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Abstract 
 

During the past few decades, β-Ti alloys have attracted extensive attention for applications in aerospace, 

biomedical and energy industries due to their superior properties such as high specific strength, high 

corrosion resistance, low Young’s modulus and good biocompatibility. Based on the chemical composition 

and thermomechanical treatment, the β-Ti alloys may contain various pases in their microstructure, such as 

equilibrium α and β phases, and metastable α', α" and ω phases. It has been widely acknowledge that the 

mechanical properties of β-Ti alloys depend significantly on the deformation behaviors, such as dislocation 

slip, deformation twinning and stress-induced martensitic transformation. Therefore, the comprehensive 

investigation on the deformation mechanisms and the related mechanical properties of β-Ti alloys is 

suggested of great importance.  

The recently developed Ti-7.5Mo alloy with fully α" martensite has been revealed with low Young’s 

modulus and good biocompatibility, which is regarded as a promising candidate for implant material. 

However, this alloy also exhibits relatively low mechanical strength, which restricts its further development. 

Since the mechanical properties are significantly depending on the deformation mechanisms, therefore, the 

present thesis firstly focused on deformation mechanisms of as-quenched α" martensite in the Ti-7.5Mo 

alloy. The as-quenched and deformed microstructures of α" martensite were investigated by combining 

scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A microstructural patch 

of interest was tracked upon tensile deformation to a strain level of 5% by SEM, followed by TEM 

characterization of deformed microstructure in a focused ion beam (FIB)-fabricated lamella. The 

as-quenched α" martensite consist of {111}α"-type I transformation twins. After 5% deformation straining, 

the activation of a new {112}α"-type I deformation twinning was identified. Furthermore, the mechanism of 

the newly reported {112}α"-type I deformation twinning has been analyzed based on the crystallographic 

deformation twinning theory. 

Then, in order to improve the strength while keeping the low Young’s modulus of the Ti-7.5Mo alloy, 

the effect of oxygen content on the microstructure and mechanical properties of the Ti-7.5Mo alloy have 

been investigated. We developed a series of Ti-7.5Mo alloys with different oxygen contents (0~0.5 wt.%). 

The microstructure was characterized by SEM together with TEM. The crystal structure and phase stability 

of α" martensite in Ti-7.5Mo alloys with different oxygen contents were investigated on the basis of X-ray 

diffraction (XRD) and differential scanning calorimeter (DSC) analyses. Hardness and tensile tests were 

carried out to illustrate strengthening mechanism caused by different oxygen content. Among the newly 

developed alloys, Ti-7.5Mo-xO (x ≤ 0.3 (wt.%)) alloys have been reported with an excellent combination of 

high yield strength (~640 MPa) and elongation (~28%), as well as low Young’s modulus (~60 GPa). In 

particular, the present alloys are based on simply binary alloys, while most of other biomedical alloys are 

multicomponent systems. This may be advantageous in terms of the materials cost and processing point of 

view.  
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Furthermore, as a unique twinning mode in bcc alloys, {332}<113>β twinning contributes to the 

pronounced work-hardening in β-Ti alloys with bcc-β phase. This is similar to the twinning-induced 

plasticity (TWIP) in steels. Some investigations revealed that the mechanical properties and deformation 

mechanisms of β-Ti alloys have a strong dependence on the strain rate. However, there is a lack of 

understanding regarding the mechanism of strain rate dependence of work-hardening behavior in β-Ti alloys, 

in particular, about the effect of {332}<113>β twinning. The purpose of the last part of the thesis was to 

investigate the effect of strain rate on the tensile deformation behaviors in a β-Ti alloy showing TWIP effect. 

We focused on a Ti-10Mo-1Fe (wt.%) alloy, which deforms mainly by {332}<113>β twinning. The 

work-hardening behavior was investigated by monotonic tensile tests at different strain rates ranging from 

2.8x10-5 s-1 to 2.8x10-1 s-1. The microstructure evolution was characterized by Electron Backscattered 

Diffraction (EBSD) and XRD on {332}<113>β twins and dislocations. The results revealed lower increasing 

rates of {332}<113>β twins and dislocation density at higher strain rates deformation. This is ascribed to the 

adiabatic heating, leading to the reduced work-hardening rate at higher strain rates. The correlation between 

the work-hardening behavior and microstructure evolution are of great importance for improving the 

strength-ductility balance of β-Ti alloys. 

 

 

Keywords: β-Ti alloy; deformation mechanisms; mechanical properties; orthorhombic-α" martensite; 
{332}<113>β twinning 
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Chapter 1 Introduction 

1.1 Titanium and its alloys 
 

 During the past few decades, titanium and its alloys have been increasingly developed due to their 

superior properties such as low density, high strength, excellent corrosion resistance, and good 

biocompatibilities [1–3]. They are widely used in various applications in aerospace, chemical processing 

equipment, and biomedical industries, as illustrated in Fig. 1-1 [3]. The primarily advantages of titanium 

alloys include two parts [1]: (i) high specific strength (ratio between strength and density). The specific 

strength of titanium alloys are better at temperature below 500 K and even shows promising properties at 

higher temperature compared with other structural materials, as shown in Fig. 1-2 [1]. That’s the reason why 

the titanium alloys could play an important role in the aerospace applications; (ii) excellent corrosion 

resistance in critical environments especially for pitting and corrosion cracking. It is because of the easily 

formed oxide film with any environment containing oxygen on the surface, which provides the titanium 

outstanding resistance to corrosion in a wide range of aggressive media. These desirable properties make 

titanium alloys attractive for various applications like aircraft (high specific strength), aero-engines (high 

specific strength and good creep resistance up to about 800 K), chemical processing equipment (good 

corrosion resistance) and biomedical devices (corrosion resistance and high strength) [1]. Besides, titanium 

and its alloys also have good toughness property making them useful for precision mechanism gears.  

Fig. 1-1 General characteristics and typical application of titanium alloys. [3] 
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However, the relatively high cost of titanium alloys that limits their range of applications. Actually, 

titanium is not rare since it ranks the fourth most abundant structural metal in the earth’s crust, after 

aluminum, iron and magnesium. Unfortunately, it usually occurs not in a pure state and the concentration is 

relatively low. Thus, the difficulty in processing the metal makes it expensive [1]. The mechanical 

properties, such as strength, ductility, creep resistance, and fracture toughness, depend significantly on the 

microstructures, which are formed during the thermo-mechanical processing and thermal treatment 

procedures. Extensive researches have been carried out to understand the relationships between the 

microstructure evolution and mechanical properties of titanium alloys, which are essential for the design of 

new alloy systems, cost control and further development of titanium alloys. 

1.1.1 Elemental addition in titanium alloys 
 

There are two crystal structures in pure titanium, namely α titanium with hexagonal close packed (hcp) 

crystal structure and β-titanium with body-centered crystal (bcc) structure. The β-phase has been reported to 

be more stable at high temperature compared with the α phase. The phase transformation from β to α may 

take place when the temperature decreases to ~882 °C for pure titanium [4]. This temperature is called β 

transus temperature. Based on the effect on the β transus temperature, the alloying elements are classified as 

neutral, α-stabilizers or β-stabilizers, as shown schematically in Fig. 1-3 [1]. The α-stabilizers increase the β 

transus temperatures, while β-stabilizers shift the β phase field to lower temperatures. Neutral elements have 

only minor influences on the β transus temperature. Among the α- stabilizers of Al, oxygen, nitrogen, and 

carbon, Al is treated as the most important element for stabilizing the α phase. It can increase the β transus 

temperature significantly and lead to the strengthening effect due to the large solubility in both α and β 

phases. It is well established that the mechanical properties of titanium alloys are sensitively dependent on 

the interstitial solutes such as oxygen, nitrogen, and carbon [1]. For example, extensive efforts have revealed 

Fig. 1-2 Specific strength versus use temperature of various structural materials compared with titanium alloy.  
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Fig. 1-3 Effect of alloying elements on phase diagrams of titanium alloys [1]. 

the oxygen as an effective element to improve the strength of titanium alloys due to its solid-solution 

strengthening effect [5–7].  

 

In order to evaluate the effect of α stabilizer in multicomponent titanium alloys, the concept of Al 

equivalency ([Al]eq) is used with the following Eq. 1-1 [1], where the element symbol means the weight 

percent (wt.%) of each element in the alloy: 

     [Al]eq = [Al] + 0.17[Zr] + 0.33[Sn] +10[O]                        1-1                                               

The β-stabilizers are divided into isomorphous and eutectoid elements, depending on exitence of a solid 

solution or eutectoid compound at a sufficiently elevated temperature. Both types of phase diagrams are 

shown schematically in Fig. 1-3. With higher solubility in titanium, the β-isomorphous elements such as Mo, 

V, Ta and Nb are more effective β phase stabilizers. On the other hand, the β-eutectoid elements such as Fe, 

Mn, Cr, Co, Ni, Cu, Si and H are of great importance making titanium intermetallic compounds with low 

volume fraction. Similarly, the Mo equivalency ([Mo]eq) is used for all β phase stabilizers to describe the β 

phase stability. The equation is shown as follows [8]: 
[Mo]eq = [Mo] + 0.67[V] + 0.44[W] + 0.28[Nb] + 0.22[Ta] + 1.6[Cr] + 2.9[Fe] − 1.0[Al]      1-2 

In addition to the α- and β-stabilizers, there are some elements (such as Sn, Zr and Hf) regarded as 

neutral elements, which have negligible effets on the β transus temperature (Fig. 1-3). However, as far as 

strength is concerned, they are not neutral since they can primarily contribute to the strengthening of α phase. 

Many commercial multicomponent alloys contain Zr and Sn considered as α phase stabilizing elements. This 

is due to the chemical similarity of Zr to Ti and Sn can replace Al in the hexagonal ordered Ti3Al phase. 

Besides, these neutral elements can completely dissolve in the α and β phases of titanium alloys.  
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1.1.2 Classification of titanium alloys 

 
The schematically classification of titanium alloys is shown in Fig. 1-4, according to their positions in a 

pseudo-binary section through a β isomorphous phase diagram. Generally, titanium alloys are classified into 

three main categories: α-Ti alloys, α+β-Ti alloys, and β-Ti alloys. Furthermore, the β-Ti alloys can be further 

divided into metastable β-Ti and stable β-Ti alloys. The fundamental properties of these three categories 

are outlined in Table 1-1.  

α-Ti alloys comprise commercial pure (cp) titanium alloys and alloys with only α-stabilizers and/or 

neutral elements, such as Ti-3Al-2.5V, and Ti-5Al-2.5Sn alloys. These classes of titanium alloys consist of 

mainly α phase and a small amount of β phase (2-5 vol.%) at grain boundaries [4]. The β phase is helpful in 

controlling the recrystallized α grain size and improving the hydrogen tolerance of α-Ti alloys. Due to the 

excellent corrosion resistance of α-Ti alloys compared to stainless steel, they are widely used in chemical 

industry. They are also become popular for heat exchanger and other piping applications because of their 

good weldability and general fabricability. In addition, they usually show good creep strength, which is 

preferred for elevated temperature applications up to ~700 K. However, the α-Ti alloys exhibit relatively low 

strength due to the lack of solid solution strengthening elements. Meanwhile, the formability of α-Ti alloys is 

relatively low since the hcp structure of α phase requires a high stress to trigger the non-basal slip systems. 

 

 

Fig. 1-4 Pseudo-binary phase diagram to classify titanium alloys with decomposition products of β phase. βc is the 
critical minimum β-stabilizer amount for the metastable β-Ti alloys to retain β completely on quenching from β phase 
field and βs is the minimum amount of β-stabilizer for stable β-Ti alloys: βtrs, Ms and Mf refer to β transus, martensite 
start and finish temperatures, respectively.	
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α α+β β 

Density + + - 

Strength - + ++ 

Ductility -/+ + +/- 

Fracture toughness + -/+ +/- 

Creep strength + +/- - 

Corrosion behavior ++ + +/- 

Oxidation behavior ++ +/- - 

Weldability + +/- - 

Cold formability -- - -/+ 

 

α+β-Ti alloys have a range in the phase diagram (Fig. 1-4) from the α/α+β phase boundary up to the 

intersection of the Ms-line with room temperature. This type of Ti-alloys offers an excellent combination of 

strength, toughness and high-temperature properties, which makes them strongly attractive in aerospace and 

other fields demanding high strength alloys. α+β-Ti alloys contain both α- and β-stabilizers and have the β 

phase ranging from about 5 to 40 vol.% at room temperature. Furthermore, they can be further strengthened 

by solution treatment and aging, resulting in a variety of microstructure/property combinations. α+β-Ti 

alloys include the currently most widely used titanium alloy, i.e., Ti-6Al-4V. It exhibits an excellent balance 

of strength, ductility, fatigue and excellent damage tolerance properties, which makes it intensively 

developed in the aerospace, automotive and medicine industry. Apart from Ti-6Al-4V, some α+β-Ti alloys 

have special features and are used as high-temperature alloys, such as Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242) 

and (Ti-5.8Al-4Sn-3.5Zr-0.5Mo-0.7Nb-0.35Si-0.06C (IMI 834). They are mainly applied in the 

high-pressure compressor stages of aero-engines where the temperature exceeds 300 K and Ti-6Al-4V 

cannot be used because of creep consideration.  

β-Ti alloys can be further divided into metastable and stable β-Ti alloys, depending on the amount of 

β-stabilizers, as shown in Fig. 1-4. With sufficient β-stabilizers, the β phase can be fully achieved upon 

quenching from high-temperature β phase field and no martensitic transformation occurs. α phase can 

precipitate from the metastable β phase by solution treatment and aging below β transus temperature, 

resulting in the strengthening of β-Ti alloys. Thus they could be improved by adjusting the chemical 

composition and formation processing to satisfy diverse demands of high strength, adequate toughness and 

fatigue resistance for airframe application. Actually most of the commercially used β-Ti alloys are 

metastable β-Ti alloys. In addition, metastable β-Ti alloys exhibit good corrosion resistance, good 

biocompatibility, shape memory effect and superelasticity, which make them attracting more and more 

attentions. A more detailed description of β-Ti alloys will be presented in the next section.  

 

Table 1-1 Some fundamental properties comparison of α, α+β, β Ti alloys 
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1.2 β-Ti alloys 
 

1.2.1 Mechanical properties  

 
In general, β-Ti alloys is the alloy with sufficiently rich β-stabilizers that the β phase can be retained 

and no martensitic transformation occurs by quenching from the β phase field to room temperature [4]. Bania 

[8] correlated that a [Mo]eq value above about 10 was required to retain the full β phase upon quenching. 

Meanwhile, Eylon et al. [9] suggested that a definition of β alloys based on the values of [Mo]eq , in which 

the β alloys with [Mo]eq ranging from 8-30 were termed “metastable β”, those above 30 identified as “stable 

β”, and those below 8 were considered as “β-rich α+β” alloys. Sometimes alloys with roughly [Mo]eq values 

of 5-10 were also identified as “near-β” alloys. Since a number of leaner Ti alloys contain sufficient β 

stabilizer to confer improved formability and forgeability, and a good heat treatment strengthening response, 

they are often treated as β-Ti alloys. These can include alloys such as Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17, 

[Mo]eq = 5.4), Ti–5Al–2Sn–2Cr–4Mo–4Zr-1Fe (Beta CEZ, [Mo]eq = 5.1) and Ti–13Nb–13Zr alloy.  

 

 
Advantages Disadvantages 

-high specific strength -high density 

-low modulus -low modulus 

-high strength/high toughness -poor low- and high-temperature properties 

-high fatigue strength -small processing window (some alloys) 

-good deep hardenability -high formulation cost 

-low forging temperature -segregation problems  

-cold formable (some alloys) -high springback 

-easy to heat treat -microstructural instabilities 

-excellent corrosion resistance (some alloys) -poor corrosion resistance (some alloys) 

-excellent combustion resistance (some alloys) -interstitial pick up 
 

The advantages and disadvantages of β-Ti alloys are listed in Table 1-2 and commercial β-Ti alloys are 

shown in Table 1-3 in a descending order of [Mo]eq, together with applications and introduced periods [9]. 

Considerable efforts have been devoted to exploring novel β-Ti alloys for diverse applications because of 

their superior properties, such as high strength, low Young’s modulus, good biocompatibility, 

superelasticity, and better formability compared to α-Ti and α+β-Ti alloys. So far the primary application of 

β-Ti alloys is for the aerospace field. The airframe weight of Boeing 777 contains about 10% of titanium 

alloys and it is the first commercial airplane in which β-Ti alloys exceed the classical Ti-6Al-4V alloy in the 

mass content. The main reason is the application of the high strength β-type Ti-10-2-3 in the landing gear 

Table 1-2 Advantages and disadvantages of β-Ti alloys [1].  
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structure. Other β-Ti alloys such as Ti-7Mo-3Nb-3Cr-3Al (Ti-7333) and Ti-5Al-5Mo-5V-3Cr (Ti-5553) 

[10], with ultrahigh strength and excellent ductility, have also been used for aerospace applications. 

Meanwhile, extensive research attentions have been focused on the development of β-Ti alloys for 

biomedical applications. It is well known that the α+β type Ti-6Al-4V alloy is currently the most popular 

titanium alloy used in the biomedical field. This alloy has Young’s modulus of ~110 GPa, which is much 

lower than that of other alloys, such as stainless steel (~200 GPa) or Co-Cr-Mo alloys (~210 GPa) [11]. 

However, these currently used alloys present some drawbacks such as low mechanical biocompatibility with 

human bones and long-term health issues. Moreover, the Young’s modulus of Ti-6Al-4V is still higher than 

the human bones (10-40 GPa), which may cause stress-shielding effect [9-10]. Thus, some novel β-Ti alloys 

with lower modulus, better formability and non-toxic elements (i.e. Al- and V-free) have been attracting 

more and more attentions for biomedical applications, such as Ti-7.5Mo (wt.%) [12,13], Ti-15Mo (wt.%) 

[14], Ti-12Mo-6Zr-2Fe (wt.%) [15], and Ti-29Nb-13Ta-4.6Zr (wt.%, TNTZ) [16]. In particular, 

Ti-35Nb-4Sn alloy has been reported with the lowest Young’s modulus (40 GPa) reported so far among the 

developed biomedical titanium alloys. Meanwhile, Ti-7.5Mo alloy has been recently developed by Ho et al. 

[12] with a low Young’s modulus of ~60GPa [17]. This alloy also exhibits good biocompatibility which was 

confirmed through cytotoxicity test and animal implantation study [18].  

Despite the aerospace and biomedical applications, β-Ti alloys are also widely used in chemical 

industry for downhole service and other fields [1]. However, there are still several problems leading to the 

limited use of these alloys, including relatively higher costs as compared to α+β-Ti alloys, microstructural 

instability, low ductility in high strength weldments, potential melting segregation problems and a lack of 

sufficient design data [9]. It has been widely acknowledged that the mechanical properties of β-Ti alloys 

depend significantly on the deformation behaviors, such as dislocation slip, deformation twinning and 

stress-induced martensitic transformation [19,20]. Therefore, the comprehensive investigation of the 

deformation mechanisms of β-Ti alloys is suggested of great importance. Meanwhile, extensive studies have 

been expended for the design of cost-effective β-Ti alloys. For instance, some of them were developed for 

the reduced cost by using iron as an inexpensive but effective β-stabilizer, such as Beta CEZ and SP700. In 

addition, the interstitial elements such as oxygen, carbon and nitrogen have been revealed as effective 

elements to improve the strength and some functional properties of β-Ti alloys [21–23]. The novel β-Ti 

alloys with an excellent combination of mechanical properties such as high strength, good ductility and low 

Young’s modulus are always desirable.  

.  
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Alloy composition Commerc
ial name Category Mo 

Eq. 

Actual and 
potential 

Year 
introduced 

applications (company) 

Ti-35V-15Cr Alloy C Beta 47 
Burn resistant 

alloy 1990 (P&W) 

Ti-40Mo   Beta 40 
Corrosion 
resistance 1952 (RemCru) 

Ti-30Mo   Beta 30 
Corrosion 
resistance 1952 (RemCru) 

Ti-6V-6Mo-5.7Fe-2.7
Al 

TIMETA
L 125 Metastable  24 

High strength 
aircraft fasteners 1990 (TIMET) 

Ti-13V-11Cr-3Al B120VCA Metastable  23 
Airframe, landing 

gear, springs 1952 (RemCru) 

Ti-1Al-8V-5Fe 37108 Metastable  19 Fasteners 1957 (RMI) 

Ti-12Mo-6Zr-2Fe TMZF Metastable  18 
Orthopedic 

implants 
1992(Howmedi

ca) 
Ti-4.5Fe-6.8Mo-1.5A

l 
TIMETA
L LCB Metastable  18 

Low cost, high 
strength alloy 1990 (TIMET) 

Ti-15V-3Cr-1Mo-.5N
b-3Al VT35 Metastable  16 

High strength 
airframe castings -(Russian) 

Ti-3Al-8V-6Cr-4Mo-
4Zr Beta-C Metastable  16 

Oil-field, springs, 
fasteners 1969 (RMI) 

Ti-15Mo IMI 205 Metastable  15 
Corrosion 
resistance 1958 (IMI) 

Ti-8V-8Mo-2Fe-3Al 8-8-2-3 Metastable  15 
High strength 

forgings 1969 (TIMET) 

Ti–15Mo–2.6Nb–
3Al–0.2Si Beta 21S Metastable  13 

Oxidation/ 
corrosion resist, 

TMCs 
1989 (TIMET) 

Ti–15V–3Cr–3Sn–
3Al 42078 Metastable  12 

Sheet, plate 
airframe castings 1978 (USAF) 

Ti–11.5Mo–6Zr–
4.5Sn Beta Ⅲ Metastable  12 High strength 1969 (Crucible) 

Ti–10V–2Fe–3Al 40212 Metastable  9.5 
High strength 

forgings 1971 (TIMET) 

Ti–5V–5Mo–1Cr–
1Fe–5Al VT22 Metastable  8 

High strength 
forgings  (Russian) 

Ti–5Al–2Sn–2Zr–
4Mo–4Cr Ti-17 Beta-rich  5.4 

High strength, 
medium 

temperature 
1968 (GEAE) 

Ti–4.5Al–3V–2Mo–
2Fe SP700 Beta-rich  5.3 High strength, SPF 1989 (NKK) 

Ti–5Al–2Sn–2Cr–
4Mo–4Zr-1Fe Beta CEZ Beta-rich  5.1 

High strength, 
medium 

temperature 
1990(CEZUS) 

Ti–13Nb–13Zr   Beta-rich  3.6 
Orthopedic 

implants 
1992 

(Smith&Neph) 

Table 1-3 Composition, category, applications, source and year of introduction of major β-titanium 
alloys [9] 
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1.2.2 Phase constitution  
 

It has been revealed that the mechanical properties of β-Ti alloys depend significantly on the presence 

of various phases in their microstructures [19,24]. These phases can be classified into equilibrium phases (α 

and β) and non-equilibrium or metastable phases (α', α" and ω), depending on the thermo-mechanical 

treatment.  

 

1.2.2.1 The equilibrium phases 
 
1.2.2.1.1 The β phase 

The β phase exhibits bcc crystal structure and the space group of β phase is Im3m with two atoms at 

(0,0,0) and (1/2, 1/2, 1/2) coordinates [1]. The atomic unit cell of β phase is schematically shown in Fig. 

1-5(a), with the most densely packed planes {110} highlighted. The close-packed directions are the <111> 

directions. The lattice parameter of pure β-Ti at 1173 K is a = 0.332 nm, as indicated. According to the 

reports, the lattice parameter of bcc-β phase varies with alloy composition [25,26]. The molybdenum 

concentration dependence of the lattice parameter of β phase is shown in Fig. 1-5(b) [25]. As mentioned 

before, the β phase stability also depends significantly on the alloy composition, and it is quantified with the 

value of [Mo]eq. The various β phase stabilities result in different plastic deformation modes, which can be 

dislocation slip, deformation twinning, and stress-induced α" martensitic transformation. The details of the 

deformation mechanisms of β phase will be introduced in section 1.2.3. 

 

 

 

Fig. 1-5 (a) Crystal structure of bcc-β phase [1]. (b) Composition dependence of lattice parameter of bcc-β 
phase in Ti-Mo alloys [25].  
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1.2.2.1.2 The α phase 

The α phase exhibits hcp crystal structure with the space group of P63/mmc. There are two atoms at (0, 

0, 0) and (1/3, 2/3, 1/2) positions involved in per unit cell [1]. The atomic unit cell of α phase is 

schematically shown in Fig. 1-6(a). It can be observed in Fig. 1-6(a) that there are three most densely packed 

types of lattice planes, i.e., {0001}, {1010} and {1011}. The three a1, a2, and a3 axes are the close-packed 

directions with the indices of <1120>. The lattice parameter of pure α-Ti is a = 0.295 nm, and c = 0.468 nm. 

The c/a ratio is 1.587. The α phase in β-Ti alloys is formed by means of β to α phase transformation, which is 

a diffusional process. It can be precipitated when the β-Ti alloys are quenched at low cooling rate from β 

phase region, or upon aging at α+β temperature region. The precipitated α phase can be classified into three 

types depending on the nucleation sites, including grain boundary α, intergranular α, and intragranular α 

phase. Fig. 1-6(b) shows an example of precipitated α phase in Ti-5Al-5Mo-5V-3Cr alloy [24]. The volume 

fraction, particle size, distribution and morphology of precipitate α phase can have pronounced effects on the 

mechanical properties of β-Ti alloys [4].  

 

1.2.2.2 The non-equilibrium phases 
 
1.2.2.2.1 The α' and α" martensite phases 

There are two kinds of martensite phases in β-Ti alloys, namely, α' phase and α" phase. The α' phase has 

an hcp crystal structure, which is identical to α phase. On the other hand, the α" martensite has a disordered 

orthorhombic structure, belonging to the space group of Cmcm [27]. The martensite α'/α" phases are formed 

by martensitic transformation from β phase during rapid cooling/water quenching, i.e., β → α'/α", depending 

on the amount of β-stabilizers [12,28,29]. The martensite structure changes from α' to α" when the 

Fig. 1-6 (a) Crystal structure of hcp-α phase [1]. (b) Backscattered electron (BSE) image of Ti-5553 alloy after 
solution treatment (1273 K/60 min/water quenched) and aging (933 K/4 h/furnace cooled) [24]. 
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β-stabilizer content increases above a critical amount. For example, the α' is formed with Mo content up to 

about 6 wt.% in Ti-Mo binary alloys, as shown in Fig. 1-7 [12]. The α'/α" boundary for Ti-Ta binary alloys is 

about 20 wt.% Ta [28]. The α" martensite phase can also form in metastable β-Ti alloy by mechanical 

deformation, which provides additional mechanical driving force to trigger the martensitic transformation. 

The orthorhombic-α" martensite has been reported to play a key role in several mechanical properties of β-Ti 

alloys [12,30,31]. For example, the shape memory effect and superelasticity of Ti-Nb alloys are related with 

the reversible martensitic transformation between β phase and α" martensite phase [30,31]. Meanwhile, the 

orthorhombic-α" martensite leads to the Young’s modulus of β-Ti alloys to the values close to human bones 

(~30 GPa), which is important for the design of advanced biomedical materials [12,32–34]. Furthermore, the 

stress-induced α" martensitic transformation (SIM α") contributes to the plasticity of β-Ti alloys with the 

effect of transformation induced plasticity (TRIP), similar to that in steel [35,36]. The details of the α" 

martensite phase will be given in the present study.  

Extensive studies have been performed on the crystallography and morphology of α" martensite [28,37–

39]. Fig. 1-8 shows a schematic illustration of the lattice correspondence between bcc-β and orthorhombic-α" 

martensite [39]. The face-centered tetragonal (fct) cell is further distorted to form the orthorhombic cell. The 

lattice parameter of the orthorhombic-α" martensite is aα", bα" and cα", where aα" < bα" < cα". The atom 

Fig. 1-7 X-ray diffraction pattern of c.p. Ti and Ti-Mo alloys [12]. 
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positions are (0, 0, 0), (1/2, 1/2, 0), (0, 1-2y, 1/2), (1/2, 1/2-2y, 1/2). The atoms at the face-centered positions 

in the orthorhombic lattice are shifted to complete the β → α" martensitic transformation, indicated by 

arrows in Fig. 1-8(b). The magnitude of this shift is y along the b-axis. According to previous reports 

[37,38], the orthorhombic-α" structure in β-Ti alloys can be described as a transitional phase between the 

hcp-α' (y = 1/6) and bcc-β (y = 0) phases. The magnitude of δ in the α" structure is restricted to 0 < δ < 1/6. 

The lattice parameters of orthorhombic-α" martensite vary with the alloy composition [29,40]. The lattice 

correspondence between β phase and α" martensite is as follows: 

[100]β // [100]α", [010]β // 1/2[011]α", [001]β // 1/2[011]α" 

or [100]α" // [100]β, [010]α" // 1/2[011]β, [001]α" // 1/2[011]β 

 

 

The α" martensite in β-Ti alloys exhibits fine, acicular morphology. Fig. 1-9(a) and (b) show the optical 

micrographs of Ti-10Mo alloy with quenching induced α" martensite [41].  An internal twinning structure 

in α" martensite has been commonly reported, which is associated with the accommodation of the 

transformation strain from β to α" martensite [42]. Most of the literatures have claimed the internal twinning 

structure of α" martensite as {111}α"-type I twinning [41,43]. An example observed by transmission electron 

microscopy (TEM) is shown in Fig. 1-9(c), together with the analysis of selected area electron diffraction 

(SAED) pattern. Meanwhile, <112>α"-type II twinning and {110}α"-compound twinning, have been reported 

within α" martensite plate, depending on the lattice parameters of β and α" martensite phases [43].  

Fig. 1-8 Schematic illustration of the lattice correspondence between β and α" martensite [39]. 
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1.2.2.2.2 The ω phase 

The crystal structure of the ω phase has been determined to be hexagonal with a space group of 

P6/mmm, or trigonal with a space group of P3m1, depending on the extent of transformation from β phase. 

The ω has a hexagonal symmetry upon the complete transformation, while a trigonal system after the 

incomplete transformation. The three atom positions in the cell are (0, 0, 0,), (2/3, 1/3, 1/2), and (1/3, 2/3, 

1/2) for ideal hexagonal, and (0, 0, 0), (2/3, 1/3, 1/2+z), and (1/3, 2/3, 1/2-z) (0< z <0.167) for trigonal 

structure. The ω phase is formed by collapsing one pair of planes to the intermediate position, leaving the 

next plan unaltered and collapsing the next pair and so on. The atomic movements required are ±aβ 3/12 or 

equivalently ±cω/6 for a complete transformation. For a partial collapse (atomic movement < aβ 3/12), the 

trigonal ω is obtained. In addition, as there are 4 equivalent bcc <111>β axes, the ω phase can nucleate in 4 

variants with the following orientation relationship 

<111>β // <0001>ω           and         {110}β // {1120}ω 

Generally, ω phase in the β-Ti alloys can be classified into 3 types depending on their formation 

mechanisms, i.e., athermal ω (ωath), isothermal ω (ωiso), and deformation-induced ω phase [44]. The ωath 

precipitates upon fast cooling from the high temperature β region in β-Ti alloy with sufficient β-stabilizer. 

Fig. 1-9 (a), (b) Optical micrographs of Ti-10Mo showing the acicular α" martensite plates [41]. (c) Bright 
field (BF) image of typical twinning structure in α" martensite of Ti-16Nb-3Al alloy. (d) Selected area 
diffraction (SAD) pattern taken from the encircle region of (a). (c) Key diagram of (b) [39]. 
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The morphology of ωath precipitates exhibits an ellipsoidal shape with 2-10 nm in the diameter. A typical 

TEM image of ωath is illustrated in Fig. 1-10 (a) [45]. The ωiso is formed during aging process at the 

temperature range of 373-773 K.  Furthermore, the size and volume fraction of ωiso increase with increasing 

the holding time and decrease with the quenching rate. The ωiso precipitates can be either ellipsoidal or 

cuboidal in terms of lattice misfits (Fig. 1-10(b) and (c)) [4]. The ωiso has been proved with remarkable effect 

on the mechanical properties, especially increasing the hardness of β-Ti alloys [46]. Extensive studies have 

reported the deformation-induced ω phases in β-Ti alloys upon deformation at room temperature and shock 

loading [44,47,48]. It generally displays plate-like morphology (Fig. 1-10(d)) [49].  

 

1.2.3 Deformation mechanisms  

 
The plastic deformation of metals and alloys involves various mechanisms such as dislocation slip, 

deformation twinning, stress-induced martensitic transformation, or a combination of these. The deformation 

mechanisms in β-Ti alloys with mainly bcc-β phase have been widely studied, which mainly vary from 

stress-induced martensitic transformation to {332}<113>β twinning and then to dislocation slip as the β 

phase stability increases, as shown in Fig. 1-11 [19,20,50]. Stress-induced αʺ martensite (SIM αʺ) is the 

Fig. 1-10 (a) Dark field (DF) TEM image of ωath in air-cooled Ti-10Mo alloy [45]. (b) DF of ellipsoidal ωiso in 
aged Ti-16Mo alloy. (c) DF of cuboidal ωiso in aged Ti-8Fe alloy [4]. (d) DF of deformation-induced ω plates in 
Ti-12Mo alloy [49].  
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dominant deformation mode when the [Mo]eq is in the range of 7.4-12, {332}<113>β twinning for 10-18 

wt.% [Mo]eq, and dislocation slip for [Mo]eq > 20 [19]. For the β-rich Ti alloys with mainly orthorhombic-α" 

martensite phase, the deformation twinning and dislocation slip have been reported [51,52]. However, the 

mechanisms of these deformation behaviors in α" martensite are still not clear. On the other hand, the 

interplay between the different deformation mechanisms significantly affects the mechanical properties of 

the materials.  

1.2.3.1 Deformation mechanisms of bcc-β phase 

1.2.3.1.1 Stress-induced α" martensitic transformation 

Stress-induced α" martensitic transformation (SIM α") has been reported to take place in the less 

stabilized β phase, as indicated in Fig. 1-11 [19]. The crystal structure of α" martensite and the lattice 

correspondence between β phase and α" phase have been well introduced in the section of 1.2.2.2.1. 

Additionally, the triggering stress for the SIM α" transformation in metastable β-Ti alloys has been reported 

to depend on (i) the chemical composition in β phase (or the β phase stability), (ii) the testing temperature, 

and (iii) the microstructure of the alloy [19]. For example, the yield stress is observed to increase with 

increasing the β phase stability and decreasing the α" volume fraction in Ti-Nb-Si alloys [53]. Also, the 

triggering stress for SIM α" has been reported to increase with increasing β grain size up to 300 µm in 

Ti-10V-2Fe-3Al alloy [54]. Most importantly, the SIM α" transformation is great interest for biomedical and 

micromechanics applications because of the resulting shape-memory effect and pseudo-elastic behavior [55]. 

Furthermore, the SIM α" is suggested as a good candidate for reaching a better balance of strength and 

ductility properties of β-Ti alloys, similar to the TRIP steels [36,56]. 

 

Fig. 1-11 The experimental results reported for the deformation mechanisms as function of Mo equivalency in β-Ti 
alloy [19].  
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1.2.3.1.2 {332}<113>β deformation twinning  
 

The bcc metals and alloys usually deform by the well-known twinning mode of {112}<111>β. 

However, a unique twinning mode, {332}<113>β twinning has been reported in β-Ti alloys such as Ti-Nb 

[57], Ti-V (Fig. 1-12) [58], and Ti-Mo (Fig. 1-13) [50] alloys with the reduced amount of β-stabilizers. Fig. 

1-12 shows the TEM images and SAD patterns of {332}<113>β twinning structure in Ti-22V alloy. It has 

been reported that the boundaries of {332}<113>β twins with a misorientation angle of 50.48° along the 

<110>β direction [59], which is very important for identification of {332}<113>β twins with EBSD analysis 

(Fig. 1-13 [50]). 

The decreasing of the β-stabilizers results in the low shear modulus c' ((c11-c12)/2), which reflects the 

resistance to the shear of {110}β planes along <110>β directions. This suggests that the lattice instability of 

bcc-β phase contributes to the activation of {332}<113>β twinning. Meanwhile, Hanada et al. [58] proposed 

that the {332}<113>β twinning is closely related to the stability of β phase with respect to athermal ω phase, 
which is introduced through quenching. Unlike the {112}<111>β twinning mode, in which only atomic 

shearing is necessary for the twin formation, the {332}<113>β twinning mode requires not only shearing, but 

one-half of the atoms much shuffle to their twin positions. Several models of the atomic movements required 

in {332}<113>β twinning have been promoted [60–62]. For example, Tobe et al. [60] have considered the 

lattice instability in bcc-β by proposing a modulated structure with base-centered tetragonal symmetry. They 

Fig. 1-12 (a) TEM-BF image of (3!32)[1!13!] twin in Ti-22V alloy after tension. (b) The corresponding SAD 
pattern with electron beam // [110]. (c) Schematic diffraction pattern of (b) [58].  
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clarified the atomic movement (shearing and shuffling) in the formation of {332}<113>β twinning with the 

theory of crystallography of deformation twinning proposed by Bilby and Crocker [42,63].  

Several studies revealed that the activation of {332}<113>β twinning in β-Ti alloys resulted in a 

significant work-hardening rate and improved ductility, similarly to the twinning-induced plasticity (TWIP) 

effect in steels [20,50,64]. The mechanism of work-hardening in TWIP alloys is now well-explained with a 

dynamic Hall-Petch effect induced by the deformation twins [64]. The twin boundary is acting as the strong 

barrier for the dislocation glide, and the increasing number of twin defects results in a continuous reduction 

of dislocation mean free path, leading to the rise of strength. Min et al. [64] offered a quantitative evaluation 

of {332}<113>β twinning contributing to work hardening in Ti-15Mo alloy. Thus the understanding of 

TWIP effect in terms of {332}<113>β twinning is of great importance for improving the combination of 

strength and ductility. 

 

1.2.3.1.3 Dislocation slip  
 

The bcc-β phase can deform by dominant dislocation slip with the high concentration of β phase 

stabilizers [19]. The slip systems in bcc structure are well understood. The slip system usually operates on 

the most densely packed planes, i.e., {110}β planes. In addition, the slip systems on the {112}β and {123}β 

planes are also observed, all with the Burgers vector of <111>β [65]. In general, deformation mainly by 

dislocation slip results in relatively high yield strength, comparatively low work-hardening rate, and low 

elongation when compared with lower β stabilized alloys deforming mainly by {332}<113>β twinning, as 

shown in Fig. 1-14 [20]. Therefore, the deformation mode of dislocation slip is also playing an important 

role in the improvement of mechanical properties of β-Ti alloys. For example, Min et al. [50] reported in 

Fig. 1-13 EBSD maps of Ti–10Mo–2Fe alloy after tensile strain of 4%. (a) Inverse pole figures (IPF) map for the 
ND. (b) Boundary map. The red line with a misorientation angle of 50.48° along the (110) direction corresponding 
to the {332}<113>β twins [50]. 
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Ti-Mo-based alloys that the combination of deformation modes, i.e., {332}<113>β twinning and slip, can 

enhance the uniform elongation while maintaining high strength.   

1.2.3.2 Deformation mechanisms of orthorhombic-α" martensite 
 

The orthorhombic-α" martensite has been reported to play a key role in the characteristic mechanical 

properties of β-Ti alloys, such as the shape memory effect, superelasticity, and low Young’s modulus 

[30,37,40]. For example, the shape memory effect and superelasticity of Ti-Nb alloys are associated with the 

reversible martensitic transformation [30,31]. Thus, extensive studies have been focused on the 

microstructure and crystallography of the α" martensite. The crystal structure of α" martensite is similar to 

that of α-uranium, and both have an orthorhombic structure. Furthermore, the plastic deformation of 

α-uranium has been investigated, including the twinning and dislocation slip [66,67]. However, the plastic 

deformation mechanism of α" martensite phase has not been well studied.   

Recently, Bertrand et al. [51] have reported that the α" martensite in Ti-25Ta-20Nb (wt.%) alloy 

deforms by plastic twinning with a {130}<310>α" twinning system, as shown in Fig. 1-15. It has also been 

identified in Ti-27Nb (at.%) alloy [68]. This twinning system has been reported with a strong 

correspondence with the {332}<113>β twinning in the bcc-β phase. Besides, Ping et al. [52] have found the 

deformation twinning of {110}α"-type I in a Ti-40Nb (wt.%) alloy, which involves the smallest shear 

Fig. 1-14 True stress-strain curves for as-quenched commercial β-Ti alloys with different β phase stabilities [20]. 
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magnitude during the twin formation. This result consistent with the crystallographic analysis of deformation 

twinning proposed by Bilby and Crocker [63,69]. The deformation twinning system is suggested to depend 

on the lattice parameters of α" martensite, which changes significantly with the alloy composition. Therefore, 

like the various twinning systems reported in α-uranium, there is a high possibility of other deformation 

twinning systems existing in the α" martensite of β-Ti alloys.  Nevertheless, there is still a lack of 

knowledge on the deformation mechanisms of α" martensite.   

 

 

1.3 Ti-Mo alloys 
 

The minimum concentrations of the β-stabilizers, Mo, Nb, and Ta to retain the fully β phase upon 

quenching are 10, 22 and 70 wt.%, respectively for Ti-Mo [12], Ti-Nb [29], and Ti-Ta [28] alloys. Therefore, 

Ti–Mo alloys have received much attention because of the remarkable β-stabilizing effect and the favorable 

safety of Mo. Extensive fundamental studies have been carried out on the microstructure and mechanical 

properties of Ti-Mo alloys [12,13,36]. As mentioned before, Ho et al. [12] studied the microstructure of 

Ti-Mo binary alloys after water quenching and found that α' martensite was formed in the alloy containing 

Mo < 6 wt.%, αʺ martensite in 6~10 wt.% Mo, and the retained β phase became dominant when Mo exceed 

10 wt.%, as shown in Fig. 1-16. Sun et al. [36] have reported pronounced work-hardening in Ti-12Mo alloy 

which combines deformation modes of SIM αʺ and {332}<113>β twinning. With the superior properties 

such as low Young’s modulus, good balance of strength and ductility, excellent biocompatibility, Ti-Mo 

alloys as biomaterials have been studied [70,71]. Up to now, Ti-7.5Mo [12,13] and Ti-15Mo [14] alloys have 

been developed with low Young’s modulus. Besides, Ti-15Mo alloy exhibits an extremely high crevice 

corrosion resistance in seawater at a high temperature of 373K. Recently, the Ti-7.5Mo alloy has been 

reported with much lower Young’s modulus (~65 GPa) [14]. Furthermore, Lin et al. [18] reported that a 

greater amount of new bone was formed at the Ti-7.5Mo alloy than the Ti-6Al-4V alloy after implantation in 

the rabbit femur, Fig. 1-17, which indicates good bone-implant interaction of Ti-7.5Mo alloy. Therefore, the 

Fig. 1-15 EBSD maps of Ti-25Ta-20Nb alloy strained until 6%: (a) band contrast (BC). (b) Euler angles obtained 
from indexation with the α" phase and (c) Euler angles obtained from indexation with the β phase [51]. 
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Ti-7.5Mo alloy has been described as a promising candidate for implant material and it is attracting more and 

more research attentions.  

Furthermore, various alloying elements were added in Ti-Mo-based alloys to improve the mechanical 

properties and shape memory effect of the binary alloys. Min et al. [72] have developed a series of Ti-Mo-Fe 

alloys by replacing the costly Mo content with Fe element, which is also an effective β-stabilizer. They 

reported a Ti-10Mo-2Fe alloy that exhibited a considerable balance between strength and ductility by 

combining the deformation modes of {332}<113>β twinning and slip [72]. Besides, the superelasticity and 

shape memory effect have been found in Ti-Mo-Ag [73], Ti-Mo-Sn [73] and Ti-Mo-Ga [74] alloys. They 

have been developed as Ni-free superelasticity and shape memory alloys that could replace Ti-Ni, which has 

been suspected of producing allergenic and carcinogenic reactions from the Ni content.  

 

 

 

 

 

 

Fig. 1-16 Optical micrographs of as-quenched Ti-Mo binary alloys with different Mo contents. These alloys 
are composed of different phases, as indicated in the image [12].  
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1.4 Research aim and scope 
 

It is widely acknowledged that the mechanical properties of metals and alloys depend significantly on 

the deformation mechanisms such as stress-induced martensitic transformation, deformation twinning, and 

dislocation slip. Literatures show that deformation mechanisms of β-Ti alloys containing bcc-β phase are 

widely studied. However, there is not enough study focused on the mechanisms of plastic deformation of 

orthorhombic-αʺ martensite, which is also important for the improvement of mechanical properties of β-Ti 

alloys. Meanwhile, the recently developed Ti-7.5Mo alloy with low Young’s modulus and good 

biocompatibility great potential for biomedical applications is regarded as a promising candidate for implant 

material. However, the Ti-7.5Mo alloy with fully α" martensite exhibits the main drawback of relatively low 

mechanical strength compared to other β-Ti alloys with bcc-β phase [17]. It is widely recognized that the 

deformation mechanisms significantly influence the mechanical properties of β-Ti alloys with bcc-β phase 

[19,20]. Thus, a better understanding of the deformation behaviors of α" martensite is suggested essential for 

the improvement of mechanical properties of Ti-7.5Mo alloy and other β-Ti alloys with α" martensite. 

Meanwhile, it is well established that the mechanical properties of titanium alloys are sensitively dependent 

on the interstitial solutes such as oxygen, nitrogen, carbon, and hydrogen [7,21,75]. Extensive efforts have 

revealed oxygen as an effective element to improve the strength of titanium alloys due to its solid-solution 

strengthening effect [75,76]. However, the influences of oxygen on the properties of orthorhombic-α" 

martensite in Ti-Mo alloys are still not clear. 

As a unique twin mode in bcc metals and alloys, ββ twinning has been frequently observed in Ti-Mo, 

Ti-Nb, Ti-V and Ti-Cr alloys [19,58,77]. Several studies have revealed that the {332}<113>β twinning in 

Fig. 1-17 An overview of new bone formation on major parts of the implant within the femur of rabbits, 
including Ti-7.5Mo (a)-(c) and Ti-6Al-4V (d)-(f). NB and BM indicate the new bone and bone marrow, 
respectively [18]. 
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β-Ti alloys results in a high work-hardening rate and improved ductility, similar to the TWIP steels [36,78]. 

The mechanism of pronounced work-hardening induced by the twinning can be well-explained by a dynamic 

Hall-Petch effect [79]. Some investigations revealed that the mechanical properties and deformation 

mechanisms of β-Ti alloys have a strong dependence on the strain rate [77,80,81]. However, there is a lack 

of understanding regarding the mechanism of strain rate dependence of work-hardening behavior in β-Ti 

alloys, in particular, about the effect of {332}<113>β twinning. 

Therefore, the present thesis firstly focused on deformation mechanisms of as-quenched α" martensite 

in the Ti-7.5Mo alloy. The experimental observations and crystallographic analysis were performed. Then, in 

order to improve the strength while keeping the low Young’s modulus of the Ti-7.5Mo alloy, the effect of 

oxygen content on the microstructure and mechanical properties of the Ti-7.5Mo alloy have been 

investigated. The last part of the thesis was to investigate the effect of strain rate on the tensile deformation 

behaviors in a β-Ti alloy showing TWIP effect. We focused on a Ti-10Mo-1Fe (wt.%) alloy which deforms 

mainly by {332}<113>β twinning [50]. The work hardening behavior was investigated by monotonic tensile 

tests at different strain rates ranging from 2.8x10-5 s-1 to 2.8x10-1 s-1. The correlation between the 

work-hardening behavior and microstructure evolution was discussed.   
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Chapter 2 Materials and experimental methods 
2.1 Materials preparation 

2.1.1 Ti-7.5Mo-xO alloys 

The ingots of Ti-7.5Mo-xO (x = 0, 0.2, 0.3, 0.4 and 0.5 (wt.%), nominal composition) alloys were 

prepared by cold crucible levitation melting under Ar gas atmosphere. The amount of oxygen was controlled 

by the addition of TiO2. The weight of each ingot was around 1 kg. After solidification, the ingots were hot 

forged at 1273 K to 40% thickness reduction and thereafter hot rolled at 1173 K into plates of 290 mm 

(length, l) × 50 mm (wide, w) × 10 mm (thickness, t) with 75% thickness reduction followed by air-cooling. 

The materials were subsequently solution-treated at 1173 K for 1 hour followed by water quenching. The 

schematic drawing of the sample preparation processing is illustrated in Fig. 2-1. Here, the principal axes of 

the hot-rolled plates are defined as RD (rolling direction), ND (normal direction to the rolling plane) and TD 

(transverse direction). 

2.1.2 Ti-10Mo-1Fe alloy 

The ingot of Ti-10Mo-1Fe (wt.%) alloy was also prepared by cold crucible levitation melting under Ar 

gas atmosphere. After solidification, the ingot was hot forged at 1273 K into the block of 90 mm (l) × 40 mm 

(w) × 40 mm (t). However, the block was further hot rolled at 1173 K into the 14.3 mm square bar, followed 

by air-cooling. Then the solution-treatment was performed at 1173 K in the single β phase region for 1 hour, 

followed by water quenching, as shown in Fig. 2-1. 

 

Fig. 2-1 Schematic drawing of the heat treatment for Ti-7.5Mo alloy (plate shape) and Ti-10Mo-1Fe (bar plate) with 
different oxygen contents. CCLM, AC, WQ refer to cold crucible levitation melting, air-cooling and water 
quenching, respectively. 
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2.2 Mechanical tests 

2.2.1 Tensile tests 

In order to investigate the tensile behavior and strain rate dependence of prepared Ti-alloys, the uniaxial 

tensile tests were carried out on an INSTRON 5581 testing machine with a 10 mm gauge length clip-on 

extensometer to record the strain. Fig. 2-2 shows the parameters of tensile specimens with a gauge length of 

18 mm (l) x 4 mm (w) x 2 mm (t). They were cut by electric discharge machine. The tensile axis (TA) was 

parallel to RD. The tensile behaviors of Ti-7.5Mo-xO alloys were investigated at a constant strain rate of 

2.8x10-4 s-1. In order to track the microstructure evolution of Ti-7.5Mo alloy, mechanically polishing was 

performed prior to tensile deformation with emery paper of #320, and then changed to SiO2 colloidal 

suspension with particle size from 9 µm to 3 µm, finally the sample was polished and etched together with a 

mix of Mastermet (colloidal silica suspension with a particle size of 0.06 µm): H2O2 = 4:1 (in volume 

percent) to a mirror surface. In order to study the effect of strain rate on the work-hardening behavior of 

Ti-10Mo-1Fe alloy, tensile tests were carried out at 5 different strain rates of 2.8x10-5, 2.8x10-4, 2.8x10-3, 

2.8x10-2 and 2.8x10-1 s-1, respectively. All the tensile tests were carried out at an ambient temperature.  
 

2.2.2 Micro-hardness tests 

The hardness properties of prepared Ti-alloys were measured using a Vickers micro-hardness tester 

(Matsuzawa MMT-X) with a load of 100 g for a loading time of 15 s. The specimens were cut after 

solution-treatment and the RD-TD planes were mechanically polished to mirror surfaces. Then the tests were 

performed with a load of 100 g for a loading time of 15 s. In order to achieve the reliable results, 50 indents 

were tested for each sample and the average values were used.  

2.3 Microstructure characterizations  

2.3.1 X-ray diffraction 

In the present study, XRD analysis was performed on a Rigaku TTR III instrument (Fig. 2-3) with 

Cu-Kα radiation (λ = 1.541 Å), operated at 40 kV-50 mA. For the phase identification in Ti-7.5Mo-xO 

alloys, the scanning condition was set with a step size of 0.02° and a scan speed of 0.5-2°/min. The surface 

Fig. 2-2 Parameters of tensile specimen. The tensile axis (TA) is parallel to RD.  
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of specimens was prepared by mechanically polish and followed by etching with a solution of Mastermet and 

H2O2 (4:1 by volume) to a mirror condition. 

 

2.3.2 Scanning electron microscope 

In the present study, a Σigma-Zeiss field emission scanning electron microscope (FE-SEM) was used 

for microstructure characterization. It is equipped with a backscattered electron (BSE) detector and an 

electron backscattered diffraction (EBSD) detector by TSL orientation imaging microscopy (OIM) system. 

EBSD maps were obtained at 20 kV with a step size ranging between 20-1500 nm and a working distance 

between 15-20 mm. The data was analyzed by a TSL OIM data analysis software.  

In addition, electron channeling contrast imaging (ECCI) technique was used as an effective method for 

the high-resolution microstructure observation especially for the thin αʺ martensitic plate. The BSE intensity 

Fig. 2-3 Rigaku TTR III instrument with three main parts of sample holder in the middle, X-ray source on the 
left arm and Detector on the right arm. 
 

Fig. 2-4 (a) Schematic diagram of ECCI technique with illustration of the BSE intensity change by the local lattice 
plane tilting near a dislocation [3]. (b) ECCI image of dislocation taken in a lightly deformed FeSi alloy [2].  
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varies rapidly on the orientation of the crystal lattice planes with the electron channeling mechanism. Thus 

the slight distortion of crystal lattice caused by strain fields could be identified as the change of BSE signal 

by effective BSE detectors. Based on this, ECCI could record the crystal defects in high-resolution even 

dislocations could be clearly identified in SEM machine [2]. Fig. 2-4 (a) shows the mechanism of ECCI 

technique [3] and Fig. 2-4 (b) shows an example of ECCI image of single dislocations in a lightly deformed 

FeSi alloy [2]. In the present study, ECCI observations were carried out in the Σigma-Zeiss FE-SEM with a 

voltage between 5 kV and 10 kV and the working distance ranging from 5 mm to 10 mm with sample 

slightly tilting less than 3°.  

 

2.3.3 Focused ion beam 

For TEM observations, the site-specific samples were prepared using a dual-beam focused ion beam 

(FIB) technique in a FIB-SEM Auriga Zeiss instrument. An example is the secondary electron (SE) image by 

SEM shown in Fig. 2-5, where the in-depth TEM sample was fabricated in Ti-7.5Mo alloy. This sample was 

subsequently lifted out by a manipulator, then mounted onto a silicon grid and milled to become 

electron-transparent. A Pt layer was deposited on the sample surface before FIB milling to avoid any surface 

damage. 

2.3.4 Transmission electron microscope 

TEM observations were performed using a JEOL JEM-2000FX and a JEOL JEM-2100F microscope 

operated at 200 kV. The goniometer on the JEOL JEM-2000FX can be tilted of ± 45° x and ± 30° y, which 

offers large space to obtain the electron diffraction patterns. High-resolution TEM (HRTEM) images were 

Fig. 2-5 An example of secondary electron (SE) image of TEM-sample taken from a αʹʹ martensite 
plate in Ti-7.5Mo alloy. 
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taken on the JEOL JEM-2100F microscope with a probe size under 0.5 nm. TEM thin foils were prepared by 

a Struers Tenupol-3 twin-jet electropolishing machine. The specimens were firstly mechanically polished to 

a thickness of 100 µm and then disks of 3 mm diameter were punched. Then the twin-jet electron polishing 

was performed with a solution of methanol, 1-butanol, and perchloric acid (13:6:1 in volume) at ~238 K and 

at the voltage of 20 V.  

2.4 Thermal stability measurements 
In order to predict the phase transformation behavior, differential scanning calorimeter (DSC) 

measurements were carried out using a Netzsch STA-449F3 instrument at heating and cooling rate of 10 

K/min in an Ar atmosphere. The sample with a mass of ~25 mg was put in an alumina crucible, while the 

reference crucible is generally kept empty during the measurement.  
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Chapter 3 Deformation twinning in as-quenched α" martensite in 
Ti-7.5Mo alloy 

3.1 Introduction 
 

β titanium alloys such as Ti-Mo, Ti-Nb, Ti-Ta-Nb-Zr, Ti-Zr alloys have been widely used in biomedical 

applications, due to their excellent properties such as low Young’s modulus, superior biocompatibility, high 

corrosion resistance, and shape memory effect [1-3]. One characteristic of β-Ti alloys is the martensitic 

transformation from bcc-β to orthorhombic-α" upon quenching or deformation. The phase transformation 

strongly depends on the amount of β-stabilizing elements such as Mo, Nb, and Ta [4-7]. The 

orthorhombic-α" martensite has been reported to play an important role in characteristic mechanical 

properties of β-Ti alloys [4-9]. For example, the shape memory effect and superelasticity of Ti-Nb alloys are 

associated with their reversible martensitic transformation between the β phase and α" martensite phase [7, 

10]. Meanwhile, the α" martensite has been found to decrease Young’s modulus of β-Ti alloys close to the 

values of human bones (~30 GPa), which is critical for the design of advanced biomaterial [4,11–13]. Ho et 

al. [4] reported that the Ti-7.5Mo (wt.%) alloy with fully α" martensite has the lowest Young’s modulus (~65 

GPa) in the Ti-Mo binary alloy system. In addition, this alloy also exhibits good bone-implant interaction 

[14], which makes it as a promising candidate for implant applications [15,16].  

Extensive studies have been focused on the crystal structure and morphology of α" martensite [17–20]. 

Brown et al. [17] have reported that α" martensite contains a disordered crystal structure with the space 

group of Cmcm. The lattice parameters of α" martensite are strongly sensitive to the alloy composition 

[7,9,18,21]. On the other hand, the occurrence of an internal transformation twinning structure in the α" 

martensite has been commonly reported. This structure is associated with the accommodation of the 

transformation strain from β to α" martensitic transformation [22]. Different transformation twinning modes 

have been reported such as {111}α"-type I [19,23–25], <211>α"-type II [19,26], and {110}α"-compound 

twinning [19,27,28]. The activation of these twinning modes strongly depends on the lattice parameters of β 

and α" martensite phases and hence on the alloy compositions [19,29]. For instance, Inamura et al. [19] 

investigated the transformation twinning modes in a Ti-(33-46)Nb-3Al (wt.%) alloys and found that, 

{111}α"-type I and <211>α"-type II twinning were formed in lower Nb content ( < 37 wt.%) and 

{110}α"-compound twinning in higher Nb content ( > 37 wt.%).  

Despite the advantages of low Young’s modulus and good biocompatibility, the metastable Ti-Mo 

alloys with fully α" martensite exhibits the main drawback, which is the relatively lower mechanical strength 

compared to stable β-Ti alloys [30,31]. Excellent mechanical properties, combining high strength and low 

Young’s modulus, are required for the design of biomaterials [2]. In β-Ti alloys, it has been reported that 

deformation mechanisms such as {332}<113>β deformation twinning have a key role on the work-hardening 

behavior and hence on the mechanical properties by the so-called twinning-induced plasticity (TWIP) effect 

[33–35]. In metastable β-Ti alloys, a better understanding of the deformation mechanisms of α" martensite is 
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essential for the enhancement of mechanical properties. So far few reports have analyzed the deformation 

twinning of α" martensite, mainly in Ti-Nb [28,36] and Ti-Ta-Nb [26] alloy systems. However, to the 

authors’ knowledge, the deformation mechanisms of α" martensite in the Ti-Mo alloy system has not yet 

been investigated.  

Therefore, the aim of this study is to investigate the deformation twinning structure of α" martensite in 

the metastable β Ti-Mo alloy system. We have analyzed the as-quenched and deformed microstructures of α" 

martensite in a Ti-7.5Mo (wt.%) alloy by an experimental approach combining SEM and TEM. A 

microstructural patch of interest was tracked upon tensile deformation to a strain level of 5% by SEM, 

followed by TEM characterization of deformed microstructure in a FIB-fabricated sample. The as-quenched 

α" martensite consists of {111}α"-type I transformation twinning. Upon straining, a new deformation 

twinning mode, namely, {112}α"-type I twinning, was identified for the first time in metastable β-Ti alloys. 

The possible twinning modes in the orthorhombic-α" martensite were analyzed based on the crystallographic 

twinning theory by Bilby and Crocker [37,38]. The mechanism of the observed {112}α"-type I twinning 

mode is explained based on the characteristic atomic shears and shuffles.  

3.2 Results  
 

The deformation mechanisms of as-quenched α" martensite were investigated by the correlative 

SEM/TEM method schematically shown in Fig.1. The as-quenched state was firstly evaluated by BSE and 

EBSD. Subsequently, the sample was tensile deformed to 5% strain and an area of interest was tracked by 

BSE and EBSD without any additional grinding or polishing. Thereafter, a TEM sample was cut from a 

martensite plate and lifted out by a manipulator by using a dual-beam FIB in a FIB-SEM Auriga Zeiss 

instrument. A Pt layer was deposited on the sample surface before FIB milling to avoid any surface damage. 

 

Fig. 3-1 Experimental method for the characterization of deformation microstructure. 
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3.2.1 As-quenched microstructure 
 

Fig. 3-3 (a) Backscattered electron (BSE) image showing the as-quenched microstructure. (b) Corresponding inverse 
pole figure (IPF) map of the region in (a). (c) Higher magnification of the αʹʹ plates taken from the region indicated 
in (a), and its IPF combined with image quality (IQ) map is shown in (d). 
 
 

Fig. 3-2 X-ray diffraction profile of as-quenched Ti-7.5Mo alloy. 
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Fig. 3-2(a) shows the XRD profile of the as-quenched Ti-7.5Mo alloy from 1173 K. The result reveals 

that the as-quenched state mainly consists of the orthorhombic-α" martensite phase with lattice parameters 

of aα" = 0.3002 ± 0.0001 nm, bα" = 0.5033 ± 0.0005 nm, and cα" = 0.4680 ± 0.0005 nm. Furthermore, the 

inset of Fig. 2(a) indicates the existence of retained bcc-β phase, as shown from the (200)β reflection at 2θ = 

55.8°. This indicates that the β→α" phase transformation is almost completed upon quenching, which agrees 

with former reports [4,39]. The BSE image (Fig. 3-3(a)) and EBSD- IPF map (Fig. 3-3(b)) reveal the 

acicular morphology of α" martensite plates, which are uniformly distributed throughout the parent β grain. 

In particular, EBSD reveals that a low fraction (<5 %) of β phase is retained at the parent grain boundaries 

(indicated by dashed lines in Fig. 3-3(b)). The higher magnification images of Figs. 3-3(c) and Figs. 3-3(d) 

indicate that the α" martensite plates with an average thickness of about 2 µm contain internal twinning 

structures. These twinning structures are believed to accommodate the transformation strains from bcc-β to 

orthorhombic-α" upon quenching, hereafter named as transformation twinning.  

Fig. 3-4 (a) TEM image of the athermal αʹʹ martensite with internal twinning structure. (b) SAED pattern of the red 
circled area in (a) with the zone axis of [110]αʹʹ. (c) and (d) Dark field (DF) images taken from matrix the 
diffraction spots of matrix and twin in (b), respectively. The subscripts “M” and “T” denote matrix and twin, 
respectively. 
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TEM characterizations were performed on the as-quenched Ti-7.5Mo alloy. The α" martensite plate 

with internal twinning structure is shown in Fig. 3-4(a). Fig. 3-4(b) shows a SAED pattern taken from the 

region shown in Fig. 3-4(a). The SAED pattern consists of two sets of reflections from [110]α"M and [110]α"T 

crystallographic orientations (M: matrix; T: twin). It can be seen that the two crystal orientations contain a 

mirror symmetry with respect to the (111)α"M//T plane. This result indicates that the internal twinning 

structure of α" martensite plates contains a {111}α" twinning plane, and accordingly, they are {111}α"-Type I 

twins [40]. Fig. 3-4(c) and Fig. 3-4(d) show the dark field (DF) images of the matrix and twin plates, which 

are taken from the circled spots in Fig. 3-4(b), respectively. As shown in Fig. 3-4(d), the twin plates are very 

thin (thickness between 20 and 150 nm) and fully aligned along {111}α" planes. Fig. 3-5(a) shows the 

high-resolution TEM (HRTEM) image of the twin structure. The magnified HRTEM image of the 

matrix/twin interface is illustrated in Fig. 3-5(b). It can be observed that the lattice fringes of twin and matrix 

distribute symmetrically about the twin interphase ((110)α"M//T plane), which indicates that the {111}α" 

twinning plane is coherent, consistent with the previous reports [25,41]. In addition, the lattice fringes with 

the spacing of 0.47 nm corresponding to the (001)α"M plane of α" matrix is visible in Fig. 3-5(b), consistent 

with the results of cα" calculated from XRD profile (Fig. 3-2). Fig. 3-5(c) shows the Fourier filtered 

transformation (FFT) image corresponding to the electron diffraction pattern, which indicates the {111}α" 

twinning plane. 

 

Fig. 3-5 (a) High resolution TEM (HRTEM) image of the twin interface structure. (b) Higher magnification of 
the αʹʹ plates taken from the region indicated in (a). (c) Corresponding fast Fourier transformation (FFT) 
diffraction pattern of (a). 
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3.2.2 Tensile property 
 

Fig. 3-6 shows the true stress-strain curve of the Ti-7.5Mo alloy with fully α" phase tensile deformed at 

an initial strain rate of 2.8×10-4 s-1. The corresponding work hardening rate (𝜃 = 𝑑𝜎 ⁄ 𝑑𝜀, where σ and ε are 

the true stress and true strain, respectively) curve is also displayed in Fig. 3-6. The present Ti-7.5Mo alloy 

exhibits excellent tensile properties, combing high strength (ultimate tensile strength of 700 MPa), good 

ductility (uniform elongation close to 18% before the onset of necking, where σ equals θ) and significant 

work hardening (θ=2400 MPa at ε= 5%). The work hardening rate illustrates a sharply decreasing stage at 

strain up to 3%, followed by a gradually decreasing stage until the end of uniform plastic deformation (ε= 

18%).  

3.2.3 Deformation mechanism 

3.2.3.1 Deformation twinning 
 

Fig. 3-7 shows the results of ex-situ tensile test conducted on a pre-polished tensile sample. The ECCI 

image in Fig. 3-7(a) displays the as-quenched microstructure containing internal twined and non-twined 

plates. The corresponding microstructure with 5% strain is shown in Fig. 3-7(b). High magnification ECCI 

images of Fig. 3-7(c) and (d) are taken from the framed regions in Fig. 3-7(a) and (b), respectively, 

displaying the occurrence of several deformation bands (indicated by the red lines in Fig. 3-7(d)) induced by 

tension. The corresponding inverse pole figure (IPF) image (Fig. 3-7(e)) indicates a twinning relationship 

between the matrix and deformation-induced lamellas sharing different orientation. Two variants of 

deformation bands (V1 and V2) can be identified throughout the α" plate, as shown in Fig. 3-8(a). Fig. 3-8(b) 

shows the point-to-origin misorientation profile along the arrow in Fig. 3-8(b). The two variants of 

deformation bands (V1: [230]//TA and V2: [291]//TA) have different orientations with the α" matrix 

Fig. 3-6 True stress-strain curve of the Ti-7.5Mo alloy. 
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([305]//TA) and both have a misorientation angle of 86.5° with the α" matrix. These results indicate that the 

activated deformation twins have the same twinning system.    

Further characterization was performed by TEM on a FIB lift-out specimen from the region marked in 

Fig. 3-7 Sequential electron channeling contrast images (ECCIs) showing the microstructure evolution of as-quenched 
state, (a), and 5% strain, (b). The tensile axis (TA) is horizontal respect to the images. The deformation band structures 
are indicated by red arrows. Higher magnification images of (c) and (d) taken from the white boxed regions in (a) and 
(b), respectively. (e) SE image of FIB-fabricated sample taken from the region shown in (b). 

 

Fig. 3-8 (a) Corresponding IPF image of Fig. 3-7(d). (b) Misorientation angles of the points along the arrow 
shown in (e).  
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Fig. 3-7(d), and the results are displayed in Fig. 3-9 and Fig. 3-10. Fig. 3-9(a) shows a low magnification 

overview of the deformation band. The SAED pattern (Fig. 3-9(d)) and its key diagram (Fig. 3-9(e)) reveal a 

twinning relationship between the deformation band and α" matrix. More specifically, the twinning plane is 

indexed as (112)α". This result indicates that the observed deformation bands accordingly corresponds to 

{112}α"-Type I deformation twins. It is consistent with the results of Figs. 3-10(a) and 3-10(b), which show 

the HRTEM image of the twin/matrix interface and the corresponding SAED pattern with zone axis of 

[110]α"M//[110]α"T, respectively. The HRTEM image of Fig. 3-10(a) also indicates the mirror inversion 

symmetry around the reciprocal direction of (112)α"M//T. Therefore, the deformation bands can be 

characterized as {112}α"-type I deformation twins. To the authors’ knowledge, the activated deformation 

twinning mode, i.e., {112}α"-type I deformation twinning, has never been reported in the α" martensite in 

β-Ti alloys. Furthermore, Fig. 3-10(a) shows that the angle between (110)α"M and (110)α"T lattice planes is 

about 86.5°. The SAED pattern (Fig. 3-10(b)) reveals a rotation of 86.5° about the [110]α" crystallographic 

axis between the crystal matrix (solid line) and the twin (dashed line), consistent with the misorientation 

angle measured by EBSD as shown in Fig. 3-8(b). In addition, Fig. 3-9(a) also exhibits the occurrence of 

parallel striations along the α" matrix, as indicated by white arrows. These structures have been frequently 

observed in the as-quenched α" martensite in β-Ti alloys and have been ascribed to the formation of stacking 

faults due to basal plane shuffling [19,41–43].  

 

 

Fig. 3-9 (a) TEM image of the lamella prepared by FIB from the location indicated in Fig. 3-7(b). (b-d) SAED 
patterns taken from the circled regions indicated in (a). The incident beam is parallel to [𝟎𝟐!𝟏]α"M //[𝟎𝟐𝟏!]α"T.   
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3.2.3.2 Twin-Twin intersection 
 

The deformation twinning structures were not only observed in the non-twinned α" plate (Fig. 3-10(b)), 

also demonstrated in the α" plate containing pre-existed transformation twinning. An example of the α" plate 

is shown in Fig. 3-11. The ECCI image in Fig. 3-11(a) displays the as-quenched α" plate, containing 

alternating transformation twins. The corresponding microstructure with 5% strain is in shown in Fig. 

3-11(b). Deformation twinning structures are activated upon deformation. A higher magnification ECCI 

image taken from the region marked in Fig. 3-11(b), displaying the configuration of interaction between 

deformation twinning and transformation twinning. Here the transformation twinning is crossed twinning 

with twin boundaries indicated by green lines, while the deformation twinning is crossing twinning with twin 

boundaries indicated by red lines. It is clear that the intersection of deformation twinning and transformation 

twinning is accomplished by the activation of secondary twinning (indicated by yellow lines) in the crossed 

twin. For the identification of the twinning structures in the intersection region, further characterization such 

as TEM observation is necessary. 

Fig. 3-10 (a) HRTEM image of deformation twin shown in Fig. 3-8(a). (b) Corresponding SAED pattern with the 
zone axis of [𝟏!𝟏𝟎]α"M //[𝟏𝟏!𝟎]α"T.  

 



 Chapter 3 Deformation twinning in as-quenched α" martensite in Ti-7.5Mo alloy  
 

 40 

 

Fig. 3-11 (a) ECCI figure showing the as-quenched αʹʹ martensite with internal transformation twins. (b) 
Corresponding deformation microstructure of (a) with 5% strain. The tensile axis is horizontal to the images. (c) 
Magnified ECCI of the frame region shown in (b). The secondary twin (yellow) is observed in the crossed 
transformation twin (green) after the intersection of crossing deformation twin (red) and transformation twin.  

 

Fig. 3-12 (a) ECCI figure showing the as-quenched αʹʹ martensite plate. (b) Corresponding deformation 
microstructure of (a) with 5% strain. The tensile axis is horizontal to the images. (c) and (d) Corresponding IPF 
combined with image quality (IQ) maps of (a) and (b), respectively. 
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3.2.3.3 Dislocation slip 

In addition to the deformation twinning, the dislocation slips have also been induced by deformation. 

An example is shown in Fig. 3-12. Fig. 3-12(a) shows ECCI image of an as-quenched α" martensite plate 

and Fig. 3-12(c) shows the corresponding IPF with image quality (IQ) map. With 5% strain, the ECCI image 

of deformation microstructure is shown in Fig. 3-12(b) and the IPF+IQ image is shown in Fig. 3-12(d). The 

high density of dislocation slips can be observed, which shear the same orientation with the α" matrix. 

Meanwhile, two slip systems are activated upon deformation, as indicated by yellow lines in Fig. 3-12(b).  

3.3 Discussion 
The present study reveals that two different twinning modes are activated in the orthorhombic-α" 

martensite structure, i.e., {111}α"-Type I transformation twinning and {112}α"-Type I deformation twinning. 

Crystallographic analysis of these two twinning modes will be discussed individually. 

3.3.1 {111}α"-Type I transformation twinning 
 

From a crystallographic standpoint, the twinning structure is formed as a result of a lattice invariant 

shear (LIS) to accommodate the martensitic transformation strain [44,45]. In the orthorhombic-α" martensite 

structure, Inamura et al. [19] have proposed an approach to predict the transformation twinning system for 

LIS, which is based on the infinitesimal deformation theory [46]. The principal strains of the lattice 

correspondence variant between β and α" phase are given as follows: 

𝜑! =
𝑎!" − 𝑎!
𝑎!

                                                                                   3 − 1 

𝜑! =
𝑏!" − 2𝑎!

2𝑎!
                                                                                   3 − 2 

𝜑! =
𝑐!" − 2𝑎!

2𝑎!
                                                                                   3 − 3 

where aα", bα", cα", are the lattice parameters of α" martensite and aβ is the lattice parameter of β phase. Based 

on the Inamura-approach, the transformation twinning depends significantly on the sign of φ3. {111}α"-Type 

I twinning or <211>α"-Type II twinning are possible when φ3 > 0, otherwise {011}α"-compound twinning is 

activated when φ3 < 0. However, <211>α"-Type II twinning is not considered here since it has been rarely 

observed in previous reports [19,36,47]. Considering the lattice parameters of the present alloy (cα" = 0.4680 

nm; aβ = 0.3272 nm [48]), we obtain φ3 = 0.011. Accordingly, {111}α"-Type I twinning is favored in the 

present Ti-7.5Mo alloy, which agrees with the results shown in Fig. 3-4 and Fig. 3-5. 
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3.3.2 {112}α"-Type I deformation twinning 

The crystallographic analysis of deformation twinning is commonly treated by the Bilby-Crocker model 

[49]. This model has been widely used to analyze the twinning modes in different lattice structures such as 

fcc [50], bcc [51], hcp [52] and lower symmetry structures [28,38]. In this model, deformation twinning is 

described by four crystallographic elements, namely, K1, K2, η1 and η2 (Fig. 3-13), where K1 is the twinning 

plane, η1 is the twinning direction, K2 is the reciprocal or conjugate twinning plane, and η2 is the reciprocal or 

conjugate twinning direction. In particular, the Bilby-Crocker model predicts that there are 82 possible 

twinning modes including 41 twinning modes and their reciprocals in the orthorhombic double lattice crystal 

structure [38]. Five of these twinning modes have been experimentally reported in α-uranium [53], which has 

an orthorhombic structure. In the present case, we describe the α" martensitic structure as an 

orthorhombic-α" structure double lattice crystal structure and hence analyze the twinning modes by the 

Bilby-Crocker model. The crystallographic analysis is as follows.     

The β→α" martensitic transformation in β-Ti alloys has been reported with Au-Cd type lattice 

correspondence (Fig. 3-14(a)) [19]. The α" martensitic structure has been described as a disordered 

orthorhombic structure with the space group Cmcm, Fig. 3-14b [17,54]. The atoms at the face-centered 

positions (red circles in Fig. 3-13(b)) are shifted to complete the β → α" martensitic transformation. The 

magnitude of this shift is δ along the b-axis (black arrows in Fig. 3-14(b)). According to previous reports 

[8,18], the orthorhombic-α" structure in β-Ti alloys can be described as a transitional phase between the 

hcp-α’ (δ = 1/6) and bcc-β (δ = 0) phases. The magnitude of δ in the α" structure is restricted to 0 < δ < 1/6. 

In the present alloy, we have estimated the value of δ from the HRTEM image of the as-quenched α" 

structure shown in Fig. 3-14(c). From the intensity profile shown in Fig. 3-14(d), we obtain a value of 1/2-δ 

~ 0.35 and hence, we take δ as 0.15. This result agrees with the value of δ (~0.157) determined by Li et al. 

[18] by first-principles calculation for the Ti-7.5Mo alloy system. Subsequently, the shifted atoms result in 

the combination of two interpenetrating orthorhombic lattices. Thus, we consider that the disordered 

K1 

K2 

P 

η1 

η2 

 2θ 

Fig. 3-13 The four crystallographic twinning elements. The twinning and the conjugate twinning planes are K1 and 
K2 and the twinning and conjugate twinning directions are η1 and η2, respectively. The directions η1 and η2 and the 
normals to K1 and K2 are all contained in the plane of shear P. 
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orthorhombic structure can be regarded as a double lattice structure. It consists of motif units of two atoms 

arranged symmetrically about the lattice points of a single Bravais space lattice. Here, the motif pairs of 

atoms are assumed to shear as rigid bodies before the atoms shuffle to form the twinning structure.  

The motif arrangement is then described as a combination of shear and shuffle. The shear magnitude s 

is determined by s = 2 cot (2θ), where (2θ) is the angle between K1 and K2 planes (Fig. 3-13). The 

complexity of the shuffling mechanism is directly related to the number of lattice planes (denoted by q) 

parallel to K1 that are intersected by η2 for Type I twinning, and the number of lattice planes parallel to K2 

that are intersected by η1 for Type II twinning. In single crystal structures, each point of the Bravais lattice is 

sheared to its correct twin position for twinning modes with q = 1 or 2 and no shuffle is needed. For q > 2, a 

fraction q-1 of the lattice points is sheared correctly when q is odd, and a fraction 2q-1 when q is even. The 

remainder of the lattice points must shuffle to reach their twin positions. Therefore, small values of q are 

associated with simple shuffle mechanisms, which are more likely to occur. The shuffling mechanisms in the 

double lattice structure have been explained by the Bilby-Crocker model. The simple shuffling mechanisms 

with q = 1, 2 or 4 are schematically illustrated in Fig. 3-15. According to the Bilby-Crocker model [37], the 

twinning in the double lattice structures is formed first by the shears of the lattice points, and then by 

shuffling which include the rearrangement or disruption of the motif units. Fig. 3-15 illustrates the shuffle 

mechanisms for q = 1 and q = 4. As for q = 1, the motif units is first sheared, as shown in Fig. 3-15(a). Then 

Fig. 3-14 (a) The Au-Cd type lattice correspondence between β phase and αʹʹ phase [57]. The atoms involved in the 
formation of αʹʹ phase are shown in blue circles while the corner atoms are black circles. (b) Orthorhombic structure 
of αʹʹ martensite reported by Brown et al. [17]. The red circles indicate the shifted atoms. (c) HRTEM image of the 
as-quenched αʹʹ martensite along [110]α" zone axis. (d) Intensity profile along the lines indicated in (c).  
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the non-disruptive rearrangement of the atoms in each pair must take place by means of the mechanisms Ia 

or Ib to produce the Type I twin (Fig. 3-15(b)) or by means of IIa or IIb to produce Type II twin (Fig. 

3-15(c)). The shuffles involved in q = 2 are identical to those in q = 1 modes. This also applies to the 

non-disruptive rearrangements of the motif units at half of the lattice points in q = 4 modes. The remainders 

of the q = 4 are required to disrupt and form new motif units with Ic or Id for Type I twinning (Fig. 3-15 

(e-f)) or with IIc or IId for Type II twinning (Fig. 3-15 (g-h)).  

First, we have calculated the twinning elements of the {112}α"-Type I twinning by the Bilby-Crocker 

theory using the lattice parameters of the α" martensite in the present Ti-7.5Mo alloy, and they are listed in 

Table 3-1. The K2 and η1 elements have irrational Miller indices. Meanwhile, this table also shows that 

experimentally observed {112}α"-Type I twinning has the shear magnitude (s) of 0.199, which is regarded as 

reasonable [36-38]. For instance, Tobe et al [36] have reported the deformation twinning of {111}α"-Type I 

twinning in Ti-20Nb alloy with s = 01613. The mechanism of {112}α"-Type I twinning with q = 4 is further 

discussed in terms of atomic shuffles involved in the formation of deformation twinning.  

Fig. 3-15 Schematically illustration of twinning modes with q=1 (a-c) and q=4 (d-h) in double lattice structures 
[37]. Shear of the lattice points with q=1 (a) and q=4 (d). Shuffle mechanisms corresponding to the 
rearrangement of the motif units to form type I twin (b) and type II twin (c), and the disruption of the motif 
units to form type I twin (e and f) and type II twin (g and h). The atoms represented by closed and open circles 
lie above and below the paper, respectively. 
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In order to achieve the smallest shuffle magnitude (termed Δ), the choice of the motif unit is relevant. 

From crystallographic standpoint, there are six distinct pairs of atoms comprising the motif unit in the 

disordered orthorhombic-α" structure, namely κ, λ, µ, ν, ο and ξ [38]. The projection of the motif units along 

the [001]α" direction is shown in Fig. 3-16. The units of κ and ξ have two equivalent variants and the units of 

λ, µ, ο and ν have four each. Accordingly, there are a total of twenty possible units and they are listed in 

Table 3-2, together with the vector joining the motif unit represented with [xyz]. The possible motif units are 

chosen based on the criterion that they lie almost parallel to the twinning plane and resulting in small shuffle 

magnitudes [38,51]. As for {112}α"-type I twinning with q = 4, the shuffle mechanism consists of 

non-disruptive (Ia or Ib) and disruptive (Ic or Id) rearrangements, as shown in Fig. 3-15. The equations for 

the shuffle magnitudes are shown in Table 3-3 [38]. (hkl) are the Miller indices of the twin plane K1 for Type 

I twinning. In order the specify the shuffle magnitudes of Ic and Id modes, in which η1 is irrational, a lattice 

vector [efg] lying in K1 is chosen to defines the relative positions of the parent motif units. In this condition, 

he + kf + lg = 0 must be satisfied. In order to involve the smallest shuffle magnitudes, we set the vector [efg] 

to !
!
[201] for the {112}α"-type I twinning mode. Here, the shuffle mechanism with the smallest magnitude 

of shuffle is considered as the most possible shuffle mechanism. According to the results, the most possible 

motif units is decided as λ2 with the shuffle magnitude Δ = 0.61 Å for Ia, and Δ = 1.25 Å for Ic, which is 

regarded as reasonable values to occur in practice [37, 38].   

Fig. 3-16 [001]α" Projection of the possible motif units. Open circles represent atoms in the projection 
plane, and close circles are atoms 1/2 c above or below the projection. 

Table 3-1 The twinning elements (K1, K2, η1, and η2 ) of the observed {112}α"-type I twinning in Ti-7.5Mo alloy. 
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Table 3-2 Possible motif units: [xyz]. 
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As a result, the most possible mechanism of {112}α"-type I twinning in Ti-7.5Mo alloy is schematically 

shown with the projection along the [021]α" direction (Fig. 3-17). The twin plane is set in the middle of the 

two planes in order to have smaller interplanar spacing. The motif unit (λ2) is illustrated with dashed lines 

comprised of two atoms. The atomic shear is indicated by blue arrows, and the shuffle mechanisms including 

non-disruptive (Ia) and disruptive (Ic) are shown in green arrows.  

 

Table 3-3 Equations for shuffle magnitudes in double lattice orthorhombic structure [38]. 

Fig. 3-17 [021!]α" Projection of the {112}α"-type I twinning in the disordered orthorhombic-α" structure 
with δ = 15. Open circles represent atoms in the projection plane, and close circles are atoms 1/2 c 
above or below the projection. The blue and green arrows indicate the shear and shuffle of the motif 
units, respectively. 
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3.5. Conclusion 
We have investigated the deformation behaviors of orthorhombic-α" martensite in β Ti-7.5Mo (wt.%) 

alloy. Microstructure characterization was performed by using TEM and SEM (BSE and EBSD). The 

as-quenched α" martensite with transformation twins was subjected into tension and deformation twins were 

observed. The mechanisms of deformation twinning in orthorhombic-α" martensite were discussed. The 

main conclusions are drawn as follows:  

    (1) The as-quenched orthorhombic-α" martensite contains {111}α"-Type I transformation twinning. 

According to the Inamura-approach related with the crystallographic features of transformation twinning in 

α" martensite, the {111}α"-Type I twinning is induced as a lattice invariant shear to accommodate the β→α" 

martensitic transformation.  

    (2) With 5% strain, the activation of {112}α"-Type I deformation twinning and dislocation slips can be 

identified. This twinning mode has never been reported in the orthorhombic-α" martensite in β-Ti alloys.  

    (3) Based on the Bilby-Crocker model related with the crystallographic analysis of deformation 

twinning, the twinning mechanism the {112}α"-Type I twinning have been analyzed in terms of atomic 

shears and shuffles.  
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Chapter 4 Effect of oxygen addition on microstructures and 
mechanical properties of Ti-7.5Mo alloy 

 
4.1 Introduction 
 

Titanium and its alloys have been extensively developed in biomedical applications with their 

advantages such as light weight, low Young’s modulus, high corrosion resistance and superior 

biocompatibility [1-3]. For example, the well-known Ti-6Al-4V alloy has a Young’s modulus about 110 

GPa, which is much lower than that of other alloys, such as stainless steel (~200 GPa) or Co-Cr-Mo alloys 

(~210 GPa) [4]. However, the release of Al and V ions has been considered with long-term health issues [5]. 

Meanwhile, the modulus of Ti-6Al-4V is still relatively higher than that of our human bones (~30 GPa), 

which may contribute to “stress shielding” effect [1,6]. Recently, several novel β-Ti alloys have been 

developed as biomaterials with lower modulus, superior formability and non-toxic elements (i.e. Al- and 

V-free), such as Ti-7.5Mo (wt.%) [7,8], Ti-15Mo (wt.%) [9], Ti-29Nb-13Ta-4.6Zr (wt.%, TNTZ) [3] and 

Ti–24Nb–4Zr–7.9Sn (wt.%) [10] alloys. In particular, with the low Young’s modulus (~65 GPa) [11] and 

excellent bone-implant interaction [12], the Ti-7.5Mo alloy with an orthorhombic crystal structure (α" 

martensite) has been regarded as a promising candidate for biomedical applications. The orthorhombic-α" 

phase in Ti-7.5Mo alloy is obtained through martensitic transformation from bcc-β matrix upon water 

quenching [13]. However, the main drawback of this alloy is the relatively low mechanical strength in 

as-quenched state. These alloys with high mechanical strength, low modulus together with good 

biocompatibility are always needed for the further development of biomedical applications. 

It is well acknowledged that the mechanical properties of titanium alloys are significantly dependent on 

the interstitial atoms such as oxygen, nitrogen, carbon and hydrogen [14-16]. Extensive studies have 

revealed oxygen as an effective element to improve the strength of titanium alloys with solid-solution 

strengthening effect [17-19]. For example, the tensile strength of Ti-29Nb-13Ta-4.6Zr alloy has been 

revealed intensely increasing with increasing the oxygen content (0.1~0.4 wt.%) [20]. Moreover, the oxygen 

has been reported to play an important role in the β→α" martensitic transformation [17,21,22]. For example, 

the suppression of β→α" martensitic transformation as a result of the addition of oxygen atoms has been 

invesitigated in Ti-Nb-based alloys [22]. However, the effects of oxygen on the mechanical properties and 

microstructures of orthorhombic-α" martensite in Ti-Mo alloys are still not understood.  

The aim of the present study is to investigate the effect of oxygen on the microstructure and mechanical 

properties of Ti-7.5Mo alloy. We developed a series of Ti-7.5Mo alloys with various oxygen additions 

(0~0.5 wt.%). The microstructures were investigated by SEM and TEM. The crystal structure and phase 

stability of α" martensite in the developed alloys was examined on the basis of XRD and differential 

scanning calorimeter (DSC) techniques. Hardness and tensile tests were performed to illustrate strengthening 
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mechanism caused by different oxygen contents. With the results of the present study, we provide an 

effective method to develop novel alloys for biomedical application. 

 

4.2 Results and discussion 
 

4.2.1 Effect of oxygen on phase constitution  

 
Fig. 4-1 shows the XRD profiles of the as-quenched Ti-7.5Mo-xO (x = 0, 0.2, 0.3, 0.4 and 0.5 (wt.%)) 

alloys. The orthorhombic-α" martensite has been observed as the main phase in all the as-quenched samples. 

The bcc-β phase also exists in each sample, as can be seen from the inset, which enlarges the (200)β 

reflection at 2θ = 55.8°. The peak intensity may suggest that the volume fraction of prior β phase is much 

lower, as compared to those of α" phase. This implies that the martensitic transformation β→α" seems to 

almost complete upon water quenching. It is worth noting that the (200)β peak intensity is significantly 

increased in 0.5O alloy. Furthermore, the additional (110)β reflection at 2θ = 38.7° is identified in 0.5O alloy. 

These results imply that the high oxygen content (~0.5 wt.%) may lead to the suppression of β→α" 

martensitic transformation, which consists with the previous reports [21,23]. According to the theory related 

with martensitic nucleation proposed by Ghosh and Olson [24,25], the interstitial elements (such as oxygen 

in the present study) may induce extra local strain fields, which act as obstacles to the dislocation movement 

and thus increase the frictional work against the motion of martensite interface.  
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Fig. 4-1 XRD profiles of the as-quenched Ti-7.5Mo-xO (x = 0, 0.2, 0.3, 0.4 and 0.5 (wt.%)) alloys. 
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It is worth noticing that in Fig. 4-1 an additional (1120)α reflection, which locates at 2θ = 62.8°, has 

been identified in the as-quenched 0.4O sample. More α phase exist in the 0.5O sample, as shown by the 

increasing number and intensity of α peaks with increasing the oxygen additions to 0.5 wt.%. This may 

suggest that the β transus of Ti-7.5Mo alloy is increased by the addition of interstitial oxygen.  

Lattice parameters of α" martensite in the 0~0.5O alloys were measured by the XRD profiles and the 

results are displayed in Fig. 4-2. The aα" and cα" of the orthorhombic-α" phase slightly increase whereas the 

bα" decreases with increasing oxygen additions. The unit-cell volume of the orthorhombic-α" phase in Fig. 

4-2(d) increases with increasing the oxygen additions, suggesting that the oxygen dissolves in the α" 

martensite as interstitial element [26]. Orthorhombic-α" martensite is regarded as a transitional phase 

between bcc-β (b/a = 2) and hcp-α/α' ((b/a = 3). As indicated in Fig. 4-2(d), the orthorhombicity, i.e., 

bα"/aα", decreases with increasing the oxygen contents. 

  

 

 

 

 

 

 

Fig. 4-2 The lattice parameters of orthorhombic-α" martensite: (a) aα"-axis, (b) bα"-axis, (c) cα"-axis, and (d) 
the unit cell volume (V) and the axis ratio bα"/aα".  
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Fig. 4-3 Low- and high-magnification BSE images of the as-quenched microstructures of Ti-7.5Mo alloys with 
different oxygen contents: (a)-(b) 0O, (c)-(d) 0.2O, (e)-(f) 0.3O, (g)-(h) 0.4O, ((h) is taken from the grain 
boundary area as indicated by the red box in (g)), and (i)-(j) 0.5O.  
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4.2.2 Effect of oxygen on microstructures 
 

Fig. 4-3 shows BSE images of the as-quenched Ti-7.5Mo alloys with different levels of oxygen. The 

prior β grain boundaries can be identified in each sample. For instance, one of the boundaries is indicated by 

the white arrow in Fig. 4-3(a). Fine, acicular α" martensite plates are observed distributing homogeneously 

over the prior β matrix grains. From the corresponding high-magnification images, i.e., Fig. 4-3(b) of 0O, 

Fig. 4-3(d) of 0.2O, and Fig. 4-3(f) of 0.3O alloy, it can be clearly observed that the α" martensite plates with 

an average thickness of ~1 µm have internal lamellas. Fig. 4-3(h) displays the microstructure taken from the 

grain boundary area in Fig. 4-3(g) of 0.4O alloy. The precipitated α plates are shown along the grain 

boundary and in the grain interior. This agrees with the XRD result shown in Fig. 4-1, where the additional α 

peak is firstly identified in 0.4O alloy. Moreover, the α precipitates in Fig. 4-3(h) display lenticular 

morphology with the size of a few micrometers in length and a few hundred nanometers in thickness. Fig. 

4-3(i) and (j) indicate the microstructures of 0.5O alloy. The α plates uniformly distribute in the grain interior 

and along the grain boundary. As measured by the Image J software, the area fraction of α phase is ~7%, 

which is higher than that of 0.4O (~2%). The increasing area fraction of α phase with increasing oxygen 

additions is also consistent with the XRD result shown in Fig. 4-1. 

In order to identify the substructure of α" martensite plates, TEM observations were carried out on the 

0O (Fig. 4-4) and 0.5O (Fig. 4-5) alloys. Fig. 4-4(a) shows the bright-field (BF) image of the α" plate in 0O 

Fig. 4-4 (a) Bright field (BF) image of the as-quenched αʹʹ phase with internal lamellas in the 0O alloy. (b) 
SAED pattern taken from the white circled region in (a). (c) and (d) DF images taken from spots indicated by the 
white circles in (b). The subscripts “M” and “T” indicate matrix and twin, respectively. 
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alloy. It has internal lamellas with a thin thickness of ~40 nm. Fig. 4-4(b) indicates the SAED pattern taken 

from the white circle in Fig. 4- 4(a). The diffraction pattern indicates two sets of spots of the [110]α" zone 

axis, which have a twinning relationship with the twin plane of (111)!". Fig. 4-4(c) and Fig. 4-4(d) show 

the corresponding DF images, in which the plates with bright contrast correspond to twin crystals. These 

results suggest that the internal lamellas have a {111}α" twinning plane with the α" matrix, and accordingly, 

they are {111}α"-Type I twins [27]. This is consistent with previous reports of α" martensite in several β-Ti 

alloys such as Ti-Mo [28-30], Ti-Nb [22,27], and Ti-Ta [31] alloys. 

TEM image in Fig. 4-5(a) shows the microstructure of the as-quenched 0.5O sample, which includes 

orthorhombic-α" and hcp-α plates. Fig. 4-5(b) displays the SAED pattern of the [2423]! zone taken from 

the circled region in Fig. 4-5(a). The corresponding DF image (Fig. 4-5(c)) shows the morphology of α phase 

with the length of ~4.3 µm and the thickness of ~450 nm. This is consistent with those of the α plates in BSE 

images (Fig. 4-3(g)-(j)). The SAED pattern of Fig. 4-5(d) and the corresponding DF images of Fig. 4-5(e) 

and (f) imply that the substructure in the α" plate of 0.5O alloy has the identical twinning system as that of 

0O alloy, which is {111}α"-Type I twinning.  

From a crystallographic standpoint, the internal twinning of α" plates are reported to accommodate the 

β→α" martensitic transformation strain [32]. In the orthorhombic-α" martensite, the transformation twinning 

system can be estimated by an approach proposed by Inamura et al. [33], based on the infinitesimal 

Fig. 4-5 (a) TEM image of the as-quenched microstructure of 0.5O alloy. (b) SAED pattern of the [2!42!3]α zone axis 
taken from the white circled region marked by “b” in (a). (c) Corresponding DF image taken from the spot indicated 
by red circle in (b). (d) SAED pattern taken from the region marked by “d” in (a) with the beam [011]α"M//[01!1!]α"T. 
(e) and (f) DF images taken from the spots of matrix and twin indicated by red circles in (d), respectively. The 
images of (e) and (f) are taken from the white-boxed region in (a).  
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deformation theory [34]. According to this approach, one of the principal strains of the β→α" transformation, 

termed φ! = (𝑐!" − 2𝑎!) ( 2𝑎!), is calculated (cα" is the c-axis lattice constant of orthorhombic-α" 

martensite and aβ is the lattice constant of bcc-β phase). As discussed in 3-3-1, we obtain φ3 = 0.011 for 0O 

alloy. Consequently, {111}α"-Type I twinning is preferred. The lattice constants of α" and β phases depends 

significantly on the chemical composition [35,36,37]. As indicated in Fig. 4-2(c), the cα" of 0.5O alloy 

slightly increases with the addition of oxygen. While it is not easy to estimate the value of aβ in 0.5O alloy, 

the identical twinning system is observed in 0.5O alloy, i.e., {111}α"-Type I twinning displayed in Fig. 

4-5(d). Based on the SEM/TEM results, it is summarized that oxygen addition (0~0.5 wt.%) is less relevant 

in the crystallographic features of α" martensite. However, it plays a role in promoting the precipitation of α 

phase in Ti-7.5Mo alloy during solution-treated at 1173 K.  

 

4.2.3 Effect of oxygen on thermal stability of α", α and β phases 
 

The thermal stability of the as-quenched Ti-7.5Mo-xO (x = 0, 0.2, 0.3, 0.4 and 0.5 (wt.%)) alloys has 

been investigated by DSC method. Fig. 4-6 displays the results of DSC measurements during heating (Fig. 

4-6(a)) and cooling (Fig. 4-6(b)) curves. As shown in the heating process of Fig. 4-6(a), all the compared 

alloys show an exothermic reaction at the temperature around 810 K. This reaction is regarded as the 

decomposition of the metastable α" phase into α and β phases, i.e., α"→α+β [29]. The peak temperatures of 

0~0.5O alloys are relatively similar. With increasing the temperature, the additional endothermic reactions 

can be clearly identified in 0O and 0.2O alloys. They refer to the diffusional α→β transformation [38], with 

the peak temperature of 0O alloy lower than that of 0.2O alloy. In the cooling process shown in Fig. 4-6(b), 

the exothermic reaction in all alloys corresponds to the β→α transformation. It is clear that with an increase 

in oxygen content, there is a significantly increase of the β→α peak temperature. As displayed in Fig. 4-6(b), 

Fig. 4-6 Differential scanning calorimeter results of prepared Ti-7.5Mo alloys with different oxygen contents 
during (a) heating, and (b) cooling. 
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the peak temperature increases by ~90 K with increasing the oxygen content up to 0.5 wt.%. It suggests that 

the intestinal oxygen atoms stabilize α phase in Ti-7.5Mo alloy, which is consistent with the previous reports 

[39-41]. Furthermore, the DSC figures also explain the additional α phase detected in high oxygen alloys of 

0.4O and 0.5O alloys (Figs. 4-1, 4-3 and 4-5). Based on the Ti-Mo phase diagram, the β transus of 0O alloy 

is estimated to be ~1083K [42]. With increasing the oxygen addition, the β transus of 0.4O and 0.5O alloys 

are expected to increase towards the solution-treatment temperature (~1173 K). Consequently, the 

precipitation of α phase occurs. It is worth noticing that with the stabilized α phase with increasing oxygen 

contents, the α→β reaction during heating becomes more difficult to be activated. This may explain the 

absence of endothermic α→β reaction of 0.3~0.5O alloys in Fig. 4-6(a).   

 

4.2.4 Effect of oxygen on mechanical properties 
 

4.2.4.1 Vickers micro-hardness 

The Vickers micro-hardness of the prepared Ti-7.5Mo-xO alloys is plotted with the oxygen contents in 

Fig. 4-7, including the nominal (Fig. 4-7(a)) and measured (Fig. 4-7(b) values of oxygen contents. In 

particular, the oxygen content is expressed in atomic percent (at.%). The hardness increases linearly from 

218 Hv of 0O alloy to 360 Hv of 0.5O alloy. The linear relationship in Fig. 4-7(a) is well fitted by the 

following equations: 

Hv = 219.5 + 92.9 [O], R2 = 0.999                             4-1  

where HV the hardness value, [O] is the oxygen content (in at.%) and R2 is the regression coefficient. While 

the linear relationship in Fig. 4-7(b) is  

Hv = 206.6 + 81.8 [O], R2 = 0.993                             4-2  

It can be observed that both equations exhibit high regression coefficients. The linearly increasing hardness 

with increasing the oxygen content can be attributed to the solid-solution strengthening effect caused by the 

addition of interstitial oxygen atoms [14,17-19]. It has been reported that the interstitial oxygen atoms 

Fig. 4-7 The results of Vickers micro-hardness on the (a) nominal and (b) actual oxygen contents. 
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occupy the octahedral sites in the orthorhombic-α" phase [36]. The lattice strain field induced by oxygen 

atoms interacts with the dislocations and therefore restricts the dislocation motion [43]. Furthermore, the 

small amounts of precipitated α plates in 0.4O (~2%) and 0.5O (~7%) alloys can also act as obstacles to 

block the dislocation motion, contributing to the increased hardness. This may also explain the slightly larger 

error bars of 0.4O and 0.5O alloys, compared to the others without the precipitated α phase in Fig. 4-7. 

 

4.2.4.2 Tensile properties 
 

The engineering stress (σe)-strain (εe) curves of the prepared Ti-7.5Mo-xO (x = 0, 0.2, 0.3, 0.4 and 0.5 

(wt.%)) alloys are plotted in Fig. 4-8. Sudden fracture can be identified in 0.4O and 0.5O alloys. Accordingly, 

the true stress (σt)-true strain (εt) curves and the calculated work-hardening rate (𝜃 = 𝜕𝜎!/𝜕𝜀!) curves are 

plotted in Fig. 4-9. These alloys except for 0.5O show good ability of plastic deformation. Furthermore, the 

work-hardening rate curves of 0~0.4O alloys are very similar, which suggests the negligible effect of oxygen 

content (0~0.4 wt.%) on the plastic deformation of Ti-7.5Mo alloy. The tensile properties are summarized in 

Table 1. The 0.2% offset yield strength (YS) increases intensely from 386 MPa to 826 MPa with increasing 

the oxygen addition from 0 to 0.5 wt.%. The ultimate tensile strength (UTS) also shows an increasing 

tendency, however, the total elongation (tEL) and uniform elongation (uEL) decrease with the adding 

oxygen content. As indicated in Table 4-1, the Young’s modulus (E) of 0O alloy shows the minimum value 

of 55.4 GPa. With increasing the oxygen addition, the E increases gradually to 73.9 GPa of 0.5O, which is 

still much lower than that of Ti-6Al-4V alloy (~110 GPa) [4].  

Fig. 4-8 Engineering stress-strain curves of the as-quenched Ti-7.5Mo alloys with different 
oxygen contents. 
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The addition of oxygen atoms is suggested to be very effective to increase the strength (Table 4-1), 

which is also ascribed to the solid-solution strengthening effect. Fig. 4-10 shows the relationship between 

yield strength and Young’s modulus (Fig. 4-10(a)), and also the relationship between total elongation and 

Young’s modulus (Fig. 4-10(b) of Ti-7.5Mo-xO (x=0, 0.2, 0.3, 0.4 and 0.5 (wt.%)) alloys. The mechanical 

properties of some well-reported biomedical titanium alloys such as c.p. Ti [6], Ti-6Al-4V (annealed) [4], 

Ti-15Mo (annealed) [44] and Ti-13Zr-13Nb (aged) [45] are also shown for comparison. These alloys are 

classified into four groups based on their main phase constitutions, i.e., α, α+β, β, and α" groups. 

Accordingly, the prepared Ti-7.5Mo-xO alloys belong to the α"-type. It can be seen that 0.2O and 0.3O 

alloys exhibit relatively lower Young’s modulus (<65 GPa) than the other alloys, meanwhile, they also 

exhibit an outstanding combination of low Young’s modulus and high yield strength, and lower Young’s 

modulus and elongation. Furthermore, most of other alloys are multicomponent systems; the present alloys 

are designed based on simply binary alloys. This may be one advantage in terms of the materials cost and 

processing. Therefore, Ti-7.5Mo alloy with oxygen addition ≤ 0.3 wt.% is considered to have good potential 

for biomedical applications.  
 

 

 

 

 

 

 

Table 4-1  
Tensile properties of 0.2% offset yield strength (YS), ultimate tensile strength (UTS), total elongation (tEL), uniform 
elongation (uEL) and Young’s modulus (E) of the as-quenched Ti-7.5Mo alloys with different levels of oxygen. 
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Fig. 4-9 True stress-strain and corresponding work-hardening rate curves of the as-quenched Ti-7.5Mo-xO (x 
= 0, 0.2, 0.3, 0.4 and 0.5 (wt.%)) alloys. 
 
 

Fig. 4-10 Plots of yield strength vs. Young’s modulus (a), and total elongation vs. Young’s modulus (b) of 
Ti-7.5Mo-xO (x = 0, 0.2, 0.3, 0.4 and 0.5 (wt.%)) in the present study, as well as several typical titanium alloys for 
biomedical applications. α-type: #1-4 c.p. Ti grade 1-4 [6]; α+β-type: #5 Ti-6Al-4V (annealed) [4], #6 Ti-6Al-7Nb 
(wrought) [46], #7 Ti-5Al-2.5Fe (cast) [6]; β-type: #8 Ti-15Sn-4Nb-2Ta-0.2Pd (annealed) and #9 
Ti-15Zr-4Nb-2Ta-0.2Pd (annealed) [47], #10 Ti-15Mo (annealed) [44], #11 Ti-12Mo-6Zr-2Fe (annealed) [48], #12 
Ti-24Nb-4Zr-7.9Sn (hot-rolled) [10], #13 Ti-35Nb-7Zr-5Ta (annealed) [49], #14 Ti-15Mo-2.8Nb-0.2Si (annealed) 
and #15 Ti-15Mo-5Zr-3Al (solution-treated) [6], #16 Ti-29Nb-13Ta-4.6Zr (solution-treated) [50], #17 
Ti-29Nb-13Ta-4.6Zr (aged) [3], #18 Ti-23Nb-0.7Ta-2Zr-1.2O (solution-treated) [51], #19 Ti-13Zr-13Nb (aged) 
[45]; α"+β-type:  #20 Ti-23Nb-0.7Ta-2Zr (solution-treated) [18], and #21 Ti-29Nb-13Ta-4.6Cr (cold-rolled) [52]. 
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4.2.4.3 Fracture surface morphology 

The characterization of the fracture surface by SEM was performed on the as-quenched Ti-7.5Mo-xO (x 

= 0, 0.2, 0.3, 0.4 and 0.5 (wt.%)) alloys. The results are displayed in Fig. 4-11. The fracture surfaces of 0O 

(Fig. 4-11(a)), 0.2O (Fig. 4-11(b)) and 3O (Fig. 4-11(c)) alloys show equiaxed dimples, corresponding to a 

typical ductile fracture mode. The size of dimples of 0O alloy is similar to that of 0.2O alloy, and both larger 

than that of 0.3O alloy. This indicates the better ductility of 0O and 0.2O alloys, as shown in Table 4-1. The 

fracture surface of 0.4O (Fig. 4-11(d)) shows a mixture of dimples and intergranular facets, indicating the 

decrease of ductility. In 0.5O alloy, the fracture includes intergranular facets and fine dimples (Fig. 4-11(e)). 

The intergranular crack along the grain boundary is shown by the white arrow, contributing to the enhanced 

embrittlement. The intergranular fracture surfaces of 0.4O and 0.5O alloys might be related with the 

presence of α precipitates along prior β grain boundaries, as can be observed in SEM images (Fig. 

4-3(g)-(j)). This can explain the premature fracture behavior and the dramatic decrease of elongation in 0.4O 

and 0.5O alloys (Fig. 4-8). The invesitigations of the fracture surfaces indicate that the tensile fracture mode 

of Ti-7.5Mo alloy transforms from ductile type to brittle intergranular type with increasing the oxygen 

content.  

4.3 Conclusion 

The effect of oxygen contents on the microstructures and mechanical properties of as-quenched 

Ti-7.5Mo (wt.%) alloy from 1173K has been investigated. The main results are summarized below: 

(1) The as-quenched Ti-7.5Mo-xO (x = 0, 0.2, 0.3, 0.4 and 0.5 (wt.%)) alloys consist mainly of 

orthorhombic-α" martensite. The high addition of oxygen (~0.5 wt.%) results in the increased β peak 

Fig. 4-11 SEM secondary electron images showing the fracture surfaces of (a) 0O, (b) 0.3O, (c) 0.4O, 
(d) 0.5O samples after the tensile test shown in Fig. 4-(8) 



 Chapter 4 Effect of oxygen addition on microstructures and mechanical properties of Ti-7.5Mo alloy  
 

 63 

intensity in X-ray diffraction profiles, suggesting the suppression of β→α" martensitic transformation 

upon quenching. Additional α phase has been identified in 0.4O and 0.5O alloys, which is attributed to 

the α-stabilizing effect by the interstitial oxygen atoms.  

(2) With increasing the oxygen content, the orthorhombicity (bα"/aα" ratio) of orthorhombic-α" phase 

decreases. The α" plates in 0O and 0.5O alloys contain internal {111}α"-Type I twinning structure, which 

indicates that the oxygen addition (0~0.5 wt.%) has a negligible effect on the twinning system in α" 

martensite of Ti-7.5Mo alloy. 

(3) With increasing the oxygen content in Ti-7.5Mo alloy, the Vickers micro-hardness, yield 

strength, ultimate tensile strength, and Young’s modulus increase, while the total elongation and uniform 

elongation decrease. This is due to the solid-solution strengthening by the interstitial oxygen atoms. The 

tensile fracture surfaces exhibit a transition from ductile dimple to brittle intergranular type, leading to a 

decrease in the ductility with increasing the oxygen content. 

 (4) In the present work, 0.2O and 0.3O alloys exhibit excellent combinations of high yield strength 

and elongation, as well as low Young’s modulus values. The addition of oxygen (≤ 0.3 wt.%) is regarded 

as an effective method to improve the balance of tensile properties of Ti-7.5Mo alloy. Compared to other 

multicomponent alloys, the present alloys may be more cost effective and potential candidate materials 

for biomedical applications.  
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Chapter 5 Strain-rate effect and work-hardening behavior in β-type 
Ti-10Mo-1Fe alloy with TWIP effect 

5.1 Introduction 
β-Ti alloys have attracted a lot of attentions for applications in aerospace, biomedical and energy 

industries due to their superior properties such as high specific strength, good corrosion resistance, low 

elastic modulus and excellent biocompatibility [1-3]. One characteristic of β-Ti alloys has been reported that 

the dominant deformation mode varies from dislocation slip to {332}<113>β twinning and/or stress-induced 

α" martensitic transformation with decreasing the β phase stability [4]. As a unique twin mode in bcc metals 

and alloys, {332}<113>β twinning has been always observed in Ti-Mo [5,6], Ti-Nb [7], Ti-V [8] and Ti-Cr 

[9,10] alloys. Several studies have shown that the {332}<113>β twinning in β-Ti alloys leads to a 

outstanding work-hardening rate and improved ductility, similar to the twinning-induced plasticity (TWIP) 

in steels [11-13]. The mechanism of the outstanding work-hardening induced by the twinning can be 

well-explained by a dynamic Hall-Petch effect [14]. The twin boundaries are suggested to act as strong 

barriers for the dislocation glide, and the increasing number of twin boundaries leads to a reduction of a 

mean free path of dislocation motion, contributing to the enhanced flow stress and work hardening rate. Min 

et al. [12] reported that the dynamic Hall-Petch effect by {332}<113>β twinning also takes place in the 

metastable β alloy of Ti-15Mo (wt.%). Thus the understanding of TWIP with the {332}<113>β twinning is 

of great importance for improving the strength-ductility balance in β-Ti alloys. 

Some reports have revealed that the mechanical properties and deformation mechanisms of β-Ti alloys 

have a strong dependence on the strain rate [15-18]. Farghadany et al. [17] reported a suppression of 

stress-induced α" martensitic transformation during the high strain rate deformation, resulting in the negative 

strain rate sensitivity in Ti-29Nb-13Ta-4.6Zr (wt.%) alloy, i.e., a higher flow stress at a lower strain rate. 

Chiou et al. [18] found an increasing flow stress by increasing the strain rate in Ti-15Mo-5Zr-3Al (wt.%) 

alloy with a higher β phase stability, in which the deformation mode is only dislocation slip. Some TWIP 

steels exhibit negative strain rate sensitivity of flow stress [19-22]. There are two mechanisms that has been 

proposed to explain this: (1) dynamic strain aging (DSA), in which the dislocation motion is restricted by the 

solute atoms (e.g., interstitial carbon) during the plastic deformation [19,20]; (2) suppresed twin formation at 

an enhanced strain rate deformation in DSA-free TWIP steels [21,22]. Meanwhile, there is a lack of 

knowledge related with the mechanism of strain rate dependence of work-hardening performance in β-Ti 

alloys, in particular, with the occurance of {332}<113>β twinning. Furthermore, it has been suggested that 

two factors contribute to the strain rate sensitivity (m): one is the instantaneous strain rate sensitivity (mi), 

dealing with the strain rate effect on the existing microstructure, and the other is the strain rate sensitivity of 

work-hardening (mθ), associated with the deformation microstructure evolution [23]. The existing knowledge 

on the strain rate dependence of β-Ti alloys is mostly related to the overall m [24-29]. More fundamental 

understandings on the contribution of mi and mθ to the overall m are therefore required for β-Ti alloys. 
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The purpose of the present study is to investigate the effect of strain rate on the work-hardening 

behavior in a metastable β-Ti alloy showing TWIP effect. We focused on a Ti-10Mo-1Fe (wt.%) alloy, 

which has been reported to deform mainly by {332}<113>β twinning [13]. The work-hardening behavior 

was studied by monotonic tensile tests at various strain rates ranging from 2.8x10-5 s-1 to 2.8x10-1 s-1. In order 

to study the change of instantaneous strain rate sensitivity during plastic deformation, strain rate jump tests 

were also performed by instantaneously changing the strain rate from 2.8x10-5 s-1 to 2.8x10-3 s-1 at different 

strain levels (2.0%, 7.7%, 12.2%, 19.9%). Microstructure evolution was invesitigated by EBSD and XRD 

focusing on {332}<113>β twinning and dislocations. The correlation between the work-hardening behavior 

and microstructure evolution was discussed.  

5.2 Experimental results 

5.2.1 Tensile properties and work-hardening behavior 

 The engineering stress (σ)-strain (ε) curves obtained at constant strain rates (2.8x10-5~2.8x10-1 s-1) are 

displayed in Fig. 5-1. Three samples were deformed for each strain rate and the obtained tensile properties 

were found to be reproducible and reliable. The average values and standard deviations of tensile properties 

are listed in Table 5-1. The yield strength (YS, 0.2% proof stress) is observed to be increased with increasing 

the strain rate (612 MPa at 2.8x10-5 s-1 and 675 MPa at 2.8x10-1 s-1). However, when the strain rate is 

increased from 2.8x10-5 s-1 to 2.8x10-1 s-1, the ultimate tensile strength (UTS) decreases from 841 MPa to 799 

MPa and the total elongation (tEL) decreases from 0.34 to 0.24. Furthermore, uniform elongation (uEL), also 

listed in Table 5-1, decreases from 0.25 at the strain rate of 2.8x10-5 s-1 to 0.15 at 2.8x10-1 s-1. It shows that 

the lower strain rate leads to enhanced ductility. 

Fig. 5-1 Engineering stress-strain curves at various strain rates. 
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The true stress (σt)-true strain (εt) curves and the calculated work-hardening rate (𝜃 = 𝜕𝜎!/𝜕𝜀!) curves 

at different strain rates are shown in Fig. 5-2. The inset exhibites a magnified inage of the area in the dashed 

box. It can be observed that the increasing strain rates result in a higher flow stress at a lower strain level, 

while for the strain over 0.13, the higher strain rate contributes to a lower flow stress. The θ-εt curves in Fig. 

5-2 first exhibite a sharp drop up to εt  ~ 0.02, which refers to the ordinary transition from the elastic to 

plastic regimes, and then gradually decrease to the point of plastic instability described by the Considere 

criteria (σt = θ) [30]. It is clearly seen that the overall work-hardening rate decreases with increasing strain 

rate.  

Strain rate 

(s-1) 

YS (MPa) UTS (MPa) tEL uEL 

2.8x10-5 612 ± 6 841 ± 6 0.34 ± 0.01 0.25 ± 0.01 

2.8x10-4 626 ± 4 833 ± 6 0.32 ± 0.01 0.24 ± 0.02 

2.8x10-3 662 ± 7 822 ± 7 0.28 ± 0.02 0.21 ± 0.02 

2.8x10-2 673 ± 3 816 ± 6 0.26 ± 0.01 0.17 ± 0.01 

2.8x10-1 675 ± 3 799 ± 8 0.24 ± 0.03 0.15 ± 0.02 

Fig. 5-2 True stress-strain curves and corresponding work-hardening rate curves at various strain rates. 

Table 5-1 Tensile properties of 0.2% proof stress (YS), ultimate tensile strength (UTS), total elongation 
(tEL) and uniform elongation (uEL) at different strain rates deformation. 
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From the results shown in Fig. 5-2, the strain rate sensitivity of flow stress, m, can be estimated based 

on the following equation:  

𝑚 =
𝜕𝑙𝑛𝜎!
𝜕𝑙𝑛𝜀

                                                              5 − 1  

where σt is the flow stress and 𝜀 is the strain rate. The dependence of the strain rate sensitivity m on the true 

strain is plotted in Fig. 5-3. The m linearly decreases with increasing true strain levels; in particular, m is 

positive at a true strain lower than 0.13, and becomes negative at strain over 0.13.Meanwhile, from the 

work-hardening rate curves, the strain rate sensitivity of work-hardening (mθ) was calculated by 

𝑚! =
𝜕𝑙𝑛𝜃
𝜕𝑙𝑛𝜀

                                                                (5 − 2) 

The results are shown in Fig. 5-4. It shows that the mθ is always negative and decreases linearly with strain.  

The true stress-strain curves obtained from the strain rate jump tests from 2.8x10-5 s-1 to 2.8x10-3 s-1 are 

plotted in Fig. 5-5. The inset of Fig. 5-5 schematically illustrates the instantaneous response of the 

stress-strain curve at the vicinity of the jump. The sudden increase in the strain rate (from 𝜀! to 𝜀!) leads to 

a sudden increase in the stress (from σ1 to σi), followed by a gradually decrease until reaching a steady-state 

value (σ2), which is still higher than the flow stress σ1 prior to the jump. The results of instantaneous strain 

rate sensitivity with strain are 

 𝑚! =
!" !!!!! 
!" !!!!! 

                               (5-3) 

Fig. 5-3 The estimated strain rate sensitivity parameter (m) from Eq. (5-1) plotted with respect to true strain (εt). 
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where σ1 is the flow stress before the strain rate jump and at the strain rate 𝜀! (2.8x10-5 s-1), and σ2 is the 

extrapolated steady-state stress level after the strain rate jump to 𝜀! (2.8x10-3 s-1), as indicated in the inset of 

Fig. 5-5. The dependence of mi on the true strain is plotted in Fig. 5-6. The mi exhibits positive values and 

seems less sensitive to the true strain.  

Fig. 5-4 The calculated strain rate sensitivity of work-hardening rate parameter (mθ) plotted with respect to true 
strain (εt). 

Fig. 5-5 True stress-strain curves of strain rate jump test from  =2.8x10-5 s-1 to  = 2.8x10-3 s-1 performed at 
2.0%, 7.7%, 12.2%, 19.9%. The inset shows a schematic illustration of the curve at a strain rate jump point 
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5.2.2 Microstructure characterization 

5.2.2.1 Initial microstructure   

Fig. 5-7(a) shows EBSD inverse pole figure (IPF) map of the initial microstructure after 

solution-treatment and followed by water quenching. It exhibits a typical equiaxed microstructure with fully 

retained bcc-β phase. The average grain size is ~160 µm. As shown in Fig. 5-7(b), the texture in the initial 

microstructure is weak and thus the texture effect on the following deformation can be negligible.  

5.2.2.2 Deformation microstructure 

Fig. 5-8(a) shows EBSD-IPF map of the deformation microstructure with εt = 0.05 at strain rate of 

2.8x10-1 s-1. The TA is parallel to the horizontal line. Band-like structures can be observed within the 

β-grains, which were induced by tensile deformation. They were             p identified as {332}<113>β 

Fig. 5-7 (a) EBSD-IPF map of initial microstructure along RD (TA//RD, step size: 50 µm). (b) Invers pole figure.   

Fig. 5-6 True stress-strain curves of strain rate jump test from  =2.8x10-5 s-1 to  = 2.8x10-3 s-1 performed at 2.0%, 
7.7%, 12.2%, 19.9%. The inset shows a schematic illustration of the curve at a strain rate jump point 
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twinning in β phase with a boundary misorientation of 50.4° along the <110> direction [31], as indicated 

with the black lines in Fig. 5-8(b). Some of the grains in Fig. 5-8(a) contain single twin variant, as shown by 

an example of the grain marked with G-1. While some contain 2 (G-2) or more twin variants. The EBSD-IPF 

image of Fig. 5-8(b) shows the configuration of intersPection between two twin variants (T-A and T-B) 

taken from the grain of G-2. The crystallographic orientation of G-2 is [𝟐𝟏𝟑]//TA. Based on the trace 

analyze, the twinning systems of T-A and T-B is determined as 𝟑𝟐𝟑 [𝟏𝟑𝟏] and 𝟐𝟑𝟑 𝟑𝟏𝟏 , which 

correspond to the largest Schmid factors of 0.48 and 0.37, respectively. It indicates that the activation of 

{332}<113>β twinning in G-2 obeys the Schmid law. Furthermore, the secondary twins can be observed 

within the primary twin of T-A, as shown in Fig. 5-8(b). Fig. 5-9 shows the ECCI images of the activated 

{332}<113>β twin. Masses of dislocations are observed in the intersection region of two twin bands, as 

indicated in Fig. 5-9.  

Fig. 5-8 (a) EBSD-IPF image of Ti-10Mo-1Fe alloy with strain of 0.05. The TA is parallel to the 
horizontal line. (b) IPF image taken from the region marked in (a). The {332}<113> twin 
boundary is indicated in black lines. 

Fig. 5-9 ECCI image of the intersection region between two {332}<113> twins.  
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5.2.2.3 Evolution of {332}<113>β twin 

In order to compare the evolution of {332}<113>β twinning in Ti-10Mo-1Fe alloy at different strain 

rates, EBSD scanning was carried out on the mirror-polished specimens stretched to different true strain 

levels (0.025, 0.05, 0.10 and 0.14) at constant strain rates of 2.8x10-5 s-1 and 2.8x10-1 s-1. In order to obtain 

Fig. 5-10 EBSD-IPF maps for tensile axis (TA) direction of specimens deformed at lower strain rate of 
2.5x10-5 s-1 with strain of (a) 0.025, (b) 0.05, (c) 0.1, and (d) 0.14; at higher strain rate of 2.5x10-1 s-1 (e) 
0.025, (f) 0.05, (g) 0.1 and (h) 0.14. The horizontal direction is parallel to TA. 
 

Fig. 5-11 Corresponding EBSD-IQ maps of specimens deformed at lower strain rate of 2.5x10-5 s-1 with 
strain of (a) 0.025, (b) 0.05, (c) 0.1, and (d) 0.14; at higher strain rate of 2.5x10-1 s-1 (e) 0.025, (f) 0.05, (g) 
0.1 and (h) 0.14. The red line indicates {332}<113> twin boundary. 
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the value of area fraction of {332}<113>β twinning, three areas of 1 × 2 mm2 in the center of each specimen 

were calculated. The total area for each condition contains more than 200 grains, which makes the quantified 

results more reliable. Based on the EBSD-boundary maps, the twin area fractions were calculated with image 

processing softwares (Adobe Photoshop and NIH Image J).  

Fig. 5-10 displays the EBSD-IPFs of deformation microstructures taken from the specimens strained up 

to (a) 0.025, (b) 0.05, (c) 0.10 and (d) 0.14 at the strain rate of 2.8x10-5 s-1, and (e) 0.025, (f) 0.05, (g) 0.10 

and (h) 0.14 at the strain rate of 2.8x10-1 s-1. The corresponding IQ maps are displayed in Fig. 5-11. The 

plate-like features in the grain interiors (Fig. 5-10) are identified as {332}<113>β twins with a boundary 

misorientation of 50.4° along the <110>β direction [31]. Accordingly, the twin boundaries are indicated by 

the red lines in Fig. 5-11. Hence the EBSD results verify the {332}<113>β twinning as the dominant 

deformation mechanism in the present Ti-10Mo-1Fe alloy. The quantified area fraction of twins (ftwin) is 

plotted in Fig. 5-12 with the true strain, and the error bar represents the standard deviation. Deformation at 

different strain rates leads to a small but significant difference in ftwin. At εt of 0.025, a higher ftwin is obtained 

at the higher 𝜀 (15.6% at 2.8x10-5 s-1 and 9.3% at 2.8x10-1 s-1). With continuing the deformation, the 

increasing rate of ftwin is reduced at the higher strain rate (𝜀 = 2.8x10-1 s-1), compared to that at the lower 

strain rate (𝜀 = 2.8x10-5 s-1). This could explain the intersection of the curves, as shown in Fig. 5-12. When εt  

= 0.14, the ftwin at the higher strain rate of 2.8x10-1 s-1 is 45.6%, which is lower than that of 53.5% at the lower 

strain rate of 2.8x10-5 s-1. It indicates that the nucleation and growth of {332}<113>β twins are suppresed at 

the higher strain rate deformation, leading to the lower area fraction of {332}<113>β twins. 

 

Fig. 5-12 The evolution of twin area fraction at different strain rates of 2.8x10-5 and 2.8x10-1 s-1. 
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5.2.2.4 Evolution of dislocation density 

In order to capture the effect of strain rate on the dislocation density, ρ, XRD experiments were carried 

out for the specimens with different strain level (0.025, 0.05, 0.10 and 0.14) at respective strain rates of 

2.8x10-5 s-1 and 2.8x10-1 s-1, as well as the initial microstructure before tensile tests. For each specimen, six 

diffraction peaks from β phase ((110), (211), (200), (220), (321), (310)) were recorded and the full width at 

half maximum (FWHM) was measured.  

The modified Warren-Averbach method [32,33] was employed to evaluate the dislocation density. It is 

worth noticing that the effect of planar faults, i.e., {332}<113>β twinning, in the broadening of diffraction 

peaks is incorporated into the present method. According to this method, the broadening of the 

diffraction peaks should be linked to the dislocation density, crystallite size and twinning and 

faulting probability as: 

𝑙𝑛 𝐴 𝐿 + 𝐿𝛽!𝑊!!" ≅ −
𝐿
𝐷
− 𝜌

𝜋𝑏!

2
𝐿! ln

𝑅!
𝐿

𝐾!𝐶 + 𝑄 𝐾!𝐶!             (5 − 4) 

where D, ρ and b indicate the average crystallite size, dislocation density and the magnitude of Burgers 

vector, respectively. Q stands for higher order terms in K2𝐶. Re is the effective outer cut-off radius of 

dislocation. Whkl is a factor to scale the twinning and faulting-induced peak broadening at {hkl} reflections 

[34], and 𝛽! stands for the probability of finding a staking fault and twin boundary in each {hkl} plane, 

whose value is determined carefully in order to have a best quadratic fitting between lnA(L) + L𝛽!Whkl and 

K2𝐶. A(L) is the real part of the Fourier coefficients of the XRD files, and defined as: 

𝐴! 𝐿 =
1
𝑧!

𝑊!
!

𝑥! +𝑊!
!

!!!!,!

!!!!!,!
𝑐𝑜𝑠𝜋𝑥𝑑𝑥                                  (5 − 5) 

 Here, Wi is the FWHM of each diffraction peak and zi is a coefficient of normalizing the integral 

intensity to be 1. xi is the integration range with X-ray intensity, which becomes 0.1% of the maximum peak 

intensity. L is the Fourier variable and K=2sinθ0/λ, λ is the wavelength of the X-rays. 𝐶 is the average 

dislocation contrast factor, determined by:  

Fig. 5-13 (a) The logarithm of the Fourier coefficients vs. 𝐾!𝐶 ̅, including the effect of planar faults, according to 
Eq. (5-4). (b) Y/L2 vs. lnL plot according to Eq. (5-5). 
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𝐶 = 𝐶!!! 1 − 𝑞(!
!!!!!!!!!!!!!

!!!!!!!!
)                                          (5 − 6)        

where 𝐶!!! and q are constants related to the anisotropic elastic constants (C11, C12 and C44) [35,36]. For 

instance, Fig. 5-13(a) shows the plot of the lnA(L) + L𝛽!Whkl vs. K2𝐶 using various L values from the 

specimen with εt=0.1 at the strain rate of 2.8x10-1 s-1. The coefficient of second term on the right side of Eq. 

(5-4):  

𝜌 !!
!

!
𝐿! ln !!

!
= 𝑌                                                  (5 − 7)                                                

can be achived from the well-behaved smooth curves as indicated by dash lines in Fig. 5-13(a). From the 

linear relationship between Y/L2 and lnL shown in Fig. 5-13(b), the value of dislocation density ρ is obtained 

from the gradient of the smooth linear line.  

 

The results of dislocation density at various strain rates are plotted against true strain in Fig. 5-14. The 

value of the initial ρ prior to deformation is expected as 7.27x1013 m-2. When the true strain increases to 0.14, 

ρ increases to 7.5x1014 m-2 at the lower strain rate (2.8x10-5 s-1) and to 8.37x1014 m-2 at the higher strain rate 

(2.8x10-1 s-1), respectively. These values are comparable to the previous results in steels [33,37] and β-Ti 

alloys [38,39]. Fig. 5-14 also displays that an increase in the strain rate contributes to an increase in 

dislocation density. However, the increasing rate of dislocation density seems to be enhanced at the lower 

strain rate than that at the higher strain rate, which can be seen from the difference in the slope of the 

dislocation density curves. In other words, with continuing deformation, the dislocation generation and 

multiplication are suppressed to some extent and dynamic recovery is enhanced at the higher strain rates in 

the present Ti-10Mo-1Fe alloy. 

 

Fig. 5-14 The evolution of dislocation density at different strain rates of 2.8x10-5 s-1 and 2.8x10-1 s-1. 



 Chapter 5 Strain-rate effect and work-hardening behavior in β-type Ti-10Mo-1Fe alloy with TWIP effect  
 

 77 

5.3 Discussion 

5.3.1 Strain rate sensitivity 

Deformation at a lower strain rate leads to significantly enhanced work-hardening in the tensile 

deformation of Ti-10Mo-1Fe. This tendency is reflected in the strain rate sensitivity decreasing from positive 

to negative with the increasing strain (Fig. 5-3). At the onset of plastic deformation, the higher yield strength 

increases with the strain rate (Table 5-1), which indicates a higher and positive value of strain rate 

sensitivity. The reason for this phenomenon can be ascribed to the thermally activated dislocations in bcc 

alloys; thus a higher yield stress is required to overcome the improved Peierls potential and active the 

dislocation motion at a higher strain rate [40]. With continuing plastic deformation, the increase of flow 

stress at the higher strain rate is less pronounced than that at the lower strain rate. This is attributed to the 

corresponding lower work-hardening rate (Fig. 5-2). Eventually, a higher strain rate leads to a lower flow 

stress when the strain exceeds 0.13 (Fig. 5-2), indicating negative strain rate sensitivity. Similar behaviors 

have been reported in some TWIP steels [21], Mg alloys [41], and Ti/Ni multilayers [42]. Smooth plastic 

flow without any trace of serration can be observed in Fig. 5-1. It suggests that the whole plastic deformation 

process of the present Ti-10Mo-1Fe alloy is free of DSA effect. The strain rate sensitivity (m) of the present 

alloy was studied in terms of strain rate sensitivity of work-hardening (mθ). The mθ dealing with the 

microstructure evolution caused by different strain rate displayed negative value and distinctly decreased 

with true strain, Fig. 5-4, whereas the mi concerning the strain rate effect on the existing microstructure 

showed a positive and constant value (Fig. 5-6). The above results suggest that the ascending m with the 

strain is mainly attributed to the negative mθ. Thus the decreasing strain rate sensitivity during the plastic 

deformation may be associated with the lower increasing rates of {332}<113>β twins (Fig. 5-12) and 

dislocation density (Fig. 5-14) at higher strain rate deformation [20,21,43]. 

5.3.2 Work-hardening behavior 

According to the previous studies [12,44], the mechanism of the work-hardening related with the 

twinning structure is because of the reduction of dislocation mean free path by the formation of twins, known 

as dynamic Hall-Patch effect (Fig. 5-8(a)). In addition, the twin-twin interaction (as shown in Fig. 5-8(b)) 

also contributes to the work-hardening [45]. The twin-twin intersection contributes to the reduction of twin 

propagation rate, which had post likely induced stress concentration. Thus the twin nucleation events may be 

promoted, as the stress of twinning nucleation is known to be higher than that of twin propagation [46]. 

Besides, the activation of secondary twins in the crossed twins as accompanying the twin-twin intersection 

(shown as an example in Fig. 5-8(b)) is also considered to enhance the effectiveness of deformation twinning 

for the substantial work hardening behavior [47]. Furthermore, it has been found that the dislocation 

evolution during plastic deformation also makes significant contributions to the work-hardening [48,49]. 

According to Klepaczko et al. [23], the microstructure evolution at different strain rates contributes to the 

change of macroscopic work-hardening rate. In the present work, the higher strain rate deformation exhibits 

a lower work-hardening rate (Fig. 5-2), which indicates the weakened ability of work-hardening by 
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increasing the strain rate. Thus, the strain rate dependence of work-hardening behavior is discussed based on 

the quantification of {332}<113>β twins (Fig. 5-12) and dislocations (Fig. 5-14) evolutions at different strain 

rates deformation.  

More twins and dislocations are observed in the early stage of plastic deformation (εt ~ 0.05) at higher 

strain rate, as shown in Fig. 5-12 and Fig. 5-14. The critical resolve stress of the {332}<113>β twinning has 

been stated with negligible dependence on the strain rate [24]. The twin nucleation events are thus assumed 

to be enhanced by the higher density of dislocations at the higher strain rate deformation [50], as indicated in 

Fig. 5-14. With the work-hardening mechanism, a higher flow stress is required to continue the plastic 

deformation, resulting in positive strain rate sensitivity (Fig. 5-3). However, the increasing rates of 

{332}<113>β twins and dislocation density are observed to be lower at the higher strain rate (2.8x10-1 s-1) 

than those at the lower strain rate deformation (2.8x10-5 s-1) when the strain exceeds 0.025. Consequently, a 

lower work-hardening rate at a higher strain rate deformation would be obtained, as displayed in Fig. 5-2. 

A temperature increase due to adiabatic heating may play an important role on the deformation 

behavior. Adiabatic heating generated at a high strain rate deformation has been reported to stabilize the 

austenite matrix in austenitic stainless steels, resulting in the suppression of stress-induced α" martensitic 

transformation [51,52]. Ahmed et al. [24] have reported that the temperature rise induced by the high strain 

rate may significantly stabilize the β phase in Ti-10V-3Fe-3Al (wt.%) alloy, leading to the alteration of 

dominant deformation mechanism from stress-induced α" martensitic transformation (≤ 10-3 s-1) to 

{332}<113>β twinning (≥ 101 s-1). In the present study, the evolution of temperature is evaluated by 

considering the rise of temperature from the external work minus the heat lost due to conduction to the 

sample holders [37]: 

Fig. 5-15 The evolution of temperature with true strain at different strain rates of calculated from Eq. (5-8). 
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𝑑𝑇 = !!!!"!
!!!

− !!
!!!!!

𝑇 − 𝑇!
!!!
!

                                         (5 − 8)  

where C is heat capacity (taken as 0.49 kJ/kg/K which is the typical value for β-Ti ),  ρw is the density (~ 

4.93 g/cm3), α is the thermal conductivity coefficient (~ 7.6 W/m/K), η is the heat fraction coefficient (~ 0.95 

[26]), L is the gauge length of the tensile specimen, and To is the temperature of the sample holder (~ 300K).  

Based on the Eq. 5-8, the temperature rise of the specimen at various strain rates deformation was estimated 

and is plotted as a function of true strain in Fig. 5-15. Temperature increase is expected to reach 100K before 

fracture at the highest strain rate deformation of 2.8x10-1 s-1, whereas the temperature at the lowest strain rate 

of 2.8x10-5 s-1 remains constant. 

It is possible that a temperature rise during deformation by adiabatic heating leads to an increase in the 

thermodynamic stability of β phase, which, in turn, changes the predominant deformation mode from 

{332}<113>β twins to dislocation slip [24,29,53]. In fact, Zhan et al. [29] reported suppression of 

{332}<113>β twinning by increasing the testing temperature from 298K to 873K in Ti-25Nb-3Zr-3Mo-3Sn 

(wt.%) alloy. Another cause for the suppression of {332}<113>β twinning may be related to lattice instability 

of β-Ti alloys. {332}<113>β twinning is a unique twinning mode, which can be identified exclusively in 

metastable β-Ti alloys. Close relation with stress-induced ω phase has been reported by Hanada et al. 

[11,54]. More recently, Tobe et al. found that the lattice instability of bcc lattice (the lower shear modulus c’ 

(= (c11-c12)/2)) contributes to the modulation of {110}<110>β and to tetragonal distortion which facilitates 

{332}<113>β twinning [55]. It is well acknowledged for β alloys presenting displacive transformation, e.g., 

martensitic transformation or omega phase transformation, that the lattice instability develops with lowering 

temperatures toward the transformation temperatures [56]. Hence it is supposed that a temperature increase 

by adiabatic heating retards the nucleation and growth of {332}<112>β twins, and consequently, to decrease 

the contribution of dynamic Hall-Petch effect to the work-hardening rate. In addition, the effect of adiabatic 

heating can have great effect on the dislocation dynamics. Dynamic recovery contains a thermally activated 

process of climb and cross slip, contributing to the annihilation of dislocations [37,57]. The temperature rise 

at the late stage of deformation can promote dislocation annihilation and lower dislocation density (Fig. 

5-14), resulting in the lower work hardening rate observed at higher strain rate deformation as indicated in 

Fig. 5-2.  

To summarize the discussion, the lower work hardening rate at the higher strain rate deformation may 

be ascribed to the reduced formation of {332}<113>β twins and enhanced dynamic recovery, especially in 

the late stage of deformation. Furthermore, since the enhanced work-hardening rate suppresses the 

localization of the deformation and delays plastic instability [58], larger uniform elongation can be achieved 

(Fig. 5-2). In conclusion, the obtained strain rate sensitivity of the Ti-10Mo-1Fe alloy is rationalized at least 

qualitatively in terms of the microstructure evolution affected by the adiabatic heating.  
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5.4 Conclusion 
In the present work, the effect of strain rate in the range between 2.8x10-5 s-1 and 2.8x10-1 s-1 on the 

tensile properties and work-hardening behavior in a β-type Ti-10Mo-1Fe alloy has been investigated. The 

main results are summarized below: 

    (1) From the monotonic tensile tests at different strain rates up to fracture, the yield strength (YS) 

increases with increasing the strain rate from 2.8x10-5 to 2.8x10-1 s-1, whereas the ultimate tensile strength 

(UTS), total elongation (tEL) as well as uniform elongation (uEL) show a decreasing tendency. From the 

strain rate jump tests, the instantaneous strain rate sensitivity achieved from strain rate jump tests remains 

stable and positive with strain. 

        (2) The strain rate sensitivity decreases with increasing strain, showing a transition from positive to 

negative. The higher strain rate deformation exhibits a lower work-hardening rate. 

    (3) The {332}<113>β twinning dominates the deformation mechanism of the Ti-10Mo-1Fe alloy. 

Electron Backscattered Diffraction (EBSD) and X-ray diffraction (XRD) results indicate lower increasing 

rates of {332}<113>β twins and dislocation density at the higher strain rate, leading to a reduced 

work-hardening rate. This phenomenon is associated with the adiabatic heating generated at the higher strain 

rate deformation. 
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Chapter 6 Conclusion 
 

The present study has been focused on the mechanical properties (tensile properties, hardness, and 

Young’s modulus) and deformation mechanisms (mainly twinning) of β-type Ti-Mo alloys.  

The deformation mechanisms of α" martensite in Ti-7.5Mo alloy have been investigated. The 

as-quenched α" martensite has been revealed with an internal twinning structure of {111}α"-type I 

transformation twinning, which is induced as a lattice invariant shear to accommodate the β→α" martensitic 

transformation. After 5% tensile straining, the activation of deformation twins and dislocation slips were 

confirmed by SEM observation. The deformation twinning system was further identified as {112}α"-type I 

twinning by TEM, which has been firstly reported in the orthorhombic-α" martensite of β-Ti alloys. Based 

on the crystallographic theory of deformation twinning proposed by Bilby and Crocker, the mechanism of 

the {112}α"-type I twinning has been analyzed in terms of atomic shears and shuffles.  

In order to improve the relatively low strength of Ti-7.5Mo alloy, various amounts of oxygen were 

added. The effects of oxygen contents (0 ~ 0.5 wt.%) on the microstructure and mechanical properties of 

Ti-7.5Mo alloy have been investigated. The as-quenched Ti-7.5Mo-xO (x = 0, 0.2, 0.3, 0.4 and 0.5 (wt.%)) 

alloys are composed mainly of α" martensite. Additional α phase has been detected in 0.4O and 0.5O alloys, 

attributed to the α-stabilizing effect by the interstitial oxygen atoms. With increasing the oxygen content, the 

Vickers micro-hardness, yield strength, ultimate tensile strength, and Young’s modulus increase, while their 

total elongation and uniform elongation decrease. This is ascribed to the solid-solution strengthening by the 

interstitial oxygen atoms. In the present study, 0.2O and 0.3O alloys exhibit an excellent combination of high 

yield strength and elongation, as well as low Young’s modulus values. The addition of oxygen (≤ 0.3 wt.%) 

is suggested as an effective method to improve the balance of tensile properties of Ti-7.5Mo alloy. 

Compared to other multicomponent alloys, these alloys may be more cost effective and potential candidate 

materials for biomedical applications. 

Meanwhile, the effect of strain rate (2.8x10-5 s-1 ~ 2.8x10-1 s-1) on the tensile properties and 

work-hardening behavior in the Ti-10Mo-1Fe alloy has been investigated, which is focused on the 

{332}<113>β twinning in bcc-β phase. The strain rate sensitivity decreases with increasing strain, showing a 

transition from positive to negative. The higher strain rate deformation exhibits a lower work-hardening rate. 

The {332}<113>β twinning dominates the deformation mechanism of the Ti-10Mo-1Fe alloy. The 

microstructural evolution including {332}<113>β twinning and dislocation density during the tensile 

deformation at different strain rates have been evaluated by EBSD and XRD techniques. The results indicate 

lower increasing rates of {332}<113>β twins and dislocation density at the higher strain rate, leading to a 

reduced work-hardening rate. This phenomenon is associated with the adiabatic heating generated at the 

higher strain rate deformation. 
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