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Monica Perusqúıa-Hernández

Abstract

Facial expressions are among the most salient cues for automatic emotion iden-
tification. However, they do not always represent felt affect. As they are an in-
dispensable social communication tool, they can also be fabricated to face complex
situations in social interaction. In this work, identification of spontaneous and posed
smiles was explored using multimodal wearable sensors. Distal facial Electromyo-
graphy (EMG) can be used to differentiate between them robustly, unobtrusively,
and with good temporal resolution. Furthermore, such wearable can be enhanced
with autonomic electrophysiological and behavioral signals. Electrodermal Activity
(EDA)-based recognition is a good indicator of affective arousal. Head movement is
useful to capture the inherent movement during spontaneous expressions. In three
experiments, six research questions were asked and answered. In Experiment 1, dis-
tal EMG was shown as an effective measure to identify fast and subtle spontaneous
smiles, even at a micro-expression level. This is specially useful when two or more
people are being tracked. Moreover, it was possible to identify the differences be-
tween posed and spontaneous smiles. Whilst the spatial distribution of the muscles
differs, temporal features are more robust to distinguish among them. Namely, smile
duration, rising time, and decaying time. Experiment 2 confirmed the potential of
using EMG to identify the smile’s spatio-temporal dynamics. Special care was taken
to elicit posed smiles intended to convey happiness. In this case, rising time and
decaying speed differed significantly. EDA and IMU measures alone also have the po-
tential to distinguish between co-occurring spontaneous and posed smiles with high
accuracy. IMU-measured data explained best their differences. Moreover, no cultural
differences were found between posed and spontaneous smiles from their embodied
measures. These results seem to support the view that embodied affective responses
are similar for all humans, regardless of their cultural background. Observed behavior
was clearly related to the self-reported measures in both experiments. Experiment 3
showed that laypersons can distinguish between posed and spontaneous smiles above
chance level with modest accuracy. Hence, using behavioral and electrophysiological
signals complements human ability, as they provide information not visually perceiv-
able. Even though psychologists have asked similar questions in the past, none has
addressed them with a multimodal wearable. This approach is a promising tool to
explore with more temporal resolution how emotion processes arise and develop in our
bodies. Moreover, this work has only proven the potential of the proposed approach.
Future work should consider improving the wearable system for comfortable real-time
usage in more ecologically valid settings.
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Chapter 1

Introduction

Since the moment we are born, we experience and express emotion. We cry for

help; we express joy to create bonding; we experience fear as a survival cue; and we

experience shame as a self-protection mechanism. Emotion plays a central role in our

lives, as it changes the way we perceive ourselves; how we make decisions; and how

we interact with others.

Affect and emotion are central to human experience. All choices we make are based

on what makes us feel good, what improves our overall experience. This applies to

personal relations, products, and services. Therefore, assessing human experience is

relevant in many application domains. These range from historical documentation;

tracking therapy results and augmented feedback for impaired people[1, 2]; user and

customer experience mapping[3–5]; human-robot interaction[6]; and even personal

management.

Specially in marketing and design, positive user experience is an important metric

of the success of a product, media, or service. In a User-Centered Design process,

design concepts are drawn from existing user needs or bad experiences. The con-

cept is then prototyped, and the new user experience is assessed again to check for

improvements[7, 8].

Despite its importance, emotion is among the most subjective topics of discussion.

Everybody has experienced it, but in a personal, private manner. This experience
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Chapter 1: Introduction

is subjective, and prone to several biases. Hence, it has always been a challenge to

quantify it in an efficient and objective fashion.

This assessment is usually done via qualitative methods like interviews; or quan-

titative methods such as tools of explicit and implicit self-report. For example, Csik-

szentmihalyi argued that to assess dynamics of mental health and user experience

it is “essential to develop measures for the frequency and the patterning of mental

processes in every-day-life situations” [9]. As a solution, he proposed his renown

Experience Sampling Method (ESM) [10] to provide a valid method to describe vari-

ations in self-reports of mental processes. These mental processes include frequency

and intensity of psychological states such as emotional, cognitive, and conative di-

mensions of user experience. For longitudinal studies, this method provides a good

approximation of what the user is feeling along with the use of a product. However,

it requires a logging tool that intermittently prompts users to report their experience.

Another challenge of using self-report measures is the multiple biases that peo-

ple have when answering them. For example, the Social Desirability bias, and the

Hawthorne Effect bias. The Social Desirability Bias refers to the fact that people tend

to self-report inaccurately to present themselves in the best possible light [11]. The

Hawthorne Effect describes the fact that people tend to behave differently because

they are aware of being observed [12]. These biases are more salient when using qual-

itative methods. Furthermore, analyzing the data while carefully trying to minimize

those biases is a time-consuming process.

On the other hand, psychologists have developed several measurement tools that

try to reduce these. For example, the Affective Grid developed by Russell [13], the

Self-Assessment Manikin (SAM) [14], the Affective Slider [15]; or the Implicit Positive

and Negative Affect Test (IPANAT) [16] and the Inkblot test [17] for implicit self-

report. Even though these tools are validated in large samples of people to ensure

their reliability, there are still some points of improvement. First, they require time

from the user to fill them in. Second, it is unpractical to fill them multiple times to

assess experience continuously. This would interrupt the experience itself. Third, the

2
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Figure 1.1: Valid self-report zone. Three modes of representing changes in emotion
components are suggested by Scherer. Unconscious, conscious, and verbal. The zone
of valid self-report is the overlap among these.

temporal resolution in which we can sample user experience with self-reported tools is

limited. This might be because humans are not aware of their emotional state at every

instant. Previous studies have shown that awareness rates of facial expressions are

about 60%. Awareness depends on intensity and (or) duration of the facial expression

[18]. Scherer (2005) pointed out that, given the complexity of emotion, there are three

modes of representing the changes in emotion components: unconscious, conscious,

and verbal. The zone of valid self-report is the overlap among these three components

(figure 3.1). Therefore, there are physiological symptoms, motor expressions, action

tendencies and cognitive appraisals that cannot be fully assessed through self-report

[19].

Recently, a popular alternative to assess human affect in a continuous manner

is to measure and interpret behavior and electrophysiological cues automatically us-

3



Chapter 1: Introduction

ing Artificial Intelligence (AI) technology. Computer Vision (CV) has been used

to identify facial expressions or posture. Other sensors have been used to measure

Autonomic Body Responses such as Heart Rate Variability (HRV), Electro-Dermal

Activity (EDA), and Electromyography (EMG). Several surveys have been done to

summarize the different signals that can be used for technology technology-afforded

emotion recognition [20–22]. However, due to the plethora of experimental paradigms,

signal type, features, and classification schemes to identify different combinations of

emotions; it is very difficult to compare them to choose the best combination. Ad-

ditionally, the number of studies using multiple modalities is limited, compared to

unimodal studies. Therefore, there is still room for improvement in multimodal-based

emotion recognition, specially regarding data fusion at different levels, i.e., feature,

classifier, or model.

Identifying an affective state using technology is thus possible and has several

advantages for continuous assessment of affective experience. The main advantage

is that they have the potential to provide an uninterrupted reliable measurement

with high temporal resolution. However, an important step to identify an affective

state using these measures is to define the relationship between the self-reported

emotion label, and its correspondent embodied response. There are different methods

of establishing the so-called ground-truth. Video-coding of facial expressions, self-

reported labels, and most importantly, labels according to how the data was acquired.

Furthermore, the ground truth label itself depends on the predefined labels for

affective states that are chosen beforehand. For centuries psychologists have debated

on what are the universal emotions and how affect processes occur, and how they can

be represented. These include the theory of basic emotions [23], dimensional theories

of emotion [24], and appraisal theories of emotion [25].

Moreover, the emotion labels and its physical expression might differ among cul-

tures. Previous research has shown some evidence that basic emotions have universal

facial expressions [26]. However, this universality view is still under debate. The

observer of a facial expression might interpret this behavior according to a different

4
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set of labels than the predefined by the researchers; interpret it according to a situ-

ation as a part of an instrumental action; or as a group of facial sub expressions. It

is also possible that the facial expressions might be interpreted in terms of bipolar

dimensions rather than discrete labels [27]. All in all, these alternative interpretations

might be somehow regulated through learning and cultural context.

Among the different representations of affect, the Russell’s Circumplex model of

affection seems most suitable for continuous measurement because it represents mul-

tiple emotion labels in two dimensions. These dimensions are valence and arousal.

Valence and arousal can be mapped to embodied affect responses. Facial expression

detection (video or electromyography -based) is a good predictor of the valence an

emotion, and physiological signals (e.g., Galvanic Skin Response) are a good repre-

sentative of the arousal of an emotion. Furthermore, behavioral cues such as head

and body movement also carry information about the affective state of the person.

These can be combined in a wearable which can provide information about facial

expressions and their nature.

Facial expressions can represent both positive and negative affect. Previous re-

search showed that it is possible to detect facial expressions with both CV [28] and

EMG measurements[29, 30]. CV has a good spatial resolution, is unobtrusive, and

can distinguish between several facial expressions. However, it has important lim-

itations to detect fast and subtle facial expressions, or multiple users at the same

time. On the other hand, EMG was shown to be able to detect both smiles, i.e.,

positive valence; and frowns, i.e., negative valence [30]. This approach has important

advantages. First, EMG has a high temporal resolution, which is suitable to detect

fast changes. Second, since the EMG is measured distally, it does not cover the user’s

face, and signals from different muscles can be read. However, its spatial resolution

is not as good as CV, and its advantage measuring fast and subtle expressions or

multiple persons at the same time is yet to be tested.

As promising as it seems, to measure user experience, detecting and counting

smiles and frowns is not enough. Facial expressions can be spontaneous affective re-

5
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sponse to a stimulus; but they can also be a posed response to a cognitive intention.

On one hand, facial expressions are usually linked to emotional states of a person, and

they are among the most salient cues of the experienced emotion [26]. On the other,

these facial expressions can also be voluntarily fabricated, which indicates that similar

facial expressions do not always accurately describe the actual experienced emotion

[31, 32]. According to [33], “the movements inherent to posed facial expressions dis-

play an emotion an expresser ostensibly intends to convey, whereas spontaneous facial

expressions correspond to an expresser’s actual, unmitigated emotional experiences.”

Because a spontaneous facial expression is an automatic motor movement, and posed

facial expressions are voluntary, they are also believed to have different neural path-

ways [34], and they are represented by different temporal dynamics from EEG signals

[35, 36]. Furthermore, some researchers have also stated that there is a difference

between facial expressions which have a communicative intent in social contexts, and

expressions without social intent, adding another dimension of analysis.

Perhaps the most commonly studied facial expression regarding posed and spon-

taneous differences is a smile. Besides expressing happiness, a smile can also be used

to convey kindness to others. Different terms have been used to refer to these smile-

types. Posed and deliberate smiles are often used as synonymous, and are opposite

from spontaneous smiles. Several differences among posed and spontaneous smiles

have been found. The most sound difference is the activation of the orbicularis oculi

muscle that was believed to happen during spontaneous smiles only [37]; in the so-

called Duchenne smile. Nevertheless, recent studies have found that this muscle is

activated both in posed and spontaneous smiles [33]. Furthermore, these smiles have

been found to differ in amplitude [34, 38, 39], in their temporal dynamics [34, 38–42],

and in the behavioral movements that accompany them. The most salient movement

being the head movement [43]. Most of this evidence has been found sing Human

Coding and CV methods. However, these have the aforementioned limitations. In

contrast, physiological signals have a higher temporal resolution, and they are able

to pick up information even if it is not visually perceivable.

6
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Alongside with the valence response changes measurable through facial expres-

sions, arousal changes can be measured using EDA. Several studies have explored

how skin conductance varies along responses to affective stimuli [44]. Moreover, as

fast autonomic changes cannot be controlled voluntarily, they might prove to be a

good cue to distinguish between spontaneous and polite responses.

It is proposed to use multimodal wearable technology to assess the quality of the

affective experience of a person. Since embodied affective responses can be controlled

voluntarily, only quantizing these cues is not enough. It is also necessary to distinguish

between spontaneous reactions and voluntary expressions. Therefore, it is proposed

to use EMG to detect facial expressions [30], EDA to judge emotional arousal (i.e.,

intensity) [44]), and head orientation via an IMU to further differentiate posed and

spontaneous responses [43]. As a proof of concept, the focus is mainly on positive

affective responses. In other words, responses occurring during posed and spontaneous

smiles. Positive affective responses were chosen due to their social relevance. The

proposed wearable approach has the advantage of providing an unobtrusive log of user

experience. Furthermore, the behavioral and electrophysiological measures chosen

can be sampled at high temporal resolution, allowing for a fine-grained analysis of

the spatio-temporal dynamics of different affective responses.

1.1 Research questions and thesis outline

As previously motivated, the feasibility of continuously logging user experience

using electrophysiological and behavioral measures is investigated. For this purpose,

identifying the difference in the dynamics of posed and spontaneous affective responses

is of utmost importance. By distinguishing among them, affective experience can be

better assessed. The specific Research Questions (RQ) to be answered during this

research are the following:

• RQ 1. Is it feasible to use EMG to detect positive fast and subtle facial

expressions at the micro-expression level?

7
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• RQ 1-b. Is it feasible to detect positive fast and subtle expressions through

EMG from multiple users at the same time?

• RQ 2. Can we distinguish a positive affective posed reaction from a sponta-

neous one using EMG?

• RQ 2-b. What are the differences in EMG spatio-temporal dynamics of posed

and spontaneous smiles?

• RQ 3. How does a multimodal system, including head movement and EDA,

improve the identification of posed and spontaneous positive affective responses?

• RQ 4. How does the observed behavior occurrence and dynamics relate to

self-reported measures of affect?

• RQ 4-b. Is there any difference in that relation between implicit and explicit

self-reports?

• RQ 5. How does cultural background affect our affective responses regarding

the investigated measures?

• RQ 6. How good are humans at distinguishing between posed and spontaneous

smiles?

• RQ 6-b. What are the advantages of identifying spontaneous and posed smiles

using behavioral and electrophysiological data versus other methods?

To investigate these questions, three main experiments were conducted. The main

purpose of the first two experiments was to collect affective response data to positive

stimuli.

The first experiment served to collect spontaneous and posed facial expressions

from EMG, in particular, micro-expressions. In a second version of experiment 1,

data from pairs of participants was obtained simultaneously. The first experiment

addressed research questions 1 and 2.

8
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The second experiment focused in eliciting posed and spontaneous smiles from

participants of multiple cultural backgrounds whilst taking multiple affect measures.

These measures included facial EMG, EDA from multiple locations, Heart Rate,

video, video coding of own facial expressions, and explicit and implicit self-reported

measures. The second experiment addressed research questions 2 till 5, and partially

RQ6.

The third experiment’s purpose was to investigate RQ6, by using data from ex-

periment 2 as stimuli.

This thesis is structured as follows. In Chapter 2, a detailed background on affec-

tive responses is outlined. Chapter 3 describes in detail the challenge of measuring

affective responses, the different measurement tools available, and their advantages

and disadvantages. Chapter 4 introduces experiment 1 on a wearable device for fast

and subtle smile recognition, followed by the data analysis on the spontaneous and

posed smile recognition based on spatial and temporal patterns of facial EMG. Chap-

ter 5 introduces experiment 2. From this data, further differences from spontaneous

and posed smiles from EMG are investigated. Moreover, the relationship between

these facial expressions, behavioral and autonomic affective reactions, self-report,

and cultural differences was explored. Chapter 6 describes the relationship between

self-report and the measured embodied responses using data from both experiments.

Chapter 7 describes experiment 3 on the human judgment of posed and spontaneous

smiles. Chapter 8 includes a general discussion, and outlines potential applications

of this research. Finally, Chapter 9 describes conclusions and future directions.

9



Chapter 2

Affective responses

2.1 Affection and emotion

Affective phenomena (emotions, moods, and affect) have been explored extensively

in psychology over more than a century. According to Ekkekakis [45], core affect is

a neurophysiological state accessible as a simple primitive non-reflective feeling, and

it is part of both emotion and mood. Moods are long-lasting affective episodes that

do not have an apparent cause. They are about nothing specific or about everything.

In contrast to moods, which typically last longer, emotion is a short-term affective

reaction to an object, agent, or event [20].

Emotions are complex affective events that consists of a core affect; an overt be-

havior congruent with the emotion; attention directed towards the eliciting stimulus;

attribution of the genesis of the episode of the stimulus; the experience of the particu-

lar emotion; and neural and endocrine changes consistent with the particular emotion

[45].

Different theories have been proposed on how emotion processes start, and about

their relation to embodied cues and cognition. Early proposals consider that emo-

tions are bottom-up processes. In other words, changes in our bodily states create the

subjective feeling of an emotion. In 1872, Darwin had already pointed out the evolu-

tionary function of emotion [46]. According to him, emotions solve certain problems
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Chapter 2: Affective responses

that humans face as a species. For example, a baby might cry to call for help. Hu-

mans share a common pattern of emotional expression via facial expressions as result

of natural selection [47]. Therefore, the emotions conveyed by the face are universal

[46]. In accordance with this point of view, the James-Lange Theory estates that

embodied changes follow directly the stimuli that caused the emotion. Hence, the

subjective feeling arises from that embodied state [48]. Basically, this point of view

states that we are afraid of a wild animal because our body instinctively flees. Simi-

larly, we are sad because we cry. Thus, this theory supports the view that emotions

can be differentiated by somato-visceral responses. The Somatic Marker Hypothesis

by Damasio further supported this point of view. He argued that there are marker

signals that influence the processes of response to stimuli at multiple levels. Some of

these occur consciously, and others are covert and occur non-consciously. He argued

that those markers are somatic, as they arise in the brain’s representation of the body

[49,50]. In the same line of thought, Zajonc argued that affect precedes cognition and

it does not require prior cognitive appraisal [51].

On the other hand, other theorists have described the influence of top-down cog-

nitive processes in emotion generation. Cannon revised the James-Lange theory,

and argued that emotions are derived from subcortical centers. This could explain

why emotions can be elicited directly from brain stimulation [52]. Furthermore, di-

mensional appraisal theories state that all emotions are generated due to appraisal

judgments [53, 54]. A surprise can be appraised positively or negatively according

to the context. Therefore, changes in facial expressions are appraisal driven [54].

The Componential Emotion Theory states that subjective feelings emerge when the

synchronization or coherence of appraisal-driven changes between emotion compo-

nents has reached a critical threshold. In this Component Process Model (CPM),

coherent response changes (i.e., appraisal, facial expressions, physiological changes,

action tendencies, and subjective feeling) emerge despite the different response dy-

namics (i.e., latency, patterning, and intensity) in each emotion component during an

emotional episode. In contrast with bottom-up theories, appraisals are assumed to
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initiate the response changes in the peripheral components. Appraisals usually check

the relevance of the stimulus, the implications for the personal well-being, the coping

potential of the individual to face the event, and the normative significance of the

event for the values of the individual. In this sense, the same stimulus might lead to

different appraisals by different individuals, and therefore cause the subjective and

private experience of emotion [25].

These theories consider the processes that are involved in emotion generation. On

the other hand, there is also a discussion among psychologists on how emotions should

be represented. The most accepted representations are categorical and dimensional

representations. The Theory of Basic Emotions [23], is one of the earliest attempts to

define and classify emotions. It proposes that there is a set of basic emotions universal

to all cultural groups. These emotions are represented according to a label dependent

on the language used. Different theorists have proposed several emotions. Whereas

James [48] proposed fear, grief, love and rage as basic emotions, the most widely used

set is the one proposed by Ekman [55]. In his view, there are six basic emotions: anger,

disgust, fear, joy, sadness, and surprise. These six emotions are universally expressed

by a emotion-specific physiology, and distinctive universal signs [26]. These signs

include a set of prototypical facial expressions. This is an evolutionary view inspired

by the one proposed by Darwin [32].

A drawback of the Theory of Basic Emotions is that this representation is con-

strained by the language used to express the labels for each emotion. In [27], it is

argued that facial expressions and emotion labels are probably associated, but the

association may vary per culture, and it is unable to explain nuances that are not

included in the vocabulary used.

The dimensional theory of emotion aims to overcome this limitation by reducing

the complexity of the representation of emotions. Several discrete emotion labels have

been mapped to a limited number of dimensions. Perhaps the most popular is the

circumplex model of emotion by Russell [24]. This suggests that emotions are dis-

tributed over a two-dimensional plane. These two dimensions are orthogonal to each
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other. The first one is arousal, which ranges from inactive to active. The second is

valence, which ranges from negative to positive. Some researchers have also suggested

the use of other dimensions. A common one is a third axis, dominance, ranging from

in control, to dominated [14]. This dimension allows to clearly differentiate discrete

labels that are very close to each other in the two-dimensional space of the circumplex

model. Other authors have also proposed four dimensional spaces, with evaluation-

pleasantness, potency-control, activation-arousal, and unpredictability as dimensions

[56].

All in all, emotion is a complex phenomenon. Simple representations allow sci-

entists to approximate measurements of its multiple dimensios. However, as more

knowledge is gained, emotions should be considered as a complex phenomenon that

involves (a) appraisals of events, (b) psychophysiological changes, (c) motor expres-

sions, (d) action tendencies, (e) subjective experiences, and (f) emotion regulation

[56]. In this thesis, the relationship between psychophysiological changes and self-

reported experiences during different motor expressions are explored. Particularly

to this study, it is interesting to explore the relationship between similar facial ex-

pression and the presence or absence of a felt emotion. Furthermore, the changes in

other physical responses during these expressions of emotion are explored. Scherer

[19] argued that there are three modes of the representation of changes in emotion

components. These are: (1) unconscious reflection and regulation, which includes

physiological symptoms, motor expressions, cognitive appraisals, and action tenden-

cies; (2) conscious representation and regulation; and (3) verbalization and communi-

cation of emotional experience. According to this, the zone of valid self-report report

measurement is the overlap between those three (figure 3.1). This suggests that emo-

tion processes are largely hidden to the person experiencing them, and it may be an

explanation why emotion is often regarded as involuntary or unreasonable [25].
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2.2 Affective embodiment

As pointed out by several of the aforementioned theories, affective states have an

embodied manifestation. Both bottom-up and top-down theories acknowledge the

role of the body in the emotion processes. As Prinz [57] proposed in the Perceptual

Theory of Emotion, emotions are embodied appraisals. They are perceptions of the

body, but, through the body, they also allow us to perceive several concerns, such as

danger and loss. Appraisal supporters further suggests that appraisals are a type of

perception, which enables us to feel, but also limits our ability to control the process.

Moreover, motivational input into the appraisal process provides another opportunity

for the appraisal to be involuntary, and thus, appear irrational [25].

Affective embodied responses include changes in the autonomous nervous system,

facial expressions, or behavioral changes such as the degree in which we move our

body. Some of those embodied responses are private, whereas others can be used as

a communication tool to show others our affective estate.

Facial expression studies are perhaps the most studied affective responses. As

mentioned before, several scientists have studied them extensively. Several facial ex-

pressions are believed to be hardwired and mapped to a specific felt emotion. Evidence

from congenitally blind people who smile when happy, or display sadness supports

this view [58]. However, these can also be used to provide misleading information

about the wearer’s emotional state [23, 31, 32, 37, 59]. The information conveyed by

facial expressions is sent not only to third persons, but also to oneself. The facial

feedback hypothesis [60] states that the feedback from the facial muscles is important

for the subjective experience of emotion, in concordance with most of the bottom-up

theories. However, other studies have argued that we are aware of our own facial

expressions only after a certain threshold has been crossed. In this case, the intensity

and the duration of the facial expression are important factors for awareness [18].

Autonomic changes and its occurrence associated with emotion have also been

researched over the past century. Although it is widely accepted that these two phe-

nomena co-occur, it has been stated that it is not possible to find unique and invariant
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autonomic signatures to emotion. Autonomic responses are associated mostly to di-

mensional representations. Moreover, negative emotions are usually associated with

more prominent autonomic responses than positive emotions. Furthermore, the auto-

nomic activity is regarded as behavior preparation, and it is expected to occur before

the behavior has been initiated [61].

Autonomic responses include Electro-Dermal Activity (EDA) or Skin-conductance

(GSR), and Heart Rate Variability (HRV). EDA is consistently regarded as an in-

dicative of cognitively or emotionally mediated motor preparation [61]. Therefore,

an increase of EDA is observed in emotions other than non-crying sadness, acute

sadness, contentment, and relief [61]. However, no specific consensus has been found

from previous research. Whereas a study found support for the facial feedback hy-

pothesis by measuring increased EDA during amplification of facial expressions than

during inhibition, another group found the opposite effect [62].

Most of these changes are reflexes that happen automatically as response to an

external or internal (i.e., an appraisal) stimuli. It is still under debate whether the

physical response precedes cognitive appraisal or vice-versa. However, the fact re-

mains: there are bodily states that covariate together with self-reported affective

states, suggesting that these affective reactions provide an embodied private expe-

rience. Interestingly, embodied affective responses change in the order of minutes,

seconds, or even milliseconds. On the other hand, people usually report affective

changes in the order of minutes or hours. This suggest that the interplay between

body changes and consciously perceived affect is complex and requires further inves-

tigation.

2.3 Positive spontaneous and voluntary expressions

of emotion

As argued by [63], “the pursuit of happiness is one of the most fundamental human

motives”. Most of our decisions and actions are driven by the affective forecast of
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what option will make us happier. Furthermore, expressing positive affect, via smiling

and laughing, can strengthen the bond between two individuals [37].

Among the behavioral cues of positive affect, laughter is commonly targeted as

the communicative signal of enjoyment per excellence. Spontaneous laughter is often

described as if the people experiencing it abandon themselves to the bodily response

of such enjoyment [64]. According to previous research, laughter is composed of

respiration, vocalization, body movement, and facial action [64,65]. The facial action

is mainly that described as a Duchenne display, or a genuine smiling [64]. Laughter is

then accompanied by a series of respiration, vocalization, and body movement bursts.

These bursts are often referred as a laughter bout. While laughter is reported to have

a mode of four pulses, laughter with one or two pulses also exists. One-bout laughter

is called exclamation laughter or chuckle [64]. As the onset of laughter often presents

a pre-vocal smiling expression [65], we argue that fast and subtle smiles are similar to

a first laughter burst that is quickly contained. In this sense, automatically detecting

such facial expressions and laughter in a continuous manner requires the same basic

principle.

Whereas most of the autonomic changes cannot be controlled voluntarily, facial

expressions and other embodied behavior can be used as communication tool. In

this case, the wearer is in control of an affective state or message to be transmitted.

Previous research suggested that voluntary and spontaneous affective reactions have

different characteristics. They often involve different facial muscles; their temporal

dynamics are different; and they are even mediated by distinct neural pathways [37].

Perhaps the most commonly studied facial expressions regarding posed and spon-

taneous differences are smiles. Besides expressing happiness, a smile can also be

used to convey kindness to others. Different terms have been used to refer to these

smile-types. Posed and deliberate smiles are often used as synonymous, and they are

opposite to spontaneous smiles. Several differences among posed and spontaneous

smiles have been found. The most sound difference is the activation of the orbicularis

oculi muscle that was believed to happen during spontaneous smiles only [37]; in the
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so-called Duchenne smile. Nevertheless, recent studies have found that this muscle

is activated both in posed and spontaneous smiles [33]. Furthermore, posed smiles

tend to have a larger amplitude [34, 38, 39]. Besides these spatial differences, spon-

taneous and posed facial expressions differ substantially in their temporal dynamics

[34,38–42]. Whilst these vary, most agree that posed and spontaneous smiles differ in

amplitude, rising and decaying speed, and duration. Spontaneous smiles tend to last

longer than posed ones [34,41,42]; they have multiple peaks [42]; and they have longer

rising, decaying, and peak durations [38,42]. Furthermore, posed smiles have a longer

onset and offset speed [38]. According to [37], spontaneous expressions have a fast

and smooth onset; with apex coordination, in which muscle contractions in different

parts of the face peak at the same time. In posed expressions, the onset tends to be

slow and jerky, and the muscle contractions typically do not peak simultaneously.

Although some studies found that prototypical facial expressions for basic emo-

tions are universal, posed or polite facial expressions might differ depending on the

cultural background. [66] showed evidence that when posing smiles, Canadians typi-

cally show the Duchenne marker, but Gabonese do not. On the other hand, Mainland

Chinese were sensible to the Duchenne marker only when judging smiles from French-

Canadians. This suggested that the marker is learned through cultural context. On a

follow-up study, [67] explored whether children used the Duchenne marker as a visual

cue to distinguish between the two types of smiles. According to their results, chil-

dren between 4 and 17 years old perceive medium Duchenne smiles as more authentic

than equally intense medium non-Duchenne smiles. As they grow older, they rely less

on the intensity of the smile. In another study, [68] found that Chinese who use eyes

as cue to interpret the facial expression of another person are more accurate than

those who use the mouth. Furthermore, those who rated themselves as caring about

other people tended to be more accurate and sensitive to the Duchenne marker. Even

though these articles support the hypothesis that the ability to pose a smile and to

distinguish between posed and spontaneous smiles is acquired through socialization,

their definition of spontaneous or genuine smiles is based on the Duchenne marker.
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Nevertheless, as they discuss themselves, the ability to display this marker can be

learned. Thus, a Duchenne smile is not necessarily spontaneous. This is yet another

reason not to rely only on the visual Duchenne marker. The ground truth of the

spontaneity of the smile should be established by taking care of the experimental

design and the contextual information during the data collection. Despite this, many

studies draw conclusions on the perceived spontaneity of a smile using the Duchenne

marker [69, 70], and sometimes in static pictures only [71].

2.4 Quality assessments through positive affective

responses

Recognition of these positive cues could support the fostering and assessment of

the mental wellbeing and quality of life of a person or a group, specially of those with

developmental disabilities that are unable to effectively communicate [1, 2]. They

can also be used as motivational reward in training therapies and tutoring systems

[72, 73]. They can be an input to create technology that adapts to human behavior

and mental states, such as robots [6]; or to assess the effectiveness of products [3]

and media [5, 74]. They can provide better understanding of users and patients

during interviews, despite them giving socially desirable answers. This would help

both designers of technology and caregivers to adapt their choices to the needs of

their users and patients, respectively. Also at a personal level, it would be useful

to be aware of our own expressions. Such feedback could be used for social facial

expression awareness training, to improve interpersonal communication. This might

prove specially useful for persons with autism spectrum disorders (ASD), who have

difficulties with social interactions, probably due to difficulties to recognize facial

expressions of emotion [75–77]. Finally, it would also be helpful for blind people to

perceive their own expressions [58] and the expressions of others. This would create

bonding with their interlocutors, and support their social interactions.

Furthermore, the use of technology to automatically measure observable and un-
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observable phenomena would increase our temporal resolution to describe and un-

derstand embodied cognition. Moreover, being able to quantify these phenomena

expands human perception and awareness that could help to better design other

agents, products, services, and ultimately ourselves.
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Measurement of affective responses

As discussed in previous chapters, quantification of affective responses is useful

for different applications. or some of these applications, identifying the presence or

absence of affective cues and counting them is enough. Then the interpretation is

left for a field expert. However, these perceivable cues are prone to biases and ma-

nipulations from the person displaying or reporting the emotion. Therefore, methods

to overcome such biases must be considered. This is a challenging task, specially es-

tablishing a ground truth. Either with discrete or continuous labels, it is universally

accepted that emotion can be either measured through embodied cues or self-report.

Usually embodied cues are labeled by human coders under the assumption that

they can have a more objective perception of the facial expression than the persons

experiencing the emotion themselves. The person displaying the emotion might be

biased to describe what they remember more than what they see. Indeed, one of the

biggest challenges of self-reported measures is the subjectivity of emotion itself, and

the degree of awareness with which a person can report their emotions.

Sensing with wearable devices can arguably help to overcome those challenges.

Sensing technology can measure embodied affective cues more reliably than human

coding, and with higher temporal resolution than self-report. However, these tech-

nologies require a ground truth label. Such label is, still, assigned by a human coder.

When the task is only to identify and count visible behavior, this seems to be the
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most appropriate ground truth label. However, when biases are in play, automatic

identification must make other judgments beside the perceptual ones. Therefore, an

inferential ground truth is required. In this case, the challenge lies in making a correct

inference of the affective state of a person.

In this chapter, several methods to measure affective responses are introduced.

First, several self-report scales are described. Next, the identification procedure and

standards followed by human coders are detailed. Afterwards, computer-aided meth-

ods for facial expression identification are mentioned. Then, the challenges of iden-

tifying spontaneous expressions automatically is described in more depth. Among

those, the ground truth challenge is of special importance.

3.1 Self-report

The most straightforward method to investigate how a person is feeling is to ask.

Many tools have been developed to reliably self-report affective states. These vary

in their definitions of how an emotion should be represented, and on the underlying

measurement principle. Dimensional representations include the Affect Grid [13], the

Self-Assessment Manikin (SAM) [14], and the Affective Slider [15]. Explicit emotion

label reports include the Positive and Negative Affect Scale (PANAS) [78]. Implicit

emotion self-reports capitalize on the fact that people tend to make judgments based

on their affective state even when they are not aware about their affective state itself.

Among the implicit self-report measures we find the Implicit Positive and Negative

Affect Test (IPANAT) [79], and the Inkblot test for attitudes [80].

Other studies have shown some evidence that measuring implicit affect adds in-

formation to explicit self-report [16]. Nevertheless, self-report has several drawbacks.

First, these require time from the user to fill them in. Second, it is unpractical to

fill them multiple times to assess experience continuously. This would interrupt the

experience itself. Third, the temporal resolution in which we can sample user experi-

ence with self-reported tools is limited. This might be because humans are not aware
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of their emotional state at every instant. Previous studies have shown that aware-

ness rates of facial expressions are about 60%. Awareness depends on intensity and

(or) duration of the facial expression [18]. Scherer (2005) pointed out that, given the

complexity of emotion, there are three modes of representing the changes in emotion

components: unconscious, conscious, and verbal. The zone of valid self-report is the

overlap among these three components. Therefore, there are physiological symptoms,

motor expressions, action tendencies, and cognitive appraisals that cannot be fully

assessed through self-report [19].

3.2 Human coding of affective cues

Facial expression is a basic method that humans have developed to communicate

their emotions. Therefore, they are among the most used behavioral cues for emotion

recognition.

There are two methodological approaches to study non-verbal behavior. Measur-

ing judgments about one or another message, and measuring the sign vehicles that

convey the message [81]. Both approaches involve observers, but observers code the

behavior using different criteria. In message judgments, inferences underlying the

behavior are made. On the other hand, when measuring the sign vehicles that con-

vey a message, target behaviors are described and counted. These behaviors include

counting how many times a muscle moves, or registering the duration of the move-

ment. Even though the labeling task is often simple for a human, it is tedious and

time consuming. Moreover, it is usually desired that the human observers describing

the behaviors act reliably like a machine would do. However, it is difficult for two

human coders to completely agree on the tagged behavior. Even if the judgment is

only a perceptual one, there is some error associated with it. This error is caused by

perceptual limitations.

Since facial expressions are visually perceivable cues, they can be tagged manually

by expert coders. If the coding system is only measuring the sign vehicles that convey
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a message, the generated labels are a “perceptual ground truth”. When some message

is inferred from those cues, the associated labels can be called as “inferential ground

truth”. As the level of the inferences made increases, agreement among human coders

decreases. In the case of inferential ground truths, the quality of the label depends on

the ability of the human coder to correctly infer the message or the intention conveyed

by a behavior (figure 3.1).

Most studies rely on facial expressions based on the Facial Action Coding System

(FACS) [82] to establish a methodology to perform such coding. The primary goal

of the FACS is to have a comprehensive reference system which includes all possible

visually distinguishable facial movements. The FACS Action Units (AU) were devel-

oped to determine the number of muscles which can fire independently, and whether

each independent muscular action results in a distinguishable facial appearance. Since

video-coding according to the FACS relies on descriptions of behavior units, it is con-

sidered as a perceptual ground truth. However, it assumes that the human observer

is trained to reliably recognize the specific AUs. Hence, the inference level is higher

than just coding facial movement alone.

Finally, it is important to notice that accuracy and error in the context of human

coding refers to disagreement. Different coders might disagree on the occurrence

of labeled behavior. Therefore, a disagreement between human coders, or between

human coders and the machine is used to calculate the accuracy of a rater.

In this thesis, different measures of agreement are used. The Kappa statistic is

used to report inter-rater agreement, and accuracy, precision, and recall to measure

agreement between the human coder, and the developed machine learning algorithms.

The Kappa statistic (K) is a quantitative measure of the magnitude of agreement

between observers [83]. A Kappa of 1 indicates perfect agreement, whereas a kappa of

0 indicates agreement equivalent to chance. The calculation is based on the difference

between how much agreement is actually observed, and the agreement that would be

expected by chance alone (formula 3.1).

23



Chapter 3: Measurement of affective responses

Human 

coder

Perceptual 

ground 

Do I see any facial movement?

Label
Data

Human 

coder

Perceptual 

ground truth

Judgement 

inference 

level

What anatomical Action Units (AU) moved?

FACS Label
Data

Human 

coder

Inferential 

ground truth

Is it a smile what I see?

Smile Label
Data

Human 

coder

Inferential 

ground truth 

Is it a posed or spontaneous smile 

what I see?

Smile meaning Label
Data

Figure 3.1: Perceptual and Inferential Ground Truths. Automatic identification of a
behavior depends on a pre-assigned ground truth label. Label can be decided based
on human perceptual judgments or inferential judgments. A human coder usually
decides the labels, under the assumption that humans are the best at the task at
hand.

K =
P (A)− P (E)

1− P (E)
(3.1)

Paradoxically, the Kappa measure is not reliable for rare findings. When the

observed behavior is not common, low rates of overall agreement are expected due to

the penalization for expected agreement by chance [84].
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3.3 Computer-aided coding

3.3.1 Computer vision-based methods

In the last years, the scientific community has addressed the facial expression

recognition challenge using mainly Computer Vision (CV) [28]. Several methods

have been developed to detect facial expressions in static images and videos. These

methods include tracking of geometric features, often called facial feature points or

landmarks; and appearance-based methods using features such as Gabor filters [85–

87]. In a review of ten CV-based machine learning studies to recognize emotion,

Janssen and colleagues [20] found that most studies rely on facial expressions based

on the Facial Action Coding System (FACS) [82]. These studies achieved between

72 and 98% of accuracy. However, the number of features extracted, emotion states

detected, and number of subjects participating in the studies varied considerably.

The main advantages of camera-based detection are its high spatial resolution

sensitivity; and the unobtrusiveness that can be achieved with the recordings. Despite

these advantages, and although the achieved accuracy is relatively high, CV-based

facial expression recognition in an uncontrolled environment is still a challenging task.

Good recording conditions and having a canonical view of the face are often required

[20,88,89]. This means that the face should be uncovered and that the person is not

allowed to face down or to the sides, which is unnatural. Furthermore, these methods

are not robust against occlusion and poor lighting conditions [90]. Recently, some

researchers have suggested the use of near-infrared (NIR) video sequences for facial

expression recognition to overcome lighting variance [91, 92]. However, occlusion,

movement, and point of view challenges remain.

3.3.2 Electromyography-based methods

An alternative to camera-based recognition is Surface Electromyography (EMG)-

based recognition. EMG has been used extensively in basic research of different fields

to quantify facial movement activation [76,93–95]. Previously, several researchers at-
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tempted to use EMG for facial expression detection. In a review of ten EMG-based

facial expression detection algorithms, [96] found out a classification performance

ranging from 56 till 100%. These studies varied in the number of expressions de-

tected, the number of EMG channels used, the features used, and the classifiers

applied. Similar to CV-based methods, comparison among studies is difficult due to

the different methodologies pursued. In their exploration, [96] reported a compari-

son of multiple time-domain EMG features, of which the best performance of 87.1%

accuracy was achieved with the Maximum Peak Val ue of the EMG signal.

An advantage of EMG signal is that current EMG technology allows for wireless

and compact detection. Therefore, surface EMG could be integrated in a wearable

capable of detecting such facial expressions. In [29], an eyebrow emotional expression

recognition using surface EMG was proposed. The authors designed a headband em-

bedded with a 10-channel digital EMG. They discriminated between sadness, anger,

surprise, disgust, and fear with average accuracy of 96.12%. Another wearable de-

signed to detect facial expressions with EMG was proposed by [30]. In this work,

their results show an average precision of 98% for posed smile detection and 96% for

posed frowns.

Despite the potential of EMG-based detection, another possible disadvantage is

that the EMG magnitude might change over time as a function of fatigue [95]. On the

other hand, facial EMG measurement techniques have the advantage of providing an

instantaneous, fine-grained muscle activity detection. They are capable of detecting

muscle contractions that are too fast or too small to be visually perceived [3, 95, 97].

3.3.3 Spontaneous facial expression detection

Most of the automatic detection work previously done is about posed expressions,

as opposed to spontaneous expressions. Posed facial expressions are facial expressions

collected in a controlled environment when a subject is asked to deliberately produce

them. Spontaneous facial expressions are those displayed by freely behaving individ-

uals. These have different characteristics than posed expressions. They often involve
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different facial muscles; their temporal dynamics are different; and they are mediated

by distinct neural pathways [37]. In recent years, the interest has been shifting to

spontaneous facial expressions, as they are more ecologically valid. This is reflected

by the recent publication of databases of spontaneous facial expressions [4,88,98–101].

Due to their different characteristics, spontaneous expressions are more challeng-

ing to elicit and detect. These challenges include the detection of fast and subtle

spontaneous expressions. Examples of spontaneous, fast, and subtle facial expres-

sions are micro-expressions.

3.4 Challenges in automatic affective identification

Previous research has shown the feasibility of identifying affective responses au-

tomatically using technology. However, many challenges remain. Among those, spe-

cially important are the elicitation of ground truth affective states for calibration; the

difference between measurements in the laboratory, and the so-called measurements

in the wild; and individual differences in affective responses. Ideally, an automatic

identification system should be easy to set, and equally accurate during laboratory

and in-the-wild measurements. For this purpose, creating a model of affective re-

sponses that can generalize to multiple users and situations is of utmost importance.

However, this is not an easy task. The first step is to collect data that accurately

describes the ground truth. Then, this data can be used to build a model, that can

be re-tested with multiple users and situations.

3.5 The ground truth challenge

As mentioned before, there are several methods to establish the ground truth on

what is the feeling experienced, that matches the embodied affective response of the

person. Self-report might be biased. As facial expressions can be fabricated voluntary,

assessing perceptual judgments and counting facial expressions only is not enough.

27



Chapter 3: Measurement of affective responses

These are also subject to biases as well. Furthermore, in inferential judgments of the

meaning of a facial expression, third person video coding judgments might be inac-

curate. Therefore, a good experimental design when collecting the calibration data

is of utmost importance to ensure that the measured affective responses correspond

to one or another affective category.
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Smile detection from Facial

Electromyography

4.1 A wearable device for fast and subtle sponta-

neous smile recognition

Most of the work previously done in automatic identification of facial expressions is

about posed expressions. In recent years, the interest has been shifting to spontaneous

facial expressions [74, 88, 98–101]. Due to their different characteristics, spontaneous

expressions are more challenging to elicit and detect. These challenges include the

detection of fast and subtle spontaneous expressions. Examples of spontaneous, fast,

and subtle facial expressions are micro-expressions.

Micro-expressions are brief, subtle, facial expressions that are leaked despite ef-

forts to either deliberately or unconsciously conceal an emotion [31]. They can be

considered as spontaneous, because they happen against the will of the person show-

ing them, and better reflect the experienced affect.

This section is based on:

Perusqúıa-Hernández, M., Hirokawa, M., Suzuki, K. A wearable device for fast and subtle sponta-
neous smile recognition. IEEE Transactions on Affective Computing. Vol. 8, no. 4, pp. 522-533.
DOI: 10.1109/TAFFC.2017.2755040
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Micro-expressions last only a fraction of a second. Because of their short duration,

they are usually neither noticeable to an untrained eye nor to the people disclosing

the expression. Besides the concealment, the main element in the definition is the

duration. However, there seems to be a lack of consensus in their precise duration

range [102–104]. Initially, the boundary between micro and macro-expressions was

described as half a second by Ekman and Friesen [31], emphasizing that they are

difficult to perceive for the untrained eye.

Previously micro-expressions have been detected mainly through computer vision

methods [86, 89, 105–109]. Depending on the number of expressions identified, the

results range from 54% accuracy in a leave-one-subject-out validation in [89] to 92%

AUC in [109]. On the other hand, other sensors besides video cameras seem to be

more robust in different contexts. EMG-based systems have the potential to detect

such facial expressions because of their good temporal resolution. High sampling rates

make it a promising tool to detect micro-expressions. Moreover, it is robust against

head rotations and occlusion; and in a wearable, it could provide independence of

movement. Despite this, to the best of our knowledge, micro-expression detection

with EMG has not yet been explored. Thus, it remains a question whether these ex-

pressions can be identified with the same methods used to identify macro expressions

from EMG.

Therefore, we propose to evaluate whether micro-expressions can be identified

with an EMG-based wearable device. As a first step, the feasibility of using distal

surface EMG to detect micro-smiles is evaluated. Micro-smiles were chosen because

(1) micro-expressions are fast and subtle, and therefore represent a major challenge

in facial expression recognition; and (2) smiles are related most of the time to positive

affect, which is beneficial in the aforementioned application domains.

In the following sections, we will describe the proposed wearable device, the meth-

ods used to elicit micro-smiles, and the recognition algorithm. Furthermore, we ar-

gue for the convenience of this tool to annotate Ads, or any other video stimuli, and

human-human social interactions. Finally, we discuss the results.
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4.1.1 Wearable device

The present work follows the design guidelines for facial expression detection us-

ing surface EMG provided by previous research [30], and extensively tested in various

settings [110–112]. Figure 4.1 shows the proposed arrangement. It uses four EMG

channels placed on the sides of the face, on top of the temporalis and the zygomaticus

major muscles [30]. Since distal EMG is measured, we do not identify the activity

of each facial muscle, but a combination of their activities. Therefore, special signal

processing is required. The advantage of using distal EMG is that the electrodes do

not obtrude the muscle movement. Hence, the facial expressions of interest are not

altered by wearing the device. Furthermore, its wearable nature allows for free move-

ment, and good detection in spite of occlusion [112]. However, previous work applied

such smile detection only to posed and/or macro-smiles. Micro-smile detection is

more challenging due to the temporal and magnitude characteristics of these facial

expressions. They are so fast and subtle that even humans experience difficulties

perceiving them. As discussed in the following subsections, we propose to improve

the design of the wearable device; and to adapt the signal processing for the detection

of micro-smiles. The proposed wearable approach is promising for real-time track-

ing of multiple people’s micro-expressions. Usually CV methods are computationally

expensive, and more often than not, are limited to the tracking of one person at a

time.

4.1.2 Garment design

The current system prototype consists of four surface EMG channels connected

to a wireless transmitter. The position of the electrodes is on the sides of the face,

on top of the temporalis and the zygomaticus major. Each channel consists of two

active electrodes bonded together in a 20 by 10 mm box. This box is inserted in a

placeholder, which in turn, is attached to a circlet with a bolt and screw. The purpose

of the circlet is to keep the four channels in place (See Figure 4.1). This is done by

applying pressure on both sides of the face. The four placeholders can rotate slightly
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Figure 4.1: The 4-channel EMG wearable used to record the micro-expressions.

inwards, to adjust to the shape of the head of the wearer. Furthermore, the size of

the circlet can be adjusted by screwing the attachment between the placeholders and

the circlet.

4.1.3 Signal processing

The surface EMG is recorded at 1 kHz sampling rate using a four channel Biolog

DL-4000 system. The data from all four channels is band-pass filtered from 5 to

350 Hz. Second, it is notch filtered at 50 Hz and its harmonics up to 350 Hz. Next,

the signals are decomposed in their Independent Components (IC), using Independent

Component Analysis (ICA). The ICA allows to separate the distal EMG from different

source muscles. Then the absolute value of the components is considered, and its

Root-Mean Square (RMS) value is calculated over overlapping windows of 100 ms,

sliding one sample at a time. This was done to increase the temporal resolution of

the algorithm, hence optimizing it for micro-smile detection. The aforementioned pre-

processing was performed on all EMG data, for each participant. The resulting data

is considered as input features to train a Neural Network (NN) with one hidden layer

of four Sigmoid neurons (Figure 4.2). Due to anatomical differences in muscle size

and Body Mass, EMG is highly variable between subjects. Hence, within subject data

was used to train the NN. Furthermore, given the limited availability of micro-smile

samples, the no-expression data was under sampled to match the number of samples
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Figure 4.2: Signal processing for micro-smile detection steps per participant.

of the expression data [113,114]. No-expression data was taken randomly from all the

data. To validate this model, cross-validation with 70% train, 15% validation, and

15% test data is used. The neural network aims to compare micro-expressions with

no-expression display. Micro-smiles are compared to no-expressions, as the electrode

positions are optimized for positive expressions.

4.1.4 Experiment 1

The main purpose of this experiment is to assess the possibility of detecting fast

and subtle smiles with distal EMG. To the best of our knowledge, no online database

is available, which includes unobtrusive, distal EMG of micro-expressions, recorded in

the proposed arrangement. Therefore, an experiment was designed for data collection.

To elicit micro-expressions, a methodology similar to the one described in [88] was

used. Furthermore, the video stimuli were mainly Ads that could be assessed with

the proposed method. The experiment was within-subjects, where all participants

watched all stimuli in a counterbalanced order.

Stimuli selection

Three Ad videos were selected from stimulus used in previous research [74]. Namely,

“The force” (Video TF, 62 s), “House sitting” (Video HS, 30 s), “Parisian Love”

(Video PL, 53 s). According to McDuff et al., using thiese stimuli they could collect

more than 10 000 frames of smiles, hence we expected to get similar results. All

videos were presented at 30 frames per second with 720x480 pixel resolution.
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Pilot

One healthy participant (female, 34 years old) went through all the procedure as

a pilot to evaluate the effect of the stimuli. Since the video PL did not elicit any

facial expression, a fourth video was additionally included. The additional video was

an edition of the 2011 Jimmy Kimmel Challenge “I Told My Kids I Ate All Their

Halloween Candy” (Video HA, 2 min 9 s). As described in the following sections, the

new video was more successful in provoking smiles.

Participants

Twenty-three voluntary participants took part on the study (average age=26.9

years old, SD=3.57). None of them had experience using the measuring device, and

14 participants had seen at least one of the videos before.

Procedure

Participants were provided with a general description of the test. The description

stated that the purpose of the test was to rate several videos, while recording their

facial EMG. Second, they provided their informed consent. Next, they were given

the right to quit at any time. The task consisted in watching three videos in coun-

terbalanced order. Before each video, they were asked to watch 30 seconds of black

screen, as a baseline for the measurements. They were instructed to “keep a neutral

face while watching the videos”. Finally, the experimental setup is shown in Figure

4.3.

Measurements

During the task, surface EMG and the participant’s face were recorded simul-

taneously. The camera was a Canon Ivis HFg10 with HD resolution at 30 frames

per second (fps) for the first five participants. For the last seven participants, the

camera was changed to a Sony Cyber-shot DSC-RX10 II with 1920 x 1020 resolution

at 120 fps. The purpose of this was to increase the number of frames in which the
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Figure 4.3: Experiment setup for micro-smile collection. Participants wore the EMG
device while sitting in front of a LCD screen where the stimuli videos were shown. A
camera was placed in front of them to record their facial expressions. This video was
used as ground truth.

micro-smile would be shown, and therefore facilitate the job of the human coder.

As mentioned before, a micro-expression can be argued to last as little as 1/25 of a

second. Even with a normal camera recording at 30 fps, there would be at least one

recorded frame of each micro-smile lasting 1/25 seconds. The number of frames is

increased to four in the case of a 120 fps high-speed camera.

Results experiment 1

Video coding. All the recordings of the participants’ face were coded frame-by-

frame for facial expressions by three experienced coders. High-frame rate videos were

slowed down to facilitate the task. The labeling included coding for the onset, offset,

and apex frames of the facial expression; the Facial Action Unit System’s (FACS)

Action Units that were present in the expression; and whether it was considered a

smile or not, and laughter or not. The labeled AU were AU1, AU02, AU04, AU05,

AU6, AU09, AU10, AU12, AU14, AU15, AU17, AU18, AU25, AU26, AU28, and

AU38. Smiles were often a display of AU6 and/or AU12. However, the smile label was

not assigned every time these AU occurred [74]. A facial expression was considered

as each annotation of the appearance of an AU change from the face on resting state

or a change from a different AU. The duration of the expression was calculated as the
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Table 4.1: Number of expressions elicited per video. Video 1 lasted for 62 s, Video 2
for 30 s, Video 3 for 53 s, and Video 4 for 129 s. Micro-expressions are those lasting
for less than 0.5 s. Other expressions refer to facial expressions that were not labeled
as smiles.

Stimuli Macro-expressions Micro-expressions Total
Smile Other Smile Other

1 28 14 3 14 60
2 18 18 6 11 53
3 3 18 0 10 31
4 157 69 23 28 277

Total 206 119 32 63 421

difference between the coded onset and the apex. All facial movements considered as

swallowing, coughing, or sneezing were excluded.

A total of 421 facial expressions were identified by at least one human coder. These

were displayed by 21 of the participants, two of them (Participant 4, 9) managed to

keep a neutral face during all the videos.

Table 4.1 shows the number of expressions that were elicited by each video. From

the elicited expressions, 238 were smiles; 177 were expressions faster than one second;

67 of the smiles were faster than one second; and 95 expressions were faster than

1/2 second, from which 32 were smiles. Expressions lasting less or equal than half a

second were considered micro-expressions.

The Cohen’s Kappa Coefficient was used as a measure of inter-rater agreement

[83]. For this paper, only the information of the duration of the expression plus the

assessment of whether the expression was a smile or not were used. Therefore, the

Kappa Coefficient was calculated on the frame-by-frame human coding on whether

the participant was smiling or not. According to this, the Cohen’s Kappa Coefficient

was 0.4068 (p<0.01) between rater 1 and 2; 0.33 (p <0.01) between rater 1 and 3;

and 0.54 (p <0.01) between rater 2 and 3. Furthermore, the Fleiss’ Kappa coefficient

[115] among all raters was 0.41 (p <0.01).

EMG signal processing. Figure 4.4 shows the EMG processing steps for partic-

ipant seven, video four. Dark dotted squares indicate the smile labels given by the

human coder. Four examples of the facial expressions are also shown. In here, only
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one out of four channels is shown. The gray signal is shows the raw EMG, and its

magnitude is shown in the left Y axis. The black signal corresponds to the RMS of a

rectified ICA component. Its magnitude is shown in the right Y axis. The differences

can be seen in feature magnitude for a non-expressive face, a micro-smile, and macro-

smiles. Although the plot does not show the activity from the start of the video, it

can clearly be observed that the displayed smiles are faster and subtler earlier in the

video. By the end of the video, the subject could not contain the laughter anymore.

Finally, it was observed that five participants tended to cover their mouth to hide

their faces when they cannot contain laughter. Other coping strategies were masking

the expressions with other facial movements like swallowing and wetting their lips.

Sixteen out of 23 participants displayed micro-expressions, and 10 of them dis-

played micro-smiles. Only their data was used for further analysis. Table 4.2 shows

the precision and recall achieved for micro-smile detection for each participant, for

the neural network results between micro-smiles and no-expression. Table 4.3 shows

similar results but for classification of smiles lasting at most one second. Interestingly,

the achieved performance seems to decrease as longer smiles are included in the data

set.

4.1.5 Experiment 1-b

EMG-based facial expression detection has the potential of being used to annotate

the interaction between Ads or other stimuli, and human-human interactions. Pre-

viously, [74] showed that smiles detected using CV over the internet can be used to

predict online media effectiveness. However, this study was limited to macro-smiles

of a single viewer. As shown in previous sections, EMG has critical advantages in

detecting micro-smiles in real time, and where occlusion is likely to occur. In this

section, we show an exploratory study on the performance of simultaneous detection

of multiple people‘s fast and subtle smile detection using our proposed method.
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Figure 4.4: Processing stages for smile detection. The dark dotted squares indicate the
smile labels given by a human coder. An example frame shot of the coded expression
is given below the plot. The stimuli video frame seen at that moment is also shown.
The gray signal is one of the four raw EMG channels, and its magnitude is shown in
the left Y axis. The black signal corresponds to the RMS of one of the four rectified
ICA components. Its magnitude is shown in the right Y axis. The latter was used
as input for the Neural Network. Axis X represents the EMG sample number, as
synchronized with the video.
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Table 4.2: Micro-smile and neutral faces classification results. Micro-smiles were
lasting less than 0.5 s. RMS was used as feature. The number of smiles represent the
number of smiles observed. The number of smile EMG samples represents the total
amount of EMG samples taken at 1 kHz from onset till offset of all reported smiles.
Classification results of micro-smiles. RMS was used as feature.
Subject Micro-smile detection Number of smile Number Age Gender

Precision Recall Accuracy EMG samples of smiles
1 NA NA NA 0 0 25 Male
2 100% 100% 100% 434 1 26 Female
3 NA NA NA 0 0 27 Male
4 NA NA NA 0 0 24 Male
5 NA NA NA 0 0 35 Male
6 100% 100% 100% 418 1 26 Male
7 98.1% 98.4% 98.2% 1855 7 34 Male
8 NA NA NA 0 0 34 Male
9 NA NA NA 0 0 29 Female
10 99.8% 99.9% 99.8% 2318 10 28 Male
11 NA NA NA 0 0 28 Female
12 NA NA NA 0 0 28 Male
13 79.3% 82.4% 81.20% 1160 3 27 Female
14 100% 100% 100% 243 1 24 Male
15 100% 100% 100% 434 2 26 Male
16 94.6% 96.8% 95.8% 1605 4 23 Male
17 NA NA NA 0 0 31 Female
18 NA NA NA 0 0 24 Female
19 100% 100% 100% 401 1 23 Male
20 100% 100% 100% 286 2 22 Male
21 NA NA NA 0 0 24 Male
22 NA NA NA 0 0 25 Male
23 NA NA NA 0 0 25 Female

Total 9113 32
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Table 4.3: Smiles lasting less than a second and neutral faces classification results.
RMS was used as feature. The number of smiles represent the number of smiles
observed. The number of smile EMG samples represents the total amount of EMG
samples taken at 1 kHz from onset till offset of all reported smiles. Classification
results of micro-smiles RMS was used as feature.

Participant Micro-smile detection Number of smile Number
Precision Recall Accuracy EMG samples of smiles

1 94.9% 96.9% 95.9% 801 1
2 96.3% 99.6% 98.00% 1167 2
3 NA NA NA 0 0
4 NA NA NA 0 0
5 NA NA NA 0 0
6 79.8% 88.1% 84.5% 3705 5
7 89.5% 94.9% 92.3% 8356 17
8 98.5% 93.5% 95.8% 926 1
9 NA NA NA 0 0
10 82.8% 91.7% 87.6% 5041 14
11 100% 100% 100% 2045 3
12 NA NA NA 0 0
13 99.9% 99.5% 99.7% 3940 4
14 100% 100% 100% 1128 2
15 100% 100% 100% 393 2
16 64.7% 80.3% 74.4% 5895 11
17 83.1% 81.1% 81.9% 651 1
18 NA NA NA 0 0
19 100% 99.9% 99.9% 2754 2
20 100% 100% 100% 286 2
21 NA NA NA 0 0
22 NA NA NA 0 0
23 NA NA NA 0 0

Total 37088 67
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Experiment Design

The experiment design consisted of two blocks. The first block, from now on

called “Conditioned Block”, was counterbalanced with a second block, from now on

referred to as “Free Block”.

The Conditioned Block was identical to the experiment setup of the previous

experiment, except that two participants were invited to watch the videos simulta-

neously. In the Free Block, the same two participants watched four new videos, and

they were invited to comment and relax, as if they were at home watching the videos

with a friend. Besides counterbalancing the order of the blocks, the order of the four

videos within each block was counterbalanced as well.

Participants

Eight voluntary participants took part on the study (four female, average age=29.25

years old, SD=1.71). None of them had experience using the measuring device. All

participants had seen at least one of the videos before.

Stimuli

For the micro-smile elicitation block, the same videos from the previous experi-

ment were used. Additionally, three new Ad videos were selected, plus a video showing

funny and cute kid behavior. The videos are, “Baby expectancy” (Video 5, 29 s),

“Fun kiddies” (Video 6, 2 min 18 s), “Brotherhood” (Video 7, 53 s), “Dirt Devil”

(Video 8, 1 min 28 s). All videos were presented to the participants at 30 frames per

second with 720x480 pixel resolution.

Measurements

During the task, surface EMG and the face of both participants were recorded

simultaneously. The camera used was a Sony Cyber-shot DSC-RX10 II with 1920

x 1020 resolution at 120 fps. For device-device-stimuli synchronization purposes, a

hardware trigger was designed. This consisted of a micro-controller interfacing via
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Figure 4.5: Processing stages for smile detection in a multi-user setup. The wearable
can also be used to measure multiple users at the same time, a hardware trigger was
used to synchronize multiple devices and the stimuli presentation. With this method,
it can be observed when people smile simultaneously or alone.

serial port with a laptop used to present the stimuli and send the triggers to the EMG

acquisition device.

Results

All the recordings of the participants’ face were coded frame-by-frame for facial

expressions by one experienced coder, similarly as in the previous study. From the

elicited expressions, 166 were smiles, 76 were expressions faster than half a second,

and 24 were smiles faster than half a second (Table 4.4). In this study, six out of eight

participants tended to rotate their heads to face the other participant, to cover their

faces depending on the situation and to talk quite often. Figure 4.5 shows the results

of human coding for totally and partially covering the face, looking towards each
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Table 4.4: Number of expressions elicited per video in experiment 1-b. Video 1 lasted
for 62 s, Video 2 for 30 s, Video 3 for 53 s, Video 4 for 129 s, Video 5 for 30 s, Video
6 for 158 s, Video 7 for 57 s, and Video 8 for 88 s. Micro-expressions are those lasting
for less than 0.5 s. Other expressions refer to facial expressions that were not labeled
as smiles.

Stimuli Macro-expressions Micro-expressions Total
Smile Other Smile Other

1 10 5 4 0 19
2 6 9 0 5 20
3 0 5 0 5 10
4 15 5 0 7 27
5 13 18 3 10 44
6 59 48 14 12 133
7 17 11 1 4 33
8 22 14 2 9 47

Total 142 115 24 52 333

Table 4.5: Micro-smiles lasting less than 0.5 s and neutral faces classification results
for experiment 1-b.
Participant Spontaneous smile detection Number Number Age Gender

Precision Recall Accuracy samples expressions
1 NA NA NA 0 0 29 Male
2 NA NA NA 0 0 31 Male
3 NA NA NA 0 0 30 Female
4 96.8% 97.5% 97.2% 493 1 29 Female
5 100% 100% 100% 1120 4 30 Female
6 NA NA NA 0 0 30 Male
7 88.8% 91.3% 90.2% 3686 17 25 Female
8 100% 100% 100% 886 2 30 Male

Total 6185 24

other, and looking away to the camera. Smile labels are also shown in the figure.

Tables 4.5 and 4.6 summarizes the results of the classification with the proposed

method for micro-smiles and for longer-lasting smiles. Here, 2 s or less was chosen

arbitrarily to exemplify how performance varies with the duration. Longer smiles and

laughter present more variation in the EMG due to muscle fatigue or multiple EMG

bursts, respectively. Therefore, they are more difficult to identify as a unit. Future

work should explore possibilities to address these challenges.
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Table 4.6: Micro-smiles lasting less than two seconds and neutral faces classification
results for experiment 1-b.

Participant Spontaneous smile detection Number Number
Precision Recall Accuracy samples expressions

1 NA NA NA 0 0
2 97.7% 99.0% 98.4% 5529 4
3 96.1% 95.1% 95.6% 2619 2
4 87.4% 93.3% 90.6% 3353 3
5 86.3% 87.2% 86.8% 58050 28
6 NA NA NA 0 0
7 79.3% 84.8% 82.6% 19074 39
8 85.1% 92.3% 89.0% 2521 7

Total 91146 83

Discussion and conclusions

These experiments explored the feasibility of detecting micro-smiles using surface

EMG. The results showed that micro-smiles can be distinguished from a neutral face

using EMG, with good accuracy. Therefore, EMG pre-processing and classification

methods seem to be also useful to analyze micro-smile expressions.

The achieved accuracy to identify micro-smiles was very good. This high ac-

curacy cannot be explained due to overfitting, as we made sure to apply proper

cross-validation. Nevertheless, an important challenge is the unbalanced nature of

the data. Micro-smiles are very rare compared to the no-expression class. To address

this issue, we under sampled the non-expression data. The results shown in Table

2a are reporting the accuracy for this case. Interestingly, the same algorithm yielded

less accurate results if the inclusion criteria was extended to fast and subtle smiles

lasting less than a second (Table 2b). In the latter case, accuracy ranged from 74

till 100% depending on the participant. This could be explained by the duration of

the expressions themselves. As the duration time is shorter, there are less variations

in the EMG intensity as can be observed in longer expressions. In longer smiles, the

relationship between detected electrical output at an EMG site, and the mechanical

force exerted by a muscle may change over time as a function of fatigue [95]. This

variability would make it more difficult for the machine learning algorithm to define a

clear boundary between samples of different expressions. Furthermore, previous work

has suggested that muscle contractions in spontaneous expressions peak simultane-
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ously [37], which could contribute to the success of the EMG-based classification. An

alternative explanation could be that usually smiles happen on top of other smiles.

It was observed that once some participant smiles, the smile tends to last for a long

period of time, and after a while, this smile is further extended in reaction to a funnier

stimuli event. This could also contribute to the clear magnitude difference between

the neutral expression and a micro-smile.

Furthermore, the temporal resolution and portability of this device would allow to

provide real-time feedback, if desired. This can be used for quantification applications

of positive facial expressions. In spite of using a 100 ms window for processing,

the temporal resolution is still 1kHz, because the window is sliding every sample.

However, there is still some work to be done before bringing this wearable device to

a real-time application setting. Only the results of an offline setup are showed here.

For real-time applications, the micro-smile recognition should be ported to an online

classification system. Moreover, one of the challenges would be the calibration of the

system for each individual. Previous work on CV shows that inter-subject training

and validation leads to poor results [89]. Regarding EMG, high inter-subject and

inter-session variability is also expected. This is mainly due to anatomical differences

in muscle size and position, and in Body Mass Index. In between sessions, one of the

main sources of error are the differences in electrode position [30,116], and changes in

skin conductance; suggesting that individual calibration is preferred to ensure good

performance. However, elicitation of such fast and subtle spontaneous expressions for

calibration purposes is a challenging task.

Previously, Yan et al. [117] discussed that the stronger the emotion felt, the more

micro-expressions could be elicited. Furthermore, a high stakes situation is often re-

quired to elicit micro-expressions. In our case, the videos were short, they were not

watched for the first time, and they elicited mild emotional content. Furthermore,

the intensity of the facial expressions has also been argued to depend on the elici-

tation paradigm used. The neutralization paradigm implies that facial expressions

are inhibited with strong intent, and therefore not leaked easily. On the other hand,
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during our tests, we could observe the two extremes: participants 4 and 9 did not

leak any expression, whereas most of them were showing wide smiles. Other partici-

pants broke in laughter in several occasions. This resulted in all their smiles lasting

longer than half a second. This phenomenon was observed before by [117]. They

reported that expressions of happiness tend to last longer than the micro-expression

threshold, and that micro-expressions of disgust are much more frequent. In our

data, 34.3% of the elicited micro-expressions were smiles, despite the stimuli being

rated as positive, and the smiles being 63.5% of the macro-expressions. Even though

with the proposed experimental setup, only about 44% of the participants displayed

micro-smiles. This is not unexpected. In their experiment Yan et al. also discussed

that “As for micro-expressions of happiness, one may feel surprised as to why so few

were elicited. Though happiness feelings were easily elicited when watching amusing

video episodes, these elicited smiles or laughter bursts are lasting facial expressions

and do not fit the criteria of micro-expression. Thus, most of the elicited happy facial

expressions were categorized as conventional facial expressions.” The phenomena we

observed is similar, despite using different stimuli. Furthermore, when the stimuli

are strong enough, the displayed affective expression is often long-lasting laughter. It

requires quite some effort to conceal laughter, and while some participants are very

good in neutralizing their facial expressions, most others are not. Therefore, we argue

that a fast and subtle smile is a first laughter burst that is quickly contained, and

that the proposed method and device is thus able to detect both.

Despite the number of micro-smiles might seem small, the high sampling frequency

of EMG allows to obtain 500 samples (at most) per micro-smile. In other words,

we could analyze about 9113 EMG samples of micro-smiles in the single-participant

experiment, and 6185 in the pairs-experiment.

Even though this was the first effort to evaluate the detection of fast and subtle

spontaneous facial expressions using an EMG-based wearable device, we only tested

with smiles. Future work should address the possibility of extending the detection

to more facial expressions. Smiles were a good first step because of their potential
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in different application domains, specially as a measure of wellbeing; as measure of

acceptation of a product or therapy; or as a positive reward in learning applications.

The current wearable device electrode positions were selected based in [30], and

are optimized for smile detection. This was done in the aforementioned research by

considering a multi-attribute decision making process, facial morphology, and EMG

amplitude. Moreover, the device is able to detect other expressions such as posed

frowning. Including more electrodes would be helpful to expand the wearable’s spatial

resolution to detect more facial expressions. In the future, the use of dense and

compact grids of electrodes around the face [116] seem a good alternative to achieve

so without covering it. Covering the face is an undesired situation as it makes the

users aware of their own facial expressions, and limits the movement of the skin

[30, 95].

Although CV-based micro-expression methods have better spatial resolution, state-

of-the-art algorithms are still sensitive to occlusion; computationally expensive; diffi-

cult to implement in a real-time feedback setting; and often get heavier when there

is more than one face on scene, causing a less accurate detection. EMG poses a

good alternative to robust micro-expression detection, and a potential replacement

to human video coding. Human perception of micro-expressions requires training,

and video coding of these is cumbersome and time-consuming. EMG provides accu-

rate automatic detection, as it profits from complementary information to what the

human cannot see.

Finally, EMG-based wearables can provide event-related smile detection. Identi-

fying the relationship between a stimuli event and (micro-) smiles can better provide

information about the synchronization or de-synchronization of the smiles between

several humans and/or a stimulus. This automatic multiple-user facial expression

annotation can support experts in other domains to identify salient elements in their

Ads, products, or therapies. This paper showed the feasibility to annotate a stimulus

with positive affect cues, even if they are as fast and subtle as micro-smiles.

We presented a wearable device which can provide laughter analysis in human-

47



Chapter 4: Smile detection from Facial Electromyography

human communication. Although laughter is characterized by complex expressive

behavior, in particular, we focus on the dynamics of facial expressions of positive af-

fect. We analyzed fast and subtle smiles at the level of micro-expressions, and showed

a method to use the detection to annotate stimuli. In this manner, progression from

short smiles to laughter can be observed along with the participants’ experience. We

argued for the advantages of using a wearable approach for such detection, as the

computer vision approach has some major drawbacks such as inaccurate detection

in cases of (1) occlusion; (2) face-to-face human-human interaction; and (3) compu-

tational expensiveness of micro-expression detection. In this paper, we focused on

(3) and showed an example of (2). We made the first effort to prove the feasibility

of detecting micro-smiles with a wearable device. We believe this is an important

first step for automatic analysis of spontaneous smiles and laughter in human-human

communication. As observed from our results, in ecologically valid settings people

tend to accompany laughter with head and hand movements. Therefore, other major

expressive modalities such as speech, body movements, and postural attitudes, might

be complementary to annotate the situation and eventually infer its meaning. In the

future, we plan to integrate a multimodal detection in our wearable approach.

4.2 Spontaneous and posed smile recognition based

on spatial and temporal patterns of facial EMG

As outlined in previous chapters, only identifying and counting smiles is not

enough to assess the affective experience of the person displaying the smile. It is

also important to be able to infer some affective meaning from the facial expression.

Since smiles can be voluntarily fabricated, an algorithm that can differentiate between

posed and spontaneous smiles would be useful.

This section is based on:

Perusqúıa-Hernández, M., Hirokawa, M., Suzuki, K. Spontaneous and posed smile recognition based
on spatial and temporal patterns of facial EMG. 7th Affective Computing and Intelligent Interaction.
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In this study, we propose to use EMG wearable technology to explore the temporal

characteristics of spontaneous and posed similes. 16 participants were selected from

the previous experiments. These participants were among the ones that showed both

spontaneous and posed expressions.

To distinguish between posed and spontaneous smiles, two algorithms were de-

signed. The first one analyzes spatial and magnitude features of facial EMG. In

addition, a temporal feature calculation algorithm is added to the second method to

assess the differences in temporal dynamics between both types of smiles.

It is important to note that the wearable device used to record the EMG signals

consisted of four wireless surface dry-electrode EMG channels. These four electrodes

were placed in a circlet that can be comfortably worn without covering the face

(Figure 4.1). With this wearable, the electrodes were placed on the side of the face,

on top of the temporalis and the zygomaticus major muscles. As previously described

in section 4.1.1. This configuration was proven to be robust for detection of smiles

and frowns in various settings [110–112]. Furthermore, this arrangement uses the

distal electrode locations on the side of the face in order to capture facial expressions.

Hence, the activity of each facial muscle is not identified, but the conducted pattern

classification considers facial expressions as a combination of the activity of all related

facial muscles. Due to the overlapping of the distal signal from different muscle groups,

special biosignal processing is applied.

4.2.1 Data collection

1. Experiment design and procedure. Participants were informed that the

purpose of the test was to rate some videos with a questionnaire and by measur-

ing their facial EMG. To elicit spontaneous smiles, a series of fun video stimuli

were showed to the participants in a counterbalanced order. In total, partic-

ipants watched eight videos. During the first four, they were asked to “keep

a neutral face while watching the videos”. Therefore, we expected all leaked

expressions to be spontaneous. In the second block, no particular instruction
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Figure 4.6: The signal processing steps to distinguish between posed and spontaneous
smiles.

was provided. Before and after watching the stimuli, participants were asked to

pose smiles, frowns, and eye-brow lifts, supposedly with the purpose of verifying

the EMG signal. After the experiment, participants were debriefed.

2. Stimuli. Three Ad videos known to elicit smiles were selected from previous

research [74]: “The force” (Video TF, 62s), “House sitting” (Video HS, 30s),

“Parisian Love” (Video PL, 53s). Additionally, an edition of the 2011 Jimmy

Kimmel Challenge “I Told My Kids I Ate All Their Halloween Candy” (Video

HA, 2min 9s), was included. During these four videos, participants were asked

to avoid making any facial expressions. Four extra videos showing fun and

cute behavior were watched with no particular instruction: “Baby expectancy”

(Video 5, 29s), “Fun kiddies” (Video 6, 2min 18s), “Brotherhood” (Video 7,

53s), “Dirt Devil” (Video 8, 1min 28s). All videos were presented at 30 frames

per second with 720x480 pixel resolution.

3. Participants. Sixteen voluntary participants took part on the study (average

age=26.3 years old, SD=3.24, 6 female). Eight participants were Japanese and

the rest from other European and Latin American countries. None of them had

experience using the measuring device, and 11 participants had seen at least
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one of the videos before.

4. Measurements. During the task, surface EMG and the participant’s face were

recorded simultaneously. The surface EMG was recorded at 1 kHz sampling

rate using a four channel Biolog DL-4000 system. The camera used was a Sony

Cyber-shot DSC-RX10 II with 1920 x 1020 resolution at 120 fps.

4.2.2 Data analysis

Video coding

All the recordings of the participants’ face while watching the stimuli were coded

frame-by-frame for facial expressions by two experienced coders. The labeling in-

cluded coding for the onset, offset, and apex frames of the facial expression; the

Facial Action Unit System’s (FACS) Action Units that were present in the expres-

sion; and whether it was considered a smile or not, a posed expression or not, and

laughter or not. Smiles were often a display of AU6, AU12 and/or AU25. However,

the smile label was not assigned every time these AU occurred [74]. All facial move-

ments considered as swallowing, coughing, or sneezing were excluded. For the posed

expressions block, the instruction given to the participant was used to label the ex-

pression as a smile or not. Furthermore, an experienced coder labeled the data in the

same manner as described for the stimuli block to identify the start and the end of

the posed facial expressions.

Signal processing

The EMG signals picked up by the electrodes are transmitted to a laptop via

Bluetooth, where they are analyzed using Matlab 2014a. Two different detection

algorithms are proposed. The first one relies on magnitude and spatial features only,

whereas in the second, temporal features of the signal were included.
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Spatial and magnitude features analysis pipeline. The data from all four

channels is band-pass filtered from 5 to 350 Hz. Second, it is notch filtered at 50 Hz

and its harmonics up to 350 Hz. Afterwards, any linear trends were removed from

the signal. Next, Independent Component Analysis (ICA) was applied, to separate

the components from different muscles. Then, the absolute value of the resulting

components was calculated. Next, the RMS value is calculated over overlapping

windows of 100 ms, sliding one sample at a time. The resulting data was labeled

according to the human coding, and used as features to train a Neural Network

(NN) in cross-validation with 70% train, 15% validation, and 15% test data. The

neural network aims to compare spontaneous smiles with posed smiles. Due to the

unbalanced nature of the data, the majority class was undersampled to match the

samples of the minority class [113, 114]. This process is shown in figure 4.6(a).

Temporal feature analysis pipeline. This method followed a similar preprocess-

ing as the previous one (Figure 4.6(b)). The four channels were band-pass filtered

(5-350 Hz); notch filtered (50 Hz and harmonics); de-trended; the absolute value of its

ICAs was calculated; and the RMS of the signal was calculated using an overlapping

100 ms window sliding every sample. Afterwards, smile data was selected according to

the human label, and sliced in individual smiles. Next, each smile data was smoothed

using an averaging non-overlapping window of 100 ms, and a Savitzky-Golay Filter

with a 5th order polynomial and 41 as frame length. Then, peak detection was per-

formed on the smoothed EMG signal to calculate the rising, and decay times (Figure

4.7). The rising time is defined as the time taken from the first minimum to the first

maximum (peak) in the smoothed signal; decay time is defined as the time between

the last maximum to the last minimum. Furthermore, the magnitude change during

rising and decay; and the rising and decay speed were calculated as features. The

resulting feature set was standardized and used to train a Support Vector Machine

(SVM) to distinguish between posed and spontaneous smiles. A Gaussian Kernel

Function was used. To validate the model, a cross-validation with 70% train, 15%
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(a) Spontaneous smiles. The X-axis represents sample number at 100 Hz. The
Y-axis is the smoothed absolute value of one of the ICA components of participant
16.
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(b) Posed smiles. The X-axis represents sample number at 100 Hz. The Y-axis is
the smoothed absolute value of one of the ICA components of participant 16.

Figure 4.7: The EMG signature of a smile. A sample of smile data with the estimated
envelopes, peaks, and rise and decay sections. No-smile EMG data was masked with
zeros for easy visualization.

validation, and 15% test data was used. As with the other method, the data was

balanced to match the minority class.
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Table 4.7: EMG spatial and magnitude features-based posed and spontaneous smiles
identification. RMS was used as feature as described in section 4.2.2

Participant Spontaneous-smile detection
Precision Recall Accuracy

1 75.20% 85.90% 81.40%
2 68.00% 64.90% 65.60%
3 78.90% 77.20% 77.80%
4 68.50% 80.00% 75.70%
5 91.80% 93.30% 92.60%
6 83.00% 72.40% 75.70%
7 78.60% 70.90% 73.10%
8 98.50% 97.20% 97.80%
9 33.00% 61.30% 56.10%
10 80.50% 71.20% 73.90%
11 71.00% 74.40% 73.30%
12 94.90% 88.50% 91.30%
13 92.00% 80.50% 84.80%
14 92.20% 87.50% 89.50%
15 83.70% 76.70% 79.10%
16 73.80% 81.60% 78.60%

Average 74.19% 77.80% 77.75%
SD 15.07% 9.58% 10.18%

4.2.3 Results

In total, 240 spontaneous smiles and 353 posed smiles were identified by the human

coders. The Cohen’s Kappa Coefficient of inter-rater agreement for spontaneous smile

labeling was 0.41 (p <0.01). The balance between the two types of facial expression

depended heavily on the manner in which individual participants responded to the

stimuli. However, we could get at least nine spontaneous smiles from each participant,

and at most 19.

The spatial and magnitude features analysis pipeline was moderately successful

in distinguishing spontaneous and posed smiles. The classification results range from

56.10% till 97.80% of accuracy. On the other hand, the temporal feature analysis

pipeline accuracy values ranged from 85.23% till 96.43%. A Wilcoxon Signed-Rank

test showed that the spatio-temporal features algorithm’s accuracy is significantly

higher than the one using spatial and magnitude features (V=9, p <0.01). This clas-

54



Chapter 4: Smile detection from Facial Electromyography

Table 4.8: EMG spatio-temporal features-based posed and spontaneous smiles identi-
fication. Spatio-temporal features were used as described in section 4.2.2

Participant Spontaneous-smile detection
Precision Recall Accuracy

1 85.16% 97.32% 87.98%
2 90.00% 100.00% 90.70%
3 97.65% 94.32% 95.33%
4 87.50% 78.87% 85.63%
5 96.30% 100.00% 96.43%
6 90.44% 86.62% 88.45%
7 87.94% 100.00% 89.43%
8 92.05% 99.29% 92.74%
9 91.84% 60.81% 85.23%
10 91.67% 72.13% 88.40%
11 86.13% 93.13% 88.18%
12 90.50% 87.10% 88.67%
13 84.75% 89.82% 86.54%
14 87.55% 90.27% 88.08%
15 89.37% 93.91% 89.41%
16 84.62% 84.62% 86.29%

Average 89.44% 87.73% 89.11%
SD 3.69% 10.66% 3.10%

sification was made in an average of 350 temporal features per participant extracted

from the envelopes of the EMG measured while smiling. From these features, a series

of t-tests revealed that spontaneous smile duration differs from posed smile duration

(t(2276)=-11.535, p<0.01). Second, the magnitude both types of smiles is not signifi-

cantly different (t(2276)=-0.19837, p>0.05). Third, the rising time (t(1151)=-7.5336,

p<0.01) and decay time (t(1124)=-8.8359, p<0.01) differ, but the speed of change is

not significant. Neither during the rising phase (t(1130)=0.22068, p>0.05) nor during

the decaying phase (t(1108)=1.6413, p>0.05).

Finally, no significant cultural differences were observed. However, figure 4.8 shows

that the spatio-temporal features result for Japanese tend to have less variation than

for other nationalities.
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4.2.4 Discussion and conclusion

EMG has the potential to distinguish between spontaneous and posed smiles in a

portable and real-time fashion using a wearable. We provided support for this using

both magnitude and temporal features. Our proposed algorithms take advantage of

the ICA extraction to estimate different sources of the EMG signal and its magni-

tude. They also profit from the EMG’s high temporal resolution to estimate smile

characteristics without consuming excessive computational resources. From these two

alternatives, the most successful results were given by considering the temporal res-

olution of the signal. As supported by previous studies, this is probably because

spontaneous and posed smiles differ in this aspect. In our data, the main difference

was that spontaneous smiles tend to last longer than posed ones. Nevertheless, this

might be influenced by the duration of the instruction to pose a smile, and the method

used to elicit spontaneous expressions.

Moreover, the algorithm using spatial and magnitude EMG features achieved ac-

curacy rates with more variability than the one using the spatio-temporal features.

A possible explanation for this phenomenon is the ability of the participant to pose

a smile. When the participants’ posed and spontaneous smiles are visually very sim-

ilar, the spatial-magnitude classifier has difficulties distinguishing them, hence, a low

accuracy is achieved. This is the case of participant 9. On the other hand, when the

participant is not able to produce a posed smile, the task becomes easier, and the

accuracy increases. For example, the posed smile of participant 8 did not look like a

smile. Then, the accuracy achieved reached 97.80%. With the spatio-temporal classi-

fier, the accuracy for participant 9 is 85.23%, and for participant 8 is 92.74%. These

values are higher in average, and less variable. Therefore, we might infer that people

can train and learn how to move specific muscles to pose a smile, but controlling the

timing of the changes is more difficult to achieve. Despite this, the spatio-temporal

scores of Japanese nationals vary less than those of other nationalities. Thus, in a

more balanced sample cultural differences might be observable.
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4.3 The EMG signature of different smiles

Although EMG has long been used to measure facial muscle activity, most of the

work done so far implicated placing the electrode on top to the studied muscle [37].

This simple fact made it difficult for people to truly show spontaneous smiles. Thus,

posed facial expressions were the most studied.

In this chapter, we used a wearable device that allows to measure distal facial

EMG. This approach opens the possibility to unobtrusively track facial EMG signals

of spontaneous smiles. Using the data collected from experiment 1, it was shown that

distal EMG is an effective measure to identify fast and subtle spontaneous smiles,

even at a micro-expression level (RQ 1). This method is specially advantageous

when two or more people are being tracked (RQ 1-b), as occlusion and movement is

common in this situation. Nevertheless, identifying and counting smiles is not enough

to assess the private affective experience of a person. For that purpose, it is necessary

to distinguish between posed and spontaneous smiles. Further data analysis showed

that it is possible to identify the differences between both types of smiles using EMG

(RQ 2). Whilst the spatial distribution of the muscles used to make these smiles

differ, it was found that temporal features are more robust to distinguish between

posed and spontaneous smiles. Specifically, smile duration, rising time, and decaying

time (RQ 2-b).

Despite the good results achieved, there are some limitations in this study. First

of all, micro-smiles are rarely displayed. This implies that their dynamics might

differ from other smiles. Moreover, the unavailability of micro-smile examples causes

a significant unbalancing in the data. This, in turn, might bias the performance of

the machine learning algorithm. This limitation was carefully addressed by under-

sampling the no-expression data. Another possible confounding is that the duration

of the smiles might be constrained by the elicitation method in itself. Therefore, the

next chapter describes a second experiment in which these limitations were addressed

to obtain high-quality data.
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Figure 4.8: Performance differences among algorithms. The Y-axis represents the
accuracy in percentage. The average is presented for explanatory purposes. The X
axis represents the category.
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Spatial and temporal dynamics of

affective responses during

spontaneous and posed smiles

In the previous chapter, the feasibility of detecting spontaneous smiles from EMG

in an unobtrusive manner was proven. Furthermore, a first attempt to distinguish

between posed and spontaneous smiles was made. However, in the previous experi-

ment, posed and spontaneous smile duration could have been affected by the elicita-

tion method used. Since posed expressions were elicited on command, their temporal

dynamics might have been constrained. Therefore, experiment 2 was designed to

collect posed smiles on a different paradigm.

Particularly, special care was taken to elicit facial expressions with known ground

truth and without modifying their temporal characteristics. Therefore, a triple-check-

method was used to ensure the validity of the ground truth labels. First, the experi-

ment was carefully designed to create an appropriate valence in each block. A positive

valence to elicit spontaneous smiles, and a slightly negative valence while participants

were asked to pose smiles. Second, participants self-reported their emotions after each

block, to confirm the induced affective state. Finally, participants were asked to video

code their own facial expressions and report whether the smiles they made were posed
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or spontaneous. In this manner, the validity of the ground truth label was ensured.

Moreover, other measurements were taken to further investigate affective responses

during these two types smiles. Electrodermal Activity (EDA) was recorded as a mea-

sure of arousal, as well as head movement measured with an Inertial Measurement

Unit (IMU). As mentioned in section 2.1, EDA complements the dimensional repre-

sentation of emotion. On the other hand, as argued in section 2.3, head movement

is hypothesized to increase accuracy when distinguishing between posed and sponta-

neous smiles.

Finally, the participants were sampled equally from three different cultural back-

grounds to explore any differences among them. These were Japanese, Chinese and

Brazilian. Furthermore, care was taken to maintain gender balance on the sample.

5.1 Experiment 2

5.1.1 Participants

38 voluntary participants took part on the study (19 female, average age=25.03

years old, SD=3.83). Participants were sampled from three nationality groups. 12

were Japanese (6 female), 13 were Chinese (7 female), and 14 were Brazilian (6

female). Since the experiment was conducted in Japan, the Chinese and Brazilian

people were not in their native environment.

5.1.2 Experiment design

The experiment design consisted of six blocks (figure 5.1). The first block, from

now on called “Spontaneous Block” (S-B), was aimed to induce a positive affective

state, and therefore, elicit spontaneous smiles. The second block, “Neutral Block”

(N) was aimed to revert the positive affect elicited during S-B into neutral affect.

In the third block, participants were asked to pose a smile for the camera during

approximately 5 s (P). In the fourth block, or the “Posed Block” (P-B), participants
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were requested to “make similar facial expressions as you did when you watched the

first video. Exactly, the ones you video coded. This is for a contest. We are going to

show the video we record to another person, who is unknown to you, and if he cannot

guess what video were you watching, then you are a good actor. Please do your best

to win against the evaluator”. This type of smile was considered as a posed smile that

deliberately intends to convey the impression of having fun to a third person. The

fifth block provided an opportunity to smile for the camera, again during 5 s (F-P).

Finally, the last block was labeled as the moment when the experimenter informed

the participant that the experiment was over. A smile was expected at that point as

a sign of happiness because they finished all tasks (F-S).

All participants went through all experiment blocks in the same order. This

was to keep the purpose of the experiment hidden during the spontaneous block.

Only the stimuli videos inside the spontaneous block were counterbalanced. After

both the S-B and the P-B, participants were asked to respond to affect-assessments

via questionnaires. Furthermore, they were asked to video code their own facial

expressions.

This research was approved by the Engineering Ethical Committee of the Univer-

sity of Tsukuba with review code 2017R176.

5.1.3 Stimuli

During the Spontaneous, Neutral, and Posed Blocks, 90 s videos were used as

stimuli. Each stimuli video was preceded by a 10 s neutral video aimed to establish

a relaxing baseline. The contents of the videos were the following:

• Pre-block stimuli. This video consisted of raindrops falling on the camera

lenses.

• Spontaneous Block. Three funny and cute videos of 30 s were concatenated

with a 1 s black transition. These were popular internet videos featured a baby

getting surprised with a simple magic trick (from the previous experiment); a
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Figure 5.1: Experimental design for experiment 2. All participants went through
all six experiment blocks in the same order. The first block was aimed to induce
positive affect and therefore smiling behavior. The second block was aimed to reset
that affective valence. The third block provided an opportunity to practice a posed
smile when smiling for the camera. The fourth block aimed to induce a slightly
negative feeling while people were deliberately asked to smile. The fifth block provided
an opportunity to smile for the camera. Finally, the last block was labeled as the
moment when the experimenter informed the participant that the experiment was
over. A smile was expected at that point.

panda calling for the attention of the zoo guard [118]; and a cat moving in an

interesting manner as his owner petted it [119]. These were intended to match

the preferences of most of the participants. The three videos were presented in

a counterbalanced order included all six orders.

• Neutral Block. The neutral block video consisted of 18 pictures from the

International Affective Picture System (IAPS) [120] presented every 5 s, for

a total of 90s. Hence, the duration of the neutral video was the same as the

duration of the spontaneous block. These images were chosen to have a rated

likeability from five to six points.

• Posed Block. Similarly to the neutral block, 18 IAPS pictures were selected

and presented every 5s for a total of 90s. The images chosen for this block
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Channel 2

Channel 1

Channel 4

Channel 3

Figure 5.2: Wearable EMG channel position. The EMG wearable consists of four
channels located as depicted in this figure. EMG activity on channels 1 and 2 was
significantly different between the spontaneous and the posed blocks.

had a midly unpleasant valence. The likeability of the images was constrained

between four and five points.

5.1.4 Measurements

Four channels of distal facial EMG were measured from sides of the face using a

Biolog DL4000 in the same wearable as in previous experiments. Figure 5.2 shows the

EMG channel position on the wearable. EDA was measured from both the left hand

index and ring fingers, and from the neck. Heart rate was measured using Photo-

plethysmography (PPG) sensors placed both on the middle finger of the left hand and

the left earlobe. Head movement was measured with an Inertial Measurement Unit

(IMU) placed on the back of the head. Additionally, an IMU recorded hand move-

ments to aid motion artifact removal. EDA, PPG, and IMU measures were gathered

using two Shimmer3 GSR+ units. All sensors were synchronized to the start of the

stimuli.

Video of the participant’s facial expressions was recorded using two cameras. One

a Canon Ivis 52 at 30FPS, and the second a Intel RealSense camera at @60FPS,

depth at 480x360, and color at 640x480 resolution. Furthermore, voice was recorded

using two channels of a RASP-LC MEMS microphone array.

Participants were asked to answer the Affect Grid[13] as a measure of explicit affect
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Microphone

Stimulus

Video

EDA, PPG, IMU EDA, PPG, IMU

EMG

Self-report

Figure 5.3: Experiment setup for experiment 2. All sensors are labeled in the picture
to show their respective location.

self-report in a dimensional space; and the Implicit Positive and Negative Affect Test

(IPANAT) [79, 121] as a measure of implicit affect. Additionally, they were asked to

rank the videos in their order of preference after the spontaneous block, and to report

if they had seen the videos before or if they would watch them again. At the end of

the experiment, control questions about age, gender, hometown, and how often do

they smile in everyday life were asked.

Finally, participants were also asked to tag the onset and offset of their own facial

expressions, as well as labeling them as spontaneous or posed using the Dartfish

Version 3.2 software with a customized set of label buttons.

5.1.5 Apparatus

All stimuli were presented to the participant in a Philips B-line 240B4 24 inches

monitor with a resolution of 1920 x 1200 pixels. A MSi GP602PE230 Laptop was

used to present the stimuli and to control the triggers to synchronize all devices.

This Laptop was connected via Bluetooth to the Shimmer sensors used to record

EDA, PPG, and IMU measurements. A wired connection was used to communicate

with the RealSense camera and with the Display. Additionally, the stimuli laptop
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Figure 5.4: Wearables experiment 2. From left to right, the EMG wearable, the usage
of the Shimmer3 GSR on the hand, and the Shimmer3 GSR integrated on the EMG
wearable to measure skin conductance from the neck.

was connected via USB to a custom hardware circuit. This circuit received wireless

signals from a remote controller used by the experimenter to start the stimuli. Once

the stimuli was started, a hardware trigger was sent to the Biolog hardware recording

the EMG. Furthermore, a software trigger was inserted in the Shimmer data. This

software trigger was sent using a local host UDP connection to the recording software.

Finally, another two laptops were used. The first one, a Dell Latitude E6230, to

record the EMG data received from the Biolog device via Bluetooth. The second,

a Dell Inspiron N5110, to let the participants do their own video-coding using the

Dartfish software.

5.1.6 Procedure

The experiment and questionnaires were conducted in Japanese, Chinese, and

English. The participants chose their more comfortable language. Participants were

invited to a “video rating” experiment. They were told that the goal was to rate

the content of the videos and how comfortable was to wear the sensing wearables.

They were informed that the experiment consisted of several blocks, and that the

instructions for each block would be provided before starting each one. If they agreed

to participate, they were asked to sign an informed consent. Next, they were shown
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Figure 5.5: Sensor synchronization experiment 2. All sensors used during the exper-
iment were synchronized to the start of the stimuli. A button on a remote controller
triggered the stimuli presentation, a hardware trigger that marked the EMG, and dis-
played an LED light next to the participants face. Simultaneously, a software trigger
was inserted into the Shimmer-recorded data using a local host UDP connection.

a picture with the wearables and aided by the experimenter to wear them. As men-

tioned in the experimental design section (5.1.2), the experiment always started with

the spontaneous block. Participants were asked to watch the videos and relax. After

the stimuli, they were explained how to answer the Affect Grid, the IPANAT ques-

tionnaire, and the video preference questions. While the participant was answering

the questions, the experimenter copied and prepared for video-coding the videos with

the participant’s face. Next, participants were asked to tag any facial expressions

they had made during the previous block. The tags included starting and end time of

the expression, whether the expression was a smile or not, and if the expression was a

posed expression or a spontaneous one. All participants were allowed to practice with

a one minute video. After the video-coding, the neutral block started. Participants

were told to watch the video and relax. After the neutral block, they were asked to

smile for the camera as long as the screen changed to orange (5 s), in order to check

the sensors’ recordings. This was intended as practice for the posed smiles. After-

wards, participants were debriefed. An explanation about the goal of distinguishing

66



Chapter 5: Spatio-temporal responses during spontaneous and posed smiles

between posed and spontaneous smiles was provided. During the posed block, they

were asked to watch the stimuli and to perform the same smiles they did during the

spontaneous block as much as possible. Their objective was to make it impossible

for a third person to tell the difference between the experimental blocks from the

facial expressions alone. After watching the video, they answered the Affect Grid,

and the IPANAT. The demographics and control questions were included afterwards.

Next, they were asked to video code their own expressions as before. When they

finished, all systems were still recording. Then, the experimenter informed them that

it was the end of the experiment while inserting a trigger to mark that moment in

the data. The experimenter then waited to see the reaction of the participant. After,

the experimenter requested one last smile for the camera, while the screen changed

to orange. Then the experiment was over, all recording systems were switched off,

and the experimenter proceeded to remove all the wearables.

5.1.7 Analysis and Results

Self-report

A one-factor ANOVA revealed no significant self-perceived differences in how much

participants smile (F(2,36)=1.09, p >0.05, figure 5.6).

A 3-factor mixed ANOVA with the Affect Grid valence as the dependent vari-

able, yielded significant results only for experiment block (F(1,64)=11.465, p <0.01).

Nationality (F(2,64)=2.229, p >0.05), and gender (F(1,64)=0.442, p >0.05) differ-

ences were not significant. The only significant interaction effect was the nationality

and block interaction (F(2,62)=3.754, p <0.05). Figure 5.7(a) depicts the differences

in valence ratings between the posed and spontaneous experimental blocks, and be-

tween different nationalities. Participants reported more positive feelings during the

spontaneous block, than during the posed block.

A similar ANOVA using the Affect Grid arousal as the dependent variable showed

no significant differences in nationality (F(2,64)=1.268, p >0.05), experiment block

(F(1,64)=0.498, p >0.05), nor gender (F(1,64)=0.170, p >0.05). The interaction ef-
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Figure 5.6: Self-perceived smiling frequency. When asked “How often do you smile?”,
participants of different nationalities did not report any significant difference in the
frequency of smiling.

fects were also not significant. Figure 5.7(b) shows the differences in arousal ratings

between the posed and spontaneous experimental blocks, and between different na-

tionalities. Although the differences among experimental blocks are not significant,

the high variability in the ratings is notorious. Specially for Brazilian and Japanese

nationals.

On the other hand, the IPANAT scores on positive and negative effect are shown

on figure 5.8. A 3-factor mixed ANOVA with the IPANAT scores as dependant

variable, yielded significant differences in the nationality (F(2,140)=4.389, p <0.05).

However, experiment block (F(1,140)=0.023, p>0.05), and reported affect (F(1,140)=0.104,

p >0.05) differences were not significant. Interaction effects were not significant.

Video coding

According to their own video coding, 272 smiles were elicited from 32 participants.

127 were spontaneous, and 145 were posed. Only three people produced sounds that

would be cataloged as laughter. According to the participants comments during the

video-coding part of the experiment, it is difficult to know if a smile was spontaneous
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Figure 5.7: Affect grid ratings per experimental block and nationality The average
ratings of valence and arousal per experimental block and nationality are shown.

brazilian chinese japanese

1
.5

2
.0

2
.5

Conditions

IP
A

N
A

T

Posed
negative

Spontaneous
negative

Posed
positive

Spontaneous
positive

Figure 5.8: IPANAT scores per nationality, experiment block, and reported affect.
The IPANAT scores are similar for both spontaneous and posed blocks.

or posed even for themselves. Specially Brazilians mentioned that sometimes a posed

smile transformed into a spontaneous one when they thought about the irony of

having to smile to the conflicting stimuli images.
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Table 5.1: Inter-coder agreement. The agreement between the different coders is
shown. A considerably good agreement is achieved when judging between smiles
and other expressions. However, the agreement decreases when the judgment also
considers whether the facial expression is posed or spontaneous.

Smile-No smile Posed-Spontaneous
agreement agreement

Cohen’s Kappa between
independent coders 0.5880 0.2951

Fleiss’ Kappa between the
two coders and the participant 0.5673 0.1299

Besides the participant’s own video coding, two independent raters labeled the

videos. The two independent coders used the same software as the participants

(Dartfish Version 3.2). They coded for the start frame and the duration of every fa-

cial expression. They labeled each expression as a smile, or another facial expression;

and as a posed or spontaneous expression. Additionally, they labeled the involved

FACS Action Units (AU). The coded AU were AU1, AU02, AU04, AU05, AU6, AU09,

AU10, AU12, AU14, AU15, AU17, AU18, AU25, AU26, AU28, and AU38. Smiles

were often a display of AU6 and/or AU12. However, the smile label was not assigned

every time these AU occurred. They Coder 1 was familiar with the experimental

design, whilst Coder 2 was not.

When discriminating whether participants were smiling or not, the Cohen’s Kappa

for agreement between the two independent coders was 0.588. In the same task,

the Fleiss’ Kappa between the two coders and the participant’s own video coding

was 0.567. However, the agreement diminished when the task was to determine

whether the expressions displayed were posed or spontaneous. The posed-spontaneous

Cohen’s Kappa agreement between the two independent coders was 0.295. When also

including the own coding from the participant, the Fleiss’ Kappa scored 0.129. These

results are summarized in table 5.1.

70



Chapter 5: Spatio-temporal responses during spontaneous and posed smiles

Electromyography

A similar algorithm to the one described on section 4.2.2 was used to calculate

the temporal features of different smiles. First, an envelope is fitted to the rectified

EMG Independent Components (IC). Then the maximum and minimum points of the

envelope are determined. Based on those peaks, maximum magnitude, rising time,

decaying time, rising speed, decaying speed, and duration of the smile are calculated.

A series of t-tests between posed and spontaneous features revealed that only rising

time (t(611) = -2.0859, p <0.05) and decaying speed (t(575) = -2.5122, p <0.05)

differences were significant.

Additional analysis were performed on the filtered EMG data. The applied filters

were a notch filter at 50 Hz, and a band-pass filter from 5 to 350 Hz. Then, the EMG

value was averaged over each block, and divided by the duration of that block. These

ratio values were calculated per participant and per EMG channel. A mixed factor

ANOVA showed a significant difference between this EMG ratio values in national-

ity (F(2,280)=6.536, p <0.01), experimental block (F(1,280)=7.072, p <0.01), and

channel (F(3,280)=3.635, p <0.01). Additionally, the interaction effect between Na-

tionality and Block was significant (F(2,280)=6.461, p >0.05). Given this difference,

a repeated measures ANOVA with experimental block, and Independent Component

(IC) as independent variables, and the magnitude of each smile was performed. No

significant differences were found. Neither in experimental block (F(1,439)=0.185, p

>0.05), or IC (F(1,439)=0.010, p >0.01).

Electrodermal activity

EDA responses mildly fluctuated with the stimuli blocks. Hand EDA changed

more than neck EDA. It displayed typical tonic and phasic changes. On the neck

EDA, phasic changes were about for times smaller in magnitude (figure 5.10).

Two types of analysis were performed to investigate the differences between EDA

events co-occurring with posed and spontaneous smiles. The first one was to inves-

tigate the potential of using the data gathered to automatically distinguish between
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Table 5.2: EMG spatio-temporal features-based posed and spontaneous smiles identification for experiment 2. Spatio-temporal
features were used as described in section 5.1.7. The high accuracy from the previous experiment was maintained at around
91% with a standard deviation of 4%. The results of only 27 participants are shown, as not every participant smiled during
the experiment.

Participant Precision Recall Accuracy Number Number Nationality Gender
Posed Smiles Spontaneous Smiles

1 90.00% 96.18% 90.78% 5 3 Japanese Male
2 81.58% 91.18% 87.65% 5 5 Japanese Male
3 83.50% 100.00% 86.92% 5 4 Japanese Female
5 90.00% 98.02% 90.91% 7 4 Japanese Male
7 100.00% 100.00% 100.00% 4 3 Brazilian Female
8 100.00% 50.00% 95.45% 3 2 Chinese Female
9 90.00% 100.00% 93.94% 4 3 Japanese Male
10 90.24% 92.50% 90.14% 5 4 Brazilian Female
11 88.89% 95.24% 91.46% 5 4 Japanese Male
13 86.49% 94.12% 88.71% 3 2 Brazilian Male
14 89.71% 100.00% 91.03% 3 2 Japanese Female
17 89.71% 100.00% 100.00% 9 5 Brazilian Female
18 94.34% 86.21% 90.00% 8 4 Chinese Male
19 100.00% 71.43% 90.00% 2 3 Brazilian Male
20 100.00% 85.00% 92.86% 2 3 Japanese Female
21 83.33% 93.75% 88.89% 3 2 Chinese Male
23 92.45% 98.00% 93.98% 5 4 Japanese Female
24 95.95% 98.61% 95.51% 11 3 Chinese Female
26 89.47% 58.62% 82.50% 10 7 Chinese Female
29 100.00% 28.57% 87.50% 1 3 Chinese Female
31 90.00% 100.00% 91.67% 4 2 Chinese Female
34 89.66% 100.00% 90.63% 5 2 Chinese Male
35 87.76% 89.58% 90.00% 5 8 Brazilian Female
36 91.57% 100.00% 93.58% 12 7 Brazilian Male
37 83.78% 96.88% 86.54% 3 4 Brazilian Male
39 95.00% 95.00% 93.02% 8 3 Brazilian Male
41 88.24% 62.50% 92.57% 5 7 Brazilian Female

Average 91% 88% 91% 5.26 3.81
SD 5% 18% 4% 2.74 1.68
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(a) Posed smile envelope example. The
processed EMG envelope of self-reported
posed smiles during the posed block are
shown. This is an example for participant
37, Independent Component number 1.
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(b) Spontaneous smile envelope example.

The processed EMG envelope of self-
reported spontaneous smiles during the
spontaneous block are shown. This is an
example for participant 37, Independent
Component number 1.

Figure 5.9: EMG envelopes from posed and spontaneous smiles. Although both types
of smiles are visually different, only the rising time and decaying speed are significantly
different.
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Figure 5.10: Skin conductance from the hand and neck. The skin conductance mea-
sured from participant 21 is shown in the figure. There are similar trends in both
measurements, but the degree of movement for the neck EDA is much less than for
the hand.

spontaneous and posed events. This was done both on the neck and hand data. Sec-

ond, the differences in the EDA responses per experimental condition, nationality,
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Figure 5.11: Skin conductance signal processing. The skin conductance measured
from both the neck and the hand of each participant was first smoothed by using a
100 ms sliding window overlapping each sample. Then, the tocnic singal was removed
by subtracting the two coarsest coefficients from a Discrete Cosine Transform from the
original signal. Finally, a Savitzky-Golay Filter was used to remove motion artifact
peaks. Then this signal was labelled and used to extract relevant features to train a
SVM to distinguish between posed and spontaneous events.

gender, and electrode location were explored to identify differences. For both types

of analysis the same pre-processing procedure was used.

Pre-processing. The skin conductance measured from both the neck and the hand

of each participant was first smoothed by using a 100 ms sliding window overlapping

each sample. Then, the tocnic singal was removed by subtracting the two coarsest

coefficients from a Discrete Cosine Transform from the original signal [44]. Finally, a

Savitzky-Golay Filter with a 1st order polynomial and 1001 as frame length was used

to remove motion artifact peaks (figure 5.11). The Savitzky-Golay Filter parameters

were selected by visual inspection. The selection criteria was to remove motion-related

artifacts in the EDA signal.

Figure 5.12 The plots show EDA responses measured from the hand and the neck

during posed and spontaneous smiles for participant 41. The green line shows the

pre-processed EDA signal, and vertical bars show the smile labels. In general, Hand

EDA fluctuates more than Neck EDA. Albeit different, they seem to correlate. Visual

inspection of the EDA plots suggests that EDA peaks anticipate smiles. However,

this is not always the case. For several participants, the EDA during posed smiles

present very little phasic changes. On the other hand, spontaneous reactions are

characterized by frequent phasic changes.
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(c) Neck EDA during posed smiles.

-6

-4

-2

0

2

4

6

8

10

0 1000 2000 3000 4000 5000 6000

Spontaneous
Smile

Neck EDA during spontaneous smiles. Participant: 41.

E
D

A
  
[k

O
h

m
]

Sample Number @51.2Hz
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Figure 5.12: Labeled EDA from the hand and neck. The plots show EDA responses
measured from the hand and the neck during posed and spontaneous smiles for par-
ticipant 41. The green line shows the pre-processed EDA signal, and vertical bars
show the smile labels. In general, Hand EDA fluctuates more than when Neck EDA.
Albeit different, they seem to correlate.

Feature extraction. As suggested by [122, 123], a set of features were extracted

from the EDA. The magnitude ratio of the absolute value of the EDA signal and the

smile duration; the mean of the first order derivative of the EDA signal per smile; and

the number of peaks divided by the minimum smile width. This data is considered

as the first training set. A drawback of using these features, is that the amount of

information available is reduced by the number of smiles elicited. Since not every

participant smiled, and many smiled very little, other features were considered.

The magnitude of the pre-processed EDA signal during smile episodes was used

to increase the amount of data points available for training. These two feature sets

used to train a SVM. Additionally, the average magnitude of the EDA signal and its
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Table 5.3: EDA-based identification using peak features. The magnitude ratio of the
absolute value of the EDA signal and the smile duration; the mean of the first order
derivative of the EDA signal per smile; and the number of peaks divided by the
minimum smile width were used as features to train a SVM. A limited number of
participants smiled frequently enough to compute those features.
Participant Precision Recall Accuracy Number Number

Posed Smiles Spontaneous Smiles
3 80% 100% 88% 5 4
5 100% 100% 100% 7 4
17 83% 100% 90% 9 5
18 100% 100% 100% 8 4
23 100% 100% 100% 5 4
26 100% 71% 86% 10 7
36 100% 83% 92% 12 7
41 88% 100% 93% 5 7

Average 93.9% 94.4% 93.5% 7.6 5.3
SD 8% 10% 5% 2.45 1.39

first order derivative divided by the experimental block duration were also calculated.

These last features were used as a measure to compare whether there is a significant

difference between EDA responses per block, nationality, and gender.

Identification of EDA responses during posed and spontaneous smiles.

Three models were trained using a Support Vector Machine (SVN) with a Gaus-

sian Kernel Function in a cross-validation with 70% train, 15% validation, and 15%

test data partition. Participants who did not have enough training data (12, 15, 16,

30 and 32) were excluded. Another two participants (2 and 6) were excluded due to

error during the measurement of the EDA data. The first model used the first set

of features. The second and the third models used the magnitude of the EDA signal

from the neck and the hand, respectively. The results are detailed in tables 5.3, 5.4

and 5.5.

Comparison between experimental blocks, nationalities, and gender. Four-

factor mixed design ANOVAs were performed. Independent variables were nation-

ality, experimental block, location of the EDA sensor, and gender. The dependent

variables were: (1) the average magnitude divided by the total duration of the block;

(2) the average magnitude of the EDA signal per block; and (3) the average mag-
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nitude of the first order derivative of the EDA response in each block, divided by

the duration of the block. None of the tests were significant, although in the three

cases, the effect of the location from which the EDA was measured was marginally

significant (F(1,115)=3.519, p = 0.063).

Head movement

Head movement was also measured. An embedded algorithm in the measuring de-

vice allowed to estimate the orientation of the Shimmers. The calculated Quaternion

data was smoothed using a Savitzky-Golay Filter with a 1st order polynomial and 301

as frame length. Figure 5.13 shows an example of the resulting data per block condi-

tion and location. From these, no clear difference between the experimental blocks,

and the smile type. However, when the magnitude data is used to train a SVM in

a cross-validation with 70% train, 15% validation, and 15% test data partition. As

shown in table5.6, the results are very good, and quite similar to the ones achieved

by measuring EMG in the neck.

Finally, comparisons of the mean magnitude of the head orientation divided by

the duration of the experiment block, per nationality, experiment block, and gender

showed no significant differences. However, visual inspection of the plot suggests that

participants moved more while smiling in the posed block. On the other hand, they

moved more in between smiles in the posed block.

Comparison

Figure 5.14 shows a plot comparing the accuracies achieved by each modality. The

IMU-based classification achieved the best results, followed closely by the rest of the

modalities.

5.1.8 Discussion

In this experiment, posed and spontaneous smiles were elicited and analyzed.

Spontaneous smiles were elicited by showing positive-valenced videos to the partici-
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(a) Posture from Hand IMU during posed

smiles.
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(b) Posture from Hand IMU during sponta-

neous smiles.
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(c) Posture from Neck IMU during posed

smiles.
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(d) Posture from Neck IMU during sponta-

neous smiles.

Figure 5.13: Labeled IMU from the hand and neck. The plots show head posture as
measured from the hand and the neck IMU during posed and spontaneous smiles for
participant 41. The color lines show the calculated quaternions, and vertical bars
show the smile labels. It seems that participants moved more while smiling in the
spontaneous block. On the other hand, they moved more in between smiles in the
posed block.

pants. Posed smiles were asked, even during an slightly unpleasant situation. This

experimental design allowed to some extent control the affect felt by the participants

when they produced the required smiles. As a validation check, self-reported mea-

sures of affect were applied, and the participants themselves were asked to label their

spontaneous and posed expressions.

From the self-reported measures, a valence difference between spontaneous and
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Figure 5.14: Identification of posed and spontaneous responses per modality.

posed blocks was observed. As expected, participants reported feeling more positive

during the spontaneous block than during the posed block, independently from their

nationality or gender. On the other hand, no arousal difference between spontaneous

and posed blocks was observed. This might probably be because of the mildness of

the video contents. They were pleasant enough for people to smile, but the intensity

was similar among the videos of all blocks.

Similar to the arousal, the reported IPANAT scores presented no differences be-

tween experimental blocks. In this case, Japanese seemed to give higher scores for

both positive and negative affect than the Brazilians. This might be due to the

fact that in Japanese language, many contextual inferences are made. Therefore, it

might be the case that Japanese nationals felt more confident assigning a meaning

of the IPANAT words. However, these values were not consistent with the explicit

self-report given in the Affect Grid. Explicit self-report (Affect Grid) and Implicit

self-report (IPANAT) are not correlated, in neither block (p >0.5). This seems to

suggest that both measurement tools are measuring different levels of affective aware-
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ness. This was previously observed by [16], who suggested that implicit self-report is

related to autonomic affective responses, and independent from explicit self-report.

For the affective assessment to be done automatically, it is necessary to establish

a ground truth. As explained in section 3.5, a machine can learn to agree to a

predefined data label. These data labels can be assigned on a perceptual basis,

considering only visible cues. However, a decision on whether the facial expression is

posed or spontaneous, is an inference. Table 5.1 showed that the perceptual judgment,

yields a higher agreement than the inferential one. Moreover, the agreement between

independent coders and the participant’s coding is even lower. These results suggests

that, in this case, video-coding based only on visually perceivable cues is not the best

method to establish the ground truth. Rather than relying on video-coding, a good

experimental design when collecting the ground truth data is of utmost importance.

In the previous experiment results (section 4.2.3), the duration of the smiles did

differ. As previously discussed and supported by the new results, it seems that the

duration difference was influenced by the elicitation tasks. In this experiment we

took special care to let the participants pose freely the smiles. The elicited smiles

were considered as smiles that deliberately intend to convey the impression of having

fun. Nevertheless, rising time was still significantly different between the two types

of smiles. Furthermore, decaying speed turned out to significantly differ. As in the

previous experiment, magnitude of posed and spontaneous smiles also did not differ.

Moreover, high accuracy was maintained by using spatio-temporal features in this

data set. This further supports the hypothesis that the difference among the smiles

lies mainly on the temporal dynamics of the smiles.

Filtered EMG ratios showed that the EMG activity of the participants differs

among experimental blocks, nationality, channel, and the interaction between na-

tionality and block. However, there is not a clear reason why these differences are

observed. It seems that the EMG activation from Chinese participants has a wider

Standard Deviation than the other two nationality groups. Furthermore, the activity

of channels one and two, placed on the right side of the face, is higher than those
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placed on the left side. Previously, it was suggested that one of the features of enjoy-

ment smiles are the symmetrical changes in the zygomatic major action on both sides

of the face [37]. Therefore, this could be a reason for the asymmetry in the significant

differences. Another explanation might have been measurement noise, as the effect

disappears when the Independent Components are calculated. The magnitudes of

the temporal features per IC do not significantly differ. Only the interaction between

rising speed and IC. This could be because not all muscles involved move at the same

speed.

Skin conductance on the hands changes more prominently than from the neck.

However, both measures are correlated. The same algorithm was used to process both

signal sources. An effort was made to reduce motion artifacts, and different features

were calculated to train a SVM to classify between posed and spontaneous events.

The results of this algorithm were very good. However, commonly used features such

as magnitude, first order derivatives, and peaks per smile have the disadvantage that

only one feature can be calculated per smile. This is because the EDA responses are

too slow to happen within the smile samples. Hence, magnitude of the EDA alone

was preferred to increase the data available for training and testing. The success of

the magnitude features alone compared to other features might be due to the amount

of data available.

Despite the magnitude differences between neck and hand EDA, both were proven

to be suitable for the classification task. The differences in their magnitudes were

only marginally significant. From visual inspection of the measured EDA responses,

it seems that EDA changes anticipate facial movement. This was already suggested

in one of the studies mentioned by [62]. However, further analyses are needed to

confirm this hypothesis.

Moreover, the obtained EDA results have to be considered carefully. Although

the pre-processing was chosen to remove motion artifacts. The effectiveness of the

method was only evaluated by visual inspection. Furthermore, the accuracy obtained

by using motion sensing is higher than that of EDA. This suggests that motion can
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explain the differences between spontaneous and posed affective responses quite well.

Therefore the covariance of EDA and IMU data might explain the predictive power

of EDA, even if participants did not explicitly report to be aroused. Furthermore,

the differences in magnitudes between blocks were non significant.

Surprisingly, the head IMU data explained best the differences between the two

types of conditions in the predictive model. Moreover, participants tended to move

more during spontaneous smiles in the spontaneous block. In contrast, they moved

more in between smiles during the posed block. This is unexpected, as the exper-

imental setup heavily constrained the movements the participants could make. An

explanation might be the different postures of the participants during the experiment.

Further research should investigate other measures of head movement, and how they

generalize to more ecologically valid setups.

Although the results achieved with the IMU data can be easily compared to those

obtained with EDA, a direct comparison with the EMG results is not possible. This

is mainly because of the different sampling rates of the sensors, and the frequency of

the features used for classification. Further work is required in order to do a proper

comparison of both.

A limitation of this study is that, due to the short stimuli, less smiles per partic-

ipant were elicited. Only 27 participants self-tagged at least one spontaneous smile

in the spontaneous block. In general, it is difficult to find a one-size-fits-all stimuli to

make everybody smile or laugh. In our case, despite participants reported to smile

more than 50% of the time, only about 66% of the participants showed any smile

with the selected stimuli.

In this study no differences between Japanese, Chinese and Brazilians were ob-

served regarding their smile temporal features. This seems to support the view of

universal embodied responses. Despite the cultural differences of the participants

involved in this study, there were no observed differences, even in posed smiles. One

might expect that Japanese are better at posing smiles, given that their culture en-

courages frequent smiling to convey kindness and politeness. Even though the data
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from the previous experiment seemed to point to that direction, this second study

did not confirm the results. This might suggest that the ability to pose smiles is a

personally trained one, and not learned by cultural context.

5.2 The multimodal signature of different smiles

Experiment 2 confirmed the potential of using EMG to identify the spatio-temporal

dynamics of smiles, and their differences during different types of smiles (RQ 2, 2-b).

Special care was taken in considering different types of posed smiles, including smiles

posed for the camera, polite smiles, and smiles aimed at conveying the impression of

having fun. Hence, these smiles seem to have similarities with other types of posed

smiles, like the smiles posed under instruction.

By looking at the EMG signal, it was shown that the main differences between

posed and spontaneous smiles lie in their temporal dynamics. This experiment further

confirmed that rising time and decaying speed differ between both types of smiles (RQ

2-b).

Furthermore, it was found EDA and IMU measures alone have the potential to

distinguish between co-occurring spontaneous and posed facial expressions. Previ-

ously, autonomic changes such as EDA have been found to co-occur with affective

events [62], and those results are in line with the ones found here. Although no par-

ticular consensus has been reached on how EDA varies along other affective cues, the

results of this experiment seem to suggest that EDA peaks anticipate facial expres-

sions. Moreover, participants tended to move more during spontaneous smiles in the

spontaneous block. In contrast, they moved more in between smiles during the posed

block.

These results have to be considered carefully, as head movement artifacts might

have caused the good results from the EDA measurements. In fact, IMU-measured

data explained best the differences between posed and spontaneous events. This was

already suggested by [40].
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All in all, the results strongly support the potential robustness of a multimodal

wearable approach to distinguish between spontaneous and posed positive affective

responses (RQ 3).

No cultural differences found between posed and spontaneous smiles in this study

(RQ 5). Furthermore, self-report measures also suggested that participants reacted

and felt in a similar manner to the experimental tasks, regardless of their cultural

background.
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Chapter 6

The relationship between

behavioral and electrophysiological

responses and explicit self-report

As mentioned in Chapter 1 and Chapter 3, self-reported affect does not always

correspond to the felt affect displayed by the wearer of the expression. Two main

factors influence this mismatch. The first one is that the facial expression might be

fabricated on purpose by the participants, regardless of their affective state. The

second, is that participants might display a different amount of facial expressions

than they are aware of. In this chapter, the correlation between smiling behavior and

self-report is explored.

6.1 Electrophysiological activity and explicit self-

report

The Affect Grid is a tool to report the valence and the arousal of a felt emotion.

It is very convenient, because it allows to self-report the felt affective state in only

one question.
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Table 6.1: Correlation between Affect Grid self-report and amount of spontaneous
smiles. The Pearson’s correlation coefficients between the self-reported valence,
arousal and the number of smiles coded by each coder. Significant correlations at
p <0.01 are marked with a *.

Valence Arousal Coder 1 Coder 2
Valence 1.00 0.13 0.16* 0.16*

Arousal 0.13 1.00 -0.05 0.06
Coder 1 0.16* -0.05 1.00 0.45*

Coder 2 0.16* 0.06 0.45* 1.00

In Experiment 1, participants reported their affective state after each stimuli.

For some of the participants this was four times, for others, eight times. The self-

reported data from all participants was gathered, and it was compared to the number

of smiles that they displayed. The number of displayed smiles was labeled by two

independent coders. Table 6.1 shows the Pearson’s correlation coefficients between

the self-reported valence, arousal and the amount of smiles coded by each coder.

As already suggested by the inter-coder agreement reported in section 4.1.4, the

number of smiles identified by coder 1 and coder 2 are correlated. Moreover, the

behavioral expressions are, albeit weakly, correlated with the self-reported valence.

The moderate correlation might be because, in this experiment, participants were

asked to conceal their facial expressions.

6.2 Behavioral and electrophysiological activity and

the Affect Grid

Similarly to the previous section, the data from Experiment 2 was analyzed as

well. In Experiment 2, participants self-reported their affective state in two occasions.

Once after the posed and once after the spontaneous blocks. Table 6.2 shows the

Pearson’s correlation coefficients between the self-reported Valence and Arousal, and

the number of smiles videocoded by each of the coders. Valence correlated with the

number of smiles showed by each participant. However, this only happened with the

amount of smiles coded by Coders 1 and 2, and not with the participant’s own coding.
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Table 6.2: Correlation between Affect Grid self-report and amount of smiles. The
Pearson’s correlation coefficients between the self-reported valence, arousal and the
number of smiles coded by each coder. Significant correlations at p <0.01 are marked
with a *. The participant’s labels were correlated with those of Coder 2. Nevertheless,
only Coder 1 and Coder 2 labels were correlated to valence scores.

Valence Arousal Participant’s Coding Coder 1 Coder 2
Valence 1.00 -0.07 0.13 -0.33* -0.51*

Arousal -0.07 1.00 0.15 0.04 0.20
Participant’s Coding 0.13 0.15 1.00 0.45* 0.20

Coder 1 -0.33* 0.04 0.45* 1.00 0.71*
Coder 2 -0.51* 0.20 0.20 0.71* 1.00

On the other hand, arousal did not correlate with observable facial expressions.

There are two possible reasons for this. First, participants did not report significant

changes in arousal given the presented stimuli. Second, arousal might be related more

to the intensity of the facial expressions, rather than to the existence of the expression

itself.

Interestingly, the number of smiles coded by the participants correlated only with

the labeling of Coder 1, who had knowledge of the experimental design.

6.3 Behavioral and electrophysiological activity and

implicit self-report

In the previous two sections, a correlation between behavioral measures and ex-

plicit self-report was shown. Table 6.3 shows that both positive and negative affect

reported implicitly, also correlates with the number of smiles coded by the partici-

pant and coder 1. It is interesting that in this measure, only the observations made

by coders who had contextual information about the experimental design correlated

with the measurement.
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Table 6.3: Correlation between IPANAT self-report and amount of smiles. The Pear-
son’s correlation coefficients between the self-reported IPANAT positive and negative
scores, and the number of smiles coded by each coder. Significant correlations at
p <0.01 are marked with a *. The participant’s coding, and the coder 1’s coding
was correlated to the IPANAT scores. Those were the ones that were aware of the
experimental design.

Participant’s Coder 1 Coder 2 IPANAT IPANAT
Coding Positive Negative

Participant’s Coding 1.00 0.45* 0.20 0.23* 0.23*

Coder 1 0.45* 1.00 0.71* 0.23* 0.23*

Coder 2 0.20 0.71* 1.00 0.10 0.10
IPANAT positive 0.23* 0.23* 0.10 1.00 1.00*
IPANAT negative 0.23* 0.23* 0.10 1.00* 1.00

6.4 Discussion

In this chapter it was shown that observed behavior was clearly related to the

self-reported measures (RQ 4). This was confirmed in both experiments. In ex-

periment 1, the correlation was weaker, as participants were asked to inhibit their

facial expressions. In experiment 2, both coders’ labels correlated to valence. The

participants’ did not.

Whereas explicit self-report correlated with the observations from both coders,

only the self-reported video coding and coder 1’s video coding correlated to IPANAT

measures of affect. They were the only ones aware of the experimental design. This

might suggest that the IPANAT measurement measures the contextual affective im-

plications, rather than the ones felt by the participant (RQ 4-b).
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Human judgment of posed and

spontaneous smiles

In previous chapters, the importance of measuring human experience was outlined,

together with a proposal on how to automate such measurements. Furthermore, the

potential of EMG to measure valence-related facial expressions was showed in the

first two experiments. EMG turned out to be very good not only to measure fast and

subtle spontaneous smiles, but also to distinguish between posed and spontaneous

ones. The accuracy of EMG was calculated based on a ground truth composed of

human coding of facial expressions, self-report, and most importantly, the experimen-

tal design used to collect the data. In section 3.5 and chapter 6, the challenges of

establishing the ground truth were discussed. The facial expressions measurement

can be done on a perceptual basis, considering only visible cues. However, a decision

on whether the facial expression is posed or spontaneous is an inference. Table 5.1

showed that the perceptual judgment by independent coders yields a higher agree-

ment than the inferential one. Moreover, the agreement between independent coders

and the participant’s is even lower. Therefore, electrophysiological and behavioral

signals-based solutions seem to be more reliable than human judgments. However,

the validity of these still depends on a certain degree on the human judgment used

to establish the ground truth.
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Since feelings and emotions are inherently private and specific to a person, finding

a valid ground truth is of utmost importance. The difference between posed and

spontaneous facial expressions is an inferential judgment, rather than a perceptual

one. Thus, the ground truth should be based on good experimental design and

self-report rather than on a third person’s judgment. Experiment 3 was designed

to further explore the degree in which a third person video coder would be able to

distinguish between those two expressions, and agree with the experimental design

and the self-reported label.

7.1 Experiment 3

7.1.1 Participants

73 voluntary participants took part on the study (37 female, average age=29 years

old, SD=11). Participants were sampled from three nationality groups. 21 were

Japanese (10 female), 20 were Chinese (10 female), and 32 were Mexican (17 female).

The experiment was conducted in Japan, for Japanese and Chinese participants.

Mexican participants were recruited and completed the task in Mexico.

7.1.2 Stimuli

54 smiles were selected from the smiles gathered in Experiment 2. These were 27

posed smiles and 27 spontaneous smiles. Each posed-spontaneous pair was produced

by a participant of Experiment 2. In other words, the stimuli set contained videos

of 27 participants (11 Brazilians, 9 Japanese, and 7 Chinese; 15 female), each of

them smiling twice. Posed smiles were smiles happening in the posed block, and

self-labeled as posed. Similarly, spontaneous smiles were smiles happening in the

spontaneous block and self-labeled as spontaneous. Smiles of around 5 s were chosen

to keep the experiment short. All stimuli had no sound to prevent contextual biases.
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7.1.3 Experiment design and procedure

All participants went through all selected smiles. A computer program played

the stimuli automatically. Participants were allowed to watch the stimuli only once.

After watching the stimuli, two questions were presented one by one. These required

them to report whether they considered the smile to be spontaneous or posed, and

how confident they were about this judgment. After participants answered them, a

continue screen showing how many videos they had watched, and how many they

had left was shown on screen. Then participants were required to press the space

bar once they were ready to continue to the next stimuli. After pressing continue,

the next video started automatically, and the cycle was repeated. When participants

had finished all videos, a screen showing their accuracy was presented. Accuracy

was calculated by comparing the agreement between the participant’s label, and the

ground truth defined in experiment 2. Finally, a short interview was conducted to

request demographic information and inquire about the strategy the participants used

to make their judgments.

7.1.4 Measurements

Participants answered two questions per stimuli. The first was whether they

though the smile was spontaneous or posed, with a forced choice between the two.

The second was how confident they were about their judgment. A Visual Analogue

Scale (VAS) was used to report confidence between 0 and 100%. At the end of the

task, they answered demographic questions about their age, gender, and education

level. Additionally, participants were asked what features did they use to make their

judgments.

7.1.5 Apparatus

All stimuli were presented to the participant in a NEC Lavie Hz750/C laptop.

The Python toolbox PsychoPy2 version 1.85.4 was used to create an automatic pre-
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Figure 7.1: Stimuli presentation and questions for experiment 3. Participants had
to watch the video of a smile lasting about 5 s, and then decide if it was posed or
spontaneous. Afterwards, they reported how confident they were with their decision.
An screenshot example showing the stimuli, and the post-stimuli questions are shown.

sentation of the stimuli, with the subsequent questions.

7.1.6 Results

The accuracy of every participant was calculated by comparing the label assigned

by each participant and the ground truth established in Experiment 2. The over-

all accuracy of the participants in distinguishing posed and spontaneous smiles was
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Figure 7.2: Laypersons’ accuracy when identifying posed and spontaneous smiles Av-
erage accuracy scores are shown. There are significant differences between Chinese
and Mexicans. Also, the difference between the machine’s accuracy and the human
groups is significant. The Y axis represents the accuracy in percentage. The X axis
shows the groups.

0.58 (SD=0.073). A one sample t-test showed that the obtained accuracy is signif-

icantly different from a normal distribution with mean at chance level (mean=0.50,

t(72)=8.796, p <0.01). A one-way ANOVA with Nationality as between subjects

independent variable showed a significant difference in the accuracy achieved by each

group (F(2,62)=3.754, p <0.05). Post hoc comparisons using the Tukey HSD test

indicated that the mean score for Mexicans (M=0.55, SD=0.07) was significantly dif-

ferent from the score of Chinese nationals (M=0.61, SD=0.07). However, the Japanese

nationals’ score (M=0.58, SD=0.06) did not significantly differ from the Mexicans’

and Chinese’s.

Next, a one-way ANOVA comparing the achieved accuracy from the participants

to the accuracy achieved by the spatio-temporal features classifier was performed.

Significant differences were found between all nationalities and the machine learn-

ing performance (F(3,96)=194.3, p <0.001). Figure 7.3 depicts a plot with average

accuracies for all groups.

In average, all participants’ confidence of their judgements was 0.71 (SD=0.16).
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A 4-factor mixed design ANOVA with nationality and gender as between subjects

factors; and smile category, and whether they guessed the correct label, as within

subjects factors was performed on the reported confidence level. A significant dif-

ference was found between nationalities (F(2,264)=17.453, p <0.001) and gender

groups (F(1,264)=7.096, p <0.01). The effect of smile category was not significant

(F(1,264)=0.383, p >0.05). Similarly, their confidence level was not significantly de-

pendent on whether they guessed correctly the ground truth label (F(1,264)=0.038,

p >0.05). Finally, all other interaction effects were not significant. Post-hoc compar-

isons using the Tukey HSD test indicated that the mean score for Mexicans (M=0.80,

SD=0.14) was significantly different (p <0.001) from the score of Chinese nation-

als (M=0.66, SD=0.13) and Japanese nationals (M=0.61, SD=0.07). However, the

Japanese nationals’ score did not significantly differ from the Chinese’s.

Participants reported verbally on what features they based their decisions between

posed and spontaneous smiles. Their responses were transcribed and analyzed using

Affinity Diagram maps [124]. Figure 7.4(a) shows the results. Eight different features

were found. The most participants (51 people, 70%) mentioned feature was eye

movement, referring to the shape of the eyes, whether participants were gazing at the

screen, or looking lost. Participants (34 people, 47%) also looked at body movements

such as body vibration, shoulder shrinking, head movement, hiding the face, and the

degree of relaxation of the posture of the person smiling. The next most popular

feature (29 people, 40%) was mouth shape and movement. Participants looked at

the opening and closing of the mouth, and whether the person smiling was showing

the teeth or not. The next most common feature was the timing of the smile (18

people, 25%). This category grouped commentaries describing sudden changes, the

duration of the smile, and the simultaneity of eyes and mouth movements. Afterwards,

participants looked into the intensity of the smiles (13 people, 18%). By intensity,

most participants mentioned how wide the person smiling was opening the mouth.

Other less popular categories included eyebrow lifts (3 people, 4%), and surprisingly,

the beauty of the smile (2 Chinese females, 3%). The percentage of people that
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Figure 7.3: Confidence on identification accuracy of posed and spontaneous smiles.
The self-reported confidence per nationality and gender is shown in the plot. Accord-
ing to the analyses described in section 7.1.6, only nationality and gender differences
are significant. Mexicans were the most confident, even though their accuracy was
the lowest.

mentioned each feature is depicted in figure 7.4(b). It is important to note that the

same person might have mentioned each feature more than once. Finally, an ANOVA

was performed to test the influence of the features described on the task accuracy.

From all the features, only the mouth feature had a significant effect on accuracy

(F(1,63)=7.9, p <0.01).

7.1.7 Discussion

To create an effective user experience automatic logging tool, identifying the

ground truth with validity and reliability is of utmost importance. By using embodied

cues of affect, this measurement can be done more effectively. However, the challenge
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(a) Affinity diagram. The feature categories mentioned by the participants. Besides focusing on
mouth and eye movement, intensity of the movement and speed, some people also looked at contex-
tual cues as gaze; or subjective features such as beauty of the smile.
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(b) Feature usage percentage. Human judges used eight different features to distinguish between
posed and spontaneous smiles. The most common being eye movement, mouth movements, and
body movements. Percentages show the proportion of people who mentioned each feature.

Figure 7.4: Features used by laypersons to identify posed and spontaneous smiles. The
eight main features used by humans to distinguish between posed and spontaneous
smiles are shown. The most common are eye, mouth, and body movements.

of establishing the ground truth remains. This is perhaps the most discussed topic

among affective computing scientists and psychologists. In previous sections of this

thesis, it was argued that perceptually established ground truths are only effective

when discussing the existence of a visible embodied cue. However, more information
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is required when high level judgments are made. This includes deciding whether a

smile is posed or spontaneous. Results of experiment 2 showed that the agreement of

independent coders differs greatly when doing this judgment. In this experiment, we

further explored human performance when judging between posed and spontaneous

smiles. Indeed, it was shown that relying only on visible behavioral cues is not as

efficient as relying on electrophysiological cues. The results from the aforementioned

algorithm were consistently better than a human’s judgment based only on visible

cues of the same data.

Even though the participant’s accuracy scores were significantly higher than chance

level, their accuracy was significantly lower than the machine’s. Additionally, the 73

participants had different cultural backgrounds. The results suggested that Mexi-

can’s accuracy was significantly lower than Chinese’s accuracy. Moreover, Japanese’s

accuracy was in between Mexican’s and Chinese’s, with no significant differences.

This result might be related to the effect of practice in the task. The stimuli showed

presented nationals from Japan, China, and Brazil. Japanese and Chinese were fa-

miliar with Asian faces, which are the majority on the sample. Furthermore, the

Mexican sample was recruited in Mexico, where most of the participants had no or

little experience dealing with foreigners. Even though Japanese people were recruited

in Japan as well, their environment made it possible to get in touch with people from

other nationalities. The other extreme is the Chinese sample. They were living in

an environment where their native language was not spoken. Therefore, they would

probably require paying more attention to non-verbal cues to understand conveyed

messages. This might be an explanation why Chinese participants got the highest ac-

curacy among the participants. An alternative explanation for the poor performance

of Mexican participants is the Cross-Race Effect (CRE). This is a well-replicated find-

ing in face recognition that people are better at recognizing faces from their own race,

relative to other races[125, 126]. Since most of the people in the videos were Asians,

Mexican’s accuracy might have been decreased.

Interestingly, the self-reported confidence of Mexican participants was the high-
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est, even though their performance was the lowest. This might be an instance of the

Dunning–Kruger effect bias. This effect describes the fact that unskilled people not

only “reach erroneous conclusions and make unfortunate choices, but their incompe-

tence robs them of the metacognitive ability to realize it.” [127]. Another factor that

influenced confidence was gender. Males tend to be more confident than females, even

though their accuracy do not differ.

According to the affinity diagram results, humans used eight features to distin-

guish between posed and spontaneous smiles. Eye, mouth, and body movement were

the most common. Among all the features, mouth movement was the only reported

feature that was significantly explaining the obtained accuracy. Furthermore, context

seems to be really important for human judgement of different smiles. Many partic-

ipants mentioned to have tried to guess the context of the people smiling. Specially

where they were looking at. Several people mentioned that an idle gaze and smiling

suddenly were posing.

All in all, in a context-less environment, EMG-based detection outperforms a

layperson’s judgment based on visible behavioral cues only. Even though the partic-

ipants were not experts in reading posed and spontaneous smiles, they chose appro-

priate features to decide. From the eight features mentioned, the most common are

relevant discrimination features according to the literature (see section 2.3). Never-

theless, it is difficult to distinguish posed and spontaneous smiles only from visible

cues. Moreover, practice seems to improve the accuracy. The observed differences

in the cultural background suggests that the practice gained by living abroad might

have given an advantage to Chinese participants.

A limitation of this study is the reduced amount of information provided to the

participants to make their choices. The stimuli provided were stripped from many

contextual and multi-sensory cues that might have proven useful for the human partic-

ipants. This was already shown in chapter 6, where the knowledge of the experimental

design influenced the correlation between two independent coders and the participant.

Since the specialty of humans is to integrate information from multimodal channels,
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these results might not have favored them to take relevant decisions. It could be that

they were too focused trying to guess the context, that they missed other important

cues available through vision.

7.1.8 Conclusions

As shown in this experiment, humans can distinguish between posed and spon-

taneous smiles above chance level (RQ 6). However, their accuracy is very modest.

Therefore, using behavioral and electrophysiological signals seems advantageous in

this scenario. Using these signals is advantageous in this situation because these cues

are not directly perceivable by humans. Finally, the reliability of these tools promises

to complement the human ability to interpret information contextually (RQ 6-b).
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Discussion and potential

applications

Emotions play an important role in our lives. They are often regarded as involun-

tary. Nevertheless, they drive most of the decisions we make, and they are powerful

motivators. Hence, they are an important metric for evaluations of well-being and

product quality. Emotions are assessed in different manners, including self-report

and behavior coding. However, these tools have their drawbacks. The main of those

being the subjective quality of emotion, and the biases that humans have when as-

sessing them. Furthermore, they interrupt the user experience, and the low temporal

resolution with which humans can be aware of their own feelings.

To assess quality of products and services, it is best when the true satisfaction

of the user is identified. However, positive affective cues might be displayed out of

politeness. A multimodal approach with spatio-temporal sensitive analysis is therefore

proposed. The evaluation of this proposed method is made on positive affective

responses, as they are a good measure of well being, and a prototypical example

of cues that are intentionally expressed. Particularly, the focus is on distinguishing

spontaneous and posed smiles.

In this thesis, a multimodal set of behavioral and electrophysiological measures

is proposed to measure affective responses automatically and unobtrusively. Their
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spatio-temporal dynamics are effective features in this task. Furthermore, identifying

and counting affective responses is not enough to accurately assess human affect

because these can be faked. Hence, extra judgments on whether these responses are

felt or deliberately expressed are needed.

The proposed affective responses can be measured with a wearable device. The

electrode positions are an advantage of the current device. They are optimized for

smile detection without disrupting the movement of the face. Covering the face is

an undesired situation as it makes the users artificially aware of their own facial

expressions, and limits the movement of the skin [30,95]. In such cases, elicited facial

expressions would be unnatural and definitely not spontaneous.

As first step, the feasibility of detecting spontaneous smiles using a surface EMG

wearable was evaluated. Even when the smiles are at the micro-expression level. The

results showed that micro-smiles can be distinguished from a neutral face using EMG,

with good accuracy. Therefore, EMG pre-processing and classification methods seem

to be also useful to analyze micro-smiles. Using EMG for this purpose has several

advantages. The temporal resolution and portability of this device would allow to

provide real-time feedback, if desired. This can be used for quantification applications

of positive facial expressions. A limitation is the need for individual calibration to

ensure good performance. Moreover, eliciting spontaneous expressions for calibration

is a challenging task.

The main limitation of the first study was that smiles tend to last longer than half

a second [117]. They reported that expressions of happiness tend to last longer than

the micro-expression threshold. When the stimuli are strong enough, the displayed

affective expression is often long-lasting laughter. It requires quite some effort to

conceal laughter. While some participants are very good in neutralizing their facial

expressions, most others are not. Therefore, the number and nature of the sponta-

neous smiles elicited was very specific to the elicitation method.

In chapter 4, the first effort to prove the feasibility of detecting micro-smiles with a

wearable device was described. This is an important first step for automatic analysis
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of spontaneous smiles and laughter in human-human communication. As observed

from our results, in ecologically valid settings people tend to accompany laughter

with head and hand movements. Therefore, other major expressive modalities such

as speech, body movements, and postural attitudes, might be complementary to

annotate the situation and eventually infer its meaning.

Although CV-based micro-expression methods have better spatial resolution, state-

of-the-art algorithms are still sensitive to occlusion; computationally expensive; diffi-

cult to implement in a real-time feedback setting; and often get heavier when there

is more than one face on scene, causing a less accurate detection. EMG poses a

good alternative to robust micro-expression detection, and a potential replacement

to human video coding. Human perception of micro-expressions requires training,

and video coding of these is cumbersome and time-consuming. EMG provides accu-

rate automatic detection, as it profits from complementary information to what the

human cannot see.

This is specially advantageous in the task of distinguishing posed from sponta-

neous smiles. Further data analysis on experiment 1, provided evidence on the EMG’s

ability to measure features unavailable to the human eye, and vision in general. Good

accuracy results were achieved in the task of distinguishing between posed and spon-

taneous smiles. The results described in section 4.2.2 show that the algorithm using

spatial and magnitude EMG features achieved accuracy rates with more variabil-

ity than the algorithm using the spatio-temporal features. This suggests that even

though some participants can fake how a smile should look like to appear sponta-

neous, they cannot mimic its temporal profile. Furthermore, the proposed algorithms

take advantage of the ICA extraction to estimate different sources of the EMG signal

and its magnitude. They also profit from the EMG’s high temporal resolution to

estimate smile characteristics without consuming excessive computational resources.

From these two alternatives, the most successful results were given by considering the

temporal resolution of the signal. As supported by previous studies, this is probably

because spontaneous smiles and posed smiles differ in this aspect. In this data, the
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main difference was that spontaneous smiles tend to last longer than posed ones.

Moreover, the spatio-temporal scores of Japanese nationals vary less than those of

other nationalities. This suggested that in a more balanced sample, cultural differ-

ences might be observable.

Despite the good results achieved, there are some limitations in this study. First

of all, spontaneous smiles were elicited using a micro-expression elicitation paradigm.

This implies that their dynamics might differ from other smiles. The unavailability

of micro-smile examples causes a significant unbalancing in the data. This, in turn,

might bias the performance of the machine learning algorithm. Another possible con-

founding is that the duration of the posed smiles might be constrained by the duration

of the instruction used to elicit them. Experiment 2 addressed these limitations to

obtain high-quality data.

In the second experiment (section 5.1), posed and spontaneous smiles were elicited

and analyzed. Spontaneous smiles were elicited by showing positive-valenced videos

to the participants. Posed smiles were asked, even during an slightly unpleasant sit-

uation. This experimental design allowed to some extent control the affect felt by

the participants when they produced the required smiles. As a validation check, self-

reported measures and self-video coding were asked. Self-reported measures were in

line with the experimental design. Participants reported feeling more positive during

the spontaneous block than during the posed block, independently from their nation-

ality or gender. On the other hand, no arousal differences were reported between

spontaneous and posed blocks. Similar to the arousal, the reported IPANAT scores

presented no differences between experimental blocks. In this case, Japanese seemed

to give higher scores for both positive and negative affect than the Brazilians. This

might be because in Japanese language, many contextual inferences are made. Fur-

thermore, the correlations between the video-coded data from people with contextual

knowledge and the IPANAT scores suggested the importance of context awareness in

the IPANAT scores. Furthermore, the lack of correlation between explicit self-report

(Affect Grid) and Implicit self-report (IPANAT) suggest that both measurement tools
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are measuring different levels of affective awareness. Moreover, explicit self-report is

subject to the demand characteristics bias. This describes the tendency of partici-

pants to play the role of good subjects and respond according to their guess of what

they are expected to answer [125, 128].

Both experiment one (section 4.2.3) and two (section 5.1.7) showed that the du-

ration of these smiles did differ. The duration difference might have been influenced

by the elicitation tasks in Experiment 1. Hence, Experiment 2 took special care to

elicit posed smiles that deliberately intend to convey the impression of having fun.

Despite the different elicitation tasks, rising time was still significantly different be-

tween the two types of smiles in both experiments. Furthermore, decaying speed

turned out to significantly differ. As in the previous experiment, magnitude of posed

and spontaneous smiles also did not differ. High accuracy was maintained by using

spatio-temporal features in the second data set. This corroborates the robustness

of the proposed algorithm, for smiles elicited with different paradigms. Future work

should explore the differences between various posed smiles. In experiment 1, the

posed smiles were smiles for the camera, whereas in experiment 2, the smiles tried

to convey the message of having fun. Other types of smile might also exist. For

example, a polite smile. During experiment 2, it was also observed that participants

smiled politely to the experimenter when the experiment was over. In future work, it

would be interesting to also explore this type of smile.

It is important to notice that the differences found by the algorithm cannot fully

explain why those differences are caused. In an attempt to further explore this,

filtered EMG ratios were analyzed. However, the differences found did not show

any specific trend. The EMG activity of the participants differs among experimental

blocks, nationality, and channel. It seems that the EMG activation from Chinese

participants has a wider Standard Deviation than the other two nationality groups.

Furthermore, the activity of the right-sided channels, is higher than those placed on

the left side. A possible explanation is the expected symmetry of an enjoyment smile,

as opposed to the asymmetry of a fake smile [37]. On the other hand, this might
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have been measurement noise, as the effect disappears after the ICA Blind-Source

Separation (BSS) algorithm is applied. The magnitudes of the temporal features per

IC do not significantly differ. Only the interaction between rising speed and IC. These

results highlight the advantage of the wearable system used. Even though the EMG

is measured distally, the Blind Source Sepparation performed by the ICA allows the

system to accurately estimate the relevant components caused by EMG activity. Even

though this system does not allow to measure the exact source of the muscle activity,

it allows to record such activity unobtrusively and yet accurately. Even though the

EMG is measured distally, the activity of different muscular sources can be estimated

and used for feature extraction.

Experiment 2 allowed to explore the role of autonomic responses during both posed

and spontaneous smiles. Skin conductance on the hands changes more prominently

than from the neck. However, the both measures are correlated. The same algo-

rithm was used to process both signal sources. An effort was made to reduce motion

artifacts, and different features were calculated to train a SVM to classify between

posed and spontaneous events. The results of this algorithm were very good. How-

ever, commonly used features such as magnitude, first order derivatives, and peaks

per smile have the disadvantage that only one feature can be calculated per smile.

Hence, magnitude of the EDA alone was preferred to increase the data available for

training and testing. The success of the magnitude features alone compared to other

features might be due to the amount of data available.

Both the magnitude differences between neck and hand EDA were proven to be

suitable for the task at hand. However, the differences in their magnitudes were

only marginally significant. Form visual inspection of the measured EDA responses,

it seems that EDA changes anticipate facial movement [62]. Further analyses are

needed to confirm this hypothesis.

Moreover, the obtained EDA results have to be considered carefully. Although the

pre-processing was chosen to reduce motion artifacts, these artifacts might explain

the high accuracy obtained. Using motion sensing yields higher accuracy than that
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of EDA. This suggests that motion can explain the differences between spontaneous

and posed affective responses quite well. Thus, the covariance of EDA and IMU data

might explain the predictive power of EDA, even if participants did not explicitly

report to be aroused. Furthermore, the differences in magnitudes between blocks

were non significant. The head IMU data explained best the differences between

the two types of conditions. This is unexpected, as the experimental setup heavily

constrained the movements the participants could make. A possible reason is that

participants seated in different postures during both conditions. Further research

should investigate whether these results generalize to more ecologically valid setups.

Although the results achieved with the IMU data can be easily compared to those

obtained with EDA, a direct comparison with the EMG results is not possible. This

is mainly because of the different sampling rates of the sensors, and the frequency of

the features used for classification. Further work is required in order to do a proper

comparison of both.

In this study, no differences between Japanese, Chinese and Brazilians were ob-

served regarding the temporal features on their smile’s EMG. This seems to support

the view of universal embodied responses. Despite the cultural differences of the

participants involved in this study, there were no observed differences, even in posed

smiles. One might expect that Japanese, Chinese and Brazilians learn to be polite in

a different manner, or that they smile spontaneously with different frequency. Even

though the data from experiment 1 seemed to point to that direction, this second

study did not confirm the results. This in turn, seems to support the view of univer-

sal embodied responses. The ability to pose smiles might therefore be a personally

trained one, and not learned by cultural context.

In chapter 6, the relationship between self-reported affect and smiling behavior

was reported. Self-report and behavioral cues such as facial expressions do not al-

ways correspond to the felt affect, or to each other. It was argued that two main

factors influence this mismatch. The first one is that the facial expression might be

fabricated on purpose by the participants, regardless of their affective state. The sec-
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ond, is that participants might display a different amount of facial expressions than

they are aware of. The results showed that observed behavior was clearly related

to the self-reported measures. Even when participants were trying to conceal their

facial expressions, these were significantly correlated to self-reported affect. During

experiment 2, explicitly reported affect correlated with both coders, but not with the

coding of the participants themselves.

On the other hand, implicitly reported affect correlated with the video-coding of

the coders who had contextual information about the experiment design. Further-

more, they did not correlate to each other. This suggests that both measures of

affect measure different levels of awareness. It might seem that the explicit measure

is related more on how aware the participant was of the purpose of the experiment,

and affected by demand characteristics. This might also have affected the implicit

report to a certain extent, as it was requested after the explicit self-report. Thus,

participants were, most probably, already aware of the purpose of the questionnaire.

Further work should explore the differences between both types of measures. It would

also be interesting to explore how the level of awareness of the participant relates to

both behavior and self-report.

To create an effective user experience automatic logging tool, identifying the

ground truth with validity and reliability is of utmost importance. By using embodied

cues of affect, this measurement can be done more effectively. However, the challenge

of establishing the ground truth still remains. Perceptually established ground truths

are only effective when discussing the existence of a visible behavioral cue. However,

more information is required when high level judgments are made. This includes

deciding whether a smile is posed or spontaneous. Results of experiment 2 showed

that the agreement of independent coders differs greatly when doing this inferential

judgment (table 5.1). Experiment 3 further explored human performance when judg-

ing between posed and spontaneous smiles. It was shown that a judgment based

on electrophysiological cues outperforms a layperson’s judgment based on behavioral

cues alone. The results from the aforementioned algorithm were consistently better
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than a human’s judgment of the same data. Therefore, the traditionally used “third

person coder labeling” would not be enough in this case.

Participants with different cultural backgrounds achieved different identification

performance averages. The results suggested that Mexican’s accuracy was signifi-

cantly lower than Chinese’s accuracy. Japanese’s accuracy was in between the other

two. This result might be related to the effect of practice in the task. Practice also

relates to the contextual opportunity and importance to use behavioral information to

convey a message that the participants had during their everyday life. The Mexican

sample had no or little experience dealing with foreigners. The other extreme is the

Chinese sample. They were living in an environment where their native language was

not spoken and rely heavily on body language. This might be an explanation why Chi-

nese participants got the highest accuracy among the participants. Interestingly, the

self-reported confidence of Mexican participants was the highest, even though their

performance was the lowest. This might be an instance of the Dunning–Kruger effect

bias. Moreover, the Cross-Race Effect might have hindered the Mexican’s recognition

of Asian’s facial expressions. Since two thirds of the participants in Experiment 2

were Chinese and Japanese, most of these did not match their own race.

According to the affinity diagram results, humans used eight features to distinguish

between posed and spontaneous smiles. Eye, mouth, and body movement were the

most common. Among all the features, mouth movement was the only reported

feature that was significantly explaining the obtained accuracy. Furthermore, context

seems to be of utmost importance for human judgment of different smiles. Several

participants mentioned to have tried to guess the context of the people smiling.

All in all, in a context-less environment, sensor-based detection outperforms a

layperson’s inferential judgment. Even though the participants were not experts in

reading posed and spontaneous smiles, they chose appropriate features to decide. The

observed differences in the cultural background suggests that the practice gained by

living abroad might have given an advantage to Chinese participants.

A limitation of the third experiment is the reduced amount of information provided
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to the participants to make their choices. The stimuli provided were stripped from

many contextual and multi-sensory cues that might have proven useful for the human

participants. This was already shown in previous chapters, where the knowledge of

the experimental design influenced the correlation between two independent coders

and the participant. Since the specialty of humans is to integrate information from

multimodal channels, these results might not have favored them to take relevant

decisions. It could be that they were too focused trying to guess the context, that

they missed other important available cues.

Finally, it is worth mentioning that besides the performance in accuracy, using

automatic judgments is also more practical than asking a person to label the data.

In experiment 2, participants took around 30 minutes to judge 54 videos, each of

about 10 s or less. The algorithm is able to do the judgment of the same amount of

data in seconds. Thus, not only can a wearable solution perceive the most relevant

information, it can also process the acquired data more efficiently.

8.1 Potential applications

The results of this study showed the potential of using a wearable system to

measure positive affective cues in a valid and reliable manner. Such system has several

potential applications for research and user evaluation of products and services. Some

of the applications include:

• A multimodal wearable device for quantification of affective responses

in iterative design processes. This system would allow to assess experience

sampling without experience disruption. Since the quantified behavior is corre-

lated to the self-reported measures, asking would not longer be necessary.

• Scene understanding of affective salient elements on a scene or frames

in a video. This would be useful to assess the effectiveness of media, specially

advertisement. Frames where smiles occur can be deemed as the most interest-

ing.
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• Predicting user judgment of media content. With this system, it would

be possible to assess whether a viewer is really enjoying a media product or not.

With this information, successive media recommendations could be possible.

• Estimating self-reported affective states for psychological and user

research. The unobtrusiveness of the wearable makes it a good alternative

to measure fast psychological reactions to a multitude of stimuli and social

interactions.

The high accuracy and high temporal resolution makes of this system an excel-

lent system for research, specially in environments with high degree of movement

or occlusion. It also provides an advantage where two or more persons have to be

measured simultaneously. In these contexts, other measurement techniques would be

time consuming to implement, too computationally complex, or inaccurate.
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Conclusions and future directions

Quantification of affective responses is useful for different applications. For some

of these, counting affective cues is enough, and the interpretation is left for a field

expert. However, these cues are prone to biases and manipulations from the person

displaying or reporting the emotion. Therefore, methods to overcome such biases

have to be considered.

This is a challenging task. Perhaps the most important challenge is to establish

a ground truth. Specially for perceptual judgments, the best approximation of the

ground truth is a combination of good experimental design, observation, and self-

report. Based on that ground truth, a wearable system using both electrophysiological

and behavioral cues could arguably outperform the judgment of a human coder who

relies only on visual cues. Therefore, training machines to do this type of judgment

would be beneficial.

Along three experiments, a multimodal wearable system was proposed to assess

the dynamics of different positive affective responses. Both behavioral and electro-

hysiological signals were chosen. Particular interest was taken in distinguish the

differences between affective responses during both posed and spontaneous events.

Particularly, six research questions were asked and answered.
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RQ1. Is it feasible to use EMG to detect positive fast and subtle facial

expressions at the micro-expression level? Using the data collected from ex-

periment 1, it was shown that distal EMG is an effective measure to identify fast and

subtle spontaneous smiles, even at a micro-expression level. This method is specially

advantageous when two or more people are being tracked (RQ 1-b), as occlusion and

movement is common in this situation.

RQ2. Can we distinguish a positive affective posed reaction from a spon-

taneous one using EMG? It is possible to identify the differences between both

types of smiles using EMG. Whilst the spatial distribution of the muscles used to

make these smiles differ, it was found that temporal features are more robust to dis-

tinguish between posed and spontaneous smiles (RQ 2-b). Namely, smile duration,

rising time, and decaying time.

A second experiment confirmed the potential of using EMG to identify the spatio-

temporal dynamics of smiles, and their differences. Different types of posed smiles

were considered. In this case, rising time and decaying speed differed significantly

(RQ 2-b).

RQ3. How does a multimodal system, including head movement and EDA,

improve the identification of posed and spontaneous positive affective re-

sponses? EDA and IMU measures alone have the potential to distinguish between

co-occurring spontaneous and posed facial expressions. The results seem to suggest

that EDA peaks anticipate facial expressions. Moreover, IMU-measured data ex-

plained best the differences between posed and spontaneous events, as people tend to

move more during spontaneous smiles.

RQ4. How does the observed behavior occurrence and dynamics relate to

self-reported measures of affect? Observed behavior was clearly related to the

self-reported measures. This was confirmed in both experiments. When participants

were asked to inhibit their facial expressions, the correlation was weaker. Whereas
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explicit valence self-report correlated with the observations from both coders; only

the video coding of people aware of the experimental design correlated with implicit

self-report. This might suggest that both measurements relate to different affective

awareness levels (RQ 4-b).

RQ5. How does cultural background affect our affective responses regard-

ing the investigated measures? No cultural differences found between posed and

spontaneous smiles in this study. Therefore, the results support the view that pro-

duction of embodied affective responses are similar for all humans, in spite of their

learned cultural background.

RQ6. How good are humans at distinguishing between posed and spon-

taneous smiles? Humans can distinguish between posed and spontaneous smiles

above chance level. However, their accuracy is very modest. Using behavioral and

electrophysiological signals seems advantageous in this scenario. These cues are not

directly perceivable by humans, therefore they provide complementary information.

Finally, the reliability of these tools promises to improve an expert’s ability to inter-

pret information contextually (RQ 6-b).

9.1 Contributions to the Human Informatics field

The contributions of this work to the multidisciplinary field of Human Informatics

are outlined below. These contributions lie in the intersection between engineering,

psychology, and design.

• A multimodal wearable approach was proposed and successfully implemented

to assess different types of affective responses.

• It is possible to detect fast and subtle spontaneous smiles from distal EMG.

This is advantageous in multiple-users settings.
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• The high temporal resolution of EMG-based detection is advantageous in the

task of identifying different facial expressions, and particularly, their temporal

dynamics.

• The temporal dynamics of the EMG of a smile to distinguish posed and spon-

taneous smiles were analyzed. Spontaneous smile duration differs from posed

smile duration; magnitude both types of smiles is not significantly different; and

rising time, and decay time differ.

• Two algorithms to distinguish posed and spontaneous smiles from EMG were

developed. Distinguishing between posed and spontaneous smiles using EMG is

moderately successful when using spatial and magnitude features. Performance

increases when temporal features are included. Moreover, spatio-temporal fea-

tures seem more robust for individual differences.

• No cultural differences were observed between in the temporal dynamics of

different smiles.

• The developed system outperformed humans using only visual cues in the task

of distinguishing between posed and spontaneous smiles.

• A method was proposed to elicit posed and spontaneous smiles in a controlled

setting, and taking care of obtaining a balanced amount of expressions.

• Looking at embodied cues of affect such as facial expressions can be a valid

alternative to self-report. When these cues are measured automatically, the

reliability of the measurements is also increased.

• This wearable approach might be arguably better than other automatic iden-

tification technologies, as the main difference between posed and spontaneous

smiles lies on their temporal dynamics.

• The ground truth for such automatic identification systems must not be a third

person’s judgement, as this seldom agrees with the ground truth established by
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the elicitation method and self-report.

• Quantifying electrophysiological and behavioral cues in an automatic fashion

will help to accelerate research on the area of human informatics. With this

methodology is feasible to continuously measure human experience in a reli-

able, and comfortable manner. Access to this data will support psychologists,

designers, marketeers and therapists to study these human information to their

advantage.

9.2 Future Work

The present work outlines the continuation of years of psychological studies. Even

though many have asked the same questions, to the best of the author’s knowledge,

none has addressed them with a distal facial EMG-based wearable approach. Sec-

ond, it is the first time that identification of posed and spontaneous smiles from

co-occurring EDA was studied. Finally, head movement was confirmed as an im-

portant predictor of spontaneity. Additionally, it was argued that identification of

smiles and other facial expressions should not be limited to perceptual detection, but

inferential judgments made by automatic systems would also be helpful in a number

of applications.

This is a first step to readdress ancient questions with new wearable technology.

The main advantage of the proposed method is the wearability of the device, and

the possibility of measuring EMG distally. I hope that this work will inspire many

researchers to keep investigating the embodied nature of our emotions.

Future work should keep considering carefully the validity of the chosen ground

truth. This wearable approach will be a tool to explore with more temporal resolution

how emotion processes arise and develop in our bodies, and explore embodied affective

responses in the wild.

Moreover, this work has only proven the potential of the proposed approach.

Further work should consider developing a between-subjects model, real-time imple-

118



Chapter 9: Conclusions and future directions

mentation, and improving the wearability of the proposed system. This includes the

technical challenges of making it robust against noise, and with long-lasting batteries.

This would allow its usage in more ecologically valid scenarios.
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[47] A. Öhman, “Face the Beast and Fear the Face: Animal and Social Fears as
Prototypes for Evolutionary Analyses of Emotion,” Psychophysiology, vol. 23,
no. 2, pp. 123–145, mar 1986.

[48] W. James, “What is an emotion?” Mind, vol. os-IX, no. 34, pp. 188–205, apr
1884.

[49] A. R. Damasio, Descartes’ error : emotion, reason, and the human brain. Put-
nam, 1994.

[50] A. Damasio, “The somatic marker hypothesis and the possible functions of the
prefrontal cortex,” Philosophical transactions of the Royal Society of London.
Series B, Biological sciences, vol. 351, no. 1346, pp. 1413–1420, Oct 1996.

[51] R. B. Zajonc, “Feeling and thinking: Preferences need no inferences.” American
Psychologist, vol. 35, no. 2, pp. 151–175, 1980.

[52] W. B. Cannon, “The James-Lange Theory of Emotions: A Critical Examination
and an Alternative Theory,” The American Journal of Psychology, vol. 100, no.
3/4, p. 567, 1987.

[53] M. B. Arnold, Emotion and Personality. Psychological Aspects. New York:
Columbia University Press, 1960.

[54] R. Lazarus, Emotion and adaptation. Oxford, UK: Oxford University Press,
1991.

[55] P. Ekman, “An Argument for Basic Emotions,” Cognition and Emotion, vol. 6,
no. 3-4, pp. 169–200, 1992.

[56] J. R. Fontaine, K. R. Scherer, E. B. Roesch, and P. C. Ellsworth, “The World
of Emotions is not Two-Dimensional,” Psychological Science, vol. 18, no. 12,
pp. 1050–1057, dec 2007.

[57] J. J. Prinz, Gut reactions : a perceptual theory of emotion. Oxford University
Press, 2004.

[58] D. Galati, K. R. Scherer, and P. E. Ricci-Bitti, “Voluntary facial expression of
emotion: comparing congenitally blind with normally sighted encoders.” Jour-
nal of personality and social psychology, vol. 73, no. 6, pp. 1363–79, dec 1997.

[59] P. Ekman and E. L. Rosenberg, What the Face RevealsBasic and Applied Studies
of Spontaneous Expression Using the Facial Action Coding System (FACS),
2nd ed. Oxford University Press, apr 2005.

[60] R. Buck, “Nonverbal behavior and the theory of emotion: the facial feedback
hypothesis.” Journal of personality and social psychology, vol. 38, no. 5, pp.
811–24, may 1980.

125



Bibliography

[61] S. D. Kreibig, “Autonomic nervous system activity in emotion: A review,”
Biological Psychology, vol. 84, no. 3, pp. 394–421, jul 2010.

[62] W. Boucsein, Electrodermal Activity. Boston, MA: Springer US, 2012.

[63] T. D. Wilson and D. T. Gilbert, “Affective forecasting,” Advances in Experi-
mental Social Psychology, vol. 35, pp. 345–411, 2003.

[64] W. Ruch and P. Ekman, “The expressive pattern of laughter,” in Emotion
qualia, and conciousness, A. Kaszniak, Ed. Tokyo: World Scientific Publisher,
2001, pp. 426–443.

[65] S. Cosentino, S. Sessa, and A. Takanishi, “Quantitative Laughter Detec-
tion, Measurement, and Classification—A Critical Survey,” IEEE Reviews in
Biomedical Engineering, vol. 9, pp. 148–162, 2016.

[66] P. Thibault, P. Gosselin, M. L. Brunel, and U. Hess, “Children’s and adoles-
cents’ perception of the authenticity of smiles,” Journal of Experimental Child
Psychology, vol. 102, no. 3, pp. 360–367, 2009.

[67] P. Thibault, M. Levesque, P. Gosselin, and U. Hess, “The duchenne marker
is not a universal signal of smile authenticity - but it can be learned!” Social
Psychology, vol. 43, no. 4, pp. 215–221, 2012.

[68] X. Mai, Y. Ge, L. Tao, H. Tang, C. Liu, and Y.-J. Luo, “Eyes Are Windows to
the Chinese Soul: Evidence from the Detection of Real and Fake Smiles,” PLoS
ONE, vol. 6, no. 5, p. e19903, may 2011.

[69] M. J. Bernstein, D. F. Sacco, C. M. Brown, S. G. Young, and H. M. Clay-
pool, “A preference for genuine smiles following social exclusion,” Journal of
Experimental Social Psychology, vol. 46, no. 1, pp. 196–199, jan 2010.

[70] R. Gadassi and N. Mor, “Confusing acceptance and mere politeness: Depres-
sion and sensitivity to Duchenne smiles,” Journal of Behavior Therapy and
Experimental Psychiatry, vol. 50, pp. 8–14, mar 2016.

[71] R. Song, H. Over, and M. Carpenter, “Young children discriminate genuine from
fake smiles and expect people displaying genuine smiles to be more prosocial,”
Evolution and Human Behavior, vol. 37, no. 6, pp. 490–501, nov 2016.

[72] S. Matsuda and J. Yamamoto, “Research in Autism Spectrum Disorders Inter-
vention for increasing the comprehension of affective prosody in children with
autism spectrum disorders,” Research in Autism Spectrum Disorders, vol. 7,
no. 8, pp. 938–946, 2013.

[73] J. Cockburn, M. Bartlett, J. Tanaka, J. Movellan, M. Pierce, and R. Schultz,
“SmileMaze : A Tutoring System in Real-Time Facial Expression Perception

126



Bibliography

and Production in Children with Autism Spectrum Disorder,” in Intl Con-
ference on Automatic Face and Gesture Recognition, Workshop on Facial and
Bodily expressions for Control and Adaptation of Games., 2008.

[74] D. McDuff, R. Kaliouby, D. Demirdjian, and R. Picard, “Predicting Online
Media Effectiveness Based on Smile Responses Gathered Over the Internet,” in
Automatic Face and Gesture Recognition (FG), 2013 10th IEEE International
Conference and Workshops on. IEEE, 2013, pp. 1 – 7.

[75] M. B. Harms, A. Martin, and G. L. Wallace, “Facial Emotion Recognition
in Autism Spectrum Disorders: A Review of Behavioral and Neuroimaging
Studies,” Neuropsychology Review, vol. 20, no. 3, pp. 290–322, 2010.

[76] L. M. Oberman, P. Winkielman, and V. S. Ramachandran, “Slow echo : facial
EMG evidence for the delay of spontaneous , but not voluntary , emotional
mimicry in children with autism spectrum disorders,” Developmental Science,
vol. 4, pp. 510–520, 2009.

[77] D. N. Mcintosh, A. Reichmann-decker, P. Winkielman, and J. L. Wilbarger,
“When the social mirror breaks: deficits in automatic, but not voluntary,
mimicry of emotional facial expressions in autism,” Developmental Science,
vol. 3, no. 9, pp. 295–302, 2006.

[78] D. Watson, L. A. Clark, and A. Tellegen, “Development and validation of brief
measures of positive and negative affect: the PANAS scales.” Journal of per-
sonality and social psychology, vol. 54, no. 6, pp. 1063–70, jun 1988.

[79] M. Quirin, M. Kazén, and J. Kuhl, “When nonsense sounds happy or help-
less: The Implicit Positive and Negative Affect Test (IPANAT).” Journal of
Personality and Social Psychology, vol. 97, no. 3, pp. 500–516, 2009.

[80] B. K. Payne, C. M. Cheng, O. Govorun, and B. D. Stewart, “An inkblot for at-
titudes: Affect misattribution as implicit measurement.” Journal of Personality
and Social Psychology, vol. 89, no. 3, pp. 277–293, 2005.

[81] P. Ekman, W. Friesen, and J. Hager, “FACS Investigator’s Guide,” 2002.

[82] P. Ekman and W. P. Friesen, “Measuring facial movement with the Facial
Action Coding System,” in Emotion in the human face, 2nd ed., P. Ekman,
Ed. Cambridge University Press, 1982, ch. 9, pp. 178–211.

[83] J. Cohen, “Weighted kappa: Nominal scale agreement provision for scaled dis-
agreement or partial credit.” Psychological Bulletin, vol. 70, no. 4, pp. 213–220,
1968.

[84] A. J. Viera and J. M. Garrett, “Understanding interobserver agreement:,” Fam-
ily Medicine, vol. 37, no. 5, pp. 360–363, 2005.

127



Bibliography

[85] S. L. Happy and A. Routray, “Automatic Facial Expression Recognition Using
Features of Salient Facial Patches,” IEEE Transactions on Affective Computing,
vol. 6, no. 1, pp. 1–12, 2015.

[86] S. Polikovsky, Y. Kameda, and Y. Ohta, “Facial micro-expression detection in
hi-speed video based on facial action coding system (FACS),” IEICE Transac-
tions on Information and Systems, vol. E96-D, no. 1, pp. 81–92, 2013.

[87] B. Fasel and J. Luettin, “Automatic facial expression analysis : a survey,”
Pattern Recognition, vol. 36, pp. 259–275, 2003.

[88] W. J. Yan, X. Li, S. J. Wang, G. Zhao, Y. J. Liu, Y. H. Chen, and X. Fu,
“CASME II: An improved spontaneous micro-expression database and the base-
line evaluation,” PLoS ONE, vol. 9, no. 1, pp. 1–8, 2014.

[89] X. Li, T. Pfister, X. Huang, G. Zhao, and M. Pietikainen, “A Spontaneous
Micro-expression Database: Inducement, collection and baseline,” 2013 10th
IEEE International Conference and Workshops on Automatic Face and Gesture
Recognition, FG 2013, 2013.

[90] R. Gross, J. Shi, and J. Cohn, “Quo vadis Face Recognition?” in Third Work-
shop on Empirical Evaluation Methods in Computer Vision, no. June, 2001, pp.
119–132.

[91] G. Zhao, X. Huang, M. Taini, S. Z. Li, and M. Pietikäinen, “Facial expression
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