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Abstract

The rapid development of machine learning frameworks has widened the use of machine
learning in enterprise businesses. In businesses, machine learning cannot be a single
shot process but a repetitive trial-and-error process that heavily involves data analysts.
Since the trial-and-error process has three bottleneck phases, “feature-engineering” phase,
“model training” phase, and “model evaluation” phase in its loop, the whole process lasts
for a long time, over a day, a week, or a month. This dissertation explores the ways to
reduce the time of such machine learning process by tackling those three bottleneck phases.
(1) First, we propose a query processing technique for accelerating feature-engineering
in relational database systems. Concretely, our query processing technology accelerates
repetitive aggregation operations, which often appear in the feature-engineering. (2)
Second, we propose a machine learning model for predicting attributes of entity sets in
relational database systems, which does not require feature-engineering phase. (3) Third,
we propose a method for accelerating model training phase and model evaluation phase
based on data compression technique.
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Chapter 1

Introduction

1.1 Background

Data mart
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Model evaluation

Tune parameters and 
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Fig. 1.1 Machine learning on relational data.

The rapid development of machine learning frameworks has widened the use of
machine learning in various fields. One of the relatively new domains for machine
learning is enterprise field where the data to be analyzed are stored and organized as
relational data. In such enterprise relational data analysis, machine learning cannot be a
simple single shot process but a repetitive trial-and-error process that heavily involves
data analysts. Figure 1.1 shows the typical machine learning workflow on relational
data [102, 64, 94]:

1. (ETL) Data to be analyzed (e.g., relational tables in other database systems and
flat raw files such as CSV) are loaded into a database management system (DBMS)
through ETL (Extract, Transform, and Load) process to construct a single database
for analysis called a data mart. Since DBMS converts the data into its internal
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data structure (e.g., row-based record structure or column-based record structure)
and construct indices such as B+-Tree on the data for efficient query processing,
this ETL process takes a long time. For this reason, typically this ETL process is
done in batch processing manner, typically at night, after the close of business.

2. (Feature engineering) Data analysts try to design features that would yield
good predictive performance in the subsequent machine learning methods by
transforming tables in the data mart. Typically, in this phase, data analysts
write tons of SQL queries that construct features from tables in the data mart
based on his domain knowledge. For example, in customers’ income prediction,
aggregating the customers’ past purchase histories may produce good features for
income prediction, such as the average amount of money they use in the shopping.
This phase involves the tremendous amount of aggregation query processing in
DBMS and takes a long time.

3. (Model training) Data analysts pick up machine learning models to try
considering the task (such as linear-regression for regression task, support vector
machine for classification task) and train the models on the data by specifying
hyper-parameter values of the models. Since a model is trained for each combination
of algorithm and hyper-parameters, tons of models are trained in this phase,
and it takes a long time (# of algorithms × # of candidate values of the first
hyper-parameter × # of second hyper-parameter ×...).

4. (Model evaluation) Data analysts check the quality of the models by examining
its predictive performance. Since the number of models to be evaluated could be
large and each model evaluation includes the prediction on the training dataset,
which is costly for large datasets, this phase also takes a long time.

If the predictive performance is not satisfactory in “model evaluation” phase (4),
data analysts back to “feature-engineering” phase (2) or “model training” phase (3),
and repeat the process by changing features to construct, algorithms to learn, and
hyper-parameters to be used. Since this trial-and-error process will be repeated many
times until data scientists get the satisfactory results, the whole machine learning process
takes considerable time.
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1.2 Overview

Motivated by these issues in machine learning on relational data, this dissertation explores
methods to reduce the time of processes inside the trial-and-errors in the machine learning
on relational data.

(Chapter 3) Fast Feature Engineering by Adaptive Partial Aggregation:
First, we propose Adaptive Partial Aggregation Tree (APA-Tree), a query processing
technology for accelerating repetitive data aggregation operations. APA-Tree is based on
partial aggregation method [73, 34] that pre-computes and cache aggregation values on
a subset of the data and reuse pre-computed aggregation values in further aggregation
queries. While conventional partial aggregation method computes aggregation values on
pre-determined sized subsets of data (typically a page or a block in storage), APA-Tree
computes aggregation values on dynamically-decided sized subsets. Since aggregation
operations in feature engineering tasks have locality of reference, APA-Tree finely
computes aggregation values on frequently accessed data and coarsely on rarely accessed
data. As a result, APA-Tree accelerates repetitive aggregation queries with a small number
of pre-computed aggregation values. Experimental results on synthetic workloads confirm
APA-Tree’s efficiently compared to the previous partial aggregation methods [73, 34].

(Chapter 4) Machine Learning without Feature Construction: Second, we
propose a machine learning model for predicting entity attributes in relational database
systems, which does not require conventional time-consuming feature-engineering process.
As a motivating application of entity attribute prediction in relational data, we tackle
the problem of customers’ demographics prediction based on their behavioral data.
This demographics prediction problem is modeled as a classification task in which a
customer’s sensitive demographic y is predicted from his feature vector x. So far, two
lines of work have tried to produce a “good” feature vector x from the customer’s
behavioral data: (1) application-specific feature engineering using behavioral data and
(2) representation learning (such as singular value decomposition or neural embedding)
on behavioral data. Although these approaches successfully improve the predictive
performance, (1) designing a good feature requires domain experts to make a great
effort and (2) features obtained from representation learning are hard to interpret. To
overcome these problems, we present a Relational Infinite Support Vector Machine
(R-iSVM), a mixture-of-experts model that can leverage behavioral data. Instead of
augmenting the feature vectors of customers, R-iSVM uses behavioral data to find



4 Introduction

out behaviorally similar customer clusters and constructs a local prediction model
at each customer cluster. In doing so, R-iSVM successfully improves the predictive
performance without requiring application-specific feature designing and hard-to-interpret
representations. Experimental results on three real-world datasets demonstrate the
predictive performance and interpretability of R-iSVM. Furthermore, R-iSVM can co-exist
with previous demographics prediction methods to further improve their predictive
performance.

(Chapter 5) Fast and Space-Efficient Machine Learning with Data
Compression: Third, we propose a method to make training and evaluation of various
machine learning models fast and space-efficient, which is based on data compression
technique (Chapter 5). Our proposed compressed vector set (CVS) runs machine learning
algorithms in a fast and space-efficient manner on both sparse and dense datasets. CVS
holds a set of vectors in a compressed format and conducts primitive vector operations,
such as ℓp-norm and dot product, without decompression. By combining these primitive
operations, CVS accelerates prominent data mining or machine learning algorithms
including k-nearest neighbor algorithm, stochastic gradient descent algorithm on logistic
regression, and kernel methods. In contrast to the commonly used sparse matrix/vector
representation, which is not effective for dense datasets, CVS efficiently handles sparse
datasets and dense datasets in a unified manner. Our experimental results demonstrate
that CVS could process both dense datasets and sparse datasets faster than conventional
sparse vector representation with smaller memory usage.

1.2.1 Summary

This dissertation tackles three bottlenecks in a trial-and-error process in machine learning
on relational data: feature engineering, model training, and model evaluation. We
summarize how the time of those bottleneck steps will be reduced by our proposed
technologies.

1. (Feature engineering) With APA-Tree (Chapter 3), the execution time of
repetitive feature engineering queries will be drastically reduced. Moreover, for a
specific task (entity attribute prediction of a relational data), R-iSVM (Chapter 4)
can omit this time-consuming feature engineering step.

2. (Model training) With CVS (Chapter 5), machine learning models can be quickly
trained.
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3. (Model evaluation) CVS (Chapter 5) drastically reduces the machine learning
models’ prediction time, reducing computational time for model evaluation. Further,
R-iSVM (Chapter 4) assists interpretation of trained models by revealing hidden
structures in data, which reduces laborious model evaluation by “human.”





Chapter 2

Related Work

In this chapter, we review studies on improving the performance of each step in machine
learning on relational data (ETL, feature engineering, model training, model evaluation).

2.1 ETL

In ETL process, data are gathered from various places such as other database systems
(e.g., OLTP database) or flat raw files such as CSV, and loaded into a single DBMS
to construct a data mart. Since the loading process involves costly operations such as
converting data into the DBMS’s internal data structure and constructing indices such
as B+-Tree for efficient query processing, this ETL process generally takes a long time.
So far, several studies have tried to reduce the ETL time in different ways.

2.1.1 Fast Loading and Indexing

One important aspect in ETL is the trade-off between loading time and query processing
time (such as feature engineering) after ETL. For example, when we avoid B+-Tree index
construction in ETL process, ETL process itself could be instantly finished while the
subsequent query processing will be unreasonably slow because of the lack of indices.
So far, a variety of studies tried to both achieve fast loading and indexing. We review
several studies in this direction.

Lightweight Index One direction is Lightweight index, which has the drastically lower
construction cost compared to conventional indices such as B+-Tree. Moerkotte [73]
proposed Small Materialized Aggregates, which horizontally splits a table into sub tables,
computes statistics such as minimum and maximum values of each column in sub table,
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and stores those statistics into file header. These simple statistics work well as indices
by allowing DBMS to evaluate range predicates only by checking the statistics. Similar
structures are used in several commercial systems such as Brighthouse [88], Netezza [24],
and DB2 [82]. Graefe et al. [34] extended the idea of the lightweight index to support
not only range predicates but other predicates such as containment using the hashing
technique.

Adaptive Index Another direction is Adaptive index, an indexing strategy that
gradually constructs index typically in response to actual queries. Since no index
construction is required in loading time, ETL itself can be finished instantly with
this adaptive indexing strategy. Database cracking proposed by Idreos et al. [46] is a
prominent work of this direction, which construct indices in response to range queries.
Database cracking is then extended to support updates [47] and tuple reconstruction [48].
Graefe et al. considered adaptive indexing based on conventional B-tree structure [33].
Similarly, Abouzied et al. proposed a data loading and indexing scheme called Invisible
loading, which loads data onto MapReduce system as a side effect of actual query
processing [2].

In-situ Processing Another line of work is In-situ processing, which allows analysts
to query raw data directly without loading the data into database systems enabling
instant data analysis. NoDB [45] is a prominent work in this direction, which enables
instant data analysis while achieving high query processing performance constructing
indices called “positional maps” on raw data. Karpathiotakis et al. [59] also proposed
high-performance in-situ processing system called “RAW”, which constructs the system’s
internal data structure for tables in a just-in-time fashion. Given a raw data, RAW
generates its internal data structure that is optimized for the data. With this technique,
RAW drastically reduce the cost of converting raw data into system’s internal data
structure and further query processing time.

2.1.2 Other Acceleration Approaches

Besides indexing technologies, several studies have tried to improve the performance of
ETL process.

Data Elimination Data elimination approaches reduce the amount of data to be
loaded using meta information. Kargin et al. proposed Lazy ETL, which eliminates the
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amount of data to be loaded by using metadata attached to the flat files [57, 58]. They
modified DBMS to only load metadata in ETL phase, used query optimization rules that
reduce the amount data to be loaded by applying selection or projection operation using
metadata.

Modern Hardware Another direction is to use modern hardware technologies to
accelerate ETL process. Tobias et al. [93] proposed Instant Loading, a fast way to load flat
files into database utilizing modern hardware instructions such as string SIMD operations
(SSD 4.2’s string and text instructions) and hardware optimized index structure, namely,
adaptive radix tree [67].

2.2 Feature Engineering on Relational Data

id age income occupation

u1 45 $150K “engineer”

u2 30 $90K “salesman”

u3 27 $40K ?

u4 50 $90K ?

id price

i1 $1.5

i2 $9

i3 $2

i4 $2

i1 i2 i3 i4

u1 20 0 5 0

u2 5 1 0 3

u3 3 1 2 1

u4 1 0 1 0

Customers

(Entity Set 1)

Items

(Entity Set 2)

Purchase histories

(Behavioral data)

id age income avg. 

purchase

a1 a2 occupation

u1 45 $150K $1.75 20.6 -0.88 “engineer”

u2 30 $90K $10.16 4.98 3.15 “salesman”

u3 27 $40K $8.125 3.44 0.77 ? 

u4 50 $90K $1.75 1.20 -0.24 ?

Augment customers’ feature vectors using behavioral data in two ways:

(1) Feature engineering, and (2) Representation learning.

Used to train

a classiffier

x

(input feature vector)

y

(response variable)

Augmented features

To be predicted

by the classifier

Fig. 2.1 Feature engineering on relational data.

In feature engineering phase, data analysts try to design features that would yield
good predictive performance in the subsequent machine learning methods by transforming
tables in the data mart. Typically, in this phase, data analysts write tons of SQL queries
that construct features from tables in the data mart based on his domain knowledge.
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For example, as shown in Figure 2.1, aggregating the customers’ past purchase histories
and compute the average amount of money they use in the shopping can produce a good
indicator of their occupation. This feature construction can be done by the following
SQL query:

SELECT Customers.id, AVG(Items.price)
FROM Customers, PurchaseHistory, Items
WHERE Customers.id = PurchaseHistory.uid AND

Items.id = PurchaseHistory.iid
GROUP BY Customers.id

Since such features are repeatedly generated, this phase involves the tremendous amount
of aggregation query processing in DBMS and takes a long time.

Though not directly motivated by the feature engineering issue, there exist several
database technologies that can accelerate such heavy feature engineering operations. In
the rest of this section, we review studies that relate to feature engineering on relational
data.

2.2.1 Efficient Aggregation Query Processing

First, we review technologies that can accelerate repetitive aggregation queries in database
systems.

Pre-computation of Aggregation Values One major approach for accelerating
aggregation operation is pre-computing and reusing aggregation values. As mentioned
in the previous section, Moerkotte [73] proposed SMA (Small Materialized Aggregates),
which horizontally splits a table into sub-tables, computes statistics such as minimum,
maximum, and sum values of each column in sub-table, and stores those statistics as
a different table. SMA can be used as an index to avoid scanning unqualified records
but can also be used to reduce the cost of aggregation operation by pre-computing and
aggregation values. In the context of OLAP (online analytical processing), Ho et al.
proposed a data structure that hols prefix-sum and prefix-max on the range [43].

Approximate Query Processing In data analysis, sometimes analysts do not
need exact answers but rough answers that can be computed instantly. To meet
such requirements, AQP (approximate query processing) technologies, which compute
approximate answers for aggregation query instantly, have been studied in the context
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of query processing in database systems [4, 41, 3, 13, 85, 87, 27, 14]. AQP is based on
sampling subset of data from a database and compute unbiased estimates of aggregation
queries such as sum and mean using the sampled subset. Since the size of the subset
to sample can be arbitrarily small, AQP can return query results instantly. AQP can
estimate errors in approximate answers such as confidence intervals or mean squared
errors using statistical techniques like Hoeffding’s inequality and central limit theorem.
Chaudhuri et al. provided intensive literature reviews on AQP techniques [14].

2.2.2 Feature Engineering without Knowledge

In feature engineering on relational data, bottlenecks are not only in database systems
side (query processing performance) but are also in analysts side; designing good
features requires domain knowledge and long-time trial-and-error process. So far, several
technologies have been studied to alleviate the burden on analysts.

Latent factor model In the prediction of an entity attribute (e.g., income of a
customer) in relational data as in Figure 2.1, latent factors obtained from a relationship
table (e.g., purchase histories) via latent factor analysis are known to work well. For
example, matrix factorization on a matrix constructed from a relationship table, such as
web browsing history [75, 44] and location check-in [97], has achieved successes. If the
relationship table has foreign keys more than three, tensor decomposition method such
as Tucker decomposition can be used instead of matrix factorization [105].

Representation learning Representation learning such as deep neural network frees
data scientist from laborious feature engineering tasks by learning proper feature
representations from training data. In the context of relational data, such deep neural
networks are reported to work in various tasks including entity-attribute prediction [97]
and link prediction[40].

2.3 Model Training

In the model training phase, data analysts pick up machine learning models to try
considering the task (such as linear-regression for regression task, support vector machine
for classification task) and train the models on the data by specifying hyper-parameter
values of the models. Since a model is trained for each combination of algorithm and
hyper-parameters, tons of models are trained in this phase, and it takes a long time
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(# of algorithms × # of candidate values of first hyper-parameter × # of second
hyper-parameter ×...).

In this section, we review studies that accelerate the training of machine learning
models.

2.3.1 Sparse Matrix Representation

Sparse matrix representations represent a vector that is mostly filled with zero values in a
space-efficient way. One of the most commonly-used representations is COO (coordinate
list) [90, 31], which represents a vector with non-zero values and its positions. For
example, a sparse vector

x = (0, 0, 42, 99, 0, 0, 0)

is represented by two vectors

values = (42, 99)
positions = (2, 3)

in COO format.
While the sparse vector representation reduces the space-efficiency, they also reduce

the computational complexity of several mathematical operations. For example, the dot
product of two vectors x and y, which are comprised of Bx and By non-zero elements,
can be carried out in O(Bx +By) time [90, 31]. Since training of machine learning models
mostly consists of matrix computation, sparse matrix representation has been actively
used to accelerate model training phase of machine learning.

One downside of the sparse vector representation is its inefficiency for dense data.
For example, a dense vector

x = (7, 7, 42, 99, 7, 7, 7)

is represented by

values = (7, 7, 42, 99, 7, 7, 7)
positions = (0, 1, 2, 3, 4, 5, 6)

in COO representation, which doubled the size compared to the original vector.
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Most of the linear algebra libraries implement sparse vectors. Popular libraries include
Eigen [36] and Scipy [55, 77].

2.3.2 Run-Length Encoding

In contrast to sparse vector representation, run-length encoding can represent a dense
data efficiently when the number of distinct elements is not large [80, 6]. Run-length
encoding represents a sequence of n same consecutive values x, . . . , x with a block ⟨n, x⟩.
For example, RLE represents

(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1)

as (⟨5, 1⟩ , ⟨9, 2⟩ , ⟨3, 1⟩), reducing the number of elements to represent the data from 17
to 6.

Run-length encoding is widely used in data-intensive systems. For example,
MADlib [42], a data analytics system built on top of a relational database system,
use run-length encoding to handle sparse data efficiently. Also, some columnar database
systems employ run-length encoding its column data [1, 69]. [78] also employs run-length
encoding to accelerate data mining algorithms and machine learning algorithms.

Data Reordering

In run-length encoding for a collection of vectors, reordering the order of samples or
vector dimensions can increase the data compression rate [78]. Brodie et al. tackled the
row-reordering problem for maximizing the compression rate of run-length encoding of
a matrix, and proposed a greedy method [10]. In their situation, the greedy method
was enough, because they aimed to compress the state-transition tables of a regular
expression, and commonly such tables are not large. In data mining area, the problem
is extensively studied as the problem of reordering bitmap indices and several efficient
algorithms are proposed [79, 68, 81].

When the interest is only in the compression of a (long) vector, Burrows-Wheeler
Transform (BWT), a well-known data preprocessing technique to increase the compression
rate of several compression algorithms, can be used [11].
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2.3.3 Model-specific Data Compression

In machine learning research area, compressing the specific machine learning models
to accelerate the training of machine learning algorithm is an active research direction.
Tabei et al. studied partial least squares regression (PLS) on compressed data encoded
by grammar-based codes [91]. To assist accessing the elements in the compressed
matrix, they proposed a tree-based special data structure. Their approach targets to
use binary-features (so-called fingerprints data), which differs from our approach that
targets to arbitrary real values. Rendle proposed a method to accelerate machine-learning
algorithms by utilizing block structures in a matrix [84]. In his work, input matrices are
assumed to have special block structures that come from denormalization of relational
tables.

2.3.4 Data Discretization

Many data compression algorithms, such as run-length encoding, is ineffective for
real-valued data, because real-valued data rarely have same consecutive values. For
dealing with the problem, data discretization techniques are often employed to convert
real-valued vectors into discrete-valued vectors. Since data discretization will lose the
information, how to keep the accuracy of subsequent algorithms is the important problem
in data discretization. In machine learning area, several approaches for keeping the
accuracy of machine learning are proposed [22, 83, 106].

2.4 Model Evaluation

In the model evaluation phase, data analysts check the quality of the models by examining
its predictive performance. Since the number of models to be evaluated could be large
and each model evaluation includes the prediction on the training dataset, which is costly
for large datasets, this phase also takes a long time.

In this section, we review studies to accelerate the evaluation of the machine learning
models.

2.4.1 Binary Embedding

Binary embedding techniques maps RD to B-dimensional Hamming space, typically
with B < D [95, 62, 32, 28]. Benefits of this approach are twofold. First, binary
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embedding is space-efficient: B-dimensional binary vector can be stored in B bits.
Second, computations over binary embedded vectors are fast: dot product of two binary
embedded vectors can be carried out by taking XOR of two vectors and then counting the
number of 1 in the vector, which is just a popcount instruction. Recently, [28] proposed
an efficient binary-coding scheme. They demonstrated that a popular binary-encoding
method proposed in [32] is a constrained version of their method, which results in weaker
performance. They also showed that another state-of-the-art approach [62] could not
satisfy all the optimal binary-coding conditions.

Recently, binary embedding approaches are actively employed in machine learning
algorithms. For example, in deep neural networks research, binary embedding [83] and
ternary embedding [106] are shown to drastically increase the predictive performance of
large neural networks, which reduce the time of model evaluation drastically.

2.4.2 Vector Quantization

In computer vision and information retrieval area, vector quantization techniques, which
represents a collection of vectors with a relatively small number of representative vectors,
are also actively studied. Like binary embedding methods, vector quantization methods
can also accelerate model evaluation phase. Compared to the binary embedding, vector
quantization approaches tend to yield better compression rate while the compression
speed is slower [8]. The most simple vector quantization approach is k-means clustering
algorithm, which can be considered as an encoding from original vector to centroid
vectors. Recently, product quantization, a generalization of k-means, is proposed [53] and
its variants are actively studied [76, 96, 29]. Product quantization splits the vector into
M disjoint subvector, and runs k-means on each sub-vectors. The concatenation of each
encoded sub-vectors is used as the final encoded vector.

2.4.3 Model-Specific Compression

Since deep neural network (DNN) models contain a ton of parameters (e.g., 61M
parameters in AlexNet [63]) and resulting in the huge memory usage and computational
power, compression of DNN models is the hot topic in deep learning research community.
Approaches include low-rank approximation of parameter matrix [19, 52], binary
representation [83] or ternary representation [106] of parameters, and pruning unimportant
nodes from deep neural network.
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2.5 Summary

In this chapter, we have reviewed studies on improving the performance of each step in
machine learning on relational data (ETL, feature engineering, model training, model
evaluation). In this section, summarize the originality and technical contributions of this
dissertation regarding the related work we have reviewed.

2.5.1 Adaptive Partial Aggregation Tree

Adaptive Partial Aggregation Tree (APA-Tree), a query processing technology for
accelerating repetitive data aggregation operations (Chapter 3) relates to fast loading
and indexing methods reviewed in Section 2.1.1 and efficient aggregation query processing
methods reviewed in Section 2.2.1.

Comparison with fast loading and indexing methods APA-Tree can be used as
a fast loading and indexing method while its main objective is on aggregation query
acceleration. In the viewpoint of indexing methods, adaptive index methods such as
database cracking [46] share similar construction policy with APA-Tree: both methods
start without any indices and gradually construct indices that are optimized for actual
workloads. Key difference is that our proposed APA-Tree has shrink phase, which
merges unimportant nodes (infrequently accessed nodes) to keep the tree-size small, while
previous methods do not have the corresponding phase.

Comparison with efficient aggregation query processing methods
Conventional aggregation query processing methods such as partial aggregation
methods [73, 34] and OLAP-oriented indices [43] are all static where structure-related
parameters such as block sizes have to be pre-determined regarding the assumed
workloads. Thus, resulting data structures in conventional methods may perform
inefficiently on unanticipated workloads. In contrast, our proposed APA-Tree gradually
adapts to actual workloads by changing its structure according to queries, making the
method robust.

2.5.2 Relational Infinite Support Vector Machine

Relational Infinite Support Vector Machine (R-iSVM), a machine learning model for
predicting entity attributes in relational database systems, which does not require
feature-engineering process (Chapter 4) relates to feature engineering without knowledge.
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Comparison with feature engineering without knowledge As mentioned
in Section 2.2.2, conventional feature engineering without expert knowledge can
be categorized into latent factor models such as matrix factorization and tensor
decomposition [75, 44, 97, 105] and representation learning such as deep neural
networks [97, 40]. While both methods can generate features effective for increasing
predictive performance, those generated features rarely have meanings and are
hard-to-interpret, making data analysts’ understanding of the model and explanation
to other people difficult. In contrast, our proposed R-iSVM does not produce such
hard-to-interpret features while achieving the comparable or better performance with
previous methods by taking a different way to leverage relational data: constructs multiple
simple models regarding the relational data.

2.5.3 Compressed Vector Set

Compressed Vector Set (CVS), a method to make training and evaluation of various
machine learning models fast and space-efficient using data compression technique
(Chapter 5) relates to various works.

Comparison with sparse matrix representation CVS relates to vector and matrix
computation frameworks that utilize data sparsity. For example, Eigen [36] and Scipy [55,
77] can represent sparse matrices and sparse vectors by concise data structures. In
contrast to the sparse matrix representation, CVS targets to not only the sparse vector
sets but also the dense vector sets.

Comparison with run-length encoding CVS compresses data using run-length
encoding scheme. Run-length encoding is widely used in data-intensive systems such as
machine learning frameworks [42] and columnar database systems [1, 69]. However, none
of these works include optimization techniques introduced in our proposed method CVS,
such as dimension-reordering and data discretization.





Chapter 3

Fast Feature Engineering by Adaptive
Partial Aggregation

In this section, we propose a query processing technique for accelerating
feature-engineering in DBMS. Concretely, our query processing technology accelerates
repetitive range aggregation operations, which often appear in feature-engineering phase.

3.1 Introduction

Range aggregation query is a fundamental operation in DBMS that aggregates records
in a certain range by computing some statistics such as maximum value, average, and
standard deviation. For example,

SELECT AVG(Height)
FROM Students
WHERE Age < 16

computes the average height of students under 16.
Such a range aggregation query is a classic operation in DBMS and has been used for

a long time, especially in OLAP (Online Analytic Processing) applications. However,
the recent democratization of machine learning has provided range aggregation query a
new role: feature-engineering in machine learning. Such statistics of a subset of data
computed by range aggregation query are often used as features in machine learning task.

In machine learning process, when the predictive performance of the model trained by
constructed features is not satisfactory, data scientists modify features by rewriting queries
(such as changing aggregation range from Age < 16 to Age < 14) and re-dispatching them
to the DBMS. As a result, similar looking tons of aggregation queries are sequentially
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sent to the DBMS resulting in a heavy workload, and it is reported to be the bottleneck
in data analytics [5].

Motivated by the issue, in this chapter, we propose Adaptive Partial Aggregation Tree
(APA-Tree), a query processing technology for accelerating repetitive data aggregation
operations. APA-Tree is based on partial aggregation method [73, 34] that pre-computes
and cache aggregation values on a subset of the data and reuse pre-computed aggregation
values in further aggregation queries. While conventional partial aggregation method
computes aggregation values on pre-determined sized subsets of data (typically a page
or a block in storage), APA-Tree computes aggregation values on dynamically-decided
sized subsets. Since aggregation operations in feature engineering tasks have locality of
reference, APA-Tree finely computes aggregation values on frequently accessed data and
coarsely on rarely accessed data. As a result, APA-Tree accelerates repetitive aggregation
queries well with a small number of pre-computed aggregation values. Experimental
results on synthetic workloads confirm APA-Tree’s efficiently compared to the previous
partial aggregation methods [73, 34].

3.2 Preliminaries
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Fig. 3.1 Horizontal Partitioning [73, 34]

Our approach is based on partial aggregation method [73, 34], which has been tried
to accelerate range aggregation query in classic OLAP context. The idea of partial
aggregation method is to reuse the aggregation values among queries as much as possible.
Partial aggregation method first divides records into several groups, pre-computes
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aggregation values called partial aggregation values on each group, caches those partial
aggregation values into memory or CPU cache as shown in Figure 3.1. Later, partial
aggregation reuses those pre-computed aggregation values as much as possible in
aggregation query processing to avoid costly storage accesses. In this section, we provide
the brief overview of partial aggregation method and its inherent issue in applying to
feature engineering in machine learning.

3.2.1 Decomposability of Aggregation Operation

Partial aggregation accelerates aggregation operations that have the following property:
Definition 3.2.1 (Decomposable aggregation operation [100]) Aggregation
operation f : R(A1, ..., An) → R is decomposable if there exists a function g : Rm → R
such that

f(B) = g(f(B1), ..., f(Bm))

for a relation B = ⋃m
i=1 Bi ∈ R(A1, ..., An), where R(A1, ..., An) is the schema of the

relation R, comprising of attributes A1, ..., An.

Intuitively, decomposable aggregation operations refer to the operations that can be
computed in divide-and-conquer manner. For example, Maxa(X) operation, which
computes the maximum value of attribute a in set X, is a decomposable aggregation
operation because

Maxage(B1 ∪B2) = max {Maxage(B1), Maxage(B2) }

holds where max works as the combiner. In contrast, Count(X) operation, which
computes the cardinality of set X, is not decomposable because there is no combiner
that recovers the correct value

Countage(B1 ∪B2)

from individually computed Count(B1) and Count(B2) for arbitrary sets B1 and B2. For
example, let B1 = { 1, 1, 4 } and B2 = { 1, 2, 3 }. Since same element 1 is in each set,
correct aggregation value

Count(B1 ∪B2) = Count({ 1, 1, 1, 2, 3, 4 }) = 4

cannot be recovered from individual statistics (Count(B1) = 2 and Count(B2) = 3).
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3.2.2 Reusing Pre-Computed Partial Aggregation

Partial aggregation method uses the decomposable property of aggregation operations
to reuse pre-computed aggregation values among several queries. Consider a range
aggregation query Maxage(σ170≤R.height≤180(R)). According to the distributive property
of selection operation σ and decomposable property of Max,

Maxage(σ170≤R.height≤180(R))
= max {Maxage(σ170≤R.height≤180(B1)),

Maxage(σ170≤R.height≤180(B2)),
Maxage(σ170≤R.height≤180(B3))} (3.1)

holds where relation R is partitioned into three groups, R = B1 ∪ B2 ∪ B3. Assume
that group B1 only contains small people (130 ≤ R.height ≤ 150), group B2 only
contains tall people (185 ≤ R.height), and group B3 only contains mid-height people
(175 ≤ R.height ≤ 180). Since partial aggregation method holds pre-computed statistics
such as minimum height and maximum height in memory, range aggregation query in
Equation (3.1) can be processed as

max {Maxage(σ170≤R.height≤180(B1)),
Maxage(σ170≤R.height≤180(B2)),
Maxage(σ170≤R.height≤180(B3))}

= Max({Maxage(ϕ), Maxage(ϕ), Maxage(B3) })
= Maxage(B3) (3.2)

without scanning blocks B1, B2, and B3, which reside in secondary storage. Because
partial aggregation keeps the value of Maxage(B3) in memory as a pre-computed partial
aggregation value, the whole query can be processed without costly secondary storage
access.

3.3 Proposed Method

In this section, we describe the details of our proposed method Adaptive Partial
Aggregation Tree (APA-Tree), a processing technique to accelerate repetitive range
aggregation queries.
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3.3.1 Issues in Conventional Partial Aggregation Method

Though conventional partial aggregation method can successfully reduce the I/O cost
of range aggregation queries, it has difficulty in actual deployment, especially in
feature-engineering of machine learning. The reason is in its group construction part;
How it divides relation (aggregation target table) R into groups, such as R = B1∪B2∪B3.
Conventional approaches [73, 34] divide the relation into groups based on its primary
key so that every group has the equal-sized key range (For example, B1 consists of the
range 1 ≤ k ≤ 30, B2 consists of the range 31 ≤ k ≤ 60, and B3 consists of the range
61 ≤ k ≤ 90). We call this policy as Horizontal Partitioning in this chapter.

The difficulty of Horizontal Partitioning in actual deployment is that analysts or
administrator have to decide the proper group size in a priori manner, before the actual
analysis. If the group size is too small, I/O on most queries cannot be eliminated. If
the group size too large, scanning and holding pre-computed statistics could be a heavy
process.

3.3.2 APA-Tree

Motivated by the problem in Horizontal Partitioning, we propose a new approach to
maintain aggregation values in partial aggregation method, namely, Adaptive Partial
Aggregation Tree (APA-Tree).

Figure 3.2 shows the structure of APA-Tree. APA-Tree is a binary tree similar to
Segment tree. As in Segment tree, a node recursively divides key range equally (each node
maintains a specific range), and a leaf node represents a group that holds pre-computed
aggregation values of records in the group. Unlike Segment tree, APA-Tree is not a
balanced binary tree. In APA-Tree, frequently accessed key ranges are finely divided, and
less accessed ranges are coarsely divided. In doing so, APA-Tree successfully maintains
partial aggregation values in proper group sizes that reflect the access patterns of actual
queries, which leads to high reusability in partial aggregation method.

Maintaining APA-Tree

To maintain partial aggregation values in a proper granularity that reflects the access
patterns of actual queries, APA-Tree grows or shrinks the tree when it processes a
range aggregation query. Algorithm 1 and Algorithm 2 show the algorithms of range
aggregation query processing in APA-Tree. It recursively traverses the tree to find all
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Fig. 3.2 The illustration of the proposed APA-Tree. While Horizontal Partitioning strategy
maintains aggregation values inside statically decided groups, APA-Tree maintains
aggregation values dynamically and adaptive to actual queries.

leaf nodes that are enclosed by the range specified by the query, and combines partial
aggregations using the combiner for the aggregation operation1 (line 17 of Algorithm 1).

Growing the tree If the query cannot be answered by pre-computed partial
aggregations in the current tree structure, APA-Tree grows the tree so that the same
query can be processed by pre-computed partial aggregations, that is, without any I/Os
(line 13 of Algorithm 1). This growing process corresponds to computing the partial
aggregation values finely on frequently accessed key ranges.

Shrinking the tree Since only growing the tree monotonically increase the tree size,
APA-Tree shrinks a subtree if the subtree is not frequently accessed (line 6 in Algorithm 2).
This shrinking process corresponds to computing the partial aggregation values coarsely

1As in previous studies [100, 73, 34], we assume that we have a priori knowledge on combiners for
aggregation operations.
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Algorithm 1: computeAggregationForNode(node, query): Compute partial
aggregation result for the data maintained by the node.

Input: node: Node
Input: query: Range aggregation query
Output: Partial aggregation results for the data maintained by the node.

1 // Range comparison to check data maintained by the node is target of the query
2 answer ← compare(node.range, query)
3 if answer = OUTSIDE_QUERY then
4 // Terminate further traversal because the data maintained by the node is out

of the query
5 return null
6 if answer = ALL_DATA_IN_QUERY then
7 // Reuse partial aggregation result of the node because the node is enclosed by

the query
8 return node.getPrecomputedAggregations()
9 if answer = PART_DATA_IN_QUERY then

10 // The node and query overlaps.
11 if node.isLeafNode() then
12 // Grow APA-Tree: Split the node so that the partial aggregation values

can be reused in further queries.
13 node.split(query)
14 leftAggregations = computeAggregationForNode(node.leftChild, query)
15 rightAggregations = computeAggregationForNode(node.rightChild, query)
16 // Merge partial aggregation results using Partial aggregation method method.
17 return leftAggregations.merge(rightAggregations)

on rarely accessed key ranges. To this end, APA-Tree maintains the access frequency of
each node using cache-replacement algorithms such as Least Recently Used (LRU).

3.4 Experiments

We compared the performance of our proposed APA-Tree with conventional Horizontal
Partitioning [73, 34]. For the cache replacement policy, we use CLOCK[92], a lightweight
alternative to LRU policy because LRU itself is difficult to be implemented in low
memory/computational footprints. We used synthetic data that has the following schema

Members(age INT, height DOUBLE, weight DOUBLE)
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Algorithm 2: evalRangeAggregationQuery(query): Range aggregation query
evaluation in APA-Tree

Input: query: Range aggregation query
Output: Result of the renge aggregation query
Data: rootNode: Root node of the APA-Tree
Data: TREE_SIZE_LIMIT: Maximum number of nodes in APA-Tree (group size)

1 // Compute aggregation value
2 aggregations ← computeAggregationForNode(rootNode, query)
3 while rootNode.treeSize > TREE_SIZE_LIMIT do
4 // Shrink APA-Tree: Find the least accessed node and merge the node with

its sibling node.
5 leastAccessedLeaf ← rootNode.findLeastAccessedLeaf()
6 leastAccessedLeaf.parent.mergeChildren()
7 return aggregations

and used age attribute as the clustered index (primary key). All attribute values are
generated from the uniform distribution. The number of records is set to 100K for all
the experiments.

3.4.1 Workloads

As mentioned earlier, our proposed method, APA-Tree, is especially effective when queries
are skewed. To confirm this characteristic, we generated the following two workloads and
used in experiments:

1. (Uniform) Uniform workload consists of range aggregation queries on attribute
“age”. In uniform workload, a query that has the range [l, l + w] is generated in
the following steps: first l is generated from uniform distribution, and then range
width w is generated from normal distribution N(µ, σ2).

2. (Zipf) Zipf workloads simulate skewed queries. In a Zipf workload, a query that
has the range [l, l + w] is generated in the following steps: first, l is generated
from Ziphian with skewness parameter s, and then range width w is generated
from normal distribution N(µ, σ2). To check the influence of the skewness on the
performance, we varied the skewness parameter s of Ziphian from s = 2 (moderately
skewed) to s = 4 (highly skewed).

Figure 3.3 show the accessed key distribution in each generated workload. We can confirm
that in Ziphian, the larger s is, the workload is more skewed.
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Fig. 3.3 Accessed key distribution in each workload.

3.4.2 I/O Performance Comparison

Figure 3.4 shows the amount of cumulative I/O of our proposed APA-Tree and Horizontal
Partitioning (SMA) in each workload where the maximum number of leaf nodes is set
to 32. From Figure 3.4, we can observe that the more workload skews, the better our
proposed APA-Tree performs compared to conventional Horizontal Partitioning. Even in
the uniform workload, our approach outperformed conventional Horizontal Partitioning
since the uniform also has some skews as shown in Figure 3.3 because the workload is
generated in a randomized manner.

Next, we confirm the effect of the number of groups on the performance of conventional
Horizontal Partitioning and our proposed APA-Tree. Figure 3.4 to Figure 3.7 shows
the performance comparison of those two methods in different numbers of groups (32,
64, 128, 256). Naturally, the higher the number of groups is, the amount of I/Os is
reduced because the probability of a group is enclosed by a query increases. Also, we
can observe that as the number of groups grows, the performance difference between
conventional Horizontal Partitioning and our proposed APA-Tree becomes smaller. Since
increasing the number of groups increases the memory footprints used by pre-computed
aggregations, the maximum number of groups is determined by the available memory in
actual deployment.
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Fig. 3.4 Cumulative I/O in each workload (number of groups is 32). APA-Tree stands
for our proposed approach and SMA stands for Horizontal Partitioning [73, 34].
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Fig. 3.5 Cumulative I/O in each workload (number of groups is 64).
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Fig. 3.6 Cumulative I/O in each workload (number of groups is 128).
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Fig. 3.7 Cumulative I/O in each workload (number of groups is 256).
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3.5 Related Work

One major approach for accelerating aggregation operation is pre-computing and reusing
aggregation values. As mentioned in the previous section, Moerkotte [73] proposed
SMA (Small Materialized Aggregates), which horizontally splits a table into sub-tables,
computes statistics such as minimum, maximum, and sum values of each column in
sub-table, and stores those statistics as a different table. SMA can be used as an index to
avoid scanning unqualified records but can also be used to reduce the cost of aggregation
operation by pre-computing and aggregation values. In the context of OLAP (online
analytical processing), Ho et al. proposed a data structure that hols prefix-sum and
prefix-max on the range [43].

In data analysis, sometimes analysts do not need exact answers but rough answers
that can be computed instantly. To meet such requirements, AQP (approximate query
processing) technologies, which compute approximate answers for aggregation query
instantly, have been studied in the context of query processing in database systems [4,
41, 3, 13, 85, 87, 27, 14]. AQP is based on sampling subset of data from a database
and compute unbiased estimates of aggregation queries such as sum and mean using the
sampled subset. Since the size of the subset to sample can be arbitrarily small, AQP can
return query results instantly. AQP can estimate errors in approximate answers such as
confidence intervals or mean squared errors using statistical techniques like Hoeffding’s
inequality and central limit theorem. Chaudhuri et al. provided intensive literature
reviews on AQP techniques [14].

3.6 Summary

In this chapter, we proposed Adaptive Partial Aggregation Tree (APA-Tree), a query
processing technology for accelerating repetitive data aggregation operations. APA-Tree
is based on partial aggregation method [73, 34] that pre-computes and cache aggregation
values on a subset of the data and reuse pre-computed aggregation values in further
aggregation queries. While conventional partial aggregation method computes aggregation
values on pre-determined sized subsets of data (typically a page or a block in storage),
APA-Tree computes aggregation values on dynamically-decided sized subsets. Since
aggregation operations in feature engineering tasks have locality of reference, APA-Tree
finely computes aggregation values on frequently accessed data and coarsely on rarely
accessed data. As a result, APA-Tree accelerates repetitive aggregation queries with a
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small number of pre-computed aggregation values. Experimental results on synthetic
workloads confirmed APA-Tree’s efficiently compared to the previous partial aggregation
methods [73, 34].





Chapter 4

Machine Learning without Feature
Construction

In the previous section, we tried to reduce the time of feature-engineering phase in
machine learning process. In this section, we take a different approach: we show that
feature-engineering process can be eliminated for a specific (but a common) machine
learning task, namely, customers’ demographics prediction.

4.1 Introduction

Customer demographics, such as age and income, are essential information in various
tasks including product planning, advertisement, and item recommendation [104].
Since not every customer makes available sensitive demographics like occupation,
customer demographics prediction has received notable attention from both industry and
academia [75, 44, 21, 105, 18, 97, 103].

Demographics prediction is conventionally formalized as a classification problem that
predicts unknown demographics from known demographics [75, 44, 105, 97]. Because
demographics have correlations like “older people tend to have large incomes (income
and age positively correlate),” this formulation has achieved successes and been widely
used. As shown in Figure 4.1, if “occupation” is unavailable for customers u3 and u4 but
“age” and “income” are available for customers u1 to u4, we can learn a classifier using
demographics of u1 and u2 as a training set. Then the classifier predicts “occupation” of
customers u3 and u4 from their “age” and “income.”

Customer’s behavioral data, such as purchase histories and web browsing histories, has
been actively used to predict demographics because just using demographic correlations
sometimes results in poor predictive performance [75, 44, 21, 105, 18, 97, 103]. The
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id age income occupation

u1 45 $150K “engineer”

u2 30 $90K “salesman”

u3 27 $40K ?

u4 50 $90K ?

id price

i1 $1.5

i2 $9

i3 $2

i4 $2

i1 i2 i3 i4

u1 20 0 5 0

u2 5 1 0 3

u3 3 1 2 1

u4 1 0 1 0

Customers

(Entity Set 1)

Items

(Entity Set 2)

Purchase histories

(Behavioral data)

id age income avg. 

purchase

a1 a2 occupation

u1 45 $150K $1.75 20.6 -0.88 “engineer”

u2 30 $90K $10.16 4.98 3.15 “salesman”

u3 27 $40K $8.125 3.44 0.77 ? 

u4 50 $90K $1.75 1.20 -0.24 ?

Augment customers’ feature vectors using behavioral data in two ways:

(1) Feature engineering, and (2) Representation learning.

Used to train

a classiffier

x

(input feature vector)

y

(response variable)

Augmented features

To be predicted

by the classifier

Fig. 4.1 Conventional demographics prediction methods augment customer’s feature
vectors using “behavioral data” to improve the predictive performance in two ways: (1)
application-specific feature engineering, in which domain experts aggregate behavioral
data to produce a meaningful feature (average purchased item price is effective for
predicting “occupation”), and (2) representation learning, such as Singular Value
Decomposition, finds good feature vectors automatically (a1 and a2). Feature engineering
requires considerable effort, and representation learning lacks interpretability. Our
proposed model avoids these problems while achieving high predictive performance.

underlying intuition of these studies is that behavioral data can describe demographics
well, which is sometimes expressed in a more catchy phrase: “you are what you
buy” [103]. These studies can be divided into two approaches: (1) application-specific
feature engineering using behavioral data [18] and (2) representation learning, which
learns feature vectors from behavioral data [75, 44, 105, 97]. In (1) application-specific
feature engineering, as depicted in Figure 4.1, we can augment a customer’s feature
vector by gathering his behavioral data, such as the average price of items he has
purchased or categories of books he has read, which may be a good indicator of his
occupation. In this approach, how to design a good feature is an important problem
that requires domain experts’ knowledge. In (2) representation learning, Singular Value
Decomposition (SVD) and Tucker Decomposition on behavioral data (e.g., user-item
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Users Items

Relationships

(Purchase histories)

User clusters Item clusters

Nerd ( )

Indoor ( )

Outdoor 

Alcohol 

Gadget ( )

0.9

0.4

0.8

0.7

0.3

Outdoor 

Co-clustering users/items

based on purchase histories

Construct an expert 

at each user cluster 

Outdoor

Nerd

Indoor

Adjust clustering results to improve prediction performance

Single expert

for whole customers

R-iSVM

(Our approach)

Single expert

(Conventional)

Cluster relationship 

Fig. 4.2 Instead of using a prediction model for all customers (right), R-iSVM
trains a local prediction model for each behaviorally similar customer cluster (left).
R-iSVM first simultaneously groups users and items into clusters using behavioral
data (purchase histories) in co-clustering fashion to identify behaviorally similar
customers (E-Step), and identifies the strengths of cluster-cluster relationships between
user- and item-clusters (M-Step), which later help interpretation of each cluster. Then
R-iSVM trains a local demographics prediction model ηk1 at each user cluster (QP-Step).
After that, R-iSVM adjusts the clustering results to improve predictive performance by
checking training errors of experts (E-Step). By repeating these three steps in EM-fashion,
R-iSVM constructs a mixture-of-experts model.

matrix or user-item-store tensor) has been actively used for producing low-dimensional
feature vectors for customers [75, 44, 105]. A neural-embedding method has recently
been applied to learn a more discriminative representation of a customer from his item
purchase histories [97].

Although these demographics prediction methods achieved successes, we encountered
several problems in deploying these methods to production. (1) Application-specific
feature engineering requires domain-experts to make hard effort to find good features
and is one of the most time-consuming tasks, involving significant trial and error [5].
Furthermore, application specific features limit the model’s applicability to other domains.
(2) Representation learning is apparently effective for improving predictive performance.
However, automatically generated feature vectors (representations) rarely have meanings,
and the prediction result would be difficult to interpret and explain to customers and
colleagues (for example, “income and age positively correlate” is an intuitive explanation,
but “income and auto-generated-feature-1 positively correlate” is hard to explain).
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4.1.1 Design Goals

To overcome the aforementioned issues in conventional demographics prediction methods,
we set four design goals for our model:

1. (General) It does not require application specific modeling, and is not even limited
to demographics prediction.

2. (Interpretable) It does not produce hard-to-interpret features. Furthermore, it
provides additional information that helps people interpret prediction results.

3. (Accurate) It achieves good predictive performance. Further, it can co-exist with
conventional feature engineering or representation learning methods and helps to
improve their predictive performances.

4. (Scalable) Its computational complexity is linear in the size of behavioral data.
Further, the training algorithm can be fully parallelized.

In this chapter, for a model that fulfills the four design goals, we present a Relational
Infinite Support Vector Machine (R-iSVM), a mixture-of-experts model that can leverage
behavioral data. As shown in Figure 4.2, instead of constructing a prediction model for all
customers, R-iSVM finds behaviorally similar customers through co-clustering [61, 99] on
behavioral data, and constructs a local demographics prediction model at each customer
cluster. R-iSVM jointly models co-clustering and training of prediction models as a
unified optimization problem, and thus those tasks affect each other to improve the model
quality. Further, R-iSVM determines the characteristic of each customer demographics
prediction model using the co-clustering results, which helps to increase interpretability.
For a local demographics prediction model at each customer cluster, we use a multi-class
kernel machine [17] that has better predictive performance than generalized linear models.
To fill the gap between the co-clustering model (Bayesian generative model) and the
multi-class kernel machine (discriminative model), we leverage the recently developed
Regularized Bayes theory [108].

4.2 Preliminaries

In this section, we review several concepts that appear in our model: entity-relationship
data, mixture-of-experts models, and co-clustering methods.
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Table 4.1 List of synonyms. Depending on the context, we sometimes use these words
interchangeably.

Entity-Relationship Data Demographics Prediction

Entity set Customers / items
Entity Customer / item
Entity attributes Customer demographics
Relationship information Behavioral data

4.2.1 Entity-Relationship Data

In enterprise, customer information including demographics and purchase histories are
often organized as Entity-Relationship Data. As shown in Figure 4.1, entity-relationship
data consists of (1) several entity sets that contain “master” information (e.g., customer
demographics or item prices), and (2) a relationship information that connects
those entity sets (e.g., purchase histories such as “customer A bought item B” in
retail stores). Although its main target is demographics prediction, our relational
mixture-of-experts model can be used in the more general task: entity attribute prediction
in entity-relationship data. In this chapter, to make the discussion general, we sometimes
use the terms in Table 4.1 interchangeably.

4.2.2 Mixture-of-Experts Model

In classification problems such as customer demographics prediction, a classifier must
capture a non-linear dependency between feature vector x and its true label y to
achieve accurate prediction. So far, many non-linear classifiers such as non-linear kernel
machines [17] and neural networks [97] have been proposed and widely used. However,
such non-linear models tend to lack interpretability because they do not show how each
dimension of the input feature vector affects the classification result [15, 70].

Mixture-of-experts model [51] is an approach for capturing non-linearity without
sacrificing interpretability. Rather than constructing a single prediction model for a
whole dataset, a mixture-of-experts model separates input feature space into K regions
and constructs a local prediction model wk, called an expert, at each region k. Since
feature vector x and label y are likely to show a linear dependency at each region k,
a simple linear model can work well as an expert, allowing us to investigate how each
dimension of the feature vector x affects the classification result y.
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In the prediction phase, a mixture-of-experts model classifies input feature x as label
y using experts W = {w1, . . . , wK } in accordance with

p(y | x,W) := Ep(z|x)[ p(y | x, wz) ]

=
K∑
k

p(z = k | x)p(y | x, wk), (4.1)

where z is the latent variable of input feature x representing the expert assignment.
Probability density function p(z = k | x) is called a gating function (or gating network)
that softly assigns the input feature x to expert wk in accordance with its value.
Depending on the form of a gating function, mixture-of-experts models can become
various prediction models including a Gaussian mixture of linear classifiers [51], a
probabilistic decision tree [56], and a supervised co-clustering model [20].

In this chapter, we present R-iSVM, a mixture-of-experts model for entity-relationship
data. R-iSVM has a special gating function that assigns entity d1 (e.g., a customer) to
an expert by considering its relationship information { rd1d2 : (i, d2) ∈ I ∧ i = d1 } (e.g.,
his purchase histories) where rd1d2 indicates a relationship information (e.g., customer
d1 has bought item d2) and I indicates indices of observed relationships. That is, the
gating function in R-iSVM has the form of

p(zd1 = k | xd1 , { rd1d2 : (i, d2) ∈ I ∧ i = d1 }), (4.2)

whereas the gating function in a conventional mixture-of-experts model has the form of
p(zd1 = k | xd1), which use the value of entity attribute xd1 (e.g., basic demographics of
customer d1). We elaborate on this discussion in Sections 4.3.1 and 4.3.2.

4.2.3 Co-Clustering

Co-clustering (relational clustering) methods conduct clustering on multiple datasets
simultaneously by using the relationship information [98, 61, 99]. Since co-clustering is
based on the relationship information that represents “behavior,” it can find clusters of
behaviorally similar entities. For instance, as shown in Figure 4.2, co-clustering on users,
items, and purchase histories detects customers who have similar buying habits and
items bought by similar customers. Stochastic Block Model (SBM) [98] is a seminal work
in probabilistic latent variable modeling for such co-clustering. Kemp et al. developed
the Infinite Relational Model (IRM) that extends SBM into a Bayesian nonparametrics
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Table 4.2 List of symbols/notations.

Symbol/Notation Description
[N ] { 1, . . . , N }

di ∈ Di Identifier of an entity in i-th entity set (e.g., a customer / an item)
xdi
∈ RMi Input feature vector of entity di, which is Mi-dimensional (e.g.,

basic demographics)
ydi
∈ Yi Class label of entity di (e.g., sensitive demographics)

I ⊂ Di ×Dj Indices of observed relationships
rdidj

∈ R Relationship between entity di and entity dj ((di, dj) ∈ I) (e.g.,
purchase amount)

Ki ∈ N # of clusters in i-th entity set
ki ∈ [Ki] Identifier of a cluster in i-th entity set
ηki
∈ R|Yi|Mi Expert at cluster ki (e.g., demographics prediction model)

zdi
∈ [Ki] Latent variable of entity di (cluster assignment)

model [61, 99]. IRM uses a Dirichlet process for cluster construction, and it can infer the
number of clusters without computationally intensive model selection, which is required
in SBM.

4.3 Proposed Model

In this section, we present the Relational Infinite Support Vector Machine (R-iSVM), a
mixture-of-experts model that can leverage behavioral data.

4.3.1 Motivation

Our model is based on the intuition that incorporating behavioral data into demographics
prediction will improve the predictive performance, as in previous demographics prediction
methods [75, 44, 21, 105, 18, 97, 103]. However, in contrast to the previous work, we
pursue an interpretable model, and augmenting a feature vector with representation
learning on behavioral data or non-linear transformation of a feature vector is unpromising.
This poses a research question:
Research Question (Explainable Demographics Prediction) Can we utilize
behavioral data to improve the performance of demographics prediction without losing
interpretability, i.e., keeping original feature vectors as they are?
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We found that mixture-of-experts [51, 56] has the similar purpose: to improve the
predictive performance without changing the original feature vectors. However, applying
the vanilla mixture-of-experts model does not meet our needs since mixture-of-experts
models select prediction model on the basis of feature vector x. In demographics
prediction, feature vector x represents basic demographics, such as age and gender, and
selecting a prediction model on the basis of these demographics means customers who
have similar basic demographics will have the same prediction model. This policy differs
from our expectation: customers who have similar behavior will have the same prediction
model.

To make behaviorally similar customers have the same prediction model, we need to
change the form of the gating function from

p(zd1 = k | xd1),

to
p(zd1 = k | xd1 , { rd1d2 : (i, d2) ∈ I ∧ i = d1 }), (4.3)

where I indices indices of all behaviors and rd1d2 indicates a behavior such as customer d1

has bought item d2. In this chapter, we use probabilistic co-clustering models [98, 61, 99]
to define a gating function, though various gating functions that have the form of
Equation (4.3) can be chosen. This is because co-clustering models have achieved
successes in behavioral data modeling and we empirically confirmed that it performs well
as a gating function on real-world datasets. Designing a new gating function can be an
interesting future research direction in relational mixture-of-experts models.

4.3.2 Overview

Before explaining R-iSVM in more detail, we first provide the overview: how it trains a
mixture-of-experts model from existing demographics and behavioral data, and uses the
trained model to predict demographics. For ease of explanation, we hereinafter focus on
a simple situation:

• Entity set D1 represents customers, and each customer is identified by d1 ∈ D1.

• Entity set D2 represents items, and each item is identified by d2 ∈ D2.
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• Relationship rd1d2 represents a purchase history1. When customer d1 has bought item
d2, (d1, d2) ∈ I and rd1d2 = 1.

Training

Given a set of customer demographics

{ (xd1 , yd1) }d1∈D1

and their purchase histories { rd1d2 : (d1, d2) ∈ I } as a training set, R-iSVM trains
K1 experts and computes the probability of the expert assignment p(zd1 |
{ rd1d2 : (i, d2) ∈ I ∧ i = d1 }) for all customers. Refer to the caption of Figure 4.2 for
the detailed training flow.

Prediction

Given customer d1’s basic demographics xd1 and his purchase histories
{ rd1d2 : (i, d2) ∈ I ∧ i = d1 }, R-iSVM predicts his sensitive demographics y∗ by

y∗ = arg max
y∈Y1

F (y, xd1)

where

F (y, xd1) :=
K1∑
k1

p(zd1 = k1 | { rd1d2 : (i, d2) ∈ I ∧ i = d1 })

Eq(η)[ F (y, xd1 ; ηk1) ], (4.4)

and F (y, xd1 ; ηk1) is the discriminant function in a multi-class kernel machine [17], which
computes the score of classifying feature vector xd1 to label y by prediction model ηk1 . We
use Maximum Entropy Discrimination (MED) [50] to treat the multi-class kernel machine
in a probabilistic way and MED infers posterior distribution of the prediction model q(η).
Since the prediction model is obtained as a distribution, MED computes the expectation
of discriminant function over the posterior distribution, as Eq(η)[ F (y, xd1 ; ηk1) ].

What is noteworthy in Equation (4.4) is the gating function

p(zd1 = k1 | { rd1d2 : (i, d2) ∈ I ∧ i = d1 }),
1Note that R-iSVM can support more than two entity sets by extending a relationship matrix (e.g.,

customers × items) to a tensor (e.g., customers × items × stores).
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Fig. 4.3 Graphical representation of R-iSVM for two entity sets and one relationship
matrix. Dirichlet processes for users/item clusters are formulated by truncated SBPs
with truncation level K1 and K2, respectively.

which selects experts for customer d1 in accordance with his purchase histories
{ rd1d2 : (i, d2) ∈ I ∧ i = d1 }. As mentioned before, this behavior is different from
the ordinary mixture-of-experts models that use the customer demographics xd1 for
expert-selection. If we model customer demographics in a probabilistic manner [99], we
can define a gating function

p(zd1 = k1 | xd1 , { rd1d2 : (i, d2) ∈ I ∧ i = d1 }),

which uses both customer demographics and his purchase histories in expert-selection.



4.3 Proposed Model 43

4.3.3 Generative Process

Figure 4.3 shows a graphical model of R-iSVM. The generative process of R-iSVM can
be represented as follows:

vk1|α1 ∼ Beta(1, α1) (4.5)

ϕk1 = vk1

k1−1∏
k′

1=1
(1− vk′

1
) (4.6)

vk2|α2 ∼ Beta(1, α2) (4.7)

ϕk2 = vk2

k2−1∏
k′

2=1
(1− vk′

2
) (4.8)

θk1k2 ∼ Beta(a, b), (4.9)
zd1 | ϕ1 ∼ Multinomial(ϕ1), (4.10)
zd2 | ϕ2 ∼ Multinomial(ϕ2), (4.11)

rd1d2 | z1, z2, θ ∼ Bernoulli(θzd1 zd2
), (4.12)

ηk1 | w1 ∼ N (w1, I). (4.13)

First, for each entity set (customers or items), cluster mixing parameter ϕ is drawn from a
Dirichlet Process (DP) with concentration parameter α (Equation (4.5) to (4.8)).2 Next,
for each combination of customer cluster k1 and item cluster k2, its cluster relationship
strength θk1k2 is drawn (Equation (4.9)). Then, for all customers and items, cluster
assignments z are drawn (Equation (4.10) to (4.11)). After that, for all combinations
of customers and items, purchase information rd1d2 is drawn in accordance with cluster
assignments z and cluster relationship strength θ (Equation (4.12)). Finally, for each
customer cluster k1, the demographics prediction model ηk1 is constructed by a multi-class
kernel machine [17] with MED [50] with a Gaussian prior (Equation (4.13)). MED makes
the training of a multi-class kernel machine into a posterior distribution inference of ηk.
We elaborate on this discussion in Section 4.4.

As in Infinite Relational Model (IRM) [61], Equations (4.5) to (4.12) model a
generative process of customer-item purchase histories. In R-iSVM, this process defines
a gating function p(zd1 = k1 | { rd1d2 : (i, d2) ∈ I ∧ i = d1 }), which computes the
weight of k1-th expert (prediction model) for the customer d1 from his behavioral
data { rd1d2 : (i, d2) ∈ I ∧ i = d1 }.

2To develop an efficient variational inference algorithm, we use stick-breaking process (SBP) [86] to
formulate Dirichlet Process instead of Chines Restaurant Process (CRP).
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4.4 Inference

In this section, we introduce the inference algorithm of our proposed model based on
variational EM-algorithm and quadratic programming.

4.4.1 Bayesian Inference with Discriminative Model

By using the result by Zeller [101], ordinary Bayesian inference, which finds the posterior
distribution of the parameters, can be formalized as the optimization problem:

min
q∈Q

KL(q(z1, z2, θ, ϕ1, ϕ2) || p(z1, z2, θ, ϕ1, ϕ2))

− Eq[ log p({ rd1d2 : (d1, d2) ∈ I } | z1, z2, θ, ϕ1, ϕ2) ] (4.14)

where Q is the space of the valid probability distributions. Since it is in the optimization
form, it can incorporate other optimization problems as constraints to the posterior
distribution. This technique is called a Regularized Bayes and is recently actively
studied [108].

To incorporate a multi-class kernel machine [17] into a co-clustering model, we
use Maximum Entropy Discrimination (MED) [50], which formulates the training of
discriminative model in a probabilistic manner. With MED, the training of a multi-class
kernel machine can be formalized as follows:

min
q∈Q,ξ

KL(q(η1) || p(η1)) + C1

D1∑
d1

ξd1

s.t. ∀d1 ∈ D1, ∀y1 ∈ Y1 :
l∆
d1(y1)− Eq[ η1 ]⊤f∆

d1(y1) ≤ ξd1 , ξd1 ≥ 0, (4.15)

where η1 is the hyperplane of a multi-class support vector machine that is treated as
a random variable, C1 is a cost parameter, ξd1 ∈ ξ1 is the slack variable of entity d1,
l∆
d1(y1) := I(y1 ̸= yd1) is a label-loss function that returns 1 if y1 is not equal to the true

class label yd1 , and f∆
d1 : Y1 → R|Y1|M1 is a feature mapping function that returns input

feature vector of d1 regarding it as class y1. Solving this optimization problem results in
different algorithms depends on the choice of prior distribution p(η1): Gaussian prior
results in ℓ2-SVM and Laplace prior results in ℓ1-SVM [107]. In this chapter, we use
Gaussian prior as shown in Equation (4.13).
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Problem Definition

By unifying the Problem 4.14 and 4.15, we get the objective of R-iSVM as follows:

min
q∈Q,ξ

KL(q(z1, η1) || p(z1, η1)) + C1

D1∑
d1

ξd1

+ C2

{
KL(q(z1, z2, θ, ϕ1, ϕ2) || p(z1, z2, θ, ϕ1, ϕ2))

− Eq[ log p({ rd1d2 : (d1, d2) ∈ I } | z1, z2, θ, ϕ1, ϕ2) ]
}

s.t. ∀d1 ∈ D1,∀y1 ∈ Y1 :
l∆
d1(y1)− Eq[ ηzd1

]⊤f∆
d1(y1) ≤ ξd1 , ξd1 ≥ 0 (4.16)

where C2 is a hyperparameter that controls the effect of the discriminative model on the
Bayesian inference.

Problem 4.16 shows two coupled tasks in R-iSVM: (1) the third term corresponds
to the co-clustering of customers and items, and (2) the other terms and constraints
correspond to the training of the demographics prediction model at each customer cluster.
Since the latent variables z1 appear in both objectives, both tasks affect each other
to improve the quality of their tasks: co-clustering results are adjusted to improve the
performance of the customer demographics prediction.

4.4.2 Variational Inference

Since directly solving the Problem 4.16 is intractable, we impose the mean-field
approximation on the posterior distribution q as in ordinary variational inference:

q(z1, z2, θ, ϕ1, ϕ2) =
D1∏
d1

q(zd1)
D2∏
d2

q(zd2)

K1∏
k1

K2∏
k2

q(θk1k2)
K1∏
k1

q(ϕk1)
K2∏
k2

q(ϕk2), (4.17)

and

q(z1, η1) =
D1∏
d1

q(zd1)
K1∏
k1

q(ηk1). (4.18)

Then, we use the Lagrangian method and coordinate ascent method to minimize the
objective of Problem 4.16. Alternatively maximizing the dual form of Problem 4.16 by
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Algorithm 3: Inference Algorithm
while not converged do

begin (QP-Step) Solve SVM’s dual QP:
Solve QP Equation (4.24) to obtain Lagrangians.
for k1 ∈ [K1] do

Update q(ηk1) by Equation (4.26).

begin (VB E-Step) Update latent variables:
for d1 ∈ [D1] do

for k1 ∈ [K1] do
Update q(zd1 = k1) by Equation (4.23).

for d2 ∈ [D2] do
for k2 ∈ [K2] do

Update q(zd2 = k2).

Reorder clusters in descending order of size [65].
begin (VB M-Step) Update parameters:

for k1 ∈ [K1] do
Update q(vk1) by Equation (4.20).

for k2 ∈ [K2] do
Update q(vk2).

for (k1, k2) ∈ [K1]× [K2] do
Update q(θk1k2) by Equation (4.22).

random variables and slack variables results in an iterative inference algorithm shown in
Algorithm 3.

In the remainder of this section, we elaborate on the derivation of the each step.

Model Parameters

For random variables other than η1 and z1, we obtain ordinary variational posteriors of
IRM [99, 49] as follows: 3 The variational posterior of the parameter of the stick-breaking
process is

q(vk1) = Beta(α̂k1 , β̂k1), (4.19)
3We omit variational posteriors for second entity sets (items), since they have the same form with

the first entity sets (customers).
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and its update is

α̂k1 = 1 +
D1∑
d1

q(zd1 = k1)

β̂k1 = α1 +
D1∑
d1

K1∑
k′

1=k1+1
q(zd1 = k′

1). (4.20)

The variational posterior of the relationship strength is

q(θk1k2) = Beta(âk1k2 , b̂k1k2) (4.21)

and its update is

âk1k2 = a +
∑

(d1,d2)∈I
q(zd1 = k1)q(zd2 = k2)rd1d2

b̂k1k2 = b +
∑

(d1,d2)∈I
q(zd1 = k1)q(zd2 = k2)(1− rd1d2). (4.22)

Latent Variables

Optimizing the dual form of Problem 4.16 by q(zd1 = k1), we obtain the variational
posterior of the latent variable as follows:

log q(zd1 = k1) ∝
Eq[ log p(zd1 = k1|vk1) ]

+ ρ
∑

d2∈Id1

K2∑
k2

q(zd2 = k2)Eq[ log p(rd1d2|θk1k2) ]

+ (1− ρ)


Y1∑
y1

ωy1d1Eq[ ηk1 ]⊤f∆
d1(y1)

 , (4.23)

where Id1 = { d2 : (i, d2) ∈ I ∧ i = d1 }, ρ = C2/(1 + C2), and ωy1d1 is a Lagrangian
variable.

In Equation (4.23), the first and second terms are the same as with ordinary IRM [99,
49]. What is noteworthy here is the third term, which is the expected demographics
prediction score of customer d1, indicating the goodness of cluster k1 for the customer d1.



48 Machine Learning without Feature Construction

Through incorporating such discriminative prediction scores into the posterior inference,
R-iSVM adjusts clustering results to reduce the training error.

4.4.3 Quadratic Programming

Optimizing the dual form of Problem 4.16 by the slack variables ξ, we obtain a quadratic
programming

max
ω
− 1

2

K1∑
k1

µ̂⊤
k1µ̂k1 +

Y1∑
y1

D1∑
d1

ωy1d1l∆
d1(y1)

s.t. ∀d1 : 0 ≤
Y1∑
y1

ωy1d1 ≤ C1, (4.24)

where l∆
d1(y1) := I(y1 ̸= yd1) is a label-loss function that returns 1 if y1 is not equal the

true class label yd1 .
Optimizing the dual form of Problem 4.16 by the hyperplane of a multi-class kernel

machine ηk1 , we obtain the update equation of its variational posterior distribution

q(ηk1) = N (µ̂k1 , I) (4.25)

as

µ̂k1 = w1 +
D1∑
d1

q(zd1 = k1)
Y1∑
y1

ωy1d1f∆
d1(y1). (4.26)

As shown in Algorithm 3, we solve the quadratic programming Problem (4.24) inside
our variational-EM algorithm to adjust the clustering results. By using a relaxation
technique that decomposes Problem (4.24) into K1 sub problems [107], the quadratic
programming can be solved by ordinary SVM solvers, such as a linear-time one-slack
cutting plane solver [54].

4.4.4 Computational Complexity

Algorithm 3 is scalable because its computational complexity is linear in the number
of observed relationships |I|, which is often much smaller than the number of possible
relationships |D1||D2| in real-world data. As shown in Algorithm 3, variational inference
of co-clustering runs in O(K1K2|I|), given K1 customer clusters, K2 item clusters, and I
observed relationships. For quadratic programming of a multi-class kernel machines, we
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have K1 experts for customers, and each expert can be learned by a linear-time one-slack
cutting plane algorithm [54], the computational complexity of which is O(M1|D1|), where
M1 is the dimension of explanatory variable in the first entity set’s attribute prediction.
Thus, the final computational complexity of our algorithm is O(K1K2|I|+ K1M1|D1|),
which is scalable.

Furthermore, for loops of variational E-Steps and M-Steps in Algorithm 3 are
fully-parallelizable, which plays an important role in practice. We use OpenMP to
parallelize the for loops in our R-iSVM implementation.

4.4.5 Convergence

Convergence of Algorithm 3 is guaranteed. As mentioned in Section 4.4.2, Algorithm 3
is a coordinate ascent maximization of the dual form of Problem 4.16, which alternately
maximizes the objective by each variable. Coordinate ascent is guaranteed to converge
to a local optimum, because each step (such as QP-, E-, and M-steps in Algorithm 3)
maximizes the objective with respect to a variable and does not decrease the objective
value [9].

4.5 Experiments

In this section, we evaluate the proposed R-iSVM on real datasets, and demonstrate its
effectiveness. Through the experiments, we attempted to confirm that R-iSVM satisfies
our four design goals:

• (Generality) R-iSVM does not require application specific modeling. To confirm
this characteristic, we evaluate three real-world datasets in two domains: real retailers
and online movie review site.

• (Interpretability) R-iSVM does not produce hard-to-interpret features.
Furthermore, it provides additional information that helps people interpret
prediction results. To confirm this characteristic, we prepare visualizations that help
interpretation of the model.

• (Accuracy) R-iSVM improves entity attribute predictive performance by adopting
relationship data in a mixture-of-experts manner. Further, it can co-exist with
conventional feature engineering or representation learning methods, and helps to
improve their predictive performances.
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Table 4.3 Datasets used in experiments.

Dataset Relationship type Entity attributes |D1| |D2| |I| Density
MovieLens 1M user × movie (5-star review) gender, age, occupation 6,040 3,900 1,000,209 4.24%
Ta-Feng user × item (purchase history) age, resident 16,578 17,860 227,827 0.07%
BeiRen user × item (purchase history) gender, age, marital, income, education 57,693 61,097 6,396,551 0.18%

• (Scalability) The computational complexity of R-iSVM training is linear in the
number of observed relationships in entity-relationship data. Moreover, it can be fully
parallelized.

4.5.1 Setup

Datasets

We used three real-world datasets in our experiments (details are summarized in Table 4.3):
(MovieLens) The first is the MovieLens 1M dataset [39], which comes from an

online movie review website4. The dataset contains 1, 000, 209 ratings (I) for 6, 040 users
(D1) on 3, 900 movies (D2). Each user has three demographics: gender (male/female),
age (categorized into 7 ranges), and occupation (21 types). Since these attributes are
categorical, we convert them into dummy variables, producing 31 dimensional vector for
each user (|xd1| = 31). We also convert five-star ratings into a binary value if the rating
is higher than the user’s average rating, and vice versa.

(Ta-Feng) The second is the Ta-Feng dataset5, which comes from a real supermarket
in China. The dataset contains transactions collected by a supermarket from November
2000 to February 2001. We picked out records of November 2000, which contains 16, 578
users (D1), 17, 860 items (D2), and 6, 396, 551 purchase histories (I). Each user has two
demographic attributes: age (categorized into 10 ranges) and residence (8 areas). We
convert these categorical attributes into dummy variables as in MovieLens dataset.

(BeiRen) The third is the BeiRen dataset6, which comes from a real retailer in China.
The dataset contains 57, 693 users (D1), 61, 097 items (D2), and 6, 396, 551 purchase
histories (I). Each user has five demographic attributes: gender (male/female), age
(categorized into four ranges), marital status (single/married), income (categorized
into four ranges), and education level (six levels). We convert these categorical
attributes into dummy variables as in MovieLens dataset.

4We chose MovieLens 1M because larger MovieLens datasets such as MovieLens 10M do not have
user demographics.

5http://recsyswiki.com/wiki/Grocery_shopping_datasets
6http://www.bigdatalab.ac.cn/benchmark/bm/bd?code=SNE

http://recsyswiki.com/wiki/Grocery_shopping_datasets
http://www.bigdatalab.ac.cn/benchmark/bm/bd?code=SNE
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Compared Methods

We compared four methods in terms of entity attribute prediction:

• (MC) A multi-class kernel machine [17]. For the implementation, we used a Python
implementation of multi-class support vector machine in PyStruct package [74].

• (DA+MC) Demographics augmentation by Tucker decomposition of behavioral
data [105]. Latent feature vectors are retrieved from Tucker decomposition of
behavioral data and used to augment original basic demographics. Then, we use the
augmented features to train a prediction model with MC.

• (R-iSVM) Our proposed mixture-of-experts model with basic demographics.

• (DA+R-iSVM) Our proposed model with user demographics augmentation as in
DA+MC. Before running R-iSVM, user demographics are augmented as in DA+MC,
and then R-iSVM constructs a mixture-of-experts model.

Tasks and Parameters

For each combination of a method and a prediction target demographics, we repeated
nested five-fold cross validation five times, and computed the average and standard
deviation of F1-micro scores.

For hyperparameter selection, we used two parameter grids in grid-search:

• C1 = { 0.1, 1, 10 } for SVM’s hyperparameter (in MC, DA+MC, R-iSVM, and
DA+R-iSVM).

• C2 = { 1, 64 } for R-iSVM’s (in R-iSVM and DA+R-iSVM). Note that for other
hyperparemeters in R-iSVM that come from a Bayesian part (namely, α, a, and b),
we took empirical Bayes approach to learn hyperparameter values from data, and no
grid-search was needed.

4.5.2 Predictive Performance

Table 4.4 shows average F1-micro scores of compared methods in each task, together
with their standard deviations. By comparing the predictive performance between MC
and R-iSVM, we can observe that R-iSVM successfully increased predictive performances
without producing hard-to-interpret features. By comparing DA+MC (demographics



52 Machine Learning without Feature Construction

Table 4.4 (Accuracy) Predictive performance of demographics prediction. Each value
represents average the F1-micro score of five trials with standard deviation. For all tasks,
R-iSVM (with or without demographics augmentation) achieved the highest performance.

Dataset MovieLens 1M Ta-Feng BeiRen
Method gender age occupation age residence gender age education marital income
MC 62.7± 1.5 14.9± 3.4 9.5± 0.9 10.7± 0.7 14.0± 2.0 63.7± 0.7 56.2± 1.0 18.8± 4.2 26.9± 5.6 24.9± 8.0
DA+MC 69.4± 1.3 22.6± 0.7 11.1± 0.7 12.5± 2.9 14.9± 3.7 63.7± 0.4 56.2± 0.6 20.4± 2.3 26.0± 1.9 26.4± 1.1
R-iSVM* 69.1± 3.2 22.8± 1.9 14.2± 2.4 12.9± 2.3 20.1± 3.5 66.1± 3.2 61.5± 2.8 27.2± 4.4 41.1± 4.8 36.7± 4.6
DA+R-iSVM* 73.7± 1.2 30.3± 1.8 15.3± 0.8 15.3± 1.6 23.9± 1.9 64.4± 3.2 58.4± 2.0 27.9± 3.0 41.0± 1.3 36.8± 2.4

augmentation approach) and DA+R-iSVM, we can observe that our proposed model,
R-iSVM, can co-exist with state-of-the-art demographics augmentation and can further
improve the performance.
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Fig. 4.4 (Interpretability) Visual representation of experts in R-iSVM on MovieLens 1M
dataset. We can check effects of original features on classification results at a glance. For
models with large number of input feature and classes, we can limit the visualization to
prominent parts.
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4.5.3 Interpretability

Next, we show the interpretability of R-iSVM in details. Figure 4.4 shows a visual
representation of two experts in an R-iSVM model that predicts “occupation.” In the
figure, a row represents a class y, a column represents a feature dimension of x, and
the corresponding cell represents the positive (red) or negative (blue) impact of the
feature dimension on the class. From the figure, we can find out how each feature
dimension affects the classification results. For example, by checking red cells in expert
12, we can find several intuitive rules in user cluster 12, such as if gender=“Female”
and age=“50–55” then “homemaker”. Further, as we mentioned before, R-iSVM
offers additional information to experts thanks to the co-clustering nature of its model.
Figure 4.5 shows the cluster relationship information between experts and movie clusters
in the R-iSVM model, namely, the values of q(θ). We omit weak relationships from the
figure and thus it only shows heavy movie watchers and their movie preferences. From
Figure 4.5, we can learn that users in clusters 12, 14, and 18 are heavy movie watchers.
By incorporating this knowledge into the rules obtained from the visual representation
of the experts in Figure 4.4, we can further improve the interpretation. These results
confirm that R-iSVM is interpretable.

Expert 12

Movie cluster 16
Star Wars: Episode IV
Star Wars: Episode V

0.91

Expert 14

0.91

Expert 18

Movie cluster 14
Braveheart 

Shawshank Redemption

0.91

Movie cluster 15
Fugitive

Die Hard 

0.95

Fig. 4.5 (Interpretability) Visual representation of relevance between experts (user
demographics prediction model) and movie clusters on MovieLens 1M dataset. For each
expert, R-iSVM identifies relevant movie clusters, which helps to clarify experts’ behavior
in collaboration with visualization in Figure 4.4.

4.5.4 Scalability

Finally, we demonstrate the scalability of R-iSVM. We subsampled BeiRen dataset to
construct seven different-sized datasets. Figure 4.6 shows the runtime of R-iSVM on a
computer that has two Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz with 256GB DDR
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memory. As in Figure 4.6, the runtime of R-iSVM increases linearly with the size of
observed relationships, which demonstrates that R-iSVM is scalable.
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Fig. 4.6 (Scalability) R-iSVM’s runtime on BeiRen dataset varying the number of observed
relationships |I|. Runtime increases linearly with the size of observed relationships |I|,
confirming computational complexity discussed in Section 4.4.4.

4.6 Related Work

Customer demographics prediction has been conducted with a wide variety of problem
settings and methods [75, 44, 21, 105, 18, 97, 103]. We elaborate on two lines of work
that we overviewed in the Introduction: application-specific feature engineering and
representation learning. For the feature engineering approach, Culotta et al. proposed
constructing a user’s feature vector from users he follows on a social-network [18]. For
representation learning, singular value decomposition (SVD) on a relationship matrix
(users’ behavioral data), such as web browsing history [75, 44] and location check-in [97],
has achieved successes. To capture multiple types of behaviors simultaneously, Zhong et
al. has extended relationship matrix to tensor (i.e., location check-ins and online-review),
and used Tucker decomposition to obtain the latent features of users [105]. Wang et
al. proposed using a user’s purchase history in retail stores in the prediction [97]. They
formulated the problem as multi-task learning that predicts multiple attributes of a user
simultaneously and used a neural embedding approach to obtain a highly discriminative
representation for each user. In contrast to these approaches, our design goal is to achieve
high predictive performance without producing any additional hard-to-interpret features.
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4.7 Summary

To solve customer demographics prediction problems, we developed a Relational Infinite
Support Vector Machine (R-iSVM), a novel mixture-of-experts model that can leverage
behavioral data. R-iSVM has four properties:

1. (General) R-iSVM does not require application-specific modeling, and is not
even limited to demographics prediction. It is widely applicable for general
entity-relationship data.

2. (Interpretable) R-iSVM does not produce hard-to-interpret features. Furthermore,
it provides additional information that helps people interpret prediction results.

3. (Accurate) R-iSVM improves entity attribute predictive performance by adopting
relationship data in a mixture-of-experts manner. Further, it can co-exist with
conventional feature engineering or representation learning methods, and helps to
improve predictive performance of these methods.

4. (Scalable) The computational complexity of R-iSVM training is linear in the
number of observed relationships in entity-relationship data. Moreover, it can be
fully-parallelized.

We have evaluated R-iSVM on various real world datasets including retail store data
and online movie-review data. The experimental results demonstrated its generality,
interpretability, accuracy, and scalability.





Chapter 5

Fast and Space-Efficient Machine Learning
with Data Compression

As mentioned in Section 1, machine learning on relational data has three bottleneck
phases, namely “feature-engineering”, “model training”, and “model evaluation”. In
the previous two sections, we have focused on the first phase, “feature-engineering”, by
accelerating the aggregation operation in relational database systems (Section 3) and
designing a machine learning model that does not require feature-construction (Section 4).
In this section, we tackle the second and third phase, “model training” and “model
evaluation”, by presenting a way to reduce the computational time of the training and
prediction of machine learning models using data compression technique.

5.1 Introduction

Edge devices, such as sensors and mobile devices, are prevalent in our life. To conduct
data mining tasks on edge devices in a real-time manner, it is necessary to conduct the
tasks in the edge devices themselves, instead of delegating the tasks to the powerful
remote computers. However, since edge devices have relatively small memory footprints
and low computational power, the applicability of edge devices to the data mining tasks
is limited. Motivated by this problem, several studies have tried to reduce the memory
usage and the computational time for specific tasks or specific data types [30, 36, 42].

For sparse matrix data that is mostly filled with zero values, sparse matrix
representation [30, 36], which only holds non-zero value and its position, can concisely
represent the matrix and reduce the cost of some mathematical operations. However,
actual data is not always sparse but can be dense. Since storing dense data with a sparse
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matrix format can increase the size, sparse matrix representation cannot be used in a
versatile way.

In this chapter, we present CVS (Compressed Vector Set), a general framework for
fast and space-efficient data mining, which successfully supports both sparse and dense
datasets. CVS compresses vector sets by run-length encoding and conducts fundamental
mathematical operations on them without decompression. By combining fundamental
mathematical operations, CVS runs advanced data mining algorithms such as k-nearest
neighbor search, stochastic gradient descent on logistic regression, and kernel methods.
To reduce the size of compressed vectors as much as possible, CVS (1) reorders the
dimensions of vectors if the mathematical operations are dimension-order insensitive,
and (2) discretizes vectors if the result of data mining algorithms is less affected by the
precision of values in vectors.

We summarize our contributions:

1. We present algorithms to conduct advanced data mining tasks on vectors compressed
by run-length encoding (Section 5.3 and section 5.4).

2. We observe that reordering dimensions of the vectors further reduce the compression
size without changing computational results. Based on the observation, we tackle
the dimension-order reordering problem that finds best reordering pattern, which is
NP-hard. We show a polynomial time algorithm for finding a dimension-reordering
pattern that empirically yields good compression rate (Section 5.5).

3. We demonstrate the combination of data discretization and dimension-reordering
can drastically improve the performance without much affecting the accuracy of
data mining tasks (Section 5.6).

4. We demonstrate the effectiveness of CVS compared to the conventional sparse
vector representation in data mining and machine learning tasks on real datasets
(Section 5.7).

The rest of this chapter is organized as follows. Section 5.3 describes how CVS
compresses and conduct mathematical operations on a set of vectors. Section 5.3 shows
how CVS conducts concrete data mining and machine learning tasks on compressed
vectors without decompression. Section 5.5 describes how CVS improves the compression
rate with dimension-reordering. Section 5.5 describes how CVS improves the compression
rate with data discretization. Section 5.7 evaluates CVS by experiments with various
datasets. Section 5.8 describes related work. Section 5.9 concludes the chapter.
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5.2 Preliminaries

In this section, we review concepts that relate to Compressed Vector Set (CVS): sparse
vector representation and run-length encoding.

5.2.1 Sparse Vector Representation

Sparse matrix representations [30, 36] represent a vector that is mostly filled with zero
values in a space-efficient way. One of the most commonly-used representations is to
represent a vector with non-zero values and its positions. For example, a sparse vector

x = (0, 0, 42, 99, 0, 0, 0)

is represented by two vectors

values = (42, 99)
positions = (2, 3)

in this format.
While the sparse vector representation reduces the space-efficiency, they also reduce

the computational complexity of several mathematical operations. For example, the dot
product of two vectors x and y, which are comprised of Bx and By non-zero elements,
can be carried out in O(Bx + By) time.

One downside of the sparse vector representation is its inefficiency for dense data.
For example, a dense vector

x = (7, 7, 42, 99, 7, 7, 7)

is represented by

values = (7, 7, 42, 99, 7, 7, 7)
positions = (0, 1, 2, 3, 4, 5, 6)

in the sparse vector representation, which doubled the size compared to the original
vector. In contrast, our proposed CVS can represent a dense data efficiently when the
number of distinct elements is not large. We compare the performance of sparse vector
representation and CVS empirically in Section 5.7.
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5.2.2 Run-length Encoding

Run-length encoding (RLE) [6] is a data compression technique that represents a
sequence of n same consecutive values x, . . . , x with a block ⟨n, x⟩. For example, RLE
represents (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1) as (⟨5, 1⟩ , ⟨9, 2⟩ , ⟨3, 1⟩), reducing the
number of elements to represent the data from 17 to 6. In this chapter, we denote the
RLE-compressed form of the vector x as

RLE(x) = (⟨n1, x1⟩ , . . . , ⟨nB, xB⟩),

where B is the total number of blocks and nb is the number of values in the b-th block.
We also use |RLE(x)| to represent the total number of blocks of vector x.

When the input vector x does not contain many same consecutive values , RLE
cannot efficiently encode the data and sometimes increase the size; RLE represents
(1, 2, 3, 4, 1, 1, 1, 1) as (⟨1, 1⟩ , ⟨1, 2⟩ , ⟨1, 3⟩ , ⟨1, 4⟩ , ⟨4, 1⟩), which increased the data size.
PackBits [6] is a simple but effective method to alleviate this problem, which has two
encoding rules: (1) ordinary RLE encoding and (2) raw data encoding. (1) When PackBits
finds a sequence of n same consecutive values x, . . . , x, it does RLE encoding: replaces the
sequence with a block ⟨n, x⟩. (2) Otherwise, PackBits is facing a sequence of n consecutive
different values x1, . . . , xn, and PackBits does raw data encoding: replaces the sequence
by ⟨−n, x1, . . . , xn⟩. For example, PackBits encodes a data sequence (1, 2, 3, 4, 1, 1, 1, 1)
to (⟨−4, 1, 2, 3, 4⟩ , ⟨4, 1⟩) successfully reducing the data size, whereas RLE encodes the
sequence to (⟨1, 1⟩ , ⟨1, 2⟩ , ⟨1, 3⟩ , ⟨1, 4⟩ , ⟨4, 1⟩) increasing the data size.

5.3 Compressed Vector Set

In this section, we describe the idea of Compressed Vector Set (CVS), which compresses a
vector set with run-length encoding to save the storage space, and conducts mathematical
operations on the set of vectors without decompression reducing the computational time.
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Table 5.1 List of symbols.

Symbol Description
x A vector (x ∈ RD)
X A vector set (X = { x1, . . . , xJ })
J Number of vectors in a vector set
X Vector set as a matrix (X ∈ RD×J)
D Dimension of a vector
RLE(x) A compressed form of a vector x
⟨n, x⟩ A block in a compressed vector (n-consecutive x)
B Number of blocks in a compressed vector

5.3.1 Vector Compression

Given a set of vectors X = { x1, x2, x3, x4, x5 }, where

x1 = (1, 1, 2, 2, 2),
x2 = (2, 2, 1, 2, 2),
x3 = (2, 3, 3, 3, 3),
x4 = (2, 3, 3, 2, 2),
x5 = (2, 3, 1, 2, 2),

CVS compresses each vector in X using RLE/PackBits:

RLE(x1) = (⟨2, 1⟩ , ⟨3, 2⟩),
RLE(x2) = (⟨2, 2⟩ , ⟨1, 1⟩ , ⟨2, 2⟩),
RLE(x3) = (⟨1, 2⟩ , ⟨4, 3⟩),
RLE(x4) = (⟨1, 2⟩ , ⟨2, 3⟩ , ⟨2, 2⟩),
RLE(x5) = (⟨−3, 2, 3, 1⟩ , ⟨2, 2⟩).

5.3.2 Operation without Decompression

CVS conducts mathematical operations on compressed vectors directly without
decompressing the vectors, reducing both the computational time and the memory
usage. The key insight under the technique is that an RLE-encoded vector contains
preliminary knowledge that value x appears n times consecutively. In the rest of this
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section, we demonstrate how CVS utilizes this knowledge to perform actual mathematical
operations without decompression.

ℓp-norm

First, we demonstrate how CVS computes ℓp-norm of a compressed vector. ℓp-norm is
an essential statistics, which appears in many complex operations including a cosine
similarity and mathematical optimization algorithms [25].

Consider ℓ2-norm (Euculidian-norm) of a vector

x = (1, 2, 2, 2, 2).

Naïvely, ℓ2-norm of x is computed as

∥x∥2=
√

12 + 22 + 22 + 22 + 22, (5.1)

which requires five multiplications and four additions inside the square root.
In CVS, we have

RLE(x) = (⟨1, 1⟩ , ⟨4, 2⟩),

and ℓ2-norm of x is computed as

∥x∥2=
√

12 + 4× 22, (5.2)

which only needs three multiplications and one addition inside the square root, of which
the computational cost is less than Equation (5.1), the naïve one.

CVS can compute general ℓp-norm without decompression. Suppose we have a vector
x that can be expressed by B blocks in RLE:

x = (x1, . . . , xD),
RLE(x) = (⟨n1, x1⟩ , . . . , ⟨nB, xB⟩).

Naïvely, ℓp-norm of x is computed as

∥x∥p=
(

D∑
d=1

xp
d

)1/p

(5.3)
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Algorithm 4: Dot product of x and y without decompression.
Input: RLE(x) = ⟨n1, x1⟩ , . . . , ⟨nBx , xBx⟩ and RLE(y) = ⟨n′

1, y1⟩ , . . . , ⟨n′
By

, yBy⟩,
where Bx ≤ By.

Output: x⊤y
1 p← 0
2 yremains ← n′

1
3 jnext ← 0
4 for i← 2 to Bx do
5 xremains ← ni

6 ysum ← 0
7 for j ← jnext to By do
8 ysum ← ysum + min(xremains, yremains)× RLE(y)[j]
9 if xremains < yremains then

10 yremains ← yremains − xremains
11 break
12 else
13 xremains ← xremains − yremains
14 yremains ← n′

jnext+1
15 jnext ← jnext + 1

16 p← p + RLE(x)[i]× ysum

17 return p

whereas CVS computes ℓp-norm by

∥RLE(x)∥p=
(

B∑
b=1

nbx
p
b

)1/p

. (5.4)

From the Equation (5.3) and Equation (5.4), it is obvious that CVS reduces the
computational complexity of ℓp-norm from O(D) to O(B) where D is the number
of dimensions of the input vector and B is the number of blocks in the compressed vector.

Dot product

Consider the dot product of two vectors x1 ∈ R11 and x2 ∈ R11, whose compressed forms
are

RLE(x1) = (⟨5, 4⟩ , ⟨6, 8⟩),
RLE(x2) = (⟨3, 1⟩ , ⟨5, 3⟩ , ⟨3, 2⟩).
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Naïvely, the dot product requires eleven multiplications and ten additions. In contrast,
CVS computes the dot product as

4︸︷︷︸
n1

× (1× 3 + 3× 2)︸ ︷︷ ︸
1st ysum

+ 8︸︷︷︸
n2

× (3× 3 + 2× 3)︸ ︷︷ ︸
2nd ysum

, (5.5)

by using the Algorithm 4. In Equation (5.5), six multiplications and three additions
are required, which is less than the naïve one. The computational complexity of the
Algorithm 4 is O(Bx + By), where Bx and By are the number of blocks to represent
the vectors x and y, respectively. The Algorithm 4 is analogous to the algorithm for
merging two sorted arrays or sort-merge join algorithm in relational database systems.
In similar way, CVS can compute addition x + y, subtraction x− y, and division x/y

of two compressed vectors in O(Bx + By) time.

5.4 Data Mining Algorithms on CVS

So far, we have described two basic computations on CVS: ℓp-norm on a vector and
dot product of two vectors. In practice, many complex data mining algorithms can
be conducted without decompression using the concept of those computations. In this
section, we demonstrate several data mining algorithms on CVS.

5.4.1 k-Nearest Neighbors Algorithm

k-Nearest Neighbors Algorithm (k-NN) is an important algorithm used in many
applications including document search [71], density estimation [26], and instance-based
classifiers. Given a query vector q and a set of vectors X , k-NN algorithm finds k vectors
that are closest to query vector q from X .

Since k-NN computes all the distances between the query vector q and the set of
vectors X , its runtime is slow on large vector sets. While spatial index structures such
as R-Tree and and SR-Tree [60] can reduce the number of distance computations by
pruning unpromising vectors, still high-dimensional Euclidean distance computations
are required, which can be heavy. CVS can co-exists with these methods and support
reducing the computational time and memory usage of the distance computation.

Recall the Euclidean distance of vector x and vector y is defined as

∥x− y∥2=
√
∥x∥2

2+∥y∥2
2−2x⊤y. (5.6)
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Since Equation (5.6) mainly consists of ℓ2-norm and dot product, CVS efficiently computes
the Euclidean distance of x and y without decompression.

5.4.2 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) algorithm is a mathematical optimization algorithm
to find a local minimum of a function. In machine learning, many machine learning
models including linear regression, logistic regression, and deep neural networks can be
trained by SGD algorithm.

Let us consider the logistic regression with SGD algorithm on CVS. SGD randomly
picks a training data (xi, yi) and update the regression coefficients wt+1 in the following
equation

wt+1 = wt + γxi

{
yi −

1
1 + exp (−w⊤

t xi)

}
, (5.7)

where wt is the current regression coefficients (prediction model) and γ is the learning
rate. Iteratively repeating the update Equation (5.7), SGD converges to the global
optima and completes the training of the model. Since Equation (5.7) mainly consists of
dot products and additions of vectors, CVS can be naturally applied.

Furthermore, prediction using the trained model w can also be made by CVS efficiently,
since the prediction simply consists of a dot product. Concretely, logistic regression
predicts the objective value ŷ for input feature vector x by

p(ŷ|x, w) = 1
1 + exp (−w⊤x) . (5.8)

5.4.3 Kernel Method

Kernel methods, such as support vector machine and spectral clustering, are widely
used in machine learning tasks because it can capture non-linearity in data well. One
downside of kernel method is its high computational cost; Kernel method computes
data-to-data similarity k(xi, xj) through a kernel function k : RD × RD → R for all
(i, j) ∈ [J ]× [J ], i.e., kernel methods compute the similarities of all vector pairs. This
similarity computation requires O(D2J2) time, which is quite large.
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CVS can alleviate the computational cost of data-to-data similarity computation.
Consider radial basis function kernel (RBF-Kernel), which is defined as

k(xi, xj) = exp(−γ∥xi − xj∥2). (5.9)

CVS reduces the computational complexity of Equation (5.9) from O(D) to O(Bi + Bj)
where Bi and Bj are number of blocks to represent original vectors in RLE, which is
often much smaller than D. Thus, the total computational complexity of kernel method
is reduced from O(D2J2) to O((Bi + Bj)2J2).

5.5 Dimension Reordering

Directly compressing the provided set of vectors does not always yield a good compression
result. In this section, we show that CVS can improve the compression rate by reordering
the dimensions of vectors without affecting the computational result.

5.5.1 Motivation of Dimension Reordering

Suppose we have a set of 6-dimensional vectors

x1 = (2, 1, 2, 1, 2, 1),
x2 = (1, 2, 1, 1, 2, 2),
x3 = (2, 1, 1, 2, 1, 1).

By compressing each vector with RLE/Packbits, we obtain the compressed form of the
vectors as

RLE(x1) = (⟨−6, 2, 1, 2, 1, 2, 1⟩),
RLE(x2) = (⟨−2, 1, 2⟩ , ⟨2, 1⟩ , ⟨2, 2⟩),
RLE(x3) = (⟨1, 2⟩ , ⟨2, 1⟩ , ⟨1, 2⟩ , ⟨2, 1⟩).

However, if we reorder the dimensions by considering a permutation

σ =
1 2 3 4 5 6

5 1 4 6 3 2





5.5 Dimension Reordering 67

on the dimensions of the vectors, we obtain vectors

x′
1 = (1, 1, 2, 2, 2, 1),

x′
2 = (2, 2, 2, 1, 1, 1),

x′
3 = (1, 1, 1, 1, 2, 2),

which yield the better result compared to the original vectors as

RLE(x′
1) = (⟨2, 1⟩ , ⟨3, 2⟩ , ⟨1, 1⟩),

RLE(x′
2) = (⟨2, 3⟩ , ⟨1, 3⟩),

RLE(x′
3) = (⟨4, 1⟩ , ⟨2, 2⟩).

Many data mining tasks consist of mathematical operations that are not affected by
order of vector dimensions. We refer to such a mathematical operation as dimension-order
insensitive. If data mining tasks on CVS are known to be dimension-order insensitive, CVS
reorders the dimensions of vectors to improve the compression rate. All the operations
we demonstrated in Section 5.3.2 are dimension-order insensitive.

5.5.2 Problem Definition

We hereafter treat a set of vectors X to be compressed by CVS as matrix X whose
column-vector represents a vector and row-vector represents a dimension. For instance,
the vector set in the previous section is treated as

X =
[

x⊤
1 x⊤

2 x⊤
3

]
=



2 1 2
1 2 1
2 1 1
1 1 2
2 2 1
1 2 1


.

Given a set of D-dimensional J vectors as matrix X ∈ RD×J , CVS solves the following
problem to find the best dimension-order:
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Problem 1 (Dimension-reordering)

σ∗ = arg min
σ∈P(D)

J∑
j

|RLE(σ(xj))|

where P(D) is all permutations on D-dimensions, | · | is the number of blocks to represent
the vector in the compression, xj is the j-th column vector of matrix X, and σ(xj) is the
vector obtained by reordering the dimensions of xj using the permutation σ.

Unfortunately, Problem 1 is NP-hard. The problem is equivalent to the Bitmap-index
reordering problem in column-oriented database systems, which is proved to be an
NP-hard problem [68]. Also, the problem is found to be reduced from the Traveling
Salesman Problem (TSP) under the Hamming distance, allowing us to investigate the
use of heuristics for TSP [68]. In the rest of this section, we introduce two heuristic
approaches for dimension reordering: greedy method and Scored-lex-sort method, both
of which run in polynomial time.

5.5.3 Greedy Method

First, we introduce a greedy approach to find a good dimension order for Problem 1.
The greedy method selects a row (a dimension), and then greedily selects the row that
has minimum hamming distance with the previously selected row from the remaining
rows as shown in Algorithm 5. In Algorithm 5, ai∗ ← bj∗ denotes replacing the i-th row
of the matrix A with the j-th row of the matrix B and OD,J denotes a zero matrix whose
size is D × J .

The greedy method runs in polynomial time. The number of row comparison regarding
Hamming distance in the greedy method is (D− 1) + (D− 2) + ... + 1 = D(D− 1)/2, and
each row comparison needs J element comparison. Thus, the computational complexity
of the greedy method is O(D2 J). Although O(D2 J) is polynomial, it is not appropriate
for processing vectors with a large number of dimensions, D.

5.5.4 Scored-Lex-Sort Method

Second, we introduce Scored-lex-sort method, an efficient approach to find an approximate
solution for the Problem 1 based on lexicographical sort. Scored-lex-sort method runs in
O(J D log D), which is better than greedy method’sO(D2 J). To introduce scored-lex-sort
method, we first describe ordinary lexicographical sort of a matrix.
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Algorithm 5: Greedy method
Input: X ∈ RD×J : Input matrix.
Output: Reordered matrix
Data: P : Row pool.
Xcand: Candidates set.
X ′: Reordered matrix.

1 foreach i ∈ { 1, ..., D } do
2 X ′ ← OD,J

/* Select i-th row in matrix X as the beginning row, and add
other rows to the pool P. */

3 P ← { 1, ..., D } \ { i }
4 x′

1∗ ← xi∗
5 for k ← 2 to D do

/* Pick up j-th row that has minimum hamming distance with the
beginning row from pool P, and add it to reordered matrix
X ′. */

6 j ← arg min
j∈P

HammingDistance(X, k − 1, j)

7 P ← P \ { j }
8 x′

k∗ ← xj∗

9 Xcand ← Xcand ∪ {X ′ }
10 return arg min

X′∈Xcand

Size(X ′)

Lexicographical sort of a matrix reorders rows of a matrix in lexicographical order,
where the order of two rows are defined by comparing whose elements from left-to-right.
For example, lexicographical sort of the rows of matrix

X =



3 4 7 3 0 4
2 4 2 2 0 0
3 4 2 5 8 4
1 3 7 3 8 4
5 7 7 5 8 4


(5.10)
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produces a sorted matrix

Xlex =



1 3 7 3 8 4
2 4 2 2 0 0
3 4 2 5 8 4
3 4 7 3 0 4
5 7 7 5 8 4


. (5.11)

Since lexicographical sorting of a matrix preferentially sorts left-side columns, it
sometimes does not much improve the compression rate of the matrix. For instance,
Xlex’s compression rate is worse than the original matrix X’s one. To alleviate this
problem, we introduce Scored-lex-sort method. Scored-lex-sort method first computes
scores of all columns of the matrix, and then preferentially sorts columns that have
high score. Effectiveness of Scored-lex-sort method highly depends on the definition
of the score. We use 1/Cardinality(x) as the score of a column x, where the function
Cardinality(x) counts the number of distinct elements in column x. This score definition
is based on the insight that a column with low-cardinality contains a lot of same elements,
and preferentially sorting such columns improves the compression effect of RLE. For
example, matrix X in the previous example is sorted into

Xlex∗ =



2 4 2 2 0 0
3 4 2 5 8 4
3 4 7 3 0 4
1 3 7 3 8 4
5 7 7 5 8 4


, (5.12)

which has better compression rate than the original matrix X and the matrix Xlex that
is sorted by the normal lexicographical order.

Algorithm 6 shows the algorithm of row comparison function in Scored-lex-sort
method. In the algorithm, xij indicates the (i, j) element in the matrix X. For the
sorting part, we can use arbitrary sorting algorithms such as the merge-sort algorithm to
reorder a huge matrix in the external sorting manner.

Scored-lex-sort method runs in polynomial time, and its computational complexity
is smaller than the one of the greedy method. As mentioned before, Scored-lex-sort
method can use arbitrary general sorting algorithms. General sorting algorithms are
known to sort D records in O(D log D) [16]. In a comparison operation of two rows,
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Algorithm 6: Row-compare function in Scored-lex-sort method
Input: X ∈ RD×J : Input matrix.
p ∈ { 1, ..., D }: Row number of the first input row.
q ∈ { 1, ..., D }: Row number of the second input row.
Output: A numerical number indicating whether p-th row is bigger/smaller than

or equal to q-th row
Data: Q, Priority queue

1 foreach k ∈ { 1, ..., J } do
2 Get the score of k-th column, and add the column number k to the priority

queue Q using the score as the priority.
3 while Q is not empty do
4 k ← Dequeue(Q)
5 if xpk > xqk then
6 return 1, which indicates p-th row > q-th row.
7 else if xpk < xqk then
8 return -1, which indicates p-th row < q-th row.

9 return 0, which indicates p-th row = q-th row.

Scored-lex-sort method needs to compare J elements as described in Algorithm 6.
Thus, the computational complexity of Scored-lex-sort method is O(J D log D), which is
sufficiently applicable to large matrices.

5.6 Lossy Compression by Discretization

We have targeted discrete-valued vectors. However, real-world data is not only
discrete-valued but also real-valued. Unfortunately, RLE is ineffective for real-valued data,
because real-valued data rarely have same consecutive values. To deal with the problem,
CVS employ discretization technique to convert real-valued vectors into discrete-valued
vectors.

CVS uses a clustering-based discretization approach to improve the compression rate
of the vectors as shown in Algorithm 7. In this approach, we first standardize each vector
dimensions to have zero mean and unit variance, gather all feature values, and make k

clusters from all feature values. Then, values in each cluster are replaced by the cluster
centroid. In doing so, we can successfully convert real-valued data into k-discretized
data.

One downside of discretization is that it loses the precision of vectors. Through
empirical studies, we found that the data mining results, such as predictive performance
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Algorithm 7: Vector discretization
Input: X ∈ RD×J : Collection of D-dimensional J vectors.
K: Discretization level.

1 foreach d ∈ { 1, ..., D } do
2 foreach j ∈ { 1, ..., J } do
3 Standardize d-th dimension (µd is the mean and σd is the standard

deviation of d-th dimension).
4 Xdj = Xdj−µd

σd

5 Groups values into k clusters using k-means algorithm, obtaining centroid ck and
cluster assignment zdj ∈ { 1, ..., K } for each value.

6 { ck }K
k=1 , { zdj }D,J

d=1,j=1 ← kMeans({Xdj }D,J
d=1,j=1 , K).

7 foreach d ∈ { 1, ..., D } do
8 foreach j ∈ { 1, ..., J } do
9 Replace the value of j-th vector by the centroid of the cluster the vector

belongs to.
10 Xdj = czdj

11 return X

in k-NN classifiers, are not so affected by the precision of vector values. For example, in
binary image classification task, k-NN classifier on CVS with 3-level discretization only
degrades the F1-Score 0.005 point while gaining 6× prediction performance improvement
(Fig.5.1). We will elaborate on this discussion in the experiments section.

5.7 Experiments

5.7.1 Experimental Setup

System: All of our experiments were run on a machine that has 16GB RAM and
dual-core 3.6GHz CPU running Linux 3.8.0. Our proposed system, CVS, is implemented
in C++ and compiled by clang++ 3.8.

Datasets: We used two types of vector sets in our experiments: sparse vector sets
(bag of words) [7] and dense high-dimensional vector sets [38]. Table 5.2 shows the
information of the datasets we used.

Methods: We measured the performance of conventional sparse matrix representation
and CVS in several different configurations: (Sparse) refers to the conventional sparse
matrix representation that only holds non-zero values by (position, value) format,
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(RLE) refers to RLE/Packbits on vectors, (RLE-Sort) refers to RLE/Packbits on
vectors with dimension-reordering, (RLEn) refers to RLE/Packbits with n-level data
discretization, and (RLEn-Sort) refers to RLE/Packbits with n-level data discretization
and dimension-reordering. In the reset of this section, we use these notations to explain
the configuration on each result.

Table 5.2 Datasets used in experiments.

Sparse (Bag of Words) [7] Dense [38]
NIPS KOS Enron Madelon Arcene Gisette

# of vectors 1,500 3,430 39,861 2,000 900 6,000
# of dimensions 12,419 6,906 28,102 500 10,000 5,000

Density (Non-zero elements ratio) 0.040 0.014 0.003 0.999 0.540 0.129
# of distinct values 120 33 134 660 899 692

5.7.2 Space-Efficiency

Table 5.3 Data compression effect on each dataset by conventional sparse matrix
representation (position + value) and our proposed framework CVS. Each number refers
to the main/secondary storage usage in megabytes and (%) refers to the compression rate.
Compression formats with asterisk (∗) refer to lossy compression. While conventional
sparse matrix representation successfully compresses the sparse datasets, it fails to
compresses the dense datasets. In contrast, our proposed CVS successfully compresses
dense and sparse datasets.

Sparse (Bag of Words) Dense
NIPS KOS Enron Madelon Arcene Gisette

Original 71.06 90.36 4273.12 3.81 3.81 114.44
Sparse Matrix 8.54 (12.01%) 4.04 (4.47%) 42.46 (0.99%) 11.44 (300.26%) 6.19 (162.46%) 44.53 (38.91%)
RLE 10.0 (14.07%) 5.07 (5.62%) 53.69 (1.25%) 3.86 (101.40%) 3.84 (100.90%) 49.92 (43.62%)
RLE-Sort 9.12 (12.84%) 4.75 (5.26%) 51.71 (1.21%) 3.88 (101.79%) 3.20 (83.97%) 39.03 (34.10%)
RLE8∗ 9.94 (13.99%) 5.07 (5.62%) 53.67 (1.25%) 3.55 (93.10%) 2.91 (78.94%) 41.18 (36.31%)
RLE8-Sort∗ 8.88 (12.50%) 4.76 (5.27%) 51.66 (1.20%) 3.51 (92.13%) 2.65 (71.74%) 38.70 (34.13%)
RLE3∗ 9.84 (13.85%) 4.52 (5.00%) 53.36 (1.24%) 2.43 (63.73%) 1.53 (51.33%) 40.40 (35.63%)
RLE3-Sort∗ 8.54 (12.02%) 4.52 (5.00%) 50.34 (1.17%) 2.39 (62.76%) 1.02 (34.16%) 38.79 (34.21%)
RLE2∗ 9.82 (13.82%) 5.04 (5.58%) 53.32 (1.24%) 2.10 (62.26%) 0.83 (42.19%) 38.13 (33.66%)
RLE2-Sort∗ 8.41 (11.84%) 4.49 (4.97%) 49.79 (1.16%) 2.05 (60.75%) 0.48 (24.85%) 35.82 (31.63%)

First, we demonstrate the space-efficiency of CVS on real-world vector sets with
different configurations including vanilla RLE, dimension-reordering by Scored-lex-sort
method, and data discretization. Table 5.3 shows the compression rates of CVS with
different configurations, where the compression rate is defined as compression_rate =
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compressed_size / original_size. Data sizes shown in Table 5.3 correspond to both
the secondary storage usages of the compressed datasets and memory usages of data
mining algorithms introduced in Section 5.4 (k-NN classifier, logistic regression with
SGD1 and kernel method) on the datasets.

From Table 5.3, we have the following observations:

• Vanilla RLE is effective for sparse matrices because sparse matrices are mostly
filled by zero and RLE effectively represents such zero sequences.

• Discretization is especially effective for dense matrices. Without discretization,
RLE on dense matrices can increase the storage usage (e.g., RLE in Madelon).

• Only doing discretization is not enough. Combining discretization and
dimension-ordering can drastically improve the compression rate (e.g., RLE8 in
Gisette).

5.7.3 Runtime Speedup

Table 5.4 Runtime speedups of k-NN classifiers with Euclidean distance on compressed
data. Compression formats with asterisk (∗) refer to lossy compression. While
conventional sparse matrix represents in sparse data, our proposed method successfully
improves the performance in both sparse and dense data. Further, sorting vector
dimension and discretization drastically improve the performance.

Sparse (Bag of Words) Dense
NIPS KOS Enron Madelon Arcene Gisette

Sparse 4.68 16.33 132.95 0.18 0.50 1.30
RLE 8.69 23.36 146.97 1.42 1.22 1.97
RLE-Sort 8.99 23.52 202.55 1.31 1.27 3.03
RLE8∗ 8.67 44.47 169.47 1.33 1.27 3.06
RLE8-Sort∗ 18.83 46.56 192.66 2.20 1.62 3.15
RLE3∗ 15.07 45.80 170.65 3.80 2.41 3.38
RLE3-Sort∗ 20.36 46.71 203.52 3.87 6.13 9.33
RLE2∗ 18.32 22.76 151.62 4.13 4.93 3.62
RLE2-Sort∗ 20.82 48.02 218.20 4.26 7.82 8.77

1Because SGD is an online algorithm, its memory usage can be reduced to the size of a vector instead
of the whole dataset. However, because vectors are randomly scanned, loading whole dataset into the
memory is required for efficient computation.
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Table 5.5 Runtime speedups of logistic regression with SGD optimization on compressed
data.

Sparse (Bag of Words) Dense
NIPS KOS Enron Madelon Arcene Gisette

Sparse 12.73 41.55 174.21 0.65 1.30 4.81
RLE 16.72 46.24 182.26 1.81 2.38 6.61
RLE-Sort 19.08 51.26 199.80 1.85 2.78 7.92
RLE8∗ 22.65 44.28 165.18 2.64 2.68 7.48
RLE8-Sort∗ 24.98 50.28 187.48 2.69 3.08 8.19
RLE3∗ 23.04 45.61 164.27 4.28 4.10 7.86
RLE3-Sort∗ 26.24 49.57 132.69 4.34 5.36 7.99
RLE2-Sort∗ 25.51 52.24 189.67 5.19 6.31 9.47

Table 5.6 Runtime speedups of a kernel machine on compressed data.

Sparse (Bag of Words) Dense
NIPS KOS Enron Madelon Arcene Gisette

Sparse 5.15 20.97 182.89 0.16 0.33 1.60
RLE 8.40 24.12 198.21 0.74 0.90 2.51
RLE-Sort 8.94 26.50 205.23 0.75 1.01 3.00
RLE8∗ 8.55 24.17 193.54 1.02 1.31 2.93
RLE8-Sort∗ 9.13 26.61 198.31 1.07 1.48 3.23
RLE3∗ 8.33 22.92 176.66 1.65 2.19 3.15
RLE3-Sort∗ 11.46 27.30 258.16 1.99 3.31 3.38
RLE2∗ 8.77 22.95 188.04 1.96 2.71 3.45
RLE2-Sort∗ 11.70 35.47 306.45 2.81 4.42 3.78

Second, we compare the runtime-speedup of our method CVS and competitive method
sparse vector representation on real-world vector sets. In this experiment, we measured
the computational time of three classifiers we introduced in Section 5.4: k-NN classifier,
logistic regression by SGD optimization, and a nonlinear kernel machine (support vector
machine with RBF-kernel).

Setup

For k-NN, we measured the time of the prediction for test vectors, a computationally
intensive process that looks through all the training vectors. Test vector is randomly
picked up from the vector set, and top-k nearest vectors are selected by its Euclidean
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distance. We set k = 5, repeat the procedure 100 times measuring the elapsed time,
and aggregate the results by taking the average. We used efficient Euclidean distance
computation for both sparse vector representation and CVS, which run in O(Bx + By)
time.

In logistic regression with SGD optimization and kernel method (support vector
machine with RBF-kernel), we measured the time to train the model. Since the model
vector w trained is rarely sparse in both methods, we used ordinary dense vector
representation for w, and only used the compression method (sparse vector representation
and CVS) for the input vectors {xj }J

j .

Results

Table 5.4, Table 5.5, and Table 5.6 show the performance comparison of classifiers. From
Table 5.4 to Table 5.6, we have the following observations:

• In sparse data, both sparse vector representation and our CVS improve the
performance by orders of magnitude.

• While sparse vector representation is ineffective for dense data, CVS successfully
improved the performance on dense data.

• Dimension reordering gives drastic performance improvements on both sparse
and dense vector sets. For example, in Enron, a sparse dataset, the performance
improvement increased from 146.97× to 202.55× by dimension reordering in k-NN
classifier. In Gisette, a dense dataset, the performance improvement also increased
from 1.97× to 3.03×, almost doubled, in k-NN classifier. We can also observe
similar results in logistic regression (Table 5.5) and kernel method (Table 5.6).

• Data discretization is effective for datasets that have large number of distinct values
(Madelon, Arcene, Gisette). For datasets that have relatively smaller number of
distinct values (NIPS, KOS, Enron), data discretization does not much improve
the performance.

5.7.4 Discretization and Accuracy

Third, we discuss the effect of lossy-compression (discretization) on accuracy. We
measured the predictive performance differences that come from data discretization
for three classifiers we introduced in Section 5.4: k-NN classifier, logistic regression
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Fig. 5.1 F1-scores (harmonic mean of precision and recall) of each classifier (k-NN
classifier, logistic regression, and RBF-SVM) on each dataset with discretization. X-axis
refers to the discretization level (# of distinct values) and Y-axis refers to the F1-score.
We can observe that the discretization does not much degrade the predictive performance
and sometimes does improve F1-scores.

by SGD optimization, and a nonlinear kernel machine (support vector machine with
RBF-kernel). We used Algorithm 7 for data discretization and varied discretization level
K ∈ { 2, 3, 8, 16 }. For the distance measure in k-means algorithm, we used Euclidean
distance.

Fig.5.1 shows the F1-score (harmonic mean of precision and recall) of each classifier
on each dataset. X-axis refers to the discretization level (# of distinct values) and Y-axis
refers to the F1-score. From Fig.5.1 (that shows accuracies) and Table 5.4 (that shows
speedups), we observe that the discretization does not degrade the accuracy of classifiers
much, while it drastically improves the compression rate and computational performance.
Furthermore, discretization sometimes can improve the predictive performance classifiers.



78 Fast and Space-Efficient Machine Learning with Data Compression

One may think this phenomena strange but data discretization is a well adopted
feature-engineering technique to improve the predictive performance by reducing the
effect of observation noise and outliers, which is referred to as data binning in machine
learning area.

5.8 Related Work

CVS relates to vector and matrix computation frameworks that utilize data sparsity. For
example, Eigen [36], a vector computation library, can represent sparse matrices and
sparse vectors by concise data structures. In contrast to the sparse matrix representation,
CVS targets to not only the sparse vector sets but also the dense vector sets.

Run-length encoding is widely used in data-intensive systems. For example,
MADlib [42], a data analytics system built on top of a relational database system,
uses run-length encoding to handle sparse data efficiently. Also, some columnar database
systems employ run-length encoding its column data [1, 69]. However, to the best of our
knowledge, none of these works addressed the performance improvement of run-length
encoding on data mining and machine learning tasks and the effect of dimension-reordering
and data discretization.

In machine learning research area, compressing the specific machine learning models
has been actively studied recently. (Binary features) Tabei et al. studied partial least
squares regression (PLS) on compressed data encoded by grammar-based codes. To assist
accessing the elements in the compressed matrix, they proposed a tree-based special
data structure. Their approach targets to use binary-features (so-called fingerprints
data), which differs from our approach that targets to arbitrary real values. (Relational
data) Rendle proposed a method to accelerate machine-learning algorithms by utilizing
block structures in a matrix [84]. In his work, input matrices are assumed to have
special block structures that come from denormalization of relational tables, whereas
CVS does not impose any assumptions on the input data. (Deep neural networks)
In deep neural network research community, to reduce the size of huge deep learning
models, DNN model compression has been recently actively studied. Approaches include
low-rank approximation of parameter tensors [19, 52], binary representation [83] or ternary
representation [106] of parameters, and pruning unimportant nodes from parameters [66].

Brodie et al. tackled the row-reordering problem we have defined in Section 5.5.2,
and proposed a method that is similar to our greedy method, whose computational
complexity is O(D2 J) [10]. In their situation, the greedy method was enough, because
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they aimed to compress the state-transition tables of a regular expression, and commonly
such tables are not large. In database systems area, the problem of reordering bitmap
indices has been studied to get better compression result, which is equivalent to our
dimension-reordering problem with binary values [68, 81].

5.9 Summary

In this chapter, we proposed CVS (Compressed Vector Set), a general framework for
concisely storing vector sets and conducting mathematical operations on the vector
sets efficiently. CVS holds a set of vectors in a compressed format and conducts
mathematical operations, such as ℓp-norm and dot product, without decompression.
We demonstrate that CVS accelerates several data mining algorithms including k-nearest
neighbor algorithm, stochastic gradient descent algorithm on logistic regression, and
kernel methods. Our experimental results demonstrated that CVS can process both
dense datasets and sparse datasets faster than conventional sparse vector representation
with smaller memory usage.





Chapter 6

Conclusions

6.1 Summary

This dissertation explored methods to reduce the time of processes inside the
trial-and-errors in the machine learning on relational data.

Fast Feature Engineering by Adaptive Partial Aggregation First, we proposed
Adaptive Partial Aggregation Tree (APA-Tree), a query processing technology for
accelerating repetitive data aggregation operations (Chapter 3). APA-Tree is based
on partial aggregation method [73, 34] that pre-computes and cache aggregation values
on a subset of the data and reuse pre-computed aggregation values in further aggregation
queries. While conventional partial aggregation method computes aggregation values
on pre-determined sized subsets of data (typically a page or a block in storage),
APA-Tree computes aggregation values on dynamically-decided sized subsets. Since
aggregation operations in feature engineering tasks have locality of reference, APA-Tree
finely computes aggregation values on frequently accessed data and coarsely on rarely
accessed data. As a result, APA-Tree accelerates repetitive aggregation queries with a
small number of pre-computed aggregation values. Experimental results on synthetic
workloads confirmed APA-Tree’s efficiently compared to the previous partial aggregation
methods [73, 34].

Machine Learning without Feature Construction Second, we proposed a machine
learning model for predicting entity attributes in relational database systems, which does
not require conventional time-consuming feature-engineering process (Chapter 4). As a
motivating application of entity attribute prediction in relational data, we tackled the
problem of customers’ demographics prediction based on their behavioral data. This



82 Conclusions

demographics prediction problem is modeled as a classification task in which a customer’s
sensitive demographic y is predicted from his feature vector x. So far, two lines of work
have tried to produce a “good” feature vector x from the customer’s behavioral data:
(1) application-specific feature engineering using behavioral data and (2) representation
learning (such as singular value decomposition or neural embedding) on behavioral data.
Although these approaches successfully improve the predictive performance, (1) designing
a good feature requires domain experts to make a great effort and (2) features obtained
from representation learning are hard to interpret. To overcome these problems, we
presented a Relational Infinite Support Vector Machine (R-iSVM), a mixture-of-experts
model that can leverage behavioral data. Instead of augmenting the feature vectors of
customers, R-iSVM uses behavioral data to find out behaviorally similar customer clusters
and constructs a local prediction model at each customer cluster. In doing so, R-iSVM
successfully improves the predictive performance without requiring application-specific
feature designing and hard-to-interpret representations. Experimental results on three
real-world datasets demonstrated the predictive performance and interpretability of
R-iSVM. Furthermore, R-iSVM can co-exist with previous demographics prediction
methods to further improve their predictive performance.

Fast and Space-Efficient Machine Learning with Data Compression Third,
we proposed a method to make training and evaluation of various machine learning
models fast and space-efficient, which is based on data compression technique (Chapter 5).
Our proposed compressed vector set (CVS) runs machine learning algorithms in a fast
and space-efficient manner on both sparse and dense datasets. CVS holds a set of vectors
in a compressed format and conducts primitive vector operations, such as ℓp-norm and
dot product, without decompression. By combining these primitive operations, CVS
accelerates prominent data mining or machine learning algorithms including k-nearest
neighbor algorithm, stochastic gradient descent algorithm on logistic regression, and
kernel methods. In contrast to the commonly used sparse matrix/vector representation,
which is not effective for dense datasets, CVS efficiently handles sparse datasets and
dense datasets in a unified manner. Our experimental results demonstrated that CVS
could process both dense datasets and sparse datasets faster than conventional sparse
vector representation with smaller memory usage.
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6.2 Future Direction

There are a number of promising future research directions.

Supporting Wide Variety of Queries in Aggregation Reusing Methods
Aggregation reusing methods such as partial aggregation methods and our proposed
APA-Tree accelerate simple aggregation queries with selection operation such as range
filter. While such aggregation queries are frequently used in feature engineering, other
types of queries such as group-by aggregation queries are also often used. Thus, developing
a way to reuse aggregation values among such wide variety of queries is a promising
direction. Resulting technology may embody database systems techniques such as
materialized view maintenance [37] for reusability analysis on complicated queries and
machine learning techniques such as independence criterion [35] for determining important
features to be cached.

Assisting Data Analysts’ Understanding of Trained Models One reason of
trial-and-error process in machine learning being laborious is difficulty in understanding
the trained models. Data analysts have to understand the behavior of models for
debugging the models or explaining the results to other people. While we addressed
the issue by proposing R-iSVM, an interpretable machine learning model for customer
demographics prediction, there remains a laborious task: data analysts have to understand
and name customer clusters by investigating demographics distributions of a cluster and
relationship to item clusters. Thus, assisting such task through technology is necessary.
Using techniques for understanding and naming latent factors (topics) using textual
features [12, 72] is a promising direction.

Heterogeneous Data Representation and Planner for Machine Learning Our
proposed CVS, which encodes a set of vectors with run-length encoding and apply
some optimization techniques such as dimension reordering and data discretization,
can be considered as a data representation format. Besides CVS, there exists a
tremendous amount of data representation formats. Handling these heterogeneous
data representations in a unified framework is a promising direction. Since different data
representation yields different performance (computational time and memory usage) for
a data and algorithms to be executed, there exists a chance for the planning that chooses
the best data representation and operation execution orders in the algorithm. While
the problem partially shares the concept of classical query optimization technique in
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database systems, there exists a new issues such as lack of operation rewriting rules in
machine learning algorithms, which are available in rigorous relational algebra. Several
studies share the similar motivation and are trying to develop planner for linear algebra
and machine learning algorithms [23, 64, 89].
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