modifying the
Tree Topology Memory to reflect the changes produced by the Sub-
tree Pruning and Reinserting (SPR) process.

It has three main tasks:

1 Pruning a branch from the whole tree (WT) to create the main
tree (MT) and the sub tree (ST).

2 Inserting the ST in the MT to create a new WT.

3 Rebuilding the previous WT when the score does not improve.

And two sub tasks:

1 Storing the value of the pruned branch and reinsertion branch.

2 Storing the values of the WT, MT and ST roots.

The general block diagram of the TTU unit is shown in figure 4.3.

FIGURE 4.3: Second approach: general block diagram
of the TTU unit

As can be seen from figure 4.3, the TTU unit is implemented as a
Finite State Machine (FSM) with a Data Path. The FSM works basi-
cally as a memory controller that is used to modify the content of the
Tree Topology Memory. In addition to this, it has a linear-feedback
shift register (LFSR), which works as a pseudo-random number gen-
erator.

Regardless of the number of taxa, when a branch with a subtree
(ST) attached to it is pruned from the tree, at most 2 nodes are mod-
ified. These nodes correspond to the parent node of the node where
the branch is pruned from, and the node on the opposite branch to
the pruned branch. An example of this is shown in figure 4.4.

44 Chapter 4. Approach for the Indirect Calculation of Tree Lengths

FIGURE 4.4: Second approach: example of the nodes
modified by the pruning process

Figure 4.4 shows a tree with 9 taxa. On the left is the tree before
pruning the left branch (LB) of n6, and on the right is the tree after
pruning it. This pruning process causes changes in the tree structure
that affect a total of 2 nodes. Thus, 2 memory positions are modified
in the Tree Topology Memory accordingly.

Similarly, when a branch with a ST attached to it is inserted in the
MT, at most 3 nodes are modified. These nodes correspond to the
node where the pruned branch comes from, and the nodes up and
down where the pruned branch is reinserted. An example of this is
shown in figure 4.5.

FIGURE 4.5: Second approach: example of the nodes
modified by the reinsertion process

4.3. Proposed Hardware Architecture 45

Figure 4.5 shows the same tree with 9 taxa after reinserting the
left branch (LB) of n6 on the right branch (RB) of n5. This reinsertion
process causes changes in the tree structure that affect a total of 3
nodes. Thus, 3 memory positions are modified in the Tree Topology
Memory accordingly.

The pruning process involves modifying at most 2 nodes. Since it
takes 2 clock cycles to modify a node from the Tree Topology Mem-
ory, the execution time is of 4 clock cycles at most. Similarly, insert-
ing the sub tree involves modifying at most 3 nodes. Thus, it takes
6 clock cycles at most. Rebuilding the tree is equivalent to reverting
the pruning process; hence, this takes also 4 clock cycles at most.

4.3.2 Progressive Neighborhood Listing (PNL) unit

The Progressive Neighborhood Listing (PNL) unit is in charge of list-
ing all possible nodes in the main tree (MT) where the pruned branch
with the subtree (ST) attached to it can be reinserted. For this, it
takes into account the distance parameter from the Progressive Tree
Neighborhood (see section 2.2.1). Its general block diagram is shown
in figure 4.6.

FIGURE 4.6: Second approach: general block diagram
of the PNL unit

As can be seen from figure 4.6, the PNL unit is implemented as
a Finite State Machine (FSM) with a Data Path. It is connected to
the TTU unit, the Tree Topology Memory and one of the Node Order
memories (see the general block diagram in figure 4.2).

It works as follows. Starting from the parent node of the node
where the branch is pruned from, all nodes in the main tree (MT) are
visited in order. Each time a node located at a relative distance less
than or equal to the current value of the distance parameter is vis-
ited, the node is pushed into the Node Order Memory. Other nodes,

46 Chapter 4. Approach for the Indirect Calculation of Tree Lengths

i.e. those nodes that have a relative distance that exceeds the cur-
rent value of the distance parameter, are not visited. As a result, only
those nodes from the MT that comply with the distance parameter
from the Progressive Tree Neighborhood are listed in the Node Or-
der Memory. An example of this is shown in figure 4.7.

FIGURE 4.7: Second approach: example of the PNL
listing

Figure 4.7 shows a tree with 10 taxa and 9 nodes with the rel-
ative distance values for all their branches. For this example, the
current value of the distance parameter is equal to 3, so all branches
that exceed this value are not visited by the PNL unit. At the end,
the reversed order of the visited nodes is stored in the Node Order
Memory, as shown on the right of figure 4.7. This listing is then used
by the FSR unit to evaluate all the rearrangement trees within the
neighborhood.

The PNL unit requires an execution time that depends on the
number of nodes that have to be listed. However, since it requires
two clock cycle to list each node at maximum, its execution time
never exceeds 2 × (N − 2) clock cycles for the worst- case scenario
where all nodes except one have to be listed. Moreover, this unit
works in parallel with the FSR unit, so its execution time does not
add any delay.

4.3.3 Node Order Listing (NOL) unit

The Node Order Listing (NOL) unit has the task of listing all the
nodes in the tree in a post-order. This tree can be the whole tree
(WT), the main tree (MT) or the subtree (ST), depending on the root
node chosen. The general block diagram of the NOL unit is shown
in figure 4.8.

4.3. Proposed Hardware Architecture 47

FIGURE 4.8: Second approach: general block diagram
of the NOL unit

As can be seen from figure 4.8, the NOL unit is implemented as
a Finite State Machine (FSM) with a Data Path and a Stack, from
which the data is read or written in a last-in-first-out (LIFO) order.
The NOL unit is connected to a Tree Topology Memory and a Node
Order Memory, which is also a Stack. The following algorithm is
used to list all the nodes in the tree:

1 Read the memory position of the chosen root node from the
Tree Topology Memory (TTM)

2 Repeat until all nodes are listed.
Push each node visited into the Node Order Memory.

Case (Left Branch (LB), Right Branch (RB))

2.1 (Node, Node): Push RB into the Stack, read LB from TTM
2.2 (Node, Leaf): Read LB from TTM
2.3 (Leaf, Node): Read RB from TTM
2.4 (Leaf, Leaf): Pop a node and read it from TTM

As a result of the above mentioned algorithm, the last node vis-
ited becomes the first node to be read from the Node Order Memory.
Thus, the desired post-order (reverse order of the visited nodes) is
obtained. To illustrate this, an example is shown in figure 4.9.

Figure 4.9 shows a tree with 9 taxa and 8 nodes. The visited
nodes, the actions taken and the contents of the stack for every clock
cycle are detailed on the right of the tree. At the end, the Node Order
Memory has the reverse order of the visited nodes. This is the final
node order.

The NOL unit takes one clock cycle to list each node, so it requires
a total of n clock cycles to list all the nodes, where n is the number of
nodes.

48 Chapter 4. Approach for the Indirect Calculation of Tree Lengths

FIGURE 4.9: Second approach: example of the NOL
unit listing process

4.3.4 First-, Second-pass and Rearrangement Evalua-
tion (FSR) unit

This unit is the most important unit. It has three main tasks:

1 Doing a first-pass optimization following the order stored in
the Node Order Memory (post-order)

2 Doing a second-pass optimization following the order stored in
the Node Order Memory (reversed-order)

3 Evaluating all possible tree rearrangements following the order
stored in the Node Order Memory (PNL-order)

Its general block diagram is shown in figure 4.10.

PE PE PE

0 1 L-1

leaf a_0

leaf b_0

node a_0

node b_0

leaf a_1

leaf b_1

node a_1

node b_1

leaf a_L-1

leaf b_L-1

node a_L-1

node b_L-1

...

Stack
Memory

5b

5b 5b 5b 5b

5b

5b 5b 5b 5b

5b

5b 5b 5b 5b

5b 5b 5b

L x 5b

L x 5b

result node

Tree Adder

score
(tree/difference)

FSR
Data
Path

FSR
Control
Path

control
signals

start
2b

node from
Node Order
Memory

.
RE_dif

RE_ins_node/branch

s
t
a
c
k

s
e
q
u
e
n
c
e

FIGURE 4.10: Second approach: general block dia-
gram of the FSR unit

4.3. Proposed Hardware Architecture 49

As seen in figure 4.10, the FSR unit is composed of L processing
elements (PE), where L is equivalent to the number of DNA charac-
ters in a sequence (refer to figure 4.1), a Tree Adder, a Stack Memory,
and a Control Logic unit with a Data Path. The inputs of the FSR
unit are two leaves (taxa) from the Sequence Data Matrix Memory:
leaf a and leaf b, two nodes from the Node Data Matrix Memory: node
a and node b, and the node order from one of the Node Order memo-
ries. The Tree Adder is used at the end of the first-pass optimization
to add all individual scores from each PE in order to obtain the final
score of the tree. Furthermore, the FSR unit outputs the result node
of all the PEs, so it can be stored in the Node Data Matrix Memory,
and the best candidate node and branch for reinserting the subtree
(ST) in the main tree (MT), along with the respective difference score:
RE_dif, RE_ins_node/branch.

The FSR unit uses L PEs to implement the first-pass optimiza-
tion algorithm (see section 2.1.3.1), the second-pass optimization al-
gorithm (see section 2.1.3.2), and the neighbor trees rearrangement
evaluation by using the Indirect Calculation of Tree Lengths (see sec-
tion 2.2.2). These L PEs allow to process all the characters of two
nodes or leaves (taxa) in parallel. The general block diagram of a PE
is shown in figure 4.11.

sdm_char_01

ndm_char_01

stk_char

rs_char

sdm_char_02

ndm_char_02

stk_char

rs_char

char_01

char_02

char_03

char_03

score

rs_char

+
=0? ..

=1F?

.

char_01

char_02

char_01

char_02

char_02

char_01

char_03

char_03

5

8

=0?

char_03

char_04

char_03

char_04

char_01

char_02

.

ctrl_01

ctrl_01

ctrl_02

ctrl = "00": FP
ctrl = "x1": SP
ctrl = "1x": RE

D F

en

clk rst

D F

en

clk rst

D F

en

clk rst

D F

en

clk rst

FIGURE 4.11: Second approach: general block dia-
gram of the Processing Element (PE)

As can be seen from figure 4.11, the PE is composed of 4 D-type
flip-flop-based registers of 5 bits each, and a collection of logic gates.
These logic gates implement the three main tasks of the FSR unit de-
scribed at the beginning of this section, but for a single DNA charac-
ter. Depending on a control signal (ctrl in figure 4.11) the PE changes
its functionality. The idea behind this is to share the same resources
for the first, second-pass optimization, and for the rearrangement
evaluation, since they need not to work at the same time. Each of
these tasks works using pipeline. In the following sections we de-
scribe each one of them.

50 Chapter 4. Approach for the Indirect Calculation of Tree Lengths

4.3.4.1 First-pass Optimization (FSR-FP)

The FSR-FP works by following the 4-stage pipelined algorithm listed
below. This algorithm uses the Stack Memory shown in figure 4.10
and the sequence output from all the PEs.

Stage 01 Pop a node from the NOM and read it from the TTM.

Stage 02 Read LB and RB from the SDM1 and SDM2.

Stage 03 Do the following two tasks:

1. Case{Node(LB, RB)}

(Leaf, Leaf): Push the node from Stage 04 into the Stack.

(Node, Node): Pop a node from the Stack.

2. Do a first-pass optimization on the node.

Stage 04 Store the resulting node into NDM1.

To illustrate the above mentioned algorithm and how the 4-stage
pipeline works, an example is given in figure 4.12 for a tree with 9
taxa and 8 nodes. The order in which the nodes are processed is
already stored in the Node Order Memory (NOM).

FIGURE 4.12: Second approach: example of the
pipeline processing during the FSR-FP

In figure 4.12, TTM refers to the Tree Topology Memory, SDM
to the Sequence Data Matrix Memory and NDM to the Node Data
Matrix Memory. Both the SDM and the NDM are dual-port memo-
ries. In Stage 03, fp(LB,RB) refers to the first-pass optimization that
is a function of the left and right branches of the node (see section
2.1.3.1), reg refers to the output sequence from all the PEs, and stk to
the output sequence from the Stack Memory.

4.3. Proposed Hardware Architecture 51

As can be seen from figure 4.12, each stage processes a node at a
time. The FSR-FP finishes when all nodes in the Node Order Memory
have been processed. Then, the final score of the tree is obtained
after summing the individual results from all the PEs using the Tree
Adder. The total execution time approximates n + T clock cycles,
where n is the number of nodes in the main tree (MT) or subtree
(ST), and T the latency of the Tree Adder.

4.3.4.2 Second-pass Optimization (FSR-SP)

The FSR-SP works by following the 5-stage pipelined algorithm listed
below. This algorithm uses the Stack Memory shown in figure 4.10
and the sequence output from all the PEs.

Stage 01 Pop a node from the NOM and read it from the TTM.

Stage 02 Read LB and RB from the SDM1/SDM2 or NDM1/NDM2.

Stage 03 Do the following two tasks:

1. Select the other operands of the node.
2. Read the node from NDM1.

Stage 04 Do a second-pass optimization on the node.

Stage 05 Store the resulting node into NDM2.

This pipeline works in two phases. In phase one, stages 1, 3 and 5
work in parallel. In the other phase, stages 2 and 4 work in parallel.
It works in two phases, because not all operands can be read at the
same time from the memories.

To illustrate the above mentioned algorithm and how the 5-stage
pipeline works, an example is given in figure 4.13 for a tree with 9
taxa and 8 nodes. The order in which the nodes are processed is the
reversed order from the first-pass optimization.

In figure 4.13, TTM refers to the Tree Topology Memory, SDM to
the Sequence Data Matrix Memory and NDM to the Node Data Ma-
trix Memory. Both the SDM and the NDM are dual-port memories.
In Stage 04, sp(PN, N, LB, RB) refers to the second-pass optimization
that is a function of the parent node (PN), the node (N) and the left
(LB) and right (RB) branches (see section 2.1.3.2). In the same stage,
reg refers to the output sequence from all the PEs, and stk to the out-
put sequence from the Stack Memory.

The execution time approximates 2 clock cycles per node as the
number of nodes increases. Since the Tree Adder is not used for the
second-pass optimization, the total execution time approximates 2n,
where n is the number of nodes in the main tree (MT) or subtree (ST).

52 Chapter 4. Approach for the Indirect Calculation of Tree Lengths

FIGURE 4.13: Second approach: example of the
pipeline processing during the FSR-SP

4.3.4.3 Rearrangement Evaluation (FSR-RE)

The FSR-RE works by following the 4-stage pipelined algorithm listed
below. This algorithm uses the Stack Memory shown in figure 4.10
and the sequence output from all the PEs. Moreover, this unit works
in two phases. In phase one, stages 1 and 3 work. In the other, stages
2 and 4 work.

Initialization Read the root of the subtree (ST) from NDM1 or SDM1.

Stage 01 Pop a node from the NOM and read it from the TTM.

Stage 02 Read the node from NDM1 and LB from SDM2 or NDM2.

Stage 03 Do the following two tasks:

1. Read the node from NDM2 and RB from SDM2 or NDM2.

2. Evaluate the first tree rearrangement.

Stage 04 Evaluate the second tree rearrangement.

To illustrate the above mentioned algorithm and how the 4-stage
pipeline works, an example is given in figure 4.14 for a tree with 9
taxa and 8 nodes. The order in which the nodes are processed is the
order determined by the Progressive Neighborhood Listing (PNL)
unit.

4.3. Proposed Hardware Architecture 53

FIGURE 4.14: Second approach: example of the
pipeline processing during the FSR-RE

In figure 4.14, TTM refers to the Tree Topology Memory, SDM to
the Sequence Data Matrix Memory and NDM to the Node Data Ma-
trix Memory. Both the SDM and the NDM are dual-port memories.
In Stage 03 and Stage 04, d(SR, [LB, RB]) refers to the difference score
that is a function of the root node of the subtree (SR) and the left (LB)
and right (RB) branches of the MT (see section 2.2.2). In the same
stage, reg refers to the output sequence from all the PEs, and stk to
the output sequence from the Stack Memory. The difference score
values are added by the Tree Adder from figure 4.10 to obtain the
total difference score for the tree rearrangement. Finally, the rear-
rangement with the lowest score is kept as candidate to reinsert the
subtree (ST) in the main tree (MT). For this purpose, inside the Data
path of the FSR unit, a line buffer and some comparison registers are
used.

Since two rearrangements are evaluated consecutively, the exe-
cution time will approximate 1 clock cycle per tree rearrangement
as the number of nodes increases. The total execution approximates
2n+ T , where n is the number of nodes in the main tree (MT), and T
is the latency of the Tree Adder.

4.3.5 Global Control (GC) unit

The Global Control (GC) logic unit is a Finite State Machine (FSM)
that commands the other four units: TTU, PNL, NOL and FSR. The
GC unit controls these units so they work in parallel as illustrated
in figure 4.15, where TTMi refers to the port i of the Tree Topology
Memory, and NOMi refers to the Node Order Memory i. FP refers to
the first-pass optimization, SP to the second-pass optimization, and
RE to the rearrangement evaluation.

54 Chapter 4. Approach for the Indirect Calculation of Tree Lengths

NOL

FSR

TTU

PNL

(WT)/NOM0,TTM0

FP(WT)/NOM0,TTM0

NOL

FSR

TTU

PNL

PRUNE(WT)/TTM1

(ST)/NOM0,TTM0(MT)/NOM1,TTM0

FP(ST)/NOM0,TTM1 FP(MT)/NOM1,TTM1 SP(MT)/NOM0,TTM1

(MT)/NOM1,TTM0

RE(MT,ST)/NOM1,TTM1

INSERT/REBUILT(WT)

Initialization

If ST is
a branch
 (Skip)

If MT.Score + ST.Score >= WT.Score
 (Skip)

Repeat

<=4 n(ST) Max{n(MT),n(ST)+T} n(MT)+T

< 2*((N-1)+T)

<=62*n(MT) 2*n(MT)+T

Excecution time (clock cycles)

Notes:
WT: Whole Tree
MT: Main Tree
ST: Sub Tree
n(ST): number of nodes of ST
n(MT): number of nodes of MT
T: Tree Adder latency

FIGURE 4.15: Second approach: execution flow of the
proposed hardware architecture

As can be seen from figure 4.15, the NOL unit and the FSR-FP, the
PNL unit and the FSR-SP work in parallel. This explains the use of a
dual-port Tree Topology Memory and two Node Order Memories as
shown in figure 4.2.

4.4 Implementation Results

In this section we show implementation results for four real-world
biological datasets and simulation results for two other real-world
biological datasets. The datasets were obtained from the repository
of phylogenetic information TreeBASE [45], see table 4.2.

TABLE 4.2: Second approach: datasets used [45]

ID M972 M2355 M3452 M3875 M17200 M2616
#taxa 155 150 116 228 326 330
#characters 355 829 1,157 1,435 1,434 1,711

4.4.1 Hardware Utilization and Performance Results

The hardware utilization and performance results are shown in table
4.3. The targeted FPGA is a Kintex-7 XC7K325T-FF2-900.

The implementation covers any of the first four datasets in table
4.2. In other words, problems up to N = 1, 024 and L = 1, 435 can be
processed with this amount of hardware logical resources. The num-
ber of LUTs is almost proportional toL, the number of BRAMS to L×
N . For problems M17200 and M2616 a larger FPGA, e.g. XC7K410T,
would be required.

4.5. Comparison and Performance Evaluation 55

TABLE 4.3: Second approach: implementation results
on a Kintex-7 FPGA

Logic Utilization Used Available Utilization
Number of Slices 23,610 50,950 46%
Number of Slice Registers 55,174 407,600 13%
Number of Slice LUTs 94,442 203,800 46%
Number of BRAMs (36 Kb) 402 445 90%
Maximum Frequency 163.826MHz

4.5 Comparison and Performance Evaluation

Here we compare our hardware approach (second approach) with
the first approach (see chapter 3) and with TNT (Tree analysis using
New Technology) [20]. The results are summarized in table 4.4.

TABLE 4.4: Second approach: results for the local
search

Dataset First Second TNT
Total time (ms) 62.2 11.27 890

M972 Time/tree (µs) 1.243 0.031 0.065
Visited trees 50,031 364,177 13,637,086
Best score 1548 1533 1543
Total time (ms) 55.5 9.9 500

M2355 Time/tree (µs) 1.109 0.025 0.059
Visited trees 50,032 400,368 8,497,522
Best score 2749 2724 2771
Total time (ms) 49.9 9.64 180

M3452 Time/tree (µs) 0.997 0.029 0.103
Visited trees 50,046 329,025 1,749,117
Best score 3633 3632 3624
Total time (ms) 82.8 27.76 510

M3875 Time/tree (µs) 1.65 0.037 0.021
Visited trees 50,172 760,180 23,818,061
Best score 605 567 564
Total time (ms) No Data 53.56 2260

M17200* Time/tree (µs) No Data 0.019 0.046
Visited trees No Data 2798944 49662276
Best score No Data 4344 4340
Total time (ms) No Data 42.25 4700

M2616* Time/tree (µs) No Data 0.027 0.09
Visited trees No Data 1564515 53330179
Best score No Data 10003 10004

*Notes: Results for the last two datasets are simulation results.

56 Chapter 4. Approach for the Indirect Calculation of Tree Lengths

To make the comparison as fair as possible, we use the traditional
search of TNT based on SPR, and start from a random tree. This is
the closest setting of TNT that resembles our algorithm, and the first
one (see section 3.1). Moreover, since the total number of examined
trees is not the same, we show the average execution time required
per tree. The targeted PC and FPGAs were the following:

• PC: Intel Core-i7 860, 4GB RAM @ 2.80 Ghz (TNT)

• FPGA: Kintex-7 XC7K325T-FF2-900 @ 153.80 Mhz (first approach)

• FPGA: Kintex-7 XC7K325T-FF2-900 @ 156.25 Mhz (second ap-
proach)

Now, using the results from table 4.4, we show the acceleration
rates obtained for the whole local search and for the evaluation of a
single tree in figures 4.16 and 4.17, respectively.

5.52 5.61 5.18 2.98

78.97

50.51

18.67 18.37

42.2

111.24

0

20

40

60

80

100

120

M972 M2355 M3452 M3875 M17200 M2616

A
c
c
e
le

ra
ti

o
n
 f
o
r

th
e
 L

o
c
a
l

S
e
a
rc

h

Second vs First Second vs TNT

FIGURE 4.16: Second approach: acceleration rate for
the local search

40.1

44.36

34.38

44.6

2.1 2.36 3.55
0.57

2.42 3.33

0

10

20

30

40

50

M972 M2355 M3452 M3875 M17200 M2616

A
c
c
e
le

r
a
ti

o
n
 f
o
r

th
e
 T

re
e

E
v
a
lu

a
ti

o
n

Second vs First Second vs TNT

FIGURE 4.17: Second approach: acceleration rate for
the tree evaluation

4.6. Discussion 57

Compared to the first approach, our second approach provides an
acceleration rate between 2 and 6 for the local search, and between
34 and 45 for the evaluation of a single tree. Here, we can make the
following remarks. Although our second approach evaluates more
trees than the first approach, there is still an acceleration rate for the
local search. Moreover, the acceleration rate for the evaluation of a
single tree is considerable. This is thanks to having applied the Indi-
rect Calculation of Tree Lengths (ICTL) method.

On the other hand, in comparison to TNT, our approach yields
an acceleration rate between 18 and 112 for the local search, and be-
tween 2 and 4 for the evaluation of a single tree, except for problem
M3875, for which there is no acceleration. We think that the rea-
son for this might lie in the particularities of problem M3875 itself,
which make it easier for TNT. Naturally, there is a high acceleration
rate for the local search, because our second approach evaluates less
trees than TNT. However, it should still be noted that our second
approach reaches a similar score (see table 4.4) faster than TNT. For
problems M972, M2355 and M2616, the score is better, and for prob-
lems M3452, M3875 and M17200 it is worse. The acceleration rate for
the evaluation of a single tree grows with the number of characters,
except for problems M3452 and M3875. Problem M3452 has the high-
est acceleration rate (3.55), although it is not the problem with more
characters. Problem M3875 has the lowest acceleration rate (0.57),
although it is not the problem with fewer taxa.

4.6 Discussion

We compared execution times against our first approach (see chapter
3) and TNT. Compared to our first approach, our second approach is
faster for all the problems. Compared to TNT, our second approach
is faster for the local search and the evaluation of a single tree, ex-
cept for problem M3875. The implementation of the Indirect Cal-
culation of Tree Lengths (ICTL) method served to exceed by far the
first approach. On the other hand, our second approach only slightly
surpasses TNT. Although the algorithm implemented by TNT is not
open, it is known that it implements its own version of the Indirect
Calculation of Tree Lengths (ICTL) method. Furthermore, TNT uses
multi-core processing (4 cores in this evaluation) with SIMD instruc-
tions.

The high performance we obtained is achieved by parallel pro-
cessing of all the characters in the Sequence Alignment Matrix Mem-
ory or the Node Data Matrix Memory by using L Processing Ele-
ments (PEs) (see section 4.3.4), where L is the number of DNA char-
acters in the sequence. As a result, the execution time for the tree

58 Chapter 4. Approach for the Indirect Calculation of Tree Lengths

optimization, whether a first- or second-pass optimization, is inde-
pendent of the number of characters in our approach.

From this approach, like in the first approach, we learned that to
achieve faster execution times than TNT with a hardware implemen-
tation, it is necessary to consider that the score of the tree does not
have to be recalculated from the start in each iteration, since only a
small portion of the tree changes by the Subtree Pruning and Regraft-
ing (SPR) process.

59

Chapter 5

Approach for the Alternative
Second-pass

5.1 Algorithm Overview

The algorithm is based on the stochastic local search algorithm de-
scribed in section 2.1.1. It uses the Progressive Tree Neighborhood,
described in section 2.2.1, the Indirect Calculation of Tree Lengths,
described in section 2.2.2, and the Alternative Second-pass Optimiza-
tion, described in section 2.2.3.

The algorithm starts from a randomly generated tree in the search
space, and tries to improve it on each iteration. For the initial tree, a
list for all the branches is created. This list denotes which tree rear-
rangements have to be tried. Then, a first-pass optimization is done
to calculate the initial score of the tree and the preliminary charac-
ter states of the nodes. At each iteration of the algorithm a neighbor
tree rearrangement replaces the current one if it has a lower score,
i.e. better score. For this, in each iteration, the following steps are
performed:

1 1.1 A branch to prune from the whole tree (WT) is randomly
chosen from the list.

1.2 The main tree (MT) and the subtree (ST) derived from the
previous pruning are created.

2 All possible branches from the MT where the ST can be rein-
serted are listed, according to the distance parameter from the
Progressive Tree Neighborhood.

3 A first-pass optimization is done on the MT and the ST.

If the sum of the scores of the MT and the ST is greater (worse)
than the current score, go to step 7.

4 An alternative second-pass optimization is done on the MT.

5 All rearrangements within the neighborhood are evaluated by
the ICTL.

60 Chapter 5. Approach for the Alternative Second-pass

If the sum of the scores of the MT, the ST and the difference
(D.Score) is greater (worse) than the current score, go to step 7.

6 6.1 The ST is inserted in the MT to create a new WT.

6.2 All branches are added to the list again.

6.3 Go to step 1.

7 7.1 The previous tree topology is reconstructed.

7.2 The chosen branch is removed from the list. If there are
still branches in the list, go to step 1.

5.2 Phylogenetic Data Structure

For a given phylogenetic tree reconstruction problem consisting of
N taxa, each of which has a sequence of L nucleobases, the sequence
matrix is an N rows × L columns matrix. The characters in the se-
quences might include not only the DNA nucleobases Adenine (A),
Cytosine (C), Guanine (G) and Thymine (T), but also the ’-’ charac-
ter, which represents a gap, and the ’?’ character, which represents
an undefined character. These are the six basic characters, but a com-
bination of them is also possible thanks to the five-bit binary repre-
sentation shown in table 5.1.

TABLE 5.1: Third approach: 5-bit representation for
DNA characters [44]

DNA character 5-bit representation
’-’ 00001
’A’ 00010
’C’ 00100
’G’ 01000
’T’ 10000
’?’ 11111

As can be seen from table 5.1, each character is represented by a
power of 2, from 20 = 1 (5′b00001 for ’-’) to 24 = 16 (5′b10000 for ’T’),
except for ’?’, which is coded by the value 31 (5′b11111), since it can
represent any character. Thanks to this five-bit representation, the
union can be performed by the binary OR operation, and the inter-
section by the binary AND operation [44]. This eases the hardware
implementation of the first-pass optimization algorithm, described
in section 2.1.3.1 and shown in figure 2.2.

Hence, a memory of N × L × 5 bits is required to store the se-
quence alignment matrix. On the other hand, the tree topology shows
the connections between the internal nodes of the tree and the taxa.
A tree withN taxa hasN−1 nodes, including the root node. Since the

5.3. Proposed Hardware Architecture 61

tree is a binary tree, each node has a left branch and a right branch,
and it has a parent node. Thus, the size of the memory required to
store the tree topology is (N − 1) × 3[log2(N)] bits.

Finally, the size of the memory required to store the node charac-
ter states is of (N − 1) × L × 5 bits. Since we have to store the node
character states for the normal, left and right path, we need three of
these memories. For example, the tree topology, the sequence data
matrix memory and the node data matrix memories for a tree with 6
taxa are represented in figure 5.1.

CCATAGAG ...

AAACAGAG ...

t0 t1 n2

t3 t4 n3

n0 t2 n4

n1 t5 n4

n2 n3 (root)

n0

n1

n2

n3

n4

Left

Branch

Right

Branch

Parent

Node
N
-
1

Tree Topology Memory

t0

t1

t2

t3

t4

t5

GCAACACT ...

GCACAATT ...

ACAAAAC ...

GCAAAAC ...

AACAAAA ...

...........

N

L

Sequence Matrix Memory

n0

n1

n2

n3

n4

ACAGAGAA ...

GCAACACT ...

ACAGAGAA ...

ACAGAGAA ...

GCAACACT ...

N
-
1

Node Matrix Memories
(NDM_N, NDM_L, NDM_R)

L

.

.

.

.

.

.

.

.

3

FIGURE 5.1: Third approach: memory data structure

NDM_N, NDM_R and NDM_L refer to the node data matrix mem-
ories used to store the normal, right and left path character states,
respectively. Taxa are labeled according to their memory position on
the sequence matrix memory. Likewise, nodes are labeled according
to their memory position on the tree topology memory. Since both
nodes and taxa appear on the same memory, we use an additional
bit to distinguish between the two of them: 0 for a node and 1 for a
taxon (singular form of taxa). The root node doesn’t have a parent.
Instead, a full sequence of 1s is used to identify it.

5.3 Proposed Hardware Architecture

In section 5.1, we mentioned the steps involved in each iteration of
the algorithm. To design the hardware architecture, we considered
that steps 1, 6 and 7 can be performed by the same hardware unit,
since they are about modifying the tree topology. Similarly, steps
3, 4 and 5 can be performed by the same hardware unit, since they
are about doing some operations on the nodes of the tree. However,
steps 3 and 4 are divided into two additional steps each: listing the
node order in which the first- and the alternative second-pass op-
timization is calculated, and performing the optimizations, respec-
tively. Listing the node order is performed by a different hardware
unit. Finally, step 2 is performed by a single hardware unit.

62 Chapter 5. Approach for the Alternative Second-pass

This leads to the following hardware units that we designed to
implement the algorithm described in section 4.1:

1 Tree Topology Update (TTU) unit

2 Progressive Neighborhood Listing (PNL) unit

3 Node Order Listing (NOL) unit

4 First-, alternative Second-pass optimization and Rearrangement
evaluation (FSR) unit

5 Global Control (GC) unit

The TTU unit is in charge of modifying the tree topology memory
to reflect the changes produced by the Subtree Pruning and Reinsert-
ing (SPR) process. The PNL unit is in charge of listing all possible
nodes in the main tree where the pruned branch with a subtree (ST)
attached to it can be reinserted in the main tree (MT). The NOL unit
has the task of listing the nodes of the tree for a post-order tree traver-
sal. The FSR unit has the most important tasks, which are doing
a first- and an alternative second-pass optimization, and evaluating
all possible rearrangements according to the Indirect Calculation of
Tree Lengths (ICTL) method. A general block diagram of the hard-
ware architecture proposed is shown in figure 5.2.

PNL UnitTTU Unit NOL Unit

N
o
d
e

O
r
d
e
r

M
e
m
o
r
y

1

N
o
d
e

O
r
d
e
r

M
e
m
o
r
y

0

B
r
a
n
c
h

L
i
s
t

M
e
m
o
r
y

Global
Control
Unit

 Tree
Topology
 Memory

Line Buffers, Tree Adders,etc.

GCAACACT...

GCAACATT...

ACAGAGAA...

GCAAATCA...

Sequence Data
Matrix Memory

TTGACACT...

ACAGCAGT...

TCAGAGTG...

AAGCCTCC...

Node Data
Matrix Memories

Global
Registers
(Scores)

...

......

P

E

P

E

P

E

P

E

P

E

F
S
R

D
a
t
a

P
a
t
h

F
S
R

U
n
i
t

Port 1 Port 0

Control Signals

N
-
1

N
-
1

N

L
L

5b x L

(x3)

5b x L

NN

Scores and other Signals

2
x
(
N
-
1
)

3

FIGURE 5.2: Third approach: general block diagram of
the proposed hardware architecture

5.3. Proposed Hardware Architecture 63

It consists of the following elements: the dual-port Tree Topol-
ogy Memory (TTM), the dual-port Sequence Data Matrix Memory
(SDM), the dual-port Node Data Matrix Memories (NDM_N, NDM_L
and NDM_R), two Node Order Memories (NOM0 and NOM1), the
Branch List Memory (BLM), the TTU unit, the PNL unit, the NOL
unit, the FSR unit, and a Global Control unit with some registers.
Black bars on the diagram make reference to multiplexers. In the fol-
lowing sections, we explain how each of this hardware units works.

5.3.1 Tree Topology Update (TTU) unit

The Tree Topology Update (TTU) unit is in charge of modifying the
Tree Topology Memory to reflect the changes produced by the Sub-
tree Pruning and Reinserting (SPR) process.

It has three main tasks:

1 Pruning a branch from the whole tree (WT) to create the main
tree (MT) and the sub tree (ST).

2 Inserting the ST in the MT to create a new WT.

3 Rebuilding the previous WT when the score does not improve.

And two sub tasks:

1 Storing the value of the pruned branch and reinsertion branch.

2 Storing the values of the WT, MT and ST roots.

The general block diagram of the TTU unit is shown in figure 5.3.

FIGURE 5.3: Third approach: general block diagram of
the TTU unit

64 Chapter 5. Approach for the Alternative Second-pass

As can be seen from figure 5.3, the TTU unit is implemented as a
Finite State Machine (FSM) with a Data Path. The FSM works basi-
cally as a memory controller that is used to modify the content of the
Tree Topology Memory. In addition to this, it has a linear-feedback
shift register (LFSR), which works as a pseudo-random number gen-
erator.

Regardless of the number of taxa, when a branch with a subtree
(ST) attached to it is pruned from the tree, at most 2 nodes are mod-
ified. These nodes correspond to the parent node of the node where
the branch is pruned from, and the node on the opposite branch to
the pruned branch. An example of this is shown in figure 5.4.

FIGURE 5.4: Third approach: example of the nodes
modified by the pruning process

Figure 5.4 shows a tree with 9 taxa. On the left is the tree before
pruning the left branch (LB) of n6, and on the right is the tree after
pruning it. This pruning process causes changes in the tree structure
that affect a total of 2 nodes. Thus, 2 memory positions are modified
in the Tree Topology Memory accordingly.

Similarly, when a branch with a ST attached to it is inserted in the
MT, at most 3 nodes are modified. These nodes correspond to the
node where the pruned branch comes from, and the nodes up and
down where the pruned branch is reinserted. An example of this is
shown in figure 5.5.

Figure 5.5 shows the same tree with 9 taxa after reinserting the
left branch (LB) of n6 on the right branch (RB) of n5. This reinsertion
process causes changes in the tree structure that affect a total of 3
nodes. Thus, 3 memory positions are modified in the Tree Topology
Memory accordingly.

5.3. Proposed Hardware Architecture 65

FIGURE 5.5: Third approach: example of the nodes
modified by the reinsertion process

The pruning process involves modifying at most 2 nodes. Since
in 2 clock cycles a node gets modified, it takes 4 clock cycles at most.
Similarly, inserting the sub tree involves modifying at most 3 nodes.
Thus, it takes 6 clock cycles at most. Reconstructing the tree is equiv-
alent to reverting the pruning process; hence, it takes also 4 clock
cycles at most.

5.3.2 Progressive Neighborhood Listing (PNL) unit

The Progressive Neighborhood Listing (PNL) unit is in charge of list-
ing all possible nodes in the main tree (MT) where the pruned branch
with the subtree (ST) attached to it can be reinserted. It takes into
account the distance parameter from the Progressive Tree Neighbor-
hood (section 2.2.1). Its general block diagram is shown in figure 5.6.

FIGURE 5.6: Third approach: general block diagram of
the PNL unit

66 Chapter 5. Approach for the Alternative Second-pass

As can be seen from figure 5.6, the PNL unit is implemented as
a Finite State Machine (FSM) with a Data Path. It is connected to
the TTU unit, the Tree Topology Memory and one of the Node Order
memories (see the general block diagram in figure 5.2).

It works as follows. Starting from the parent node of the node
where the branch is pruned from, all nodes in the main tree (MT) are
visited in order. Each time a node located at a relative distance less
than or equal to the current value of the distance parameter is vis-
ited, the node is pushed into the Node Order Memory. Other nodes,
i.e. those nodes that have a relative distance that exceeds the cur-
rent value of the distance parameter, are not visited. As a result, only
those nodes from the MT that comply with the distance parameter
from the Progressive Tree Neighborhood are listed in the Node Or-
der Memory. An example of this is shown in figure 5.7.

FIGURE 5.7: Third approach: example of the PNL list-
ing

Figure 5.7 shows a tree with 10 taxa and 9 nodes with the rel-
ative distance values for all their branches. For this example, the
current value of the distance parameter is equal to 3, so all branches
that exceed this value are not visited by the PNL unit. At the end,
the reversed order of the visited nodes is stored in the Node Order
Memory, as shown on the right of figure 5.7. This listing is then used
by the FSR unit to evaluate all the rearrangement trees within the
neighborhood.

The PNL unit requires an execution time that depends on the
number of nodes that have to be listed. However, since it requires
two clock cycle to list each node at maximum, its execution time
never exceeds 2 × (N − 2) clock cycles for the worst- case scenario
where all nodes except one have to be listed. Moreover, this unit
works in parallel with the FSR unit, so its execution time does not
add any delay.

5.3. Proposed Hardware Architecture 67

5.3.3 Node Order Listing (NOL) unit

The Node Order Listing (NOL) unit has the task of listing all the
nodes in the tree in a post-order. This tree can be the whole tree
(WT), the main tree (MT) or the subtree (ST), depending on the root
node chosen. The listing is then used by the First-, Second-pass and
Rearrangement evaluation (FSR) unit. The general block diagram of
the NOL unit is shown in figure 5.8.

FIGURE 5.8: Third approach: general block diagram of
the NOL unit

As can be seen from figure 5.8, the NOL unit is implemented as
a Finite State Machine (FSM) with a Data Path and a Stack, from
which the data is read or written in a last-in-first-out (LIFO) order.
The NOL unit is connected to a Tree Topology Memory and a Node
Order Memory, which is also a Stack. The following algorithm is
used to list all the nodes in the tree:

1 Read the memory position of the chosen root node from the
Tree Topology Memory (TTM)

2 Repeat until all nodes are listed.
Push each node visited into the Node Order Memory.

Case (Left Branch (LB), Right Branch (RB))

2.1 (Node, Node): Push RB into the Stack, read LB from TTM

2.2 (Node, Leaf): Read LB from TTM

2.3 (Leaf, Node): Read RB from TTM

2.4 (Leaf, Leaf): Pop a node and read it from TTM

As a result of the above mentioned algorithm, the last node vis-
ited becomes the first node to be read from the Node Order Memory.
Thus, the desired post-order (reverse order of the visited nodes) is
obtained. To illustrate this, an example is shown in figure 5.9.

68 Chapter 5. Approach for the Alternative Second-pass

FIGURE 5.9: Third approach: example of the NOL unit
listing process

Figure 5.9 shows a tree with 9 taxa and 8 nodes. The visited
nodes, the actions taken and the contents of the stack for every clock
cycle are detailed on the right of the tree. At the end, the Node Order
Memory has the reverse order of the visited nodes. This is the final
node order.

The NOL unit takes one clock cycle to list each node, so it requires
a total of n clock cycles to list all the nodes, where n is the number of
nodes.

5.3.4 First-, alternative Second-pass and Rearrangement
evaluation (FSR) unit

This unit is the most important unit. It has three main tasks:

1 Doing a first-pass optimization following the order stored in
the Node Order Memory (post-order)

2 Doing an alternative second-pass optimization following the
order stored in the Node Order Memory (reversed-order)

3 Evaluating all possible tree rearrangements following the order
stored in the Node Order Memory (PNL-order)

Its general block diagram is shown in figure 5.10.

As seen in figure 5.10, the FSR unit is composed of L processing
elements (PE), where L is equivalent to the number of DNA charac-
ters in a sequence (refer to figure 5.1), two tree adders: Tree Adder 1
and Tree Adder 2, a Stack Memory, and a Control Logic unit with a
Data Path. The inputs of the FSR unit are two leaves (taxa) from the
Sequence Data Matrix Memory: leaf a and leaf b, two nodes from any
of the Node Data Matrix Memories: node a and node b, and the node
order from one of the Node Order memories.

5.3. Proposed Hardware Architecture 69

PE PE PE

0 1 L-1

leaf a_0

leaf b_0

node a_0

node b_0

leaf a_1

leaf b_1

node a_1

node b_1

leaf a_L-1

leaf b_L-1

node a_L-1

node b_L-1

...

Stack
Memory

5b

 5b

(x3)

5b 5b

5b

5b 5b

5b

 5b

(x3)

5b 5b

5b 5b 5b

L x 5b

L x 5b

result node

Tree Adder 1

score

FSR
Data
Path

FSR
Control
Path

control signals

start
2b

node from
Node Order
Memory

.RE_dif

RE_ins_node/branch

s
t
a
c
k

s
e
q
u
e
n
c
e

Tree Adder 2

node a & b comes from
NDM_N, NDM_L or NDM_R

5b

 (x3)

 5b

(x3)

5b

 (x3)

5b

 (x3)

FIGURE 5.10: Third approach: general block diagram
of the FSR unit

The Tree Adder 1 is used at the end of the first-pass optimization
to add all individual scores from each PE in order to obtain the final
score of the tree. In addition, both Tree Adder 1 and Tree Adder 2 are
used during the tree rearrangement evaluation to add all individual
difference scores from each PE in order to obtain the total difference
score. Two tree adders are used, since there are two branches in a
node: the left branch (LB) and the right branch (RB). Furthermore,
the FSR unit outputs the result node of all the PEs, so it can be stored
in the Node Data Matrix Memory, and the best candidate node and
branch for reinserting the subtree (ST) in the main tree (MT), along
with the respective difference score: RE_dif, RE_ins_node/branch.

The FSR unit uses L PEs to implement the first-pass optimization
algorithm (see section 2.1.3.1), the alternative second-pass optimiza-
tion algorithm (see section 2.2.3), and the neighbor tree rearrange-
ment evaluation by using the Indirect Calculation of Tree Lengths
(see section 2.2.2). These L PEs allow to process all the characters of
two nodes or leaves (taxa) in parallel. The general block diagram of
a PE is shown in figure 5.11.

As can be seen from figure 5.11, the PE is composed of 5 D-type
flip-flop-based registers of 5 bits each, and a collection of logic gates.
These logic gates implement the three main tasks of the FSR unit de-
scribed at the beginning of this section, but for a single DNA charac-
ter. Depending on a control signal (ctrl in figure 5.11) the PE changes
its functionality. As should be noted, the circuit used for the alter-
native second-pass optimization is basically the same as the one for
the first-pass optimization. This is due to the fact that the alternative
second-pass optimization is equivalent to performing two first-pass
optimizations.

70 Chapter 5. Approach for the Alternative Second-pass

sdm_char_01

ndm_char_01

stk_char

rs_char_01

D F

en

clk rst

D F

en

clk rst

D F

en

clk rst

char_01

char_02

st_root
char

score_01

rs_char_01

+
=0?

..char_01

char_02

char_01

char_02

5

8

=0?

st_root
char

ctrl

ctrl = "0": FP/SP

ctrl = "1": RE

char_03

char_04

sdm_char_02

ndm_char_02

sdm_char_02

ndm_char_02

stk_char

rs_char_01

rs_char_02

sdm_char_01

ndm_char_01

sdm_char_01

ndm_char_01

sdm_char_02

ndm_char_02

sdm_char_01

rs_char_01

sdm_char_02

ndm_char_02

sdm_char_01

rs_char_02

stk_char

rs_char_01

D F

en

clk rst

D F

en

clk rst

score_02

5

rs_char_02

.

=0?
.char_03

char_04

char_03

char_04

=0?

st_root
char .

.

FIGURE 5.11: Third approach: general block diagram
of the Processing Element (PE)

The idea behind having these three main tasks in one unit is to
share the same resources for the first, alternative second-pass opti-
mization, and for the rearrangement evaluation, since they need not
to work at the same time. Each of these tasks works using pipeline.
In the following sections we describe each one of them.

5.3.4.1 First-pass Optimization (FSR-FP)

The FSR-FP works by following the 4-stage pipelined algorithm listed
below. This algorithm uses the Stack Memory shown in figure 5.10
and the sequence output from all the PEs.

Stage 01 Pop a node from the NOM and read it from the TTM.

Stage 02 Read LB and RB from the SDM1 and SDM2.

Stage 03 Do the following two tasks:

1. Case{Node(LB, RB)}

(Leaf, Leaf): Push the node from Stage 04 into the Stack.

(Node, Node): Pop a node from the Stack.

2. Do a first-pass optimization on the node.

Stage 04 Store the resulting node into NDM1.

To illustrate the above mentioned algorithm and how the 4-stage
pipeline works, an example is given in figure 5.12 for a tree with 9
taxa and 8 nodes. The order in which the nodes are processed is
already stored in the Node Order Memory (NOM).

5.3. Proposed Hardware Architecture 71

FIGURE 5.12: Third approach: example of the pipeline
processing during the FSR-FP

In figure 5.12, TTM refers to the Tree Topology Memory, SDM
to the Sequence Data Matrix Memory and NDM to the Node Data
Matrix Memory. Both the SDM and the NDM are dual-port memo-
ries. In Stage 03, fp(LB,RB) refers to the first-pass optimization that
is a function of the left and right branches of the node (see section
2.1.3.1), reg refers to the output sequence from all the PEs, and stk to
the output sequence from the Stack Memory.

As can be seen from figure 5.12, each stage processes a node at a
time. The FSR-FP finishes when all nodes in the Node Order Memory
have been processed. Then, the final score of the tree is obtained
after summing the individual results from all the PEs using the Tree
Adder. The total execution time approximates n + T clock cycles,
where n is the number of nodes in the main tree (MT) or subtree
(ST), and T the latency of the Tree Adder.

5.3.4.2 Alternative Second-pass Optimization (FSR-ASP)

The FSR-ASP works by following the 4-stage pipelined algorithm
listed below. This algorithm uses the sequence output from all the
PEs shown in figure 5.10.

Stage 01 Pop a node from the NOM and read it from the TTM.

Stage 02 Do the following two tasks:

1. Read LB and RB from SDM1/SDM2 or NDM_N1/NDM_N2

2. Read PN from NDM_L1 and NDM_R1.

Stage 03 Do an alternative second-pass optimization on the node.

Stage 04 Store the resulting nodes into NDM_L2 NDM _R2.

72 Chapter 5. Approach for the Alternative Second-pass

To illustrate the above mentioned algorithm and how the 4-stage
pipeline works, an example is given in figure 5.13 for a tree with 9
taxa and 8 nodes. The order in which the nodes are processed is the
reversed order from the first-pass optimization.

FIGURE 5.13: Third approach: example of the pipeline
processing during the FSR-ASP

In figure 5.13, TTM refers to the Tree Topology Memory, SDM to
the Sequence Data Matrix Memory and NDM to the Node Data Ma-
trix Memory. Both the SDM and the NDM are dual-port memories.
In Stage 03, f(PN, LB/RB) refers to the alternative second-pass opti-
mization that is a function of the parent node (PN) and the left (LB)
and right (RB) branches (see section 2.1.3.2). In the same stage, reg_1
refers to the first output sequence from all the PEs, and reg_2 to the
second.

The execution time approximates n clock cycles, where n is the
number of nodes in the main tree (MT). This is half the time required
by the FSR-SP of the second approach. In this third approach, it has
been reduced by half thanks to processing two nodes (for the left and
the right paths) at the same time.

5.3.4.3 Rearrangement Evaluation (FSR-RE)

The FSR-RE works by following the 3-stage pipelined algorithm listed
below. This algorithm uses the sequence output from all the PEs
shown in figure 5.10.

Initialization Read the subtree (ST) root from NDM_N1 or SDM1.

Stage 01 Pop a node from the NOM and read it from the TTM.

Stage 02 Do the following two tasks:

5.3. Proposed Hardware Architecture 73

1. Read the node from NDM_L1 and NDM _R1.

2. Read LB and RB from SDM1/SDM2 or NDM_N1/NDM_N2.

Stage 03 Evaluate the first and second tree rearrangement.

To illustrate the above mentioned algorithm and how the 3-stage
pipeline works, an example is given in figure 5.14 for a tree with 9
taxa and 8 nodes. The order in which the nodes are processed is the
order determined by the Progressive Neighborhood Listing (PNL)
unit.

FIGURE 5.14: Third approach: example of the pipeline
processing during the FSR-RE

In figure 5.14, TTM refers to the Tree Topology Memory, SDM to
the Sequence Data Matrix Memory and NDM to the Node Data Ma-
trix Memory. NDM_N, NDM_R and NDM_L refer to the NDMs used
to store the normal, right and left path character states, respectively.
Both the SDM and the NDM are dual-port memories. In Stage 03,
d(SR, [LB, RB]) refers to the difference score that is a function of the
root node of the subtree (SR) and the left (LB) and right (RB) branches
of the MT (see section 2.2.2).

The difference scores from the first and second tree rearrange-
ments are summed using the two tree adders: Tree Adder 1 and Tree
Adder 2 (see figure 5.10). Finally, the rearrangement with the lowest
score is kept as candidate to reinsert the subtree (ST) in the main tree
(MT). For this purpose, inside the Data path of the FSR unit, a line
buffer and some comparison registers are used.

The execution time approximates n+T clock cycles as the number
of nodes increases, where n is the number of nodes in the main tree
(MT), and T is the latency of the Tree Adder. This is almost half the
time required by the FSR-RE of the second approach. In this third
approach, it has been reduced by half thanks to processing two tree
rearrangements at the same time.

74 Chapter 5. Approach for the Alternative Second-pass

5.3.5 Global Control (GC) unit

The Global Control (GC) logic unit is a Finite State Machine (FSM)
that commands the other four units: TTU, PNL, NOL and FSR. The
GC unit controls these units so they work in parallel as illustrated
in figure 5.15, where TTMi refers to the port i of the Tree Topology
Memory, and NOMi refers to the Node Order Memory i. FP refers to
the first-pass optimization, ASP to the alternative second-pass opti-
mization, and RE to the rearrangement evaluation.

NOL

FSR

TTU

PNL

(WT)/NOM0,TTM0

FP(WT)/NOM0,TTM0

NOL

FSR

TTU

PNL

PRUNE(WT)/TTM1

(ST)/NOM0,TTM0(MT)/NOM1,TTM0

FP(ST)/NOM0,TTM1 FP(MT)/NOM1,TTM1 SP(MT)/NOM0,TTM1

(MT)/NOM1,TTM0

RE(MT,ST)/NOM1,TTM1

INSERT/REBUILT(WT)

Initialization

If ST is
a branch
 (Skip)

If MT.Score + ST.Score >= WT.Score
 (Skip)

Repeat

<=4 n(ST) Max{n(MT),n(ST)+T} n(MT)+T

< 2*((N-1)+T)

<=62*n(MT) n(MT)+T

Excecution time (clock cycles)

Notes:
WT: Whole Tree
MT: Main Tree
ST: Sub Tree
n(ST): number of nodes of ST
n(MT): number of nodes of MT
T: Tree Adder latency

FIGURE 5.15: Third approach: execution flow of the
proposed hardware architecture

As can be seen from figure 5.15, the NOL unit and the FSR-FP, the
PNL unit and the FSR-ASP work in parallel. This explains the use of
a dual-port Tree Topology Memory and two Node Order Memories
as shown in figure 5.2.

5.4 Implementation Results

In this section we show implementation results for six real-world bi-
ological datasets. The datasets were obtained from the repository of
phylogenetic information TreeBASE [45], see table 5.2.

TABLE 5.2: Third approach: datasets used [45]

ID M972 M2355 M3452 M3875 M17200 M2616
#taxa 155 150 116 228 326 330
#characters 355 829 1,157 1,435 1,434 1,711

5.4.1 Hardware Utilization and Performance Results

The hardware utilization and performance results are shown in table
5.3. The targeted FPGA is a Virtex-7 XC7VX690T-FFG1157-2 FPGA.

5.5. Comparison and Performance Evaluation 75

TABLE 5.3: Third approach: implementation results
on a Virtex-7 FPGA

Logic Utilization Used Available Utilization
Number of Slices 39,627 108,300 37%
Number of Slice Registers 62,828 866,400 7%
Number of Slice LUTs 158,508 433,200 36%
Number of BRAMs (36 Kb) 1,074 1,470 73%
Maximum Frequency 167.792MHz

The implementation covers any of the six datasets in table 5.2. In
other words, problems up to N = 1, 024 and L = 1, 711 can be pro-
cessed with this amount of hardware logical resources. The number
of LUTs is almost proportional toL, the number of BRAMS to L × N .

As can be seen from table 5.3, most of the resources used corre-
spond to memory resources. BRAMs are used to store the Tree Topol-
ogy Memory, the Sequence Data Matrix Memory, and the three Node
Data Matrix memories (NDM_N, NDM_L and NDM_R).

5.5 Comparison and Performance Evaluation

Here we compare our hardware approach (third approach) with the
second approach (see chapter 4) and with TNT (Tree analysis using
New Technology) [20]. To make the comparison as fair as possible,
we use the traditional search of TNT based on Subtree Pruning and
Regrafting (SPR), and start from a random tree. This is the closest set-
ting of TNT that resembles our algorithm, and the second one (see
section 4.1). Moreover, since the total number of examined trees is
not the same, we show the average execution time required for each
tree. The results are summarized in table 5.4.

The targeted PC and FPGAs were the following:

• PC: Intel Core-i7 860, 4GB RAM @ 2.80 Ghz (TNT)

• FPGA: Kintex-7 XC7K325T-FF2-900 @ 156.25 Mhz (second ap-
proach)

• FPGA: Virtex-7 XC7VX690T-FFG1157 @ 156.25 Mhz (third ap-
proach)

76 Chapter 5. Approach for the Alternative Second-pass

TABLE 5.4: Third approach: results for the local search

Dataset Second Third TNT
Total time (ms) 11.27 9.06 890

M972 Time/tree (µs) 0.031 0.026 0.065
Visited trees 364,177 349,012 13,637,086
Best score 1,533 ← same 1,543
Total time (ms) 9.9 6.18 500

M2355 Time/tree (µs) 0.025 0.021 0.059
Visited trees 400,368 294,360 8,497,522
Best score 2,724 ← same 2,771
Total time (ms) 9.64 8.09 180

M3452 Time/tree (µs) 0.029 0.024 0.103
Visited trees 329,025 337,014 1,749,117
Best score 3,632 ← same 3,624
Total time (ms) 27.76 18.02 510

M3875 Time/tree (µs) 0.037 0.032 0.021
Visited trees 760,180 562,514 23,818,061
Best score 567 ← same 564
Total time (ms) 53.56 44.82 2260

M17200 Time/tree (µs) 0.019 0.016 0.046
Visited trees 2,798,944 2,801,301 49,662,276
Best score 4,344 ← same 4,340
Total time (ms) 42.25 35.67 4700

M2616 Time/tree (µs) 0.027 0.022 0.09
Visited trees 1,564,515 1,621,566 53,330,179
Best score 10,003 ← same 10,004

Now, using these results, we show the acceleration rates obtained
for the whole local search and for the evaluation of a single tree in fig-
ures 5.16 and 5.17, respectively.

Compared to the second approach, our third approach provides
an acceleration rate between 1.18 and 1.6 for the local search, and be-
tween 1.16 and 1.23 for the evaluation of a single tree rearrangement.
This acceleration rate obtained is thanks to the improvements done
in the second-pass optimization by using an alternative optimization
and in the rearrangement evaluation units. Although we reduced by
half the individual execution times for both the FSR-ASP and FSR-RE
units, the overall execution time is not reduced as much.

On the other hand, in comparison to TNT, our approach yields an
acceleration rate between 22.25 and 131.76 for the whole local search,
and between 2.5 and 4.29 for the evaluation of a single tree, except for
problem M3875, for which there was no acceleration. We think that
the reason for this might lie in the particularities of problem M3875
itself, which make it easier to evaluate for TNT.

5.6. Discussion 77

5.52 5.61 5.18 2.98

78.97

50.51

18.67 18.37

42.2

111.24

0

20

40

60

80

100

120

M972 M2355 M3452 M3875 M17200 M2616

A
c
c
e
le

ra
ti

o
n
 f
o
r

th
e
 L

o
c
a
l

S
e
a
rc

h

Second vs First Second vs TNT

FIGURE 5.16: Third approach: acceleration rate for the
local search

40.1

44.36

34.38

44.6

2.1 2.36 3.55
0.57

2.42 3.33

0

10

20

30

40

50

M972 M2355 M3452 M3875 M17200 M2616

A
c
c
e
le

r
a
ti

o
n
 f
o
r

th
e
 T

re
e

E
v
a
lu

a
ti

o
n

Second vs First Second vs TNT

FIGURE 5.17: Third approach: acceleration rate for the
tree evaluation

5.6 Discussion

We compared execution times against our second approach (refer to
chapter 4) and TNT. Compared to our second approach, our third
approach is faster for all problems. Compared to TNT, our third ap-
proach is faster for all problems except one: M3875. The implemen-
tation of the Alternative Second-Pass Optimization method served
to improve the performance of our third approach over the previ-
ous one. However, as a disadvantage, this third approach requires
three Node Data Matrix memories, while the second approach re-
quires only one.

The acceleration rate should increase with the number of charac-
ters, because we process all the characters in parallel in our approach.
On the contrary, a software approach like TNT requires to process
characters serially; thus, taking more time as its number increases.

78 Chapter 5. Approach for the Alternative Second-pass

From this approach we learned that, although using the Alterna-
tive Second-Pass optimization method provides a slightly improve-
ment in the acceleration rate, it requires a considerable amount of
memory that might not be available depending on the targeted FPGA.
For this reason, it is necessary to consider other optimization meth-
ods. In particular, we have to consider that not all node states of the
tree have to be recalculated, since only a small portion of the tree
changes by the Subtree Pruning and Regrafting (SPR) process.

79

Chapter 6

Approach for the Incremental
Tree Optimization

6.1 Approach One

This approach is the fourth approach in total, but the first for the
Incremental Tree Optimization.

6.1.1 Algorithm Overview

The algorithm is based on the stochastic local search algorithm de-
scribed in section 2.1.1. It employs the Indirect Calculation of Tree
Lengths, described in section 2.2.2, and the Incremental Tree Opti-
mization, described in section 2.2.4.

The algorithm starts from a randomly generated tree in the search
space, and tries to improve it on each iteration. For the initial tree,
a list of all the branches in the tree is created. This list will denote
which tree rearrangements have to be tried. Then, a complete first-
pass optimization is done to calculate the initial score of the tree and
the preliminary node character states. Following this, a complete
second-pass optimization is done to obtain the final node character
states. At each iteration of the algorithm a neighbor tree rearrange-
ment replaces the current one if it has a lower score, i.e. better score.
For this, in each iteration, the following steps are performed:

1 1.1 A branch to prune from the whole tree (WT) is randomly
chosen from the list.

1.2 The main tree (MT) and the subtree (ST) derived from the
previous pruning are created.

2 An incremental first-pass optimization is done on the MT.

If the sum of the scores of the MT and the ST is greater (worse)
than the current score, go to step 6.

3 An incremental second-pass optimization is done on the MT.

4 All rearrangements within the neighborhood are evaluated by
the ICTL.

80 Chapter 6. Approach for the Incremental Tree Optimization

If the sum of the scores of the MT, the ST and the difference
(D.Score) is greater (worse) than the current score, go to step 6.

5 5.1 The ST is inserted in the MT to create a new WT.

5.2 An incremental first- and second-pass optimizations are
done on the WT.

5.3 All branches are added to the list again. Go to step 1.

6 6.1 The previous tree topology is reconstructed.

6.2 The chosen branch is removed from the list. If there are
still branches in the list, go to step 1.

This algorithm will always converge to a local optimum after all
branches in the list have been tried. In other words, after it has been
found that no rearrangement is better than the current tree.

6.1.2 Phylogenetic Data Structure

For a given phylogenetic tree reconstruction problem consisting of
N taxa, each of which has a sequence of L nucleobases, the sequence
matrix is an N rows × L columns matrix. The characters in the se-
quences might include not only the DNA nucleobases Adenine (A),
Cytosine (C), Guanine (G) and Thymine (T), but also the ’-’ charac-
ter, which represents a gap, and the ’?’ character, which represents
an undefined character. These are the six basic characters, but a com-
bination of them is also possible thanks to the five-bit binary repre-
sentation shown in table 6.1.

TABLE 6.1: Fourth approach: 5-bit representation for
DNA characters [44]

DNA character 5-bit representation
’-’ 00001
’A’ 00010
’C’ 00100
’G’ 01000
’T’ 10000
’?’ 11111

As can be seen from table 6.1, each character is represented by a
power of 2, from 20 = 1 (5′b00001 for ’-’) to 24 = 16 (5′b10000 for ’T’),
except for ’?’, which is coded by the value 31 (5′b11111), since it can
represent any character. Thanks to this five-bit representation, the
union can be performed by the binary OR operation, and the inter-
section by the binary AND operation [44]. This eases the hardware
implementation of the first-pass optimization algorithm, described
in section 2.1.3.1 and shown in figure 2.2.

6.1. Approach One 81

Hence, a memory of N × L × 5 bits is required to store the se-
quence alignment matrix. On the other hand, the tree topology shows
the connections between the internal nodes of the tree and the taxa.
A tree withN taxa hasN−1 nodes, including the root node. Since the
tree is a binary tree, each node has a left branch and a right branch,
and it has a parent node. Thus, the size of the memory required to
store the tree topology is (N − 1) × 3[log2(N)] bits.

Furthermore, this approach requires the use of several memories
for the implementation of the Incremental Tree Optimization method
(section 2.2.4). First, it requires a memory to store the preliminary
node character states and a memory to store the final node character
states. The size of any of these memories is (N − 1) × L × 5 bits.
Next, it requires a memory to store the lengths of the nodes for all
the nodes in the tree. The size of this memory is (N − 1) × w bits,
where w is the maximum number of bits required to store the length
of the tree in binary codification. In this approach, 18 bits is enough
to do so. Finally, it requires three buffer memories of equal size to
their counterparts, one for each of the previously described memo-
ries. These buffer memories are used in case the pruning process is
not successful and the tree topology has to be reconstructed. For ex-
ample, the tree topology, the sequence data matrix memory, the node
data matrix memories, and the node length memory for a tree with 6
taxa are represented in figure 6.1.

AAACAGAG ...t0 t1 n2

t3 t4 n3

n0 t2 n4

n1 t5 n4

n2 n3 root

n0

n1

n2

n3

n4

Left
Branch

Right
Branch

Parent
Node

N
-
1

Tree Topology
Memory

t0

t1

t2

t3

t4

t5

GCAACACT ...

GCACAATT ...

ACAAAAC ...

GCAAAAC ...

AACAAAA ...

...........

N

L

Sequence Matrix
Memory

n0

n1

n2

n3

n4

ACAGAGAA ...

GCAACACT ...

ACAGAGAA ...

ACAGAGAA ...

GCAACACT ...

N
-
1

Node Matrix
Memories

(NDM_P, NDM_F)

L

.

.

.

.

2

n0

n1

n2

n3

n4

82

31

113

152

w

Node Length
Memory

95
N
-
1

+1 buffer+2 buffers

FIGURE 6.1: Fourth approach: memory data structure

NDM_P refers to the node data matrix memory for the prelim-
inary character states; while NDM_F, for the final character states.
Taxa are labeled according to their memory position on the sequence
matrix memory. Likewise, nodes are labeled according to their mem-
ory position on the tree topology memory. Since both nodes and taxa
appear on the same memory, we use an additional bit to distinguish
between the two of them: 0 for a node and 1 for a taxon (singular
form of taxa). The root node doesn’t have a parent. Instead, a full
sequence of 1s is used to identify it.

82 Chapter 6. Approach for the Incremental Tree Optimization

6.1.3 Proposed Hardware Architecture

In section 6.1.1, we mentioned the steps involved in each iteration of
the algorithm. To design the hardware architecture, we considered
that steps 1, 5.1 and 6.1 can be performed by the same hardware unit,
since they are about modifying the tree topology. Similarly, steps 2,
3, 4 and 5.2 can be performed by the same hardware unit, since they
are about doing some operations on the nodes of the tree. On the
other hand, listing the node order for the complete optimization is
performed by a single hardware unit.

This leads to the following hardware units that we designed to
implement the algorithm described in section 6.1.1:

1 Tree Topology Update (TTU) unit

3 Node Order Listing (NOL) unit

4 First-, Second-pass and Rearrange-
ment evaluation (FSR) unit

5 Global Control (GC) unit

The TTU unit is in charge of modifying the tree topology memory
to reflect the changes produced by the Subtree Pruning and Reinsert-
ing (SPR) process. The NOL unit has the task of listing the nodes of
the tree for a post-order tree traversal. The FSR unit has the most
important tasks, which are doing a first- and second-pass optimiza-
tion, whether complete or incremental, and evaluating all possible
rearrangements according to the Indirect Calculation of Tree Lengths
(ICTL) method. A general block diagram of the hardware architec-
ture proposed is shown in figure 6.2.

TTU
Unit

NOL
Unit

N
o
d
e

O
r
d
e
r

M
e
m
o
r
y

1

N
o
d
e

O
r
d
e
r

M
e
m
o
r
y

0

B
r
a
n
c
h

L
i
s
t

M
e
m
o
r
y Global

Control
Unit

 Tree
Topology
 Memory

Tree Adder,Comparator Tree,etc

GCAACACT...

GCAACATT...

ACAGAGAA...

GCAAATCA...

Sequence Data
Matrix Memory

TTGACACT...

ACAGCAGT...

TCAGAGTG...

AAGCCTCC...

Node Data
Matrix Memories

...

...

...

P
E

P
E

P
E

P
E

P
E

F
S
R

D
P

F
S
R

U
n
i
t

Port 1 Port 0

Global
Control Signals

N
-
1

N
-
1

N

L

L

5b x L

(x2)

5b x L

NN

2
x
(
N
-
1
)

2

N
o
d
e

L
e
n
g
t
h

B
u
f
f
e
r

N
o
d
e

L
e
n
g
t
h

M
e
m
o
r
y

N
-
1

Global Signals

TTGACACT...

ACAGCAGT...

TCAGAGTG...

AAGCCTCC...

Node Data
Matrix Buffers

N
-
1

2

L

... 5b x L

(x2)

Global Signals Global Signals

ww

3[log2(N)]

FIGURE 6.2: Fourth approach: general block diagram
of the proposed hardware architecture

6.1. Approach One 83

It consists of the following elements: the dual-port Tree Topology
Memory, the dual-port Sequence Data Matrix Memory, the dual-port
Node Data Matrix Memories, two Node Order Memories, the Node
Length Memory, the Branch List Memory, the buffer memories, the
TTU unit, the NOL unit, the FSR unit, and a Global Control unit.
Black bars on the diagram make reference to multiplexers. In the fol-
lowing sections, we explain how each of these hardware units work.

6.1.3.1 Tree Topology Update (TTU) unit

The Tree Topology Update (TTU) unit is in charge of modifying the
Tree Topology Memory to reflect the changes produced by the Sub-
tree Pruning and Reinserting (SPR) process.

It has three main tasks:

1 Pruning a branch from the whole tree (WT) to create the main
tree (MT) and the sub tree (ST).

2 Inserting the ST in the MT to create a new WT.

3 Rebuilding the previous WT when the score does not improve.

And two sub tasks:

1 Storing the value of the pruned branch and reinsertion branch.

2 Storing the values of the WT, MT and ST roots.

The general block diagram of the TTU unit is shown in figure 6.3.

FIGURE 6.3: Fourth approach: general block diagram
of the TTU unit

As can be seen from figure 6.3, the TTU unit is implemented as a
Finite State Machine (FSM) with a Data Path. The FSM works basi-
cally as a memory controller that is used to modify the content of the

84 Chapter 6. Approach for the Incremental Tree Optimization

Tree Topology Memory. In addition to this, it has a linear-feedback
shift register (LFSR), which works as a pseudo-random number gen-
erator.

Regardless of the number of taxa, when a branch with a subtree
(ST) attached to it is pruned from the tree, at most 2 nodes are mod-
ified. These nodes correspond to the parent node of the node where
the branch is pruned from, and the node on the opposite branch to
the pruned branch. An example of this is shown in figure 6.4.

FIGURE 6.4: Fourth approach: example of the nodes
modified by the pruning process

Figure 6.4 shows a tree with 9 taxa. On the left is the tree before
pruning the left branch (LB) of n6, and on the right is the tree after
pruning it. This pruning process causes changes in the tree structure
that affect a total of 2 nodes. Thus, 2 memory positions are modified
in the Tree Topology Memory accordingly.

Similarly, when a branch with a ST attached to it is inserted in the
MT, at most 3 nodes are modified. These nodes correspond to the
node where the pruned branch comes from, and the nodes up and
down where the pruned branch is reinserted. An example of this is
shown in figure 6.5.

Figure 6.5 shows the same tree with 9 taxa after reinserting the
left branch (LB) of n6 on the right branch (RB) of n5. This reinsertion
process causes changes in the tree structure that affect a total of 3
nodes. Thus, 3 memory positions are modified in the Tree Topology
Memory accordingly.

6.1. Approach One 85

FIGURE 6.5: Fourth approach: example of the nodes
modified by the reinsertion process

The pruning process involves modifying at most 2 nodes. Since it
takes 2 clock cycles to modify a node from the Tree Topology Mem-
ory, the execution time is of 4 clock cycles at most. Similarly, insert-
ing the sub tree involves modifying at most 3 nodes. Thus, it takes
6 clock cycles at most. Rebuilding the tree is equivalent to reverting
the pruning process; hence, this takes also 4 clock cycles at most.

6.1.3.2 Node Order Listing (NOL) unit

The Node Order Listing (NOL) unit has the task of listing all the
nodes in the tree in a post-order. This tree can be the whole tree
(WT), the main tree (MT) or the subtree (ST), depending on the root
node chosen. The listing is then used by the First-, Second-pass and
Rearrangement evaluation (FSR) unit. The general block diagram of
the NOL unit is shown in figure 6.6.

FIGURE 6.6: Fourth approach: general block diagram
of the NOL unit

86 Chapter 6. Approach for the Incremental Tree Optimization

As can be seen from figure 6.6, the NOL unit is implemented as
a Finite State Machine (FSM) with a Data Path and a Stack, from
which the data is read or written in a last-in-first-out (LIFO) order.
The NOL unit is connected to a Tree Topology Memory and a Node
Order Memory, which is also a Stack. The following algorithm is
used to list all the nodes in the tree:

1 Read the memory position of the chosen root node from the
Tree Topology Memory (TTM)

2 Repeat until all nodes are listed.
Push each node visited into the Node Order Memory.

Case (Left Branch (LB), Right Branch (RB))

2.1 (Node, Node): Push RB into the Stack, read LB from TTM

2.2 (Node, Leaf): Read LB from TTM

2.3 (Leaf, Node): Read RB from TTM

2.4 (Leaf, Leaf): Pop a node and read it from TTM

As a result of the above mentioned algorithm, the last node vis-
ited becomes the first node to be read from the Node Order Memory.
Thus, the desired post-order (reverse order of the visited nodes) is
obtained. To illustrate this, an example is shown in figure 6.7.

FIGURE 6.7: Fourth approach: example of the NOL
unit listing process

Figure 6.7 shows a tree with 9 taxa and 8 nodes. The visited
nodes, the actions taken and the contents of the stack for every clock
cycle are detailed on the right of the tree. At the end, the Node Order
Memory has the reverse order of the visited nodes. This is the final
node order.

The NOL unit takes one clock cycle to list each node, so it requires
a total of n clock cycles to list all the nodes, where n is the number of
nodes.

6.1. Approach One 87

6.1.3.3 First-, Second-pass and Rearrangement Evaluation (FSR)
unit

This unit is the most important unit. It has five main tasks:

1 Doing a complete first-pass optimization following the order
stored in the Node Order Memory 1 (post-order)

2 Doing a complete second-pass optimization following the or-
der stored in the Node Order Memory 2 (reversed-order)

3 Doing an incremental first-pass optimization.

4 Doing an incremental second-pass optimization.

5 Evaluating all possible tree rearrangements.

Its general block diagram is shown in figure 6.8.

PE PE PE

0 1 L-1

leaf a_0

leaf b_0

node pa_0/fa_0

node pb_0/fb_0

leaf a_1

leaf b_1

leaf a_L-1

leaf b_L-1

node pa_L-1/fa_L-1

node pb_L-1/fb_L-1

...

Node
Stack
Memory

5b

5b

x2

5b

x2

5b 5b

5b

5b

x2

5b

x2

5b 5b

5b

5b

x2

5b

x2

5b 5b

5b 5b 5b

L x 5b

L x 5b

result node

Tree Adder

length (tree / difference)

FSR
Data
Path

FSR
Control
Path

control signals

start
2b

Node
from one
Node Order
Memory

.
RE_dif

RE_ins_node/branch

s
t
a
c
k

s
e
q
u
e
n
c
e

Tree Comparator

5b 5b 5b

node pa_1/fa_1

node pb_1/fb_1

1b 1b 1b

node length

FIGURE 6.8: Fourth approach: general block diagram
of the FSR unit

As seen in figure 6.8, the FSR unit is composed of L processing el-
ements (PE), where L is equivalent to the number of DNA characters
in a sequence (refer to figure 6.1), a Tree Adder, a Node Stack Mem-
ory, a Tree Comparator, and a Control Logic unit with a Data Path.
The inputs of the FSR unit are two leaves (taxa) from the Sequence
Data Matrix Memory: leaf a and leaf b, two nodes from the Prelim-
inary Node Data Matrix Memory: node pa and node pb, two nodes
from the Final Node Data Matrix Memory: node fa and node fb, and
the node order from one of the Node Order memories.

The Tree Adder is used during the first-pass optimization to add
all individual scores from the PEs in order to obtain the length of the
node. In addition, it is used during the tree rearrangement evalua-
tion to add all individual difference scores from the PEs in order to

88 Chapter 6. Approach for the Incremental Tree Optimization

obtain the total difference score. Furthermore, the FSR unit outputs
the result node from the PEs, so it can be stored in the Preliminary or
Final Node Data Matrix Memory. It outputs the best candidate node
and branch for reinserting the subtree (ST) in the main tree (MT), and
the respective difference score: RE_dif, RE_ins_node/branch. The Tree
Comparator is used to compare the new node character state against
the previous one during the incremental first-pass optimization to
obtain the lowest node with unmodified character state. This node
is used during the incremental second-pass optimization as the root
node.

The FSR unit uses L PEs to implement the first-pass optimization
algorithm (see section 2.1.3.1), the second-pass optimization algo-
rithm (see section 2.2.3), and the neighbor tree rearrangement eval-
uation by using the Indirect Calculation of Tree Lengths (see section
2.2.2). These L PEs allow to process all the characters of two nodes or
leaves (taxa) in parallel. The general block diagram of a PE is shown
in figure 6.9.

sdm_char_01
ndm_p_char_01

stk_char

rs_char

D F

en

clk rst

D F

en

clk rst

D F

en

clk rst

D F

en

clk rst

char_01

char_02

char_03

char_03

length

rs_char

=0? ..

=1F?

.

char_01

char_02

char_01

char_02

char_02

char_01

char_03

char_03

5

1

=0?
char_03

char_04

char_03

char_04

char_01

char_02

.

ctrl_01

ctrl_02

ndm_f_char_01

ndm_p_char_02

ndm_f_char_02

ctrl = "00": FP
ctrl = "x1": SP
ctrl = "1x": RE

D F

en

clk rst

pv_char
5

char_03

{ctrl_01 ctrl_02}

=?

char_02

.

5

5

5

5

sdm_char_02

ndm_p_char_02

stk_char

rs_char

ndm_f_char_01

ndm_p_char_01

ndm_f_char_01

FIGURE 6.9: Fourth approach: general block diagram
of the Processing Element (PE)

As can be seen from figure 6.9, the PE is composed of four D-type
flip-flop-based registers of 5 bits each, one D-type flip-flop-based reg-
ister of 1 bit, and a collection of logic gates. These logic gates imple-
ment the five main tasks of the FSR unit described at the beginning
of this section, but for a single DNA character. Depending on a con-
trol signal (ctrl in figure 6.9) the PE changes its functionality.

The idea behind having these five main tasks in one unit is to
share the same resources for the complete and incremental first- and
second-pass optimization, and for the rearrangement evaluation, since
they need not to work at the same time. Each of these tasks works
using pipeline. In the following sections we describe each one of
them.

6.1. Approach One 89

6.1.3.3.1 Complete First-Pass Optimization (FSR-CFP) The FSR-
CFP performs a first-pass optimization on all the nodes of the whole
tree (WT). It uses the Node Stack Memory and the sequence output
from all the PEs (see figure 6.8). The FSR-CFP works by following
the extended 6-stage pipelined algorithm listed below.

Stage 01 Pop a node from the NOM and read it from the TTM.

Stage 02 Read LB and RB from the SDM1 and SDM2.

Stage 03 Do the following three tasks:

1. Case{Node(LB, RB)}

(Leaf, Leaf): Push the node from Stage 04 into the Stack.

(Node, Node): Pop a node from the Stack.

2. Do a first-pass optimization on the node.

3. Add the lengths of both branches.

Stage 04 Store the resulting node into NDM_P1.

... Line Buffer / Tree Adder ...

Stage 05 Calculate the node length.

Stage 06 Store the resulting node length into the NLM1.

TTM refers to the Tree Topology Memory, SDM to the Sequence
Data Matrix Memory, NDM_P to the Preliminary Node Data Matrix
Memory. Both the SDM and the NDM are dual-port memories. This
is represented by the index attached at the end of the name of the
memory, which refers to either the port 1 or 2, respectively. To illus-
trate the above mentioned algorithm and how the extended 6-stage
pipeline works, an example is given in figures 6.10 and 6.11 for a tree
with 9 taxa and 8 nodes. The order in which the nodes are processed
is already stored in the Node Order Memory (NOM).

In figure 6.10, in Stage 03, fp(LB,RB) refers to the first-pass opti-
mization that is a function of the left and right branches of the node
(see section 2.1.3.1), reg refers to the output sequence from all the
PEs, and stk to the output sequence from the Node Stack Memory.
Furthermore, LnbLB,RB refers to the sum of the lengths of the left
and right branches of the node. In Stage 04, d[LB,RB] refers to the
difference score between the left and right branch for a single DNA.

In figure 6.11, in Stage 05, the total length of the node is calculated
after the Tree Adder has summed the individual results from the PEs,
and in Stage 06 the node length is stored into the Node Length Mem-
ory (NLM).

90 Chapter 6. Approach for the Incremental Tree Optimization

FIGURE 6.10: Fourth approach: example of the
pipeline processing during the FSR-CFP (nodes)

FIGURE 6.11: Fourth approach: example of the
pipeline processing during the FSR-CFP (lengths)

As can be seen from figures 6.10 and 6.11, each stage processes
a node at a time. The FSR-CFP finishes when all nodes in the Node
Order Memory have been processed. The total execution time ap-
proximates N + T clock cycles, where N is the number of nodes in
the whole tree (WT), and T the latency of the Tree Adder.

6.1.3.3.2 Incremental First-Pass Optimization (FSR-IFP) The FSR-
IFP performs a first-pass optimization only on those nodes that were
affected by the Subtree Pruning and Reinserting (SPR). It works by
following the extended 6-stage pipeline algorithm listed below.

Stage 01 Do the following two tasks:

1. Read the node from the TTM and the NDM_P1.

2. Read the length of the node from the NLM1.

6.1. Approach One 91

Stage 02 Do the following three tasks:

1. Store the node and the length in the buffer memories.

2. Read either the LB or the RB from SDM1/NDM_P1.

3. Read either the length of the node in the LB or the RB from
NLM1.

Stage 03 Do the following two tasks:

1. Do a first-pass optimization on the node.

2. Add the lengths of both branches.

Stage 04 Do the following two tasks:

1. Store the resulting node into NDM_P2.

2. Compare the new value of the node with its previous value.

... Line Buffer / Tree Adder ...

Stage 05 Calculate the node length.

Stage 06 Store the resulting node length into the NLM2.

TTM refers to the Tree Topology Memory, SDM to the Sequence
Data Matrix Memory, NDM_P to the Preliminary Node Data Matrix
Memory, and NLM to the Node Length Memory. All memories are
dual-port memories. This is represented by the index attached at the
end of its name, which refers to either the port 1 or 2, respectively.

The pipeline works in two phases. In phase one, stages 1 and 3
work in parallel. In the other phase, stages 2 and 4 work in parallel.
In addition, stages 5 and 6 always work in different phases. The
reason why the pipeline has to work in two phases is because not
all operands can be read at the same time from the memories. To
illustrate the above mentioned algorithm and how the extended 6-
stage pipeline works, an example is given in figures 6.12 and 6.13 for
a main tree (MT) with 6 taxa.

In figure 6.12, in stage Stage 02, NBM_P refers to the Node Buffer
Memory, and LBM to the Length Buffer Memory. In Stage 03, fp(LB,RB)
refers to the first-pass optimization that is a function of the left and
right branches of the node (see section 2.1.3.1), and reg refers to the
output sequence from all the PEs. Furthermore, LnbLB,RB refers to
the sum of the lengths of the left and right branches of the node. In
Stage 04, d[LB,RB] refers to the difference score between the left and
right branch for a single PE.

92 Chapter 6. Approach for the Incremental Tree Optimization

FIGURE 6.12: Fourth approach: example of the
pipeline processing during the FSR-IFP (nodes)

FIGURE 6.13: Fourth approach: example of the
pipeline processing during the FSR-IFP (lengths)

In figure 6.13, in Stage 05, the total length of the node is finally
calculated after the Tree Adder has summed the individual results
from all the PEs, and in Stage 06 the node length is stored into the
Node Length Memory (NLM).

As can be seen from figures 6.12 and 6.13, each stage processes a
node every two clock cycles. The FSR-IFP finishes when all nodes af-
fected by the Subtree Pruning and Reinserting (SPR) have been pro-
cessed. The total execution time approximates 2n + T clock cycles,
where n is the number of nodes in the main tree (MT) or subtree (ST),
and T the latency of the Tree Adder.

6.1. Approach One 93

6.1.3.3.3 Complete Second-Pass Optimization (FSR-CSP) The FSR-
CSP performs a second-pass optimization on all the nodes of the
whole tree (WT). It uses the Node Stack Memory and the sequence
output from all the PEs (see figure 6.8). The FSR-CSP works by fol-
lowing the 5-stage pipelined algorithm listed below.

Stage 01 Pop a node from the NOM and read it from the TTM.

Stage 02 Read LB and RB from SDM1/SDM2 or NDM_P1/NDM_P2.

Stage 03 Do the following two tasks:

1. Select the other operands of the node.

2. Read the node from NDM_P1.

Stage 04 Do a second-pass optimization on the node.

Stage 05 Store the resulting node into NDM_F2.

TTM refers to the Tree Topology Memory, SDM to the Sequence
Data Matrix Memory, NDM_P to the Preliminary Node Data Matrix
Memory, and NDM_F to the Final Node Data Matrix Memory. Both
the SDM and the NDM are dual-port memories. This is represented
by the index attached at the end of its name, which refers to either
the port 1 or 2, respectively.

The pipeline works in two phases. In phase one, stages 1, 3 and
5 work in parallel. In the other phase, stages 2 and 4 work in paral-
lel. It works in two phases, because not all operands can be read at
the same time from the memories. To illustrate the above mentioned
algorithm and how the 5-stage pipeline works, an example is given
in figure 6.14 for a tree with 9 taxa and 8 nodes. The order in which
the nodes are processed is the reversed order from the first-pass op-
timization.

In figure 6.14, in Stage 04, sp(PN, N, LB, RB) refers to the second-
pass optimization that is a function of the parent node (PN), the node
(N) and the left (LB) and right (RB) branches (see section 2.1.3.2). In
the same stage, reg refers to the output sequence from all the PEs,
and stk to the output sequence from the Stack Memory.

The execution time approximates 2 clock cycles per node as the
number of nodes increases. Since the Tree Adder is not used for the
second-pass optimization, the total execution time approximates 2N ,
where N is the number of nodes in the whole tree (WT).

94 Chapter 6. Approach for the Incremental Tree Optimization

FIGURE 6.14: Fourth approach: example of the
pipeline processing during the FSR-CSP

6.1.3.3.4 Incremental Second-Pass Optimization (FSR-ISP) The
incremental second-pass optimization is equivalent to a complete
second-pass optimization that starts from the lowest node with un-
modified character states that was obtained during the incremental
first-pass optimization. In other words, this node with unmodified
character states is considered the root of the tree for the incremental
second-pass optimization.

6.1.3.3.5 Rearrangement Evaluation (FSR-RE) The FSR-RE eval-
uates all the tree rearrangements within the neighborhood using the
Indirect Calculation of Tree Lengths (ICTL). It uses the Stack Memory
and the sequence output from all the PEs (see figure 6.8). The FSR-RE
works by following the 4-stage pipelined algorithm listed below.

Initialization Read the root of the subtree from NDM_P1 or SDM1.

Stage 01 Pop a node from the NOM and read it from the TTM.

Stage 02 Do the following two tasks:

1. Read the node from NDM_F1.

2. Read the LB from SDM2 or NDM_F2.

Stage 03 Do the following three tasks:

1. Read the node from NDM_F1.

2. Read the RB from SDM2 or NDM_F2.

3. Evaluate the first tree rearrangement.

6.1. Approach One 95

Stage 04 Evaluate the second tree rearrangement.

TTM refers to the Tree Topology Memory, SDM to the Sequence
Data Matrix Memory, NDM_P to the Preliminary Node Data Matrix
Memory, and NDM_F to the Final Node Data Matrix Memory. Both
the SDM and the NDM are dual-port memories. This is represented
by the index attached at the end of its name, which refers to either
the port 1 or 2, respectively.

The pipeline works in two phases. In phase one, stages 1 and 3
work. In the other, stages 2 and 4 work. To illustrate the above men-
tioned algorithm and how the 4-stage pipeline works, an example
is given in figure 6.15 for a tree with 9 taxa and 8 nodes. The or-
der in which the nodes are processed is the same as for the complete
second-pass optimization (i.e. the reversed order).

FIGURE 6.15: Fourth approach: example of the
pipeline processing during the FSR-RE

In figure 6.15, in Stage 03 and Stage 04, d(SR, [CN, LB/RB]) refers to
the difference score that is a function of the root node of the subtree
(SR), the current node (CN), and the left branch (LB) or the right
branch (RB) of the main tree (MT) (see section 2.2.2).

The difference score values are added by the Tree Adder from
figure 6.8 to obtain the total difference score for every tree rearrange-
ment. Finally, the rearrangement with the lowest score is kept as
candidate to reinsert the subtree (ST) in the main tree (MT). For this
purpose, inside the Data path of the FSR unit, a line buffer and some
comparison registers are used.

Since two rearrangements are evaluated consecutively, the exe-
cution time will approximate 1 clock cycle per tree rearrangement
as the number of nodes increases. The total execution approximates
2n+ T , where n is the number of nodes in the main tree (MT), and T
is the latency of the Tree Adder.

96 Chapter 6. Approach for the Incremental Tree Optimization

6.1.3.4 Global Control (GC) unit

The Global Control (GC) logic unit is a Finite State Machine (FSM)
that commands the other three units: TTU, NOL and FSR. The GC
unit controls these units and supervises all memory accesses. In ad-
dition, the GC unit is in charge of restoring the Node Data Matrix and
the Node Length memories by using their respective buffer memo-
ries, whenever the tree has to be reconstructed. The overall process-
ing of our hardware approach executed by the GC unit is shown in
figure 6.16. FULL-FP refers to the complete first-pass optimization;
INC-FP refers to the incremental first-pass optimization; FULL-SP to
the complete second-pass optimization; INC-SP to the incremental
second-pass optimization; and, RE to the tree rearrangement evalu-
ation.

NOL

FSR

TTU

(WT)/NOM0

FULL-FP(WT)/NOM0

FSR

TTU PRUNE(WT)

Initialization

If CT is a branch (skip)

If L(MT) + L(ST)>= L(WT)

Repeat

Notes:
WT: Whole Tree
MT: Main Tree
ST: Sub Tree

FULL-SP(WT)/NOM1

INC-FP(MT) INC-SP(MT) RE(MT,ST)

INSERT(MT,ST)

INC-FP(WT) INC-SP(WT)

REBUILD TTM

RESTORE NODE AND LENGTH MEMORIES

FSR

TTU

GCU

If L(MT) + L(ST) + D(RE) >= L(WT)

1 2

1

2

FIGURE 6.16: Fourth approach: execution flow of the
proposed hardware architecture

As can be seen from figure 6.16, when the algorithm succeeds to
find a better neighbor tree, the subtree (ST) is inserted in the main
tree (MT) to create a new whole tree (WT). If, on the other hand,
it fails to find a better neighbor tree, the previous tree topology is
rebuilt. Along with this, the Node Data Matrix and Node Length
memories are restored to their previous values.

6.1.4 Implementation Results

In this section we show simulation and implementation results for
six real-world biological datasets. The datasets were obtained from
the repository of phylogenetic information TreeBASE [45], see table
6.2.

6.1. Approach One 97

TABLE 6.2: Fourth approach: datasets used [45]

ID M972 M2355 M3452 M3875 M17200 M2616
#taxa 155 150 116 228 326 330
#characters 355 829 1,157 1,435 1,434 1,711

We implemented our system on a Virtex-7 XC7VX690T-FFG1157-
2 FPGA. Results for the first two datasets were obtained directly
from the implementation on the FPGA, while results for the last four
datasets were obtained from post-synthesis simulations.

6.1.4.1 Hardware Utilization and Performance Results

The hardware utilization and performance results are shown in table
6.3. The targeted FPGA is a Virtex-7 XC7VX690T-FFG1157-2 FPGA.

TABLE 6.3: Fourth approach: implementation results
on a Virtex-7 FPGA

Logic Utilization Used Available Utilization
Number of Slices 23,968 108,300 22%
Number of Slice Registers 21,664 866,400 2%
Number of Slice LUTs 58,398 433,200 13%
Number of BRAMs (36 Kb) 577 1,470 39%
Maximum Frequency 158.767MHz

The implementation covers the first two datasets in table 6.2. In
other words, problems up to N = 1, 024 and L = 829 can be pro-
cessed with this amount of hardware logical resources. The number
of LUTs is almost proportional toL, the number of BRAMS to L × N .

As can be seen from table 6.3, most of the resources used corre-
spond to memory resources. BRAMs are used to store the Tree Topol-
ogy Memory, the Sequence Data Matrix Memory, the two Node Data
Matrix memories (NDM_P, and NDM_P), the Node Length Memory,
and the respective buffer memories.

6.1.5 Comparison and Performance Evaluation

Here we compare our hardware approach (fourth approach) against
the second approach (see chapter 4), the third approach (see chap-
ter 5), and TNT (Tree analysis using New Technology) [20]. To make
the comparison as fair as possible, we use the traditional search of
TNT based on Subtree Pruning and Regrafting (SPR), and start from
a random tree. This is the closest setting of TNT that resembles our
algorithms (see sections 4.1, 5.1, and 6.1.1). Moreover, since the total

98 Chapter 6. Approach for the Incremental Tree Optimization

number of examined trees is not the same, we show the average exe-
cution time required per tree. The results are shown in table 6.4.

TABLE 6.4: Fourth approach: results for the local
search

Dataset Second Third Fourth TNT
Total time (ms) 11.27 9.06 5.78 890

M972 Time/tree (µs) 0.031 0.026 0.014 0.065
Visited trees 364,177 349,012 419,128 13,637,086
Best score 1,533 ← same 1,537 1,543
Total time (ms) 9.9 6.18 5.8 500

M2355 Time/tree (µs) 0.025 0.021 0.013 0.059
Visited trees 400,368 294,360 462,136 8,497,522
Best score 2,724 ← same 2,728 2,771
Total time (ms) 9.64 8.09 3.82 180

M3452 Time/tree (µs) 0.029 0.024 0.014 0.103
Visited trees 329,025 337,014 275,360 1,749,117
Best score 3,632 ← same 3,605 3,624
Total time (ms) 27.76 18.02 8.35 510

M3875 Time/tree (µs) 0.037 0.032 0.01 0.021
Visited trees 760,180 562,514 683,634 23,818,061
Best score 567 ← same 562 564
Total time (ms) 53.56 44.82 18.29 2260

M17200 Time/tree (µs) 0.019 0.016 0.012 0.046
Visited trees 2,798,944 2,801,301 1,595,264 49,662,276
Best score 4,344 ← same 4,342 4,340
Total time (ms) 42.25 35.67 26.25 4700

M2616 Time/tree (µs) 0.027 0.022 0.010 0.09
Visited trees 1,564,515 1,621,566 2,569,577 53,330,179
Best score 10,003 ← same 10,004 10,004

The targeted PC and FPGAs were the following:

• PC: Intel Core-i7 860, 4GB RAM @ 2.80 Ghz (TNT)

• FPGA: Kintex-7 XC7K325T-FF2-900 @ 156.25 Mhz (Second)

• FPGA: Virtex-7 XC7VX690T-FFG1157 @ 156.25 Mhz (Third)

• FPGA: Virtex-7 XC7VX690T-FFG1157 @ 150.00 Mhz (Fourth)

In table 6.4, we can see the total execution time required for the
algorithm to converge, the execution time for the evaluation of a tree
rearrangement, the number of trees visited during the search, and
the best score obtained for each of the datasets. With regard to the
best score, we achieve values similar to those of the second and third
approach, and TNT. Now, using these results, we show in figure 6.17
the acceleration rate per tree rearrangement obtained.

6.1. Approach One 99

2.23
1.98 2.1

3.03

1.65
2.65

1.87 1.67 1.74

2.62

1.39

2.16

4.68 4.68

7.46

1.72

4

8.82

0

1

2

3

4

5

6

7

8

9

10

M972 M2355 M3452 M3875 M17200 M2616A
c
c
e
le

ra
ti

o
n
 f
o
r

th
e
 T

re
e
 E

v
a
lu

a
ti

o
n

Fourth vs Second Fourth vs Third Fourth vs TNT

FIGURE 6.17: Fourth approach: acceleration rate for
the tree evaluation

As can be seen from figure 6.17, we obtain acceleration rates per
tree rearrangement between 1.65 and 3.03 against our second ap-
proach; between 1.39 and 2.62 against our third approach; and, be-
tween 1.72 and 8.82 against TNT (see figure 6.17).

6.1.6 Discussion

We compared execution times against our second approach (refer to
chapter 4), the approach without the Incremental Tree Optimization
method; against our third approach (refer to chapter 5), the approach
that uses the Alternative Second-pass optimization; and TNT. Com-
pared to both approaches and TNT, our fourth approach is faster.
The acceleration rates achieved are thanks to a combination of us-
ing the Indirect Calculation of Tree Lengths (ICTL), the Incremental
Tree Optimizaton, and the parallel and pipeline processing used in
every unit in our approach. First, the Indirect Calculation of Tree
Lengths method allows to evaluate all tree rearrangements within
the neighborhood, and obtain the best one. Second, the Incremen-
tal Tree Optimization reduces the number of nodes to be updated
during the first- and second-pass optimization. Thus, reducing sig-
nificantly the time spent in optimizing the nodes of the tree. Last but
not least, the parallel processing of all the characters in a sequence
using L PEs makes it possibly to evaluate a node of the tree in one or
at most two clock cycles. The acceleration rate against a software ap-
proach should increase theoretically with the number of characters,
because in our approach we process all characters in parallel, while a
software approach requires to process characters sequentially; thus,
taking more time as its number increases.

100 Chapter 6. Approach for the Incremental Tree Optimization

With regard to hardware resources, our hardware approach can
be applied for even larger problems as long as there are enough re-
sources in the targeted FPGA; in particular, BRAM resources. Fur-
thermore, this approach requires two node matrix memories (one for
the preliminary character states and one for the final) and two buffer
memories of equal size. Compared to this, the other previous ap-
proaches required less memory resources.

From this approach we learned that, although using the Incre-
mental Tree Optimization method provides a significant improve-
ment in the acceleration rates obtained, the use of additional buffer
memories imposes a constraint on the size of the problems that can
be implemented. This approach requires a considerable amount of
memory that might not be available depending on the targeted FPGA.
For this reason, it is necessary to consider an algorithm that does not
use these additional buffer memories.

6.2. Approach Two 101

6.2 Approach Two

This approach is the fifth approach in total, but the second for the
Incremental Tree Optimization.

6.2.1 Algorithm Overview

As was the case with the fourth approach, the algorithm proposed
here is based on the stochastic local search (section 2.1.1), and uses
the Indirect Calculation of Tree Lengths (section 2.2.2) and the Incre-
mental Tree Optimization (section 2.2.4). However, this time, recon-
structing the previous tree topology is done by reinserting the sub
tree (ST) back into the main tree (MT) on the same branch from which
it was pruned. We chose this approach, rather than reconstructing
the tree topology in the same way as in the fourth approach, to avoid
increasing the amount of memory needed for the Incremental Tree
optimization.

The algorithm starts from a randomly generated tree in the search
space, and tries to improve it on each iteration. For the initial tree,
a list of all the branches in the tree is created. This list will denote
which tree rearrangements have to be tried. Then, a complete first-
pass optimization is done to calculate the initial score of the tree and
the preliminary node character states. Following this, a complete
second-pass optimization is done to obtain the final node character
states. At each iteration of the algorithm a neighbor tree rearrange-
ment replaces the current one if it has a lower score, i.e. better score.
For this, in each iteration, the following steps are performed:

1 1.1 A branch to prune from the whole tree (WT) is randomly
chosen from the list.

1.2 The main tree (MT) and the subtree (ST) derived from the
previous pruning are created.

2 An incremental first-pass optimization is done on the MT.

If the sum of the scores of the MT and the ST is greater (worse)
than the current score, go to step 6.

3 An incremental second-pass optimization is done on the MT.

4 All rearrangements within the neighborhood are evaluated.

If the sum of the scores of the MT, the ST and the difference
(D.Score) is greater (worse) than the current score, go to step 6.

5 5.1 The ST is inserted in the MT in the branch that gives the
best tree rearrangement to create a new WT.

5.2 An incremental first-pass optimization is done on the WT,

102 Chapter 6. Approach for the Incremental Tree Optimization

followed by an incremental second-pass optimization.

5.3 All branches are added to the list again. Go to step 1.

6 6.1 The previous tree topology is reconstructed by reinserting
the ST in the MT in the same branch from which it was
pruned.

6.2 An incremental first-pass optimization is done on the WT,

followed by an incremental second-pass optimization.

6.3 The chosen branch is removed from the list. If there are
still branches in the list, go to step 1. Otherwise, finish.

This algorithm will always converge to a local optimum after all
branches in the list have been tried. In other words, after it has been
found that no tree rearrangement is better than the current one.

6.2.2 Phylogenetic Data Structure

The data structure used to store the phylogenetic information is the
same as for the fourth approach. However, since the previous tree
topology is now reconstructed by reinserting the sub tree (ST) back
into the main tree (MT) on the same branch from which it was pruned,
no additional buffer memories are needed.

For a given phylogenetic problem consisting of N taxa, each of
which has a sequence of L nucleobases, the sequence alignment ma-
trix is an N rows × L columns matrix. The characters in the se-
quences include not only the DNA nucleobases Adenine (A), Cy-
tosine (C), Guanine (G) and Thymine (T), but also the ’-’ character,
which represents a gap, and the ’?’ character, which represents an
undefined character. These are the six basic characters, but a combi-
nation of them is also possible thanks to the five-bit binary represen-
tation shown in table 6.1 of section 6.1.2.

Therefore, a memory of N × L × 5 bits is required to store the
sequence alignment matrix. On the other hand, the tree topology
shows the connections between the internal nodes of the tree and the
taxa. A tree with N taxa has N − 1 nodes, including the root node.
Since the tree is a binary tree, each node has a left and a right branch,
and a parent node. Thus, the size of the memory required to store
the tree topology is (N − 1) × 3[log2(N)] bits.

Furthermore, this approach requires the use of three memories.
First, it requires a memory to store the preliminary node character
states, and, second, a memory to store the final node character states.
The size of any of these memories is (N − 1) × L × 5 bits. Third, it
requires a memory to store the node lengths for all the nodes in the
tree. The size of this memory is (N − 1) × 18 bits, where 18 bits is
the number of bits required to store the length of the tree in binary

6.2. Approach Two 103

codification. For example, the tree topology, the sequence data ma-
trix memory, the node data matrix memories, and the node length
memory for a tree with 6 taxa are represented in figure 6.18.

AAACAGAG ...t0 t1 n2

t3 t4 n3

n0 t2 n4

n1 t5 n4

n2 n3 root

n0

n1

n2

n3

n4

Left
Branch

Right
Branch

Parent
Node

N
-
1

Tree Topology
Memory
(TTM)

t0

t1

t2

t3

t4

t5

GCAACACT ...

GCACAATT ...

ACAAAAC ...

GCAAAAC ...

AACAAAA ...

...........

N

L

Sequence Data
Matrix Memory

(SDM)

n0

n1

n2

n3

n4

ACAGAGAA ...

GCAACACT ...

ACAGAGAA ...

ACAGAGAA ...

GCAACACT ...

N
-
1

Node Data
Matrix Memories
(NDM_P, NDM_F)

L

.

.

.

.

2

n0

n1

n2

n3

n4

82

31

113

152

w

Node Length
Memory
(NLM)

95

N
-
1

FIGURE 6.18: Fifth approach: memory data structure

NDM_P refers to the Node Data Matrix Memory used to store the
preliminary character states; while NDM_F, to the Node Data Ma-
trix Memory used to store the final character states. Taxa are labeled
according to their memory positions on the Sequence Data Matrix
Memory. Likewise, nodes are labeled according to their memory po-
sitions on the Tree Topology Memory. Since both taxa and nodes
appear on the same memory, we use an additional bit to distinguish
between the two of them: 0 for a node and 1 for a taxon (singular
form of taxa). The root node doesn’t have a parent. Instead, a full
sequence of 1s is used to identify it.

6.2.3 Proposed Hardware Architecture

In section 6.2.1, we mentioned the steps involved in each iteration of
the algorithm. To design the hardware architecture, we considered
that steps 1, 5.1 and 6.1 can be performed by the same hardware unit,
since they are about modifying the tree topology. Similarly, steps 2,
3, 4, 5.2 and 6.2 can be performed by the same hardware unit, since
they are about processing the nodes of the tree in a certain manner.

This leads to the following hardware units that we designed to
implement the algorithm described in section 6.2.1:

1 Tree Topology Update (TTU) unit

2 First-, Second-pass and Rearrange-
ment evaluation (FSR) unit

3 Global Control (GC) unit

The TTU unit is in charge of modifying the tree topology memory
to reflect the changes produced by the Subtree Pruning and Reinsert-
ing (SPR) process. The FSR unit has the most important tasks, which
are doing a first- and second-pass optimization, whether complete or
incremental, and evaluating all possible rearrangements according to

104 Chapter 6. Approach for the Incremental Tree Optimization

the Indirect Calculation of Tree Lengths (ICTL). A general block dia-
gram of the hardware architecture proposed is shown in figure 6.19.

TTU Unit

Global
Control
Unit

 Tree
Topology
 Memory
 (TTM)

Tree Adders,
Comparator Tree,etc

GCAACACT...

GCAACATT...

ACAGAGAA...

GCAAATCA...

Sequence Data Memory
(SDM)

TTGACACT...

ACAGCAGT...

TCAGAGTG...

AAGCCTCC...

Node Data Memories
(NDM_P & NDM_F)

...

...

...

P

E
P

E

F
S
R

D
a
t
a

P
a
t
h

F
S
R

U
n
i
t

Port 1 Port 2

Global

Control Signals

N
-
1

N
-
1

N

L
L

5b x L
(x2)

2
x
(
N
-
1
)

2

Node Length
Memory
(NLM)

N
-
1

w

3[log (N)]

Port 1
Port 2

5b x L
(x2)

Port 1/2

Port 1/2

Branch
List
Memory
(BLM)

P

E

P

E

P

E

FIGURE 6.19: Fifth approach: general block diagram
of the proposed hardware architecture

It consists of the following elements: the dual-port Tree Topology
Memory (TTM), the dual-port Sequence Data Memory (SDM), the
dual-port Node Data Memories (NDM_P and NDM_F), the Node
Length Memory (NLM), the Branch List Memory (BLM), the TTU
unit, the FSR unit, and the Global Control (GC) unit. Black bars on
the diagram make reference to multiplexers.

As can be seen from figure 6.19, the proposed hardware architec-
ture has been drastically simplified compared to the fourth approach.
This simplification has contributed to ease the design of the remain-
ing units and improve the overall performance. First, the TTU unit
was redesigned to include reconstructing the previous tree topology
by reinserting the sub tree (ST) back into the main tree (MT) on the
same branch from which it was pruned. Second, the FSR unit was re-
designed to reduce the execution times in the five main tasks it has.
Finally, the GC unit was redesigned to execute all the steps in the
algorithm presented in section 6.2.1. In the following sections, we
explain how each of these three hardware units work.

6.2.3.1 Tree Topology Update (TTU) unit

The Tree Topology Update (TTU) unit is in charge of modifying the
Tree Topology Memory to reflect the changes produced by the Sub-
tree Pruning and Reinserting (SPR) process, whether it involves the
creation of a new tree or the reconstruction of the previous one.

6.2. Approach Two 105

It has two main tasks:

1 Pruning a branch from the whole tree (WT) to create the main
tree (MT) and the sub tree (ST).

2 Inserting the ST in the MT to create a new WT or to reconstruct
the previous WT.

And two sub tasks:

1 Storing the value of the pruned branch and reinsertion branch.

2 Storing the values of the WT, MT and ST roots.

The general block diagram of the TTU unit is shown in figure 6.20.

FIGURE 6.20: Fifth approach: general block diagram
of the TTU unit

As can be seen from figure 6.20, the TTU unit is implemented as
a Finite State Machine (FSM) with a Data Path. The FSM works ba-
sically as a memory controller that is used to modify the content of
the Tree Topology Memory (TTM). In addition to this, it has a linear-
feedback shift register (LFSR), which works as a pseudo-random num-
ber generator.

As was shown in section 6.1.3.1, regardless of the number of taxa,
when a branch with a subtree (ST) attached to it is pruned from the
tree, at most 2 nodes are modified. Similarly, when a branch with a
ST attached to it is inserted in the MT, at most 3 nodes are modified.
This is the same either when the ST is inserted in the MT to create
a new WT, or when the ST is inserted in the MT to reconstruct the
previous tree.

The pruning process involves modifying at most 2 nodes. Since it
takes 2 clock cycles to modify a node from the Tree Topology Mem-
ory, the execution time is of 4 clock cycles at most. Similarly, insert-
ing the sub tree involves modifying at most 3 nodes. Thus, it takes
6 clock cycles at most. Rebuilding the tree is equivalent to reverting
the pruning process; hence, this takes also 4 clock cycles at most.

106 Chapter 6. Approach for the Incremental Tree Optimization

6.2.3.2 First-, Second-pass and Rearrangement Evaluation (FSR)
unit

This unit is the most important unit. It has five main tasks:

1 Doing a complete first-pass optimization (post-order).

2 Doing a complete second-pass optimization (reversed-order).

3 Doing an incremental first-pass optimization.

4 Doing an incremental second-pass optimization.

5 Evaluating all possible tree rearrangements.

Its general block diagram is shown in figure 6.21.

PE PE PE0 1 (L-1)

leaf_a(0)

leaf_b(0)

node_pa/fa(0)

node_pb/fb(0)

leaf_a(1)

leaf_b(1)

leaf_a(L-1)

leaf_b(L-1)

node_pa/fa(L-1)

node_pb/fb(L-1)

...

Node Stack 1
&

Node Stack 2

5b

x2

5b

x2

5b 5b 5b

x2

5b

x2

5b 5b 5b

x2

5b

x2

5b 5b

(L x 5b)

L x 5b

result node

Tree Adder 1
&

Tree Adder 2

length (tree / difference)

FSR Data Path
(NOM, etc.)

FSR
Control
Path

control signals

start

2b

.
RE_dif

RE_ins_node/branch

s
t
a
c
k

s
e
q
u
e
n
c
e

1

&

2

Tree Comparator

5b 5b 5b

node_pa/fa(1)

node_pb/fb(1)

2b 2b 2b

node length

5b

x2

5b

x2

5b

x2

x2

5b

x2

5b

x2

5b

x2

FIGURE 6.21: Fifth approach: general block diagram
of the FSR unit

As seen in figure 6.21, the FSR unit is composed of L processing
elements (PE), where L is equivalent to the number of DNA charac-
ters in a sequence (see figure 6.18), two tree adders: Tree Adder 1 and
Tree Adder 2, two Node Stack memories: Node Stack 1 and Node
Stack 2, a Tree Comparator, and a Control Logic unit with a Data
Path. Inside the Data Path is a Node Order Memory. This memory is
used for the complete first-pass optimization to list the nodes in the
post-order, and for the second-pass optimization to list the nodes in
the reversed-order.

The inputs of the FSR unit are two leaves (taxa) from the Sequence
Data Matrix Memory: leaf a and leaf b, two nodes from the Prelimi-
nary Node Data Matrix Memory: node pa and node pb, and two nodes
from the Final Node Data Matrix Memory: node fa and node fb.

6.2. Approach Two 107

The Tree Adder 1 is used during the complete and incremental
first-pass optimization to add all individual scores from the PEs to
obtain the length of the node. In addition, the Tree Adder 1 and the
Tree Adder 2 are used during the tree rearrangement evaluation to
add all individual difference scores from the PEs in order to obtain
the total difference scores. The Tree Comparator is used during the
incremental first-pass optimization to compare the new node charac-
ter state against the previous one in order to obtain the lowest node
with unmodified character state. This node is used during the incre-
mental second-pass optimization as the root node.

The FSR unit outputs the result node from the PEs, so it can be
stored in the Preliminary or Final Node Data Matrix Memory. It also
outputs the best candidate node and branch for reinserting the sub-
tree (ST) in the main tree (MT), and the respective difference score:
RE_dif, RE_ins_node/branch.

The FSR unit uses L PEs to implement the complete and incre-
mental first-pass optimization algorithm (see section 2.1.3.1 and sec-
tion 2.2.4.1), the complete and incremental second-pass optimiza-
tion algorithm (see section 2.2.3 and section 2.2.4.2), and the tree
rearrangement evaluation by using the Indirect Calculation of Tree
Lengths (see section 2.2.2). These L PEs allow to process all the char-
acters of two nodes or leaves (taxa) in parallel. The general block
diagram of a PE is shown in figure 6.22.

sdm_01

ndm_p_01

stk_01

reg_02

D F

en

clk rst

D F

en

clk rst

char_01

d1
(length)

 reg_01
(rs_char1)

=0? ..

=1F?

.

char_01

char_02

char_01

char_02

char_02

char_01

st_char

st_char

5

1

=0?
char_03

char_04

char_03

char_04

char_01

char_02

.

ctrl[0]

ctrl[1]

ndm_f_01

sdm_02

stk_02

D F

en

clk rst

5

char_02

ctrl

=?

char_02

.

5

reg_01

sdm_02

ndm_p_02

stk_01

ndm_f_01

char_02
ndm_f_02

sdm_01

ndm_p_01

5

reg_01

sdm_01

ndm_p_01

stk_01

ndm_f_02

char_03
ndm_f_01

sdm_02

ndm_p_02

5

reg_01

sdm_02

ndm_p_02

stk_01

ndm_f_01

char_04
ndm_f_02

sdm_01

ndm_p_01

5

reg_01

D F

en

clk rst

st_char
5

char_03

to_stk_02

5
char_04

=1F?
char_03

st_char

.

.

char_01

char_03

=0?

D F

en

clk rst

d21

SP

RE

FP
&
SP

ctrl = "00": FP
ctrl = "x1": SP
ctrl = "1x": RE

stk_02

char_03
char_04

reg_02_sel

 reg_02
(rs_char2)

CTRL

FIGURE 6.22: Fifth approach: general block diagram
of the Processing Element (PE)

108 Chapter 6. Approach for the Incremental Tree Optimization

As can be seen from figure 6.22, the PE is composed of three
D-type flip-flop-based registers of 5 bits each, two D-type flip-flop-
based register of 1 bit, and a collection of logic gates. These logic
gates implement the five main tasks of the FSR unit described at the
beginning of this section, but for a single DNA character. Depending
on a control signal (ctrl in figure 6.22) the PE changes its function-
ality. It should be noted that the amount of logic resources inside
the PE has been almost doubled compared to the PE from the fourth
approach (see section 6.1.3.3. The amount of logic resources was in-
creased to reduce the execution times for the tree optimization and
the tree rearrangement evaluation, as we explain in the next subsec-
tions.

The idea behind having these five main tasks in one unit is to
share the same resources for the complete and incremental first- and
second-pass optimization, and for the rearrangement evaluation, since
they need not to work at the same time. Each of these tasks works
using a pipelined algorithm. In the following sections we describe
each one of them.

6.2.3.2.1 Complete First-Pass Optimization (FSR-CFP) The FSR-
CFP performs a first-pass optimization on all the nodes of the whole
tree (WT). It works in almost the same way as in the fourth approach,
but now the node order is stored in the Node Order Memory from
the Data Path of the FSR unit. In addition, it uses the Node Stack 1
and the sequence output from all the PEs, as shown in figure 6.21. It
follows the extended 6-stage pipelined algorithm listed below.

Stage 01 Pop a node from the NOM and read it from the TTM.

Stage 02 Read the LB and the RB from the SDM1 and the SDM2.

Stage 03 Do the following three tasks:

1. Case{Node(LB, RB)}

(Leaf, Leaf): Push the node from Stage 04 into the Stack.

(Node, Node): Pop a node from the Stack.

2. Do a first-pass optimization on the node.

3. Add the lengths of both branches.

Stage 04 Store the resulting node into the NDM_P1.

... Line Buffer / Tree Adder ...

Stage 05 Calculate the node length.

Stage 06 Store the resulting node length into the NLM1.

6.2. Approach Two 109

As in the fourth approach, each stage processes a node at a time.
The FSR-CFP finishes when all nodes in the Node Order Memory
have been processed. The total execution time approximates N + T
clock cycles, where N is the number of nodes in the whole tree (WT),
and T the latency of the Tree Adder.

6.2.3.2.2 Incremental First-Pass Optimization (FSR-IFP) The FSR-
IFP performs a first-pass optimization on those nodes that were af-
fected by the Subtree Pruning and Reinserting (SPR) process. Unlike
the fourth approach, now the FSR-IFP processes one node per clock
cycle thanks to the extended 6-stage pipeline algorithm listed below.
This algorithm is now similar to the one used for the complete first-
pass optimization.

Stage 01 Read the node from the TTM.

Stage 02 Read either the LB or the RB from the SDM1 or the NDM_P1.

Stage 03 Do a first-pass optimization on the node.

Stage 04 Do the following two tasks:

1. Store the resulting node into NDM_P2.

2. Compare the new value of the node with its previous value.

... Line Buffer / Tree Adder ...

Stage 4.5 Read either the LB or the RB from the NLM_1.

Stage 05 Calculate the node length.

Stage 06 Store the resulting node length into the NLM2.

TTM refers to the Tree Topology Memory, SDM to the Sequence
Data Matrix Memory, NDM_P to the Preliminary Node Data Matrix
Memory and NLM to the Node Length Memory. All memories are
dual-port memories.

To illustrate the above mentioned algorithm and how the extended
6-stage pipeline works, an example is given in figures 6.23 and 6.24
for a main tree (MT) with 6 taxa.

In figure 6.23, in Stage 03, fp(LB,RB) refers to the first-pass opti-
mization that is a function of the left and right branches of the node
(see section 2.1.3.1), and reg1 refers to the output sequence 1 from the
PEs. In Stage 04, d[LB,RB] refers to the difference score between the
left and right branch for a single DNA character.

110 Chapter 6. Approach for the Incremental Tree Optimization

FIGURE 6.23: Fifth approach: example of the pipeline
processing during the FSR-IFP (nodes)

FIGURE 6.24: Fifth approach: example of the pipeline
processing during the FSR-IFP (lengths)

In figure 6.24, in Stage 05, the total length of the node is finally
calculated after the Tree Adder has summed the individual results
from all the PEs, and in Stage 06 the node length is stored into the
Node Length Memory (NLM).

As can be seen from figures 6.23 and 6.24, each stage processes a
node at a time. The FSR-IFP finishes when all nodes affected by the
Subtree Pruning and Reinserting (SPR) have been processed. The
total execution time approximates n + T clock cycles, where n is the
number of nodes in the main tree (MT) or subtree (ST), and T the
latency of the Tree Adder. This is almost half the time required by
the FSR-IFP of the fourth approach.

6.2.3.2.3 Second-Pass Optimization (FSR-SP) The FSR-SP performs
a second-pass optimization on all the nodes of the given tree, whether
they belong to the whole tree (WT) or the main tree (MT). Unlike the
fourth approach, in this approach we decided to merge both opti-
mizations in one, because they are basically the same.

The incremental second-pass optimization is equivalent to a com-
plete second-pass optimization that starts on a different root node

6.2. Approach Two 111

(i.e. the lowest node with unmodified character states during the
incremental first-pass optimization).

The FSR-SP uses both Node Stack memories shown in figure 6.21:
Node Stack 1 and Node Stack 2, and both sequence outputs from all
the PEs. By selecting the root node, it can perform either the com-
plete second-pass optimization or the incremental second-pass opti-
mization. Unlike the fourth approach, now the FSR-SP processes one
node per clock cycle thanks to the 4-stage pipelined algorithm listed
below.

Stage 01 Read the current node from the TTM.

Stage 02 Read LB and RB from SDM1/SDM2 or NDM_P1/NDM_P2.

Stage 03 Do the following two tasks:

1. Select the operands of the second-pass function.

2. Do a second-pass optimization on the node.

Stage 04 Store the resulting node into NDM_F2.

TTM refers to the Tree Topology Memory, SDM to the Sequence
Data Matrix Memory, NDM_P to the Preliminary Node Data Matrix
Memory, and NDM_F to the Final Node Data Matrix Memory. All
memories are dual-port memories. This is represented by the index
attached at the end of the name of the memory, which refers to either
the port 1 or 2, respectively.

The current node, which determines the order in which the tree
is traversed (i.e. the reversed order), is obtained during Stage 01 and
Stage 02 by using the following algorithm:

Initialization Set the current node to the given root node.

Stage 01 Read the current node from the TTM.

Stage 02 Case(LB, RB) of the current node.

(Node, Node): Push the RB into the Node Order Memory (NOM).

(Node, Leaf): Set the current node to the LB.

(Leaf, Node): Set the current node to the RB.

(Leaf, Leaf): If the stack is not empty:

1. Pop a node.
2. Set the current node to the popped node.

112 Chapter 6. Approach for the Incremental Tree Optimization

FIGURE 6.25: Fifth approach: example of the pipeline
processing during the FSR-SP

To illustrate how the 4-stage pipeline of the FSR-SP works, an
example is given in figure 6.25 for a tree with 9 taxa and 8 nodes.
In this example, the starting node is the root of the tree; however, it
could be any node from the tree.

In figure 6.25, in Stage 03, sp(PN, CN, LB, RB) refers to the second-
pass optimization that is a function of the parent node (PN), the cur-
rent node (CN) and the left (LB) and right (RB) branches (see section
2.1.3.2). In the same stage, reg1 and reg2 refer to the output sequences
1 and 2 from all the PEs, and stk1 and stk2 to the output sequences 1
and 2 from the Node Stack memories, respectively.

The execution time approximates 1 clock cycle per node as the
number of nodes increases. The total execution time approximates
2n, where n is the number of nodes optimized in the given tree. This
is almost half the time required by the FSR-CSP or FSR-ISP of the
fourth approach.

6.2.3.2.4 Rearrangement Evaluation (FSR-RE) The FSR-RE eval-
uates all the tree rearrangements within the neighborhood using the
Indirect Calculation of Tree Lengths (ICTL). The algorithm uses both
score outputs (d1 and d2 in figure 6.22) from all the PEs. Unlike the
fourth approach, now one node is processed every clock cycle. The
FSR-PE works by following the 3-stage pipelined algorithm listed
below.

Initialization Do the following two tasks:

1. Read the root of the subtree (ST) from NDM_F1 or SDM1.

2. Read the root of the main tree (MT) from NDM_F2.

6.2. Approach Two 113

Stage 01 Read the curret node from TTM.

Stage 02 Read LB and RB from NDM_F1/NDM_F2 or SDM1/SDM2

Stage 03 Do the following two tasks:

1. Select the operands of the evaluation function.

2. Evaluate the left and right tree rearrangements.

TTM refers to the Tree Topology Memory, SDM to the Sequence
Data Matrix Memory and NDM_F to the Final Node Data Matrix
Memory. Both the SDM and the NDM are dual-port memories. This
is represented by the index attached at the end of the name of the
memory, which refers to either the port 1 or 2, respectively. The cur-
rent node, which determines the order in which the tree is traversed
(i.e. the reversed order), is obtained during Stage 01 and Stage 02 by
using the same algorithm explained in section 6.2.3.2.3.

To illustrate the above mentioned algorithm and how the 3-stage
pipeline works, an example is given in figure 6.26 for a tree with 9
taxa and 8 nodes. The order in which the nodes are processed is the
the reversed order, starting from the root of the tree.

FIGURE 6.26: Fifth approach: example of the pipeline
processing during the FSR-RE

In figure 6.26, in Stage 03, di(SR, [LB/RB, CN]) refers to the differ-
ence score that is a function of the root node of the subtree (SR), the
left branch (LB) or the right branch (RB) of the MT, and the current
node (CN) (see section 2.2.2).

The difference score values d1 and d2 are added by the trees adders
Tree Adder 1 and Tree Adder 2 from figure 6.21 to obtain the total
difference score for those two tree rearrangements. The same is done
for all pairs of tree rearrangements. Finally, the rearrangement with
the lowest score is kept as candidate to reinsert the subtree (ST) in

114 Chapter 6. Approach for the Incremental Tree Optimization

the main tree (MT). For this purpose, inside the Data path of the FSR
unit, a line buffer and some comparison registers are used.

Since two tree rearrangements are evaluated at the same time, the
execution time will approximate 0.5 clock cycles per tree rearrange-
ment as the number of nodes increases. The total execution approx-
imates n+ T , where n is the number of nodes in the main tree (MT),
and T is the latency of the Tree Adder. This is almost half the time
required by the FSR-RE of the fourth approach.

6.2.3.3 Global Control (GC) unit

The Global Control (GC) unit is a Finite State Machine (FSM) that is
in charge of executing the algorithm described in section 6.2.1. It
commands the other two units (TTU and FSR) and supervises all
memory accesses. The overall processing of our hardware approach
executed by the GC unit is shown in figure 6.27.

FSR

TTU

FULL-FP(WT)

FSR

TTU PRUNE(WT)

Initialization

If L(MT) + L(ST)>= L(WT)

Repeat

Notes:
WT: Whole Tree
MT: Main Tree
ST: Sub Tree

FULL-SP(WT)

INC-FP(MT) INC-SP(MT) RE(MT,ST)

INSERT_A(MT,ST)

INC-FP(WT) INC-SP(WT)

FSR

TTU

If L(MT) + L(ST) + D(RE) >= L(WT)

1 2

1

2

INSERT_B(MT,ST)

INC-FP(WT) INC-SP(WT)

Succesful

Unsuccesful (Rebuild)

FIGURE 6.27: Fifth approach: execution flow of the
proposed hardware architecture

In figure 6.27, FULL-FP refers to the complete first-pass optimiza-
tion; INC-FP, to the incremental first-pass optimization; FULL-SP, to
the complete second-pass optimization; INC-SP, to the incremental
second-pass optimization; and RE, to the tree rearrangement eval-
uation. INSERT_A refers to the reinsertion process of the sub tree
into the best branch found, while INSERT_B refers to the reinsertion
process of the sub tree into the branch from which it was originally
pruned. In other words, INSERT_B is equivalent to reconstructing
the previous tree.

6.2. Approach Two 115

6.2.4 Implementation Results

In this section we show implementation results for eight real-world
biological datasets. The datasets were obtained from the repository
of phylogenetic information TreeBASE [45], see table 6.5.

TABLE 6.5: Fifth approach: datasets used [45]

ID M972 M2355 M3452 M3875
#taxa 155 150 116 228
#characters 355 829 1,157 1,435
ID M17200 M2616 M14883 M18088
#taxa 326 330 330 296
#characters 1,434 1,711 2,290 3,222

We implemented our system on a Virtex-7 XC7VX690T-FFG1157-
2 FPGA. We limited our evaluation to only these eight datasets. How-
ever, we consider them enough and adequate to measure the perfor-
mance of our approach. Each dataset was chosen carefully based on
its number of taxa and characters. As can be seen from table 6.5, the
number of characters increases from one dataset to the other, starting
at 355 and ending at 3, 222. The number of taxa also has a tendency to
increase. These datasets can be considered of medium to large size,
which is an optimal size for evaluating the performance.

6.2.4.1 Hardware Utilization and Performance Results

The hardware utilization and performance results are shown in table
6.6. The targeted FPGA is a Virtex-7 XC7VX690T-FFG1157-2 FPGA.

TABLE 6.6: Fifth approach: implementation results on
a Virtex-7 FPGA

Logic Utilization Used Available Utilization
Number of Slice Registers 115,788 866,400 13.36%
Number of Slice LUTs 376,925 433,200 87.01%
Number of BRAMs (36 Kb) 1,346 1,470 91.56%
Maximum Frequency 146MHz

The implementation covers all of the eight datasets shown in ta-
ble 6.5. In other words, problems up to N = 1, 024 and L = 3, 222
can be processed with this amount of logical resources. BRAMs are
used to store the Tree Topology Memory (TTM), the Sequence Matrix
Data Memory (SDM), the two Node Data Matrix memories (NDM_P
and NDM_F), and the Node Length Memory (NLM). The number of
LUTs is almost proportional toL, the number of BRAMS to L × N .

116 Chapter 6. Approach for the Incremental Tree Optimization

6.2.5 Comparison and Performance Evaluation

6.2.5.1 Logical Resources Utilization Comparison

In this section, we compare the amount of logical resources required
by our current approach (the fifth approach) against the fourth ap-
proach. In table 6.3 of section 6.1.4.1, we showed the amount of logi-
cal resources needed by the fourth approach to implement problems
up to N = 1, 024 and L = 829 (i.e. the amount needed for the first
two problems: M972 and M2355). We show these results again in
table 6.7.

Now, to make a comparison in the same terms, we show the
amount of logical resources required by our current approach (the
fifth approach) to implement problems up to the same number of
taxa and characters (i.e. N = 1, 024 and L = 829). The results are
summarized in table 6.8.

TABLE 6.7: Fourth approach: implementation results
on a Virtex-7 FPGA for N = 1, 024 and L = 829

Logic Utilization Used Available Utilization
Number of Slices 23,968 108,300 22%
Number of Slice Registers 21,664 866,400 2%
Number of Slice LUTs 58,398 433,200 13%
Number of BRAMs (36 Kb) 577 1,470 39%
Maximum Frequency 158.767MHz

TABLE 6.8: Fifth approach: implementation results on
a Virtex-7 FPGA for N = 1, 024 and L = 829

Logic Utilization Used Available Utilization
Number of Slices 24,214 108,300 22.36%
Number of Slice Registers 29,127 866,400 3.36%
Number of Slice LUTs 96,853 433,200 22.36%
Number of BRAMs (36 Kb) 350 1,470 23.81%
Maximum Frequency 166MHz

Now, using the results summarized in tables 6.7 and 6.8, we show
in figure 6.28 the proportion of Registers, LUTs and BRAMs required
by the fifth approach against the fourth.

As can be seen from figure 6.28, the fifth approach requires more
registers and LUTs than the fourth approach does. This is to be ex-
pected, since more logical resources are used inside each PE to pro-
cess one node per clock cycle during the complete or incremental
first- and second-pass optimization, and during the tree rearrange-
ment evaluation. On the other hand, the fifth approach only requires
around 60% of the memory resources (BRAMs) that the fourth ap-
proach required.

6.2. Approach Two 117

FIGURE 6.28: Fifth approach: comparison of logical
resources utilization

This is a huge improvement, given that the BRAMs are the most
required logical resource from the FPGA. Thanks to this reduction,
the fifth approach is able to implement problems up to N = 1, 024
and L = 3, 222, while the fourth approach can only implement prob-
lems up to N = 1, 024 and L = 829 on a Virtex-7 FPGA.

6.2.5.2 Local Search Results Comparison

Here we compare our current hardware approach (fifth approach)
against the second approach (see chapter 4), the third approach (see
chapter 5), and with TNT (Tree analysis using New Technology) [20].
We omit here the comparison against the fourth approach, because
both approaches implement basically the same algorithm, which uses
the Incremental Tree Optimization.

To make the comparison as fair as possible, we use the traditional
search of TNT based on Subtree Pruning and Regrafting (SPR), and
start from a random tree. This is the closest setting of TNT that re-
sembles our algorithms (see sections 4.1, 5.1, and 6.2.1). Moreover,
since the total number of examined trees is not the same, we show
the average execution time required for each tree. The results are
summarized in table 6.9.

The targeted PC and FPGAs were the following:

• PC: Intel Core-i7 860, 4GB RAM @ 2.80 Ghz (TNT)

• FPGA: Kintex-7 XC7K325T-FF2-900 @ 156.25 Mhz (Second)

• FPGA: Virtex-7 XC7VX690T-FFG1157 @ 156.25 Mhz (Third)

• FPGA: Virtex-7 XC7VX690T-FFG1157 @ 145.00 Mhz (Fifth)

118 Chapter 6. Approach for the Incremental Tree Optimization

TABLE 6.9: Fifth approach: results for the local search

Dataset Second Third Fifth TNT
Total time (ms) 11.27 9.06 4.40 890

M972 Time/tree (µs) 0.031 0.026 0.0088 0.065
Visited trees 364,177 349,012 505,181 13,637,086
Best score 1,533 ← same 1,531 1,543
Total time (ms) 9.9 6.18 4.20 500

M2355 Time/tree (µs) 0.025 0.021 0.0084 0.059
Visited trees 400,368 294,360 499,952 8,497,522
Best score 2,724 ← same 2,740 2,771
Total time (ms) 9.64 8.09 2.55 180

M3452 Time/tree (µs) 0.029 0.024 0.0092 0.103
Visited trees 329,025 337,014 281,126 1,749,117
Best score 3,632 ← same 3,610 3,624
Total time (ms) 27.76 18.02 5.85 510

M3875 Time/tree (µs) 0.037 0.032 0.0079 0.021
Visited trees 760,180 562,514 736,662 23,818,061
Best score 567 ← same 570 564
Total time (ms) 53.56 44.82 13.52 2,260

M17200 Time/tree (µs) 0.019 0.016 0.0073 0.046
Visited trees 2,798,944 2,801,301 1,841,018 49,662,276
Best score 4,344 ← same 4,345 4,340
Total time (ms) 42.25 35.67 22.36 4,700

M2616 Time/tree (µs) 0.027 0.022 0.0063 0.09
Visited trees 1,564,515 1,621,566 3,549,853 53,330,179
Best score 10,003 ← same 10,003 10,004
Total time (ms) No Data No Data 11.20 1630

M14883 Time/tree (µs) No Data No Data 0.0076 0.038
Visited trees No Data No Data 1,468,782 43,186,692
Best score No Data No Data 1,132 1,139
Total time (ms) No Data No Data 22.96 9,000

M18088 Time/tree (µs) No Data No Data 0.0073 0.23
Visited trees No Data No Data 3,145.022 39,370,427
Best score No Data No Data 29,729 29,856

The last two datasets were not evaluated on the second and fourth
approach, so there is no data available for these two. In table 6.9, we
can see the total execution time required for the algorithm to con-
verge (Total time), the execution time for the evaluation of a tree rear-
rangement (Time/tree), the number of trees visited during the search
(Visited trees), and the best score obtained for each of the datasets
(Best score). With regard to the best score, we achieve values simi-
lar to those of the second and third approach, and TNT. Now, using
these results, in figure 6.29 we show the acceleration rate per tree re-
arrangement obtained.

6.2. Approach Two 119

3.52
2.98 3.15

4.68

2.6

4.29

2.95 2.5 2.61
4.05

2.19

3.49

7.39 7.02

11.2

2.66

6.3

14.29

5

31.51

0

5

10

15

20

25

30

35

M972 M2355 M3452 M3875 M17200 M2616 M14883 M18088

A
c
c
e
le

ra
ti

o
n
 f
o
r

th
e
 T

re
e
 E

v
a
lu

a
ti

o
n

Fifth vs Second Fifth vs Third Fifth vs TNT

FIGURE 6.29: Fifth approach: acceleration rate for the
tree evaluation

As can be seen from figure 6.29, we obtain acceleration rates per
tree rearrangement between 2.60 and 4.68 against the second ap-
proach; between 2.19 and 4.05 against the third approach; and, be-
tween 2.66 and 31.94 against TNT.

6.2.6 Discussion

We compared execution times against our second approach (refer to
chapter 4), the approach without the Incremental Tree Optimization
method; against our third approach (refer to chapter 5), the approach
that uses the Alternative Second-pass optimization; and TNT. Com-
pared to both approaches and TNT, our current fifth approach is
faster.

The acceleration rates achieved are thanks to a combination of
using the Indirect Calculation of Tree Lengths method, the Incre-
mental Tree Optimizaton method, and the redesigned parallel and
pipeline processing used in our current fifth approach. First, the In-
direct Calculation of Tree Lengths method allows to evaluate all tree
rearrangements within the neighborhood, and obtain the best rear-
rangement. Second, the Incremental Tree Optimization reduces the
number of nodes to be updated during the first- and second-pass op-
timization. Thus, reducing significantly the time spent in optimizing
the nodes of the tree. Last but not least, the parallel processing of all
the characters in a sequence using L PEs makes it possibly to evalu-
ate a node of the tree in one clock cycle. The acceleration rate against
a software approach should increase theoretically with the number

120 Chapter 6. Approach for the Incremental Tree Optimization

of characters, because in our approach we process all characters in
parallel, while a software approach requires to process characters se-
quentially; thus, taking more time as its number increases.

Moreover, our approach achieves these acceleration rates without
using additional memory resources for the incremental optimization
compared to the fourth approach. We only need to store the current
memory states; thus, eliminating the need of a memory to store the
previous tree topology, the previous node character states (both pre-
liminary and final), and the previous node lengths. As a result, the
total amount of memory needed is decreased, the number of mem-
ory accesses is reduced, and the performance is increased.

With regard to hardware resources, our approach can be applied
for larger problems as long as there are enough logical resources
in the targeted FPGA. For this current implementation, we used al-
most all of the memory resources available on the FPGA. For larger
datasets, FPGAs such as the Virtex UltraScale XCVU190 FPGA can
be used.

121

Chapter 7

General Discussion

Our first approach (chapter 3) implemented the first algorithm ex-
amined in section 2.2.1 that includes the Progressive Tree Neighbor-
hood. We showed implementation results on a Kintex-7 FPGA for
four real-world biological datasets. In comparison to our C++ im-
plementation of the same algorithm, the first approach provided an
acceleration rate that was in the order of thousands. In comparison
to TNT, there was no acceleration achieved. Nevertheless, the scores
obtained by the first approach were comparable to those from TNT.
From this approach we learned that to achieve higher acceleration
rates we had to employ other optimization methods to reduce the
evaluation time of tree rearrangements.

Our second approach (chapter 4) implemented the second algo-
rithm examined in section 2.2.2 that includes the Indirect Calculation
of Tree Lengths. We showed implementation results on a Kintex-7
FPGA and simulation results for four and two real-world biologi-
cal datasets, respectively. In comparison to the first approach, the
second approach provided an acceleration between 2 and 6 for the
whole local search, and between 34 and 45 for the evaluation of a sin-
gle tree rearrangement. In comparison to TNT, the second approach
achieved an acceleration rate between 18 and 112 for the whole lo-
cal search, and between 2 and 4 for the evaluation of a single tree
rearrangement, except for one problem, for which there was no ac-
celeration obtained. From this approach we learned that to achieve
even faster execution times than TNT, it was necessary to consider
other optimization methods.

Our third approach (chapter 5) implemented the third algorithm
examined in section 2.2.3 that includes the Alternative Second-pass
Optimization. We showed implementation results on a Virtex-7 FPGA
for six real-world biological datasets. In comparison to the second
approach, the third approach provided an acceleration between 1.18
and 1.6 for the whole local search, and between 1.16 and 1.23 for the
evaluation of a single tree rearrangement. In comparison to TNT, the
third approach achieved an acceleration between 22.25 and 131.76
for the whole local search, and between 2.5 and 4.29 for the evalu-
ation of a single tree rearrangement, except for one problem again.

122 Chapter 7. General Discussion

From this approach we learned that, although using the Alternative
Second-pass Optimization provided a slightly improvement in the
acceleration rate, it required a considerable amount of memory. For
this reason, it was necessary to consider other optimization methods;
in particular, that not all the node character states of the tree have to
be recalculated when a branch from the tree is pruned, since only a
small portion of the tree is affected.

Our fourth approach (section 6.1 of chapter 6) implemented the
fourth algorithm examined in section 2.2.4 that includes the Incre-
mental Tree Optimization. We showed implementation results on a
Virtex-7 FPGA and simulation results for two and four real-world bi-
ological datasets. In comparison to the second approach, the fourth
approach achieved an acceleration rate between 1.65 and 3.03 for
the evaluation of a single tree rearrangement, and compared to the
third approach; between 1.39 and 2.62. In comparison to TNT, the
fourth approach achieved an acceleration rate between 1.72 and 8.82
against TNT for the evaluation of a single tree rearrangement. From
this approach we learned that, although using the Incremental Tree
Optimization provided a significant improvement in the acceleration
rates obtained, the use of additional buffer memories imposed a con-
straint on the size of the problems that could be implemented. For
this reason, it was necessary to consider an algorithm that did not
use additional buffer memories.

Our fifth and last approach (section 6.2 of chapter 6) implemented
also the fourth algorithm examined in section 2.2.4 that includes the
Incremental Tree Optimization. We showed results on a Virtex-7
FPGA for eight real-world biological datasets. In comparison to the
second approach, the fifth approach achieved an acceleration rate
between 2.60 and 4.68 for the evaluation of a single tree rearrange-
ment, and compared to the third approach; between 2.19 and 4.05.
In comparison to TNT, the fifth approach achieved an acceleration
rate between 2.66 and 31.94 for the evaluation of a single tree rear-
rangement. From this approach we learned that using the Incremen-
tal Tree Optimization effectively provides a significant improvement
in the acceleration rates obtained without excessively increasing the
amount of memory needed.

The acceleration rates achieved are thanks to a combination of
using the Indirect Calculation of Tree Lengths, the Incremental Tree
Optimization, and the parallel and pipeline processing used in our
approach. First, the Indirect Calculation of Tree Lengths method al-
lows evaluating all tree rearrangements within the neighborhood,
and obtaining the best one. Second, the Incremental Tree Optimiza-
tion reduces the number of nodes to be updated during the first
and second-pass optimizations. Thus, reducing significantly the time

Chapter 7. General Discussion 123

spent in optimizing the nodes of the tree. Last but not least, the par-
allel processing of all the characters in a sequence using L PEs makes
it possibly to evaluate a node of the tree in one clock cycle.

We believe that our FPGA implementation is the best approach
to achieve the highest performance. We think that the performance
that could be obtained by implementing the algorithm on a GPU or
other many-core accelerators such as CUDA-implementation would
be poor for the following reasons.

First, the amount of shared memory (on-chip fast- access mem-
ory) available on a GPU or other many-core accelerators is much
limited. For example, the GTX 980 Ti GPU has a total of 1,152kB of
shared memory, which is much less than the 6,615kB of the Virtex-7
690T FPGA. Thus, using a GPU would either limit the size of phylo-
genetic datasets that can be processed or it would decrease the per-
formance significantly by having to use the global memory.

Second, to calculate the score of a tree, we simply add up the
individual results from each processing element (PE) by using a tree
adder that has a latency equal to its depth. However, in the case of
a GPU, the individual results from each thread block, which would
be stored in the shared memory, would have to be written first into
the global memory before they can all be added. This would signify
a great delay that would reduce the overall performance.

Third, the first- and second-pass optimization algorithms are com-
posed of some conditional clauses and low-level hardware opera-
tions. In the FPGA we implemented them as a group of logical gates
and multiplexers inside the processing elements (PEs). Thus, it only
takes one clock cycle to obtain the desired output. However, in a
GPU this would not be possible. It would take more clock cycles
to calculate the output, since the conditional clauses cannot be flat-
tened and the low-level hardware operations cannot be directly im-
plemented.

Our approach can be applied for larger problems as long as there
are enough resources in the targeted FPGA. For even larger datasets
than the ones we use, FPGAs such as the Virtex UltraScale XCVU190
FPGA can be used. On the other hand, the acceleration rate should
increase theoretically with the number of DNA characters, because in
our approach we process all characters in parallel. On the contrary,
a software approach like TNT requires to process characters serially;
thus, taking more time as its number increases.

125

Chapter 8

Conclusions and Future
Directions

In this research we proposed and implemented five FPGA hardware
approaches for molecular phylogenetic tree reconstruction using the
maximum parsimony criterion.

Each approach was based on a stochastic local search algorithm
(section 2.1.1) that combined one or more of the following algorithms:
the Progressive Tree Neighborhood (section 2.2.1), the Indirect Cal-
culation of Tree Lengths (section 2.2.2), the Alternative Second-pass
Optimization (section 2.2.3), and the Incremental Tree Optimization
(section 2.2.4).

We verified and evaluated the implementation of the proposed
approaches for several real-world biological datasets of medium to
large size. The datasets consisted of hundreds of sequences, each
of them with thousands of DNA characters. We compared the im-
plementation results from each approach with those from previous
ones, and with those obtained from the phylogenetic software TNT
(Tree analysis using New Technology), the fastest available parsi-
mony program.

The implementation showed that our fifth and last approach was
the fastest of all five. It achieved acceleration rates for the evalua-
tion of a single tree rearrangement between 2.60 and 4.68 against the
second approach (chapter 4); between 2.19 and 4.05 against the third
approach (chapter 5); and, between 2.66 and 31.94 against TNT.

In conclusion, an efficient hardware approach for phylogenetic
tree reconstruction has been successfully implemented. The fifth
and last approach allowed us to obtain even higher acceleration rates
in comparison to the first, second, third and fourth approaches and
TNT, and required less memory resources than the fourth approach.
These acceleration rates achieved are thanks to a combination of us-
ing the Indirect Calculation of Tree Lengths method, the Incremental
Tree Optimization method, and the parallel and pipeline processing
used in this approach.

126 Chapter 8. Conclusions and Future Directions

8.1 Contributions of this Work

The main contribution of this work is to present an FPGA hardware
approach for phylogenetic tree reconstruction under maximum par-
simony that effectively addresses the evaluation of a single tree rear-
rangement and the stochastic local search.

To the best of our knowledge, we achieved the next contributions.
Our first approach presented the first FPGA hardware implementa-
tion of the Progressive Tree Neighborhood algorithm. Our second
approach presented the first FPGA hardware implementation of the
Indirect Calculation of Tree Lengths algorithm. Our third approach
presented the first FPGA hardware implementation of the Alterna-
tive Second-pass Optimization algorithm. Finally, our fourth and
fifth approaches presented the first FPGA hardware implementation
of the Incremental Tree Optimization algorithm.

In short, for the first time in the literature an FPGA hardware
approach that covers both the complete and incremental first- and
second-pass optimization, as well as the tree rearrangement evalu-
ation has been proposed. Thanks to the parallel and pipeline pro-
cessing, our approach achieves an ideal throughput of one node per
clock cycle (as the number of nodes in the tree increases) for both
the tree optimization and the tree rearrangement evaluation. In ad-
dition, our approach can be applied for larger problems as long as
there are enough logical resources in the targeted FPGA. And given
that it is modular and portable, it can easily be implemented on other
FPGAs.

8.2 Future Directions

Our approach can be applied for larger phylogenetic problems as
long as there are enough resources in the targeted FPGA; in particu-
lar, memory resources (BRAMs). For even larger problems, we sug-
gest using an array of FPGAs.

The computation of the first- and second-pass optimizations, as
well as the tree rearrangement evaluation is performed independently
for each column of the Sequence Alignment Matrix. This means that
the Sequence Alignement Matrix Memory, as well as other memories
used to store the DNA character states, can be divided in smaller seg-
ments, so that each FPGA can store one of them. By doing this, each
FPGA can perform calculations on the given segment of the mem-
ory, and the individual results regarding the score of the tree can be
added together to obtain the total score of the tree.

Moreover, we suggest implementing our approach as part of a
disk-covering method (DCM) such as the ones presented in works
[46] [47] and [48]. This, we believe, would lead to achieve a higher
phylogenetic tree reconstruction accuracy and reduction of memory
consumption.

127

Bibliography

[1] A.W.F. Edwards and L.L. Cavalli-Sforza. “The reconstruction
of evolution”. In: Annals of Human Genetics 27 (1963), pp. 105–
106.

[2] E.O. Wiley and B.S. Lieberman. Phylogenetics: Theory and Prac-
tice of Phylogenetic Systematics. 2nd ed. Wiley-Blackwell, 2011.

[3] D.K. Yeates, R. Meier, and B. Wiegmann. Flytree. 2017. URL:
http://wwx.inhs.illinois.edu/research/flytree/
flyphylogeny/ (visited on 12/07/2017).

[4] N.H. Barton, D.E.G. Briggs, J.A. Eisen, D.B. Goldstein, and N.H.
Patel. Evolution. 1st ed. Cold Spring Harbor Laboratory Press,
2007.

[5] Barry G. Hall. Phylogenetic Trees Made Easy: A How To Manual.
4th ed. Sinauer Associates, Inc., 2011.

[6] L.R. Founds and R.L. Graham. “The Steiner problem in phy-
logeny is NP-complete”. In: Advances in Applied Mathematics 3
(1982), pp. 43–49.

[7] W. Day, D. Johnson, and D. Sankoff. “The computational com-
plexity of inferring rooted phylogenies by parsimony”. In: Math-
ematical biosciences 81.33-42 (1986), p. 299.

[8] A.A. Andreatta and C.C. Ribeiro. “Heuristics for the Phylogeny
Problem”. In: Journal of Heuristics 8 (2002), pp. 429–447.

[9] A. Goëffon, J.-M. Richer, and J.-K. Hao. “Heuristic Methods for
Phylogenetic Reconstruction with Maximum Parsimony”. In:
Algorithms in Computational Molecular Biology: Techniques, Ap-
proaches and Applications (2011).

[10] D.M. Hillis, C. Moritz, and B.K. Mable. Molecular Systematics.
2nd ed. Sinauer Associates, 1996.

[11] The European Bioinformatics Institute (EMBL-EBI). Why use
molecular data? 2017. URL: https : / / www . ebi . ac . uk /
training/online/course/introduction-phylogenetics/
what-phylogenetics/why-use-molecular-data (vis-
ited on 12/07/2017).

[12] The European Bioinformatics Institute (EMBL-EBI). Why is phy-
logenetics important? 2017. URL: https://www.ebi.ac.uk/
training/online/course/introduction-phylogenetics/
why-phylogenetics-important (visited on 12/07/2017).

http://wwx.inhs.illinois.edu/research/flytree/flyphylogeny/
http://wwx.inhs.illinois.edu/research/flytree/flyphylogeny/
https://www.ebi.ac.uk/training/online/course/introduction-phylogenetics/what-phylogenetics/why-use-molecular-data
https://www.ebi.ac.uk/training/online/course/introduction-phylogenetics/what-phylogenetics/why-use-molecular-data
https://www.ebi.ac.uk/training/online/course/introduction-phylogenetics/what-phylogenetics/why-use-molecular-data
https://www.ebi.ac.uk/training/online/course/introduction-phylogenetics/why-phylogenetics-important
https://www.ebi.ac.uk/training/online/course/introduction-phylogenetics/why-phylogenetics-important
https://www.ebi.ac.uk/training/online/course/introduction-phylogenetics/why-phylogenetics-important

128 BIBLIOGRAPHY

[13] Xilinx. What is an FPGA? 2017. URL: http://www.xilinx.
com / training / fpga / fpga - field - programmable -
gate-array.htm (visited on 12/12/2017).

[14] Pong P. Chu. FPGA Prototyping By Verilog Examples: Xilinx Spartan-
3 Version. 1st ed. Wiley-Interscience, 2008.

[15] S. Che, J. Li, J.W. Sheaffer, K. Skadron, and J. Lach. “Acceler-
ating compute-intensive applications with GPUs and FPGAs”.
In: Application Specific Processors, SASP (2008), pp. 101–107.

[16] University of Washington. Phylogeny Programs. 2017. URL: http:
//evolution.genetics.washington.edu/phylip/
software.html (visited on 12/14/2017).

[17] University of Washington. PHYLIP. 2017. URL: http://evolution.
genetics.washington.edu/phylip/ (visited on 12/15/2017).

[18] David Swofford. PAUP. 2017. URL: http://paup.scs.fsu.
edu (visited on 12/15/2017).

[19] S. Kumar, G. Stecher, and K. Tamura. MEGA. 2017. URL: http:
//www.megasoftware.net/home (visited on 12/15/2017).

[20] Goloboff, Farris, and Nixon. TNT. 2017. URL: http://www.
lillo.org.ar/phylogeny/tnt (visited on 12/14/2017).

[21] P. Goloboff, J. Farris, and K. Nixon. “TNT, a free program for
phylogenetic analysis”. In: Cladistics, The International Journal of
the Willi Hennig Society 24 (2008), pp. 774–786.

[22] P. Goloboff and S. Catalano. “TNT version 1.5, including a full
implementation of phylogenetic morphometrics”. In: Cladis-
tics, The International Journal of the Willi Hennig Society 32 (2016),
pp. 221–238.

[23] J.M. Hancock and M.J. Zvelebil. Concise Encyclopaedia of Bioin-
formatics and Computational Biology. 2nd ed. Wiley-Blackwell,
2014.

[24] S.Sarkar, T. Majumder, A. Kalyanaraman, and P.P. Pande. “Hard-
ware accelerators for biocomputing: A survey”. In: Proceedings
of 2010 IEEE International Symposium on Circuits and Systems (IS-
CAS) (2010).

[25] J.D. Bakos and P.E. Elenis. “A Special-Purpose Architecture for
Solving the Breakpoint Median Problem”. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 16.12 (2008), pp. 1666–
1676.

[26] S. Kasap and K. Benkrid. “High performance phylogenetic anal-
ysis with maximum parsimony on reconfigurable hardware”.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 99 (2010), pp. 1–13.

http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.genetics.washington.edu/phylip/
http://evolution.genetics.washington.edu/phylip/
http://paup.scs.fsu.edu
http://paup.scs.fsu.edu
http://www.megasoftware.net/home
http://www.megasoftware.net/home
http://www.lillo.org.ar/phylogeny/tnt
http://www.lillo.org.ar/phylogeny/tnt

BIBLIOGRAPHY 129

[27] N. Alachiotis and A. Stamatakis. “FPGA acceleration of the
phylogenetic parsimony kernel?” In: Proc. 21st International Con-
ference on Field Programable Logic (FPL) (2011), pp. 417–422.

[28] H. Block and T. Maruyama. “A hardware acceleration of a phy-
logenetic tree reconstruction with maximum parsimony algo-
rithm using FPGA”. In: International Conference on Field-Programmable
Technology (FPT) (2013), pp. 318–321.

[29] H. Block and T. Maruyama. “An FPGA hardware acceleration
of the indirect calculation of tree lengths method for phylo-
genetic tree reconstruction”. In: 24th International Conference on
Field Programmable Logic and Applications (FPL) (2014), pp. 1–4.

[30] H. Block and T. Maruyama. “FPGA Hardware Acceleration of
a Phylogenetic Tree Reconstruction with Maximum Parsimony
Algorithm”. In: IEICE Transactions on Information and Systems
E100.D.2 (2017), pp. 256–264.

[31] H. Block and T. Maruyama. “An FPGA implementation of a
phylogenetic tree reconstruction algorithm using an alterna-
tive second-pass optimization”. In: 25th International Conference
on Field Programmable Logic and Applications (FPL) (2015), pp. 1–
4.

[32] H. Block and T. Maruyama. “An FPGA hardware implementa-
tion approach for a phylogenetic tree reconstruction algorithm
with incremental tree optimization”. In: 27th International Con-
ference on Field Programmable Logic and Applications (FPL) (2017),
pp. 1–8.

[33] H.H. Hoos and T. Stuetzle. Stochastic Local Search: Foundations
and Applications. 1st ed. Morgan Kaufmann, 2004.

[34] A. Goeffon, J. M. Richer, and J. K. Hao. “Local search for the
maximum parsimony problem”. In: Lecture Notes in Computer
Science 3612 (2005), pp. 678–683.

[35] J. Felsenstein. Inferring Phylogenies. 2nd ed. Sinauer Associates
is an imprint of Oxford University Press, 2003.

[36] M.S. Waterman and T.F. Smith. “On the similarity of dendo-
grams”. In: Journal of Theoretical Biology 73 (1978), pp. 789–800.

[37] M. Zvelebil and J. Baum. Understanding Bioinformatics. 1st ed.
Garland Science, 2007.

[38] W. Fitch. “Towards defining course of evolution: minimum change
for a specified tree topology”. In: Systematic Zoology 20 (1971),
pp. 406–416.

[39] D. Sankoff and P. Rousseau. “Locating the vertices of a Steiner
tree in an arbitrary metric space”. In: Mathematical Programming
9 (1975), pp. 240–246.

130 BIBLIOGRAPHY

[40] Fredrik Ronquist. “Fast Fitch-Parsimony Algorithms for Large
Data Sets”. In: Cladistics 14 (1998), pp. 387–400.

[41] A. Goeffon, J. M. Richer, and J. K. Hao. “Progressive tree neigh-
borhood applied to the maximum parsimony problem”. In: IEEE/ACM
Transactions on Computational Biology and Bioinformatics 5 (2008).

[42] P. Goloboff. “Methods for faster parsimony analysis”. In: Cladis-
tics 12 (1996), pp. 199–220.

[43] M. Yan and D.A. Bader. “Fast character optimization in parsi-
mony phylogeny reconstruction”. In: Technical Report (2003).

[44] J.M. Richer, A. Goffon, and J.K. Hao. “A Memetic Algorithm
for Phylogenetic Reconstruction with Maximum Parsimony”.
In: Evolutionary Computation, Machine Learning and Data Mining
in Bioinformatics (2009).

[45] TreeBASE: "A database of phylogenetic knowledge". 2017. URL: http:
//www.treebase.org/ (visited on 12/28/2017).

[46] D. Huson, S. Nettles, L. Parida, T. Warnow, and S. Yooseph.
“The disk-covering method for tree reconstruction”. In: Proc.
Algorithms and Experiments (1998), pp. 62–75.

[47] D. Huson, S. Nettles, and T. Warnow. “Disk-covering, a fast-
converging method for phylogenetic tree reconstruction”. In:
Journal of Computational Biology 6.3-4 (1999), pp. 369–386.

[48] U. Roshan, T. Warnow, B. Moret, and T. Williams. “Rec-I-DCM3:
a fast algorithmic technique for reconstructing phylogenetic
trees”. In: Computational Systems Bioinformatics Conference, 2004.
CSB 2004. Proceedings. 2004 IEEE. IEEE. 2004, pp. 98–109.

http://www.treebase.org/
http://www.treebase.org/

BIBLIOGRAPHY 131

Research Achievements

Journals (First author)

• H. Block and T. Maruyama. “FPGA Hardware Acceleration of
a Phylogenetic Tree Reconstruction with Maximum Parsimony
Algorithm”. In: IEICE Transactions on Information and Systems
E100.D.2 (2017), pp. 256-264

International Conference Papers (First author)

• H. Block and T. Maruyama. “A hardware acceleration of a phy-
logenetic tree reconstruction with maximum parsimony algo-
rithm using FPGA”. In: International Conference on Field-Programmable
Technology (FPT) (2013), pp. 318-321

• H. Block and T. Maruyama. “An FPGA hardware acceleration
of the indirect calculation of tree lengths method for phyloge-
netic tree reconstruction”. In: 24th International Conference on
Field Programmable Logic and Applications (FPL) (2014), pp. 1-4

• H. Block and T. Maruyama. “An FPGA implementation of a
phylogenetic tree reconstruction algorithm using an alternative
second-pass optimization”. In: 25th International Conference on
Field Programmable Logic and Applications (FPL) (2015), pp. 1-4

• H. Block and T. Maruyama. “An FPGA hardware implementa-
tion approach for a phylogenetic tree reconstruction algorithm
with incremental tree optimization”. In: 27th International Con-
ference on Field Programmable Logic and Applications (FPL) (2017),
pp. 1-8

	Abstract
	Acknowledgements
	Introduction
	Phylogenetics
	Phylogenetic Trees
	Phylogenetic Tree Inference Methods
	The Maximum Parsimony Criterion
	Relevance of Molecular Sequence Data
	Applications of Phylogenetics

	Background
	FPGAs
	Hardware Acceleration
	Software Solutions for Phylogenetics
	Hardware Solutions for Phylogenetics
	Problem Statement

	Purpose of this Research
	Thesis Outline

	Algorithms for Phylogenetic Tree Reconstruction
	Phylogenetic Tree Reconstruction
	Stochastic Local Search
	Subtree Pruning and Regrafting (SPR)
	Tree Optimization
	First-pass Optimization
	Second-pass Optimization

	Software Algorithms
	Progressive Tree Neighborhood
	Indirect Calculation of Tree Lengths
	Alternative Second-pass Optimization
	Incremental Tree Optimization
	Incremental First-pass Optimization
	Incremental Second-pass Optimization

	Approach for the Progressive Tree Neighborhood
	Algorithm Overview
	Phylogenetic Data Structure
	Proposed Hardware Architecture
	Prune and Reinsert Selection (PRS) unit
	Tree Topology Update (TTU) unit
	Node Order Listing (NOL) unit
	Tree Score Calculation (TSC) unit
	Global Control (GC) unit

	Implementation Results
	Hardware Utilization and Performance Results

	Comparison and Performance Evaluation
	Execution Time for the Score Calculation
	Local Search Results Comparison

	Discussion

	Approach for the Indirect Calculation of Tree Lengths
	Algorithm Overview
	Phylogenetic Data Structure
	Proposed Hardware Architecture
	Tree Topology Update (TTU) unit
	Progressive Neighborhood Listing (PNL) unit
	Node Order Listing (NOL) unit
	First-, Second-pass and Rearrangement Evaluation (FSR) unit
	First-pass Optimization (FSR-FP)
	Second-pass Optimization (FSR-SP)
	Rearrangement Evaluation (FSR-RE)

	Global Control (GC) unit

	Implementation Results
	Hardware Utilization and Performance Results

	Comparison and Performance Evaluation
	Discussion

	Approach for the Alternative Second-pass
	Algorithm Overview
	Phylogenetic Data Structure
	Proposed Hardware Architecture
	Tree Topology Update (TTU) unit
	Progressive Neighborhood Listing (PNL) unit
	Node Order Listing (NOL) unit
	First-, alternative Second-pass and Rearrangement evaluation (FSR) unit
	First-pass Optimization (FSR-FP)
	Alternative Second-pass Optimization (FSR-ASP)
	Rearrangement Evaluation (FSR-RE)

	Global Control (GC) unit

	Implementation Results
	Hardware Utilization and Performance Results

	Comparison and Performance Evaluation
	Discussion

	Approach for the Incremental Tree Optimization
	Approach One
	Algorithm Overview
	Phylogenetic Data Structure
	Proposed Hardware Architecture
	Tree Topology Update (TTU) unit
	Node Order Listing (NOL) unit
	First-, Second-pass and Rearrangement Evaluation (FSR) unit
	Global Control (GC) unit

	Implementation Results
	Hardware Utilization and Performance Results

	Comparison and Performance Evaluation
	Discussion

	Approach Two
	Algorithm Overview
	Phylogenetic Data Structure
	Proposed Hardware Architecture
	Tree Topology Update (TTU) unit
	First-, Second-pass and Rearrangement Evaluation (FSR) unit
	Global Control (GC) unit

	Implementation Results
	Hardware Utilization and Performance Results

	Comparison and Performance Evaluation
	Logical Resources Utilization Comparison
	Local Search Results Comparison

	Discussion

	General Discussion
	Conclusions and Future Directions
	Contributions of this Work
	Future Directions

	Bibliography

