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Abstract

Coherent phonon (CP) generation is one of the representative ultrafast and non-equilibrium
phenomena induced by the irradiation of the ultrashort pulse laser. In particular, in the
early-stage of the CP generation, the longitudinal optical (LO) phonon and heavily pho-
toexcited carriers interact with each other. Therefore, quantum mechanical effects inher-
ent in the CP generation dynamics and their microscopic mechanisms have been targets
of considerable interest for a long time.

In this dissertation, we construct a fully quantum mechanical model for the CP gen-
eration dynamics applicable for both nonpolar and polar semiconductors on an equal
footing, on the basis of a polaronic-quasiparticle (PQ) picture. In this model, the PQ is
constituted of the LO phonon, the plasmon, and the single-particle excitation. Thereby,
we tackle the problem of the transient and nonlinear Fano resonance (FR). This quantum
mechanical effect manifests itself immediately after the carrier excitation by the ultra-
short pulse laser; this was observed exclusively in lightly n-doped Si [M. Hase, et. al.,
Nature (London) 426, 51 (2003)], though not observed yet in GaAs. Moreover, we explore
still-hidden quantum mechanical effects in the CP generation dynamics.

The PQ model straightforward shows that the LO phonon discrete state is embedded
in the electron-hole continuum state of the single-particle excitation, which is a require-
ment of the transient FR in the present system. We conduct numerical calculations of
induced photoemission spectra relevant to the retarded longitudinal susceptibility in the
non-equilibrium and transient system of concern. The photoemission spectra show an
asymmetric line shape characteristic of FR transiently in undoped Si, although not in
GaAs. This result is in agreement with the existing experimental results. It is found that
the difference between the obtained results of the spectra is attributed to a phase factor
of an effective LO phonon-carrier interaction.

We also investigate the time signal ascribed to an induced charge density of an ionic
core under the various pulse laser conditions characterized by the Rabi frequency Ω0cv

corresponding to the peak magnitude of the pump pulse, and the detuning ∆ defined
by the difference between laser frequency and the band gap energy. It is found that in
the time signals, irregular oscillatory patterns with anomalously enhanced amplitudes are
manifested at specific conditions, where the energy of the plasmon due to the photoexcited
carriers coincides with that of the LO phonon leading to the striking anticrossings. The
irregular oscillations due to the energetically resonant interaction between the LO phonon
and the plasmon appear just in the early-stage of the CP generation, and further, result
in asymmetric spectral profiles of associated power spectra. Calculated results of Fano’s
asymmetric q value of the spectra with respect to ∆ are in harmony with experimental
ones. Moreover, the oscillatory patterns are subject to the Rabi flopping of the excited
carriers depending on Ω0cv. These quantum mechanical effects enrich the dynamics in the
early-stage of the CP generation.
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Chapter 1

Introduction

1.1 Coherent Phonon Generation

The development of the technology for ultrashort pulse laser with high intensity has
enabled us to explore a new research area of ultrafast and non-equilibrium phenomena
governed by heavily photoexcited carriers [1]. The irradiation of the ultrashort pulse
laser excites a longitudinal optical (LO) phonon mode coherently, namely, with the same
frequency [2, 3]. Here, it is required that temporal width of the pulse is much shorter than
a period of the LO phonon; since the typical frequency of the LO phonon in materials
is in the 10 THz regime, femtosecond laser pulses are suitable for coherent phonon (CP)
generation. This is undoubtedly one of the representative ultrafast phenomena unveiled
by the irradiation of the ultrashort pulse laser.

The coherent lattice vibration causes the macroscopic temporal change in optical prop-
erties such as reflectivity and transmission, and this is distinct from thermal lattice vi-
brations which does not induce the macroscopic polarization. Thus, the CP signals are
measured in the time domain through the changes of the optical properties, typically
using the pump-probe experiments [2, 3]; the pump pulse creates photoexcited carriers,
followed by the probe pulse, delayed in time, which detects the modulations of the optical
properties. For various purposes of exploring underlying new physics, detecting phonon
modes with different symmetries in time domain, manipulating collective lattice motions,
and other objectives, the CP generation has been investigated in a variety of materials
such as semiconductors [4, 5, 6, 7, 8, 9, 10], semimetals/metals [11, 12, 13, 14, 15, 16, 17],
high-Tc superconductors [18, 19, 20, 21], and other materials [22, 23, 24, 25, 26].

1.2 Theory of the Coherent Phonon Generation

1.2.1 Phenomenological oscillator models

Thus far, the CP generation mechanism has been discussed by means of classical models
based on a damped forced-oscillation, which is expressed as [2, 3]

d2Q(t)

dt2
+ 2γ

dQ(t)

dt
+ ω2Q(t) =

F (t)

m
. (1.1)

Here, Q(t) is a CP displacement amplitude, ω is the frequency of the phonon, γ is a
phenomenological damping parameter, F (t) is an external driving force, and m is a re-
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duced lattice mass. Under the conditions that both Q(t) and dQ(t)/dt are zero before
F (t) is applied, Eq. (1.1) is solved by use of either the Green function technique or the
Laplace-transform method as

Q(t) =

∫ t

−∞

F (t′)

m

e−γ(t−t′) sin
[√

ω2 − γ2(t− t′)
]

√
ω2 − γ2

dt′. (1.2)

There are two well-known models for the CP generation as the limiting cases of F (t).
One is the impulsive stimulated Raman scattering (ISRS) model [27, 28], and the other
is the displacive excitation of CP (DECP) model [29, 30]. In the ISRS model, F (t) is
associated with the Raman polarizability, namely, a derivative of electronic susceptibility
with respect to lattice displacement, and the impulsive force induces the oscillation around
the current equilibrium position. Supposing that the force is given by F (t) = Iδ(t), the
solution of Eq. (1.2) is readily cast into

Q(t) =
Iθ(t)

m
√
ω2 − γ2

e−γt sin
(√

ω2 − γ2 t
)
, (1.3)

that is, Q(t) becomes of the sine form. In the transparent region, the ISRS is considered
to be the key mechanism for the CP generation.

On the other hand, in the DECP model, the interband excitation of carriers causes
an impulsive shift of the equilibrium position of the lattice vibration, and the external
force is related to the excited carrier density. Supposing that the force is provided by
F (t) = Fθ(t)/m, Eq. (1.2) is directly integrated, and thus we obtain Q(t) as

Q(t) =
Fθ(t)

mω2

[
1−

{
γ√

ω2 − γ2
sin
(√

ω2 − γ2 t
)
+ cos

(√
ω2 − γ2 t

)}
e−γt

]
. (1.4)

In fact, ω ≫ γ, and thus, Q(t) becomes of the cosine form with the center of the oscillation
shifted. It is understood that the DECP is the key mechanism in the opaque region.
Besides, Kuznetsov et al. presented a microscopic explanation of this model by means of
the phenomenological Hamiltonian for two-band semiconductors [30]. According to this
model, F (t) is given by the diagonal components of the electronic density matrix, that is,
the phonon mode with momentum q = 0 is coupled with the excited carriers.

In addition to the two models mentioned above, one more mechanism of the transient
depletion field screening has been studied in polar semiconductors [31, 32]. A static
electric field perpendicular to the surface attributed to the surface depletion layer [33]
leads atoms to a new equilibrium position. The pump pulse irradiation gives rise to
screening of the surface field due to the photoexcited carriers on a subpicosecond time
scale. In other words, the initial band bending at the surface is relaxed toward a flat band
due to charge separation by the drift process. Thus, switching off the surface field launches
the longitudinal oscillation of the atoms, and its behavior indicates the cosine form. The
surface field is strongly dependent on the doping level, and the different types of the
oscillation have been observed among intrinsic, n-type, and p-type GaAs so far [32, 34].
In particular, the phase of the oscillation is deviated by 180◦ between the n- and p-type
samples [31].
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Initial phase

Indeed, these classical models have succeeded in revealing overall character of the CP
generation dynamics. Given the results of these models, the phase shift built in an
asymptotic damped harmonic vibration, termed as an initial phase θ, is considered to
include the information about the CP generation mechanism, and it is typically defined
in such a form

Q(t) ∝ e−γt cos(ωt+ θ). (1.5)

Therefore, a great number of experimental results have been examined from the viewpoint
of the initial phase. However, the experimentally obtained initial phases varied from
material to material, and further, they were strongly dependent on the doping level [7],
the pulse laser conditions [8], and the symmetry of the phonon modes [12, 15]. Therefore,
the relation between the CP generation mechanism and the associated initial phase is still
controversial.

Several theoretical studies related with the classical models have been reported so
far [35, 36, 37, 38, 39, 40]. In particular, Merlin and co-workers developed an extended
stimulated Raman scattering model − termed as transiently stimulated Raman scattering
(TSRS) model [35, 36, 38]− in order to describe light-induced lattice motion of both impul-
sive and displacive character. Here, the equation of motion of the CP amplitude relevant
to Eq. (1.1) was derived in an approximate manner starting from the phenomenological
Hamiltonian. According to this model, the external force is composed of both impulsive
and displacive contribution, and in particular, the displacive character is described by
resonant stimulated Raman scattering. Thereby, they compared the theoretical and ex-
perimental results of Sb. Further, Riffe et al. devised the TSRS model by hybridizing the
ISRS and DECP models; the authors gave a finite lifetime to the excited carrier density,
so as to be made in agreement with the experimental results of the initial phases for
various materials [40].

1.2.2 Microscopic mechanisms

However, it is a matter of course that the ultrafast carrier-lattice dynamics induced by
the ultrashort pulse laser is not able to be described by a single equation such a form of
Eq. (1.1), and the couped equations composed of both the phonon and the excited carriers
are to be solved. Further, the carriers are coupled each other through the Coulomb
potential interaction, leading to various considerable effects such as the formation of
the plasmon and the exciton [41]. Therefore, the above-mentioned approaches based
on the classical models encounter difficulties in not only demonstrating the details of
the dynamics of concern embedded in the initial phases, but also revealing unexplored
quantum mechanical effects. For the above-mentioned reason, microscopic mechanisms of
the CP generation dynamics have been targets of great interest for a long time.

Several theoretical studies apart from the classical models have been reported so far,
and the brief summary is provided in the following. Scholz et al. applied the density-
matrix theory in order to comprehend the external forces and the initial phases in the
system of Ge [42]. Lee et al. numerically solved the time-dependent Schrödinger equa-
tion in an electron-phonon system to demonstrate the quantum effect experimentally
observed [43]. Shinohara et al. applied the time-dependent density-functional theory to
the CP generation of Si [44] and Sb [45], and calculated physical quantities such as the
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initial phases and the amplitudes under several pulse laser conditions. Riffe constructed
a classical Fano oscillator model based on the Fano-Anderson Hamiltonian [46], and in-
vestigated the Fano resonance (FR) [47] effect on the initial phases [48]. Nakamura et
al. applied a simple two-level model and showed the dependence of the CP generation
mechanism on pulse width and detuning [49]. Kayanuma et al. proposed a dynamic
Jahn-Teller approach to elucidate the generation mechanism of asymmetric modes [50].
Nevertheless, the understanding of microscopic mechanisms focusing on quantum effects
has not sufficed yet thus far.

1.3 Quantum Mechanical Effect Concomitant to the

Coherent Phonon Generation

Quantum effects are caused in the initial stage of the CP dynamics where heavily pho-
toexcited carriers still stay in the excited states without relaxation and interact with the
LO phonon; hereafter, this time region is termed as the early time region (ETR). The
non-equilibrium carriers generated by the pump pulse irradiation are relaxed into the
quasi-equilibrium state due to the intervalley scattering through the emission of phonons,
and carrier-carrier scattering [3], diminishing the contribution from the carriers to the
concerned dynamics. This time region after the ETR is termed as the classical region,
and in this region, the CP signal overall shows just a damped harmonic oscillation. In-
cidentally, in fact, additional complicated signals due to coherent artifact attributed to
nonlinear optical interference between the pump and probe pulses [51, 52, 53] manifest
themselves in the ETR, which result in masking inherent dynamics in the CP generation.

As regards the quantum effect accompanied by the CP generation, FR has been ob-
served transiently in the ETR for lightly n-doped Si [6]. This FR is considered to be
caused by interference between a discrete state of the LO phonon and continuum states of
the excited carriers. This is discerned just in a moment before the carrier relaxation time.
Further, it is speculated that the manifestation of the FR is the vestige of the birth of a
polaronic quasiparticle (PQ) due to the strong carrier-LO phonon interaction [54]. Here,
it is noted that the transient FR has been observed exclusively in semimetals/metals of
Zn [13] and Bi [14, 17] in addition to lightly n-doped Si, not observed in GaAs and p-
doped Si so far. Incidentally, recently, a dynamical Fano-like effect was observed in CuCl
semiconductor microcavities, which was attributed to the interference between CPs and
short-lived Rabi oscillations [10]

Concerning theoretical studies of the transient FR, in Ref. [43], a displacement function
of CP was calculated under the far above-gap excitation conditions, and the associated
continuous-wavelet transform (CWT) was conducted for the system of GaAs. The CWT
spectra showed asymmetric shapes characteristic of FR, although it was not in consistency
with the existing experimental results. Further, it was argued that the resulting FR
originated from interference between two types of vibrational Raman scattering processes.
In Ref. [48], analytical expressions of the Fano absorption line shape and the initial phase
were derived by means of the classical Fano oscillator model, and it was shown that the
two quantities are relevant to each other. However in Ref. [17], the Fourier transform
of the Fano’s spectral formula into the time domain was taken in a direct manner, and
thus, the different initial-phase dependence of the line shape was shown. Further, it was
confirmed that the experimental results of the CP signal for Bi were in agreement with
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the obtained initial-phase dependence.

Transient and nonlinear Fano resonance

As is well known, FR is a quantum mechanical resonance effect due to the coupling
between discrete states and energetically degenerate continuum states, and this is char-
acterized by asymmetric line shapes composed of both a peak and a dip [47]. FR is one
of the fundamental and common concepts in diverse fields of chemistry and physics [55].

As regards FR observed in a Si crystal, a different type of FR from the concerned one
has been well studied so far; incoherent Raman scattering driven by the irradiation of a
continuous wave (cw) laser generates this FR in heavily doped Si [56, 57, 58, 59, 60, 61, 62].
This FR effect was observed in the system of heavily doped p-type Si in the Γ point [56,
57, 58]. Here, the electron-LO phonon interaction causes an inter-valence-band electronic
transition with emission of the LO phonon, resulting in the FR. The similar FR was also
observed in the system of heavily doped n-type Si in the X-valley [60]. Interestingly, the
manners of doping affect the sign of the resulting Fano’s q parameter [47], that is, this
parameter inclines to become positive (negative) in p(n)-type Si. Besides, this type of FR
was also observed in the system of δ-doped GaAs [63, 64, 65].

In particular, as far as the FR process induced by the laser irradiation, the concerned
transient FR is categorized into unusual optically nonlinear and transient processes, which
are considerably distinct from most of optically linear and stationary FR processes owing
to the cw-laser irradiation. In fact, the concerned FR results from heavily photoexcited
carriers created by an ultrashort pulse laser, and manifest itself just in the temporal region
where the carriers still in the excited states, that is, immediately after the completion of
the pulse irradiation.

As one example which belongs to this type of FR, there is a transient excitonic FR
appearing in ultrafast optical processes [66, 67, 68]. However, the number of studies rele-
vant to this type is really limited since theoretical predictions in advance and experimental
measurements are quite difficult. Therefore, the studies directed toward this type of FR
would provide potentially enriched physics to be explored. Hereafter, we term this type
of FR transient FR just for the sake of simplicity unless otherwise stated.

1.4 Aim of the Present Dissertation

The aim of the present dissertation is as follows. First, we construct a fully quantum
mechanical model for the CP generation dynamics applicable for both nonpolar and polar
semiconductors on an equal footing [69]. Given the supposition of the formation of the
PQ in the experiments [6, 54], we introduce PQ operators composed of an LO phonon
operator and a set of pairs of electron operators. In the present situation of concern, the
photoexcited carriers lead to the plasmon of a collective excitation mode and electron-hole
continua of single-particle excitation modes. Here, one more collective excitation mode
of exciton is omitted since its bound-state energy locates below the joint-energy band
dispersion of concern, and the coupling between the phonon and exciton modes would
be negligibly small. Second, on the basis of the PQ model, we examine the origin of the
transient FR [69, 70] and other unexplored quantum mechanical effects [71, 72]. In the
former, the interference between the LO phonon and the electron-hole continua plays a
key role, while in the latter, a coupling between two discrete states of the LO phonon and
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Figure 1.1: The schematic diagram of the time evolution of the CP generation dynamics.
The energy of the LO phonon ωq, the plasmon, and the electron-hole continua are repre-
sented by a red line, a green line, and gradation of blue color, respectively. The gradation
shows how high the excited carrier density is in a schematic manner. Further, the green
dashed line in the classical region represents the plasmon mode which is decoupled with
the phonon due to the relaxation. T12 is the phenomenological relaxation time of induced
carrier density, and represents a rough estimate of the border between the early-time re-
gion and the classical region. Further, the orange solid line represents the magnitude of
the laser-electron interaction dependent on a peak amplitude Ω0cv and temporal width of
the pulse τL

the plasmon plays a key role. Third, we investigate the features of the CP generation such
as the initial phases and the asymptotic amplitudes under various pulse laser conditions,
and compare the results with other experimental and theoretical ones [71, 72].

Figure 1.1 depicts the time evolution of the CP dynamics, where a rough border be-
tween the ETR and the classical region is delimited by a phenomenological relaxation
time constant T12 attributed to the carrier relaxation time and the dephasing time of a
subpicosecond time scale [3]. It is seen that the energy of the LO phonon ωq with mo-
mentum q − represented by a red solid line − is embedded in the continuum state of the
single-particle excitation − represented by gradation of blue color−; the gradation shows
how high the excited carrier density is in a schematic manner. Moreover, the energy of
the plasmon ωqpl is shown by a green solid line. When the plasmon mode approaches
the phonon mode, ωq and ωqpl show an anticrossing, which influences the physical quan-
tities. The green dashed line in the classical region represents the plasmon mode which
is decoupled with the phonon due to the relaxation, although the carriers still stay in the
quasi-equilibrium states; the carriers recombine to reach the true equilibrium state on a
nanosecond time scale [3]. Further, the magnitude of the laser-electron interaction Ωcv(t),
which depends on a peak amplitude Ω0cv and temporal width of the pulse τL, is shown by
an orange solid line. This provides the threshold of the continuum, and determines ωqpl.
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The details are shown in Sec. 3.
For the above-mentioned purposes, we examine a retarded longitudinal susceptibility

leading to transient induced photoemission spectra from photoexcited states, and a CP
displacement function; the associated retarded Green functions are described by means
of an adiabatic expansion with respect to the PQ operators with time fixed. First, we
examine the photoemission spectra in the system of undoped Si and undoped GaAs, in
which an asymmetric spectral profile characteristic of FR manifests itself in Si, though
not in GaAs [see Sec. 3.1]. Next, we examine the CP displacement function in the system
of undoped Si, and irregular oscillatory patterns appear on the occasion that the phonon
and the plasmon resonantly interact with each other [see Sec. 3.2]. It is noted that
opaque interband transitions accompanying real excited carriers are exclusively taken
into account. Further, the delayed formation of plasmon-LO phonon coupled modes in
polar semiconductors are not taken into consideration in this study because these modes
do not appear immediately after the pulse laser irradiation of the ETR [34, 62, 73, 74,
75, 76, 77, 78].

This dissertation is organized as follows. In Chap. 2, we describe the theoretical
framework. In Chap. 3, we present the results and discussion. Finally in Chap. 4, we
present the conclusions. Atomic units (a.u.) are used throughout unless otherwise stated.
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Chapter 2

Theory

2.1 Equations of Motion

We take into consideration the total Hamiltonian Ĥ, provided by

Ĥ = Ĥe + Ĥ ′(t) + Ĥp + Ĥe−p, (2.1)

where

Ĥe =
∑
bk

εbka
†
bkabk +

1

2

∑
q ̸=0

V (C)
q

∑
bb′kk′

a†bk+qa
†
b′k′−qab′k′abk, (2.2)

Ĥ ′(t) = −
∑
k

[
Ωcv(t) a

†
ckavk + Ωvc(t) a

†
vkack

]
, (2.3)

Ĥp =
∑
q

ωqc
†
qcq, (2.4)

and
Ĥe−p =

∑
bqk

(
gbqcqa

†
bk+qabk + g∗bqc

†
qa

†
bkabk+q

)
. (2.5)

Ĥe is a two-band electron Hamiltonian, where we consider the energetically-lowest con-
duction band (b = c) and the energetically-highest valence band (b = v). a†bk and abk
represent creation and annihilation operators of the electron, respectively, with the en-
ergy dispersion εbk and the Bloch momentum k in band b; εbk is given based on the
effective-mass approximation with parabolic dispersion in the proximity of Γ point. V

(C)
q

is a Coulomb potential represented as

V (C)
q =

4π

ϵ∞V

1

q2
, (2.6)

where ϵ∞, V , and q are a dielectric constant in the high-frequency limit, volume of crystal,
and momentum, respectively. Ĥ ′(t) is the electron-light interaction at time t, and Ωbb̄(t)
is expressed as

Ωbb̄(t) = Ω0bb̄f(t) cosω0t, (2.7)

where the Rabi frequency Ω0bb̄ is provided by the product of a peak amplitude of an
irradiated electric field and the electric dipole moment between the c- and v-bands. Here,
we assume that the dependence of the dipole moment on k is negligibly small. The
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barred index b̄ means that the index is unequal to b; c̄ = v and v̄ = c. Further, ω0 and
f(t) are laser frequency and a pulse-envelope function, respectively. Ĥp and Ĥe−p are
an LO phonon Hamiltonian and the electron-phonon interaction, respectively. c†q and cq
represent creation and annihilation operators of the LO phonon, respectively, with the
energy dispersion ωq. We omit the zero-point energy of the phonon just for the sake of
simplicity. Further, gbq represents a coupling constant between the b-band electron and
the LO phonon.

The non-equilibrium dynamics driven by the pump laser irradiation of concern is
described by time-evolution of the phonon operator and a composite operator representing
an induced carrier density, defined as

A†
q(kbb

′) = a†bk+qab′k. (2.8)

It is remarked that the transferred momentum q is finite, even though it is quite small:
q ̸= 0. The equation of motion of A†

q(kbb
′) is expressed in terms of the Heisenberg

equation as

−i

(
d

dt
+

1

Tqkbb′

)
A†

q(kbb
′) = [Ĥe + Ĥ ′(t), A†

q(kbb
′)] + [Ĥe−p, A

†
q(kbb

′)], (2.9)

where Tqkbb′ is a phenomenological relaxation time constant of A†
q(kbb

′). The expression
of the first commutator in the right-hand side of Eq. (2.9) is obtained as

[Ĥe + Ĥ ′(t), A†
q(kbb

′)] ≈
∑
k̃b̃b̃′

A†
q(k̃b̃b̃

′)Zq(k̃b̃b̃
′,kbb′), (2.10)

where a c-number non-Hermitian matrix Zq is represented as

Zq(k1b1b
′
1,k2b2b

′
2) = ωb1b′1k1qδb1b2δb′1b′2δk1k2 + V (C)

q δb1b′1∆ρb2b′2k2q

−Ω
(R)

b1b̄1k1
δb1b̄2δb′1b′2δk1k2 + Ω

(R)

b̄′1b
′
1k1

δb′1b̄′2δb1b2δk1k2 . (2.11)

Here,
ωbb′kq = ε

(r)
bk+q − ε

(r)
b′k (2.12)

with a renormalized electron energy in band b as

ε
(r)
bk = εbk −

∑
q

V (C)
q ρbbk+q, (2.13)

and
Ω

(R)

bb̄k
(t) = Ωbb̄(t) +

∑
q

V (C)
q ρb̄bk+q. (2.14)

Besides, a single-particle density matrix ρbb′k ≡ ⟨a†bkab′k⟩ and

∆ρbb′kq = ρbb′k − ρbb′k+q, (2.15)

where ⟨Ô⟩ represents an expectation value of operator Ô with respect to the ground state.
It is noted that we evaluate Eq. (2.9) by employing a factorization approximation, and
four operator terms such as a†

b̃,k̃+q̃
ab̃′k̃a

†
b,k+qab′k is split into a product of the operator

A†
q̃(k̃b̃b̃

′) and the single-particle density matrix ρbb′k. The detail is shown in Appendix A.
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Moreover, we employ the rotating wave approximation [41, 79], and thus high-frequency
contributions are removed from Eq. (2.9); A†

q(kbb
′) and ρbb′k are replaced by eiω̄bb′ tĀ†

q(kbb
′)

and eiω̄bb′ tρ̄bb′k, respectively, where ω̄cv = ω0, ω̄vc = −ω0, and ω̄bb = 0. Thus, Eqs. (2.9)
and (2.11) are cast into

−i

(
d

dt
+

1

Tqkbb′

)
Ā†

q(kbb
′) = [Ĥe + Ĥ ′(t), Ā†

q(kbb
′)]− Ā†

q(kbb
′)ω̄bb′ + [Ĥe−p, Ā

†
q(kbb

′)]

≈
∑
k̃b̃b̃′

Ā†
q(k̃b̃b̃

′)Z̄q(k̃b̃b̃
′,kbb′) + [Ĥe−p, Ā

†
q(kbb

′)] (2.16)

and

Z̄q(k1b1b
′
1,k2b2b

′
2) = ω̄b1b′1k1qδb1b2δb′1b′2δk1k2 + V (C)

q δb1b′1∆ρ̄b2b′2k2q

−Ω̄
(R)

b1b̄1k1
δb1b̄2δb′1b′2δk1k2 + Ω̄

(R)

b̄′1b
′
1k1

δb′1b̄′2δb1b2δk1k2 , (2.17)

respectively, where
ω̄bb′kq = ωbb′kq − ω̄bb′ (2.18)

and

Ω̄
(R)

bb̄k
(t) =

1

2
Ω0bb̄f(t) +

∑
q

V (C)
q ρ̄b̄bk+q. (2.19)

As regards the equation of motion of c†q, it is straightforward derived in terms of the
Heisenberg equation as

−i

(
d

dt
+

1

Tqph

)
c†q = ωqc

†
q +

∑
bk

gbqĀ
†
q(kbb), (2.20)

where Tqph is a phenomenological relaxation time constant of c†q due to phonon anhar-
monicity.

2.2 Retarded Longitudinal Susceptibility

On the basis of the linear response theory, an induced charge density n
(ind)
q (t) caused by

a weak external optical field fq(t) is given by [79, 80]

n(ind)
q (t) =

1

4πV

∫ t

−∞
dt′ χ(t)

q (t, t′)fq(t
′). (2.21)

χ
(t)
q (t, t′) is a retarded longitudinal susceptibility in the nonequilibrium and transient

system of concern, which consists of two contributions as

χ(t)
q (t, t′) = χq(t, t

′) + χ′
q(t, t

′), (2.22)

where χq(t, t
′) and χ′

q(t, t
′) are retarded susceptibilities attributed to an electron-induced

interaction and an LO phonon-induced interaction, respectively. χq(t, t
′) is expressed as

χq(t, t
′) ≡ 4πV DR

q (t, t
′) = χ∗

−q(t, t
′), (2.23)
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where DR
q (t, t

′) represents a retarded density-density correlation function of electrons pro-
vided by

DR
q (t, t

′) = −i⟨[n̂q(t), n̂−q(t
′)]⟩θ(t− t′). (2.24)

Here, a density operator is given by

n̂q(t) =
1

V

∑
bk

a†bk+qabk (2.25)

with
n̂−q(t) = n̂†

q(t), (2.26)

and
DR†

q (t, t′) = DR
−q(t, t

′). (2.27)

On the other hand, χ′
q(t, t

′) in Eq. (2.22) is expressed as

χ′
q(t, t

′) =
4π

V
|g′q|2D′R

q (t, t′), (2.28)

where

|g′q|2 =

∣∣∣∣∣ g0qv
(C)
q

∣∣∣∣∣
2

(2.29)

with g0q = (gcq + gvq)/2 and

v(C)
q = ϵ∞V (C)

q =
4π

V

1

q2
. (2.30)

D′R
q (t, t′) represents a retarded phonon Green function [79] defined as

D′R
q (t, t′) = −i

⟨[
cq(t) + c†−q(t), c−q(t

′) + c†q(t
′)
] ⟩

θ(t− t′)

= −i
⟨[

cq(t), c
†
q(t

′)
]
−
[
c−q(t), c

†
−q(t

′)
]† ⟩

θ(t− t′)

≡ D̄′R
q (t, t′) +

[
D̄′R

−q(t, t
′)
]∗
, (2.31)

where
D̄′R

q (t, t′) = −i
⟨[

cq(t), c
†
q(t

′)
] ⟩

θ(t− t′). (2.32)

In the present study, we investigate two physical quantities associated with the re-
tarded susceptibilities. One is a transient induced photoemission spectrum for an analysis
of the transient FR, and the other is a CP displacement function. We derive analytic ex-
pressions of the two quantities, and the theoretical frameworks are described in Secs. 2.3
and 2.4, respectively. Here, we introduce the PQ operator to the present model, which is
composed of Ā†

q(kbb
′) and c†q, and two physical quantities are expressed in terms of the

PQ operator.

2.3 Analysis of the Transient Fano Resonance

In this section, we derive the analytical expression of the transient induced photoemission
spectra so as to examine the transient FR. Here, we employ some approximation in
addition to the factrization approximation and the rotating wave approximation, and
solve the present problem as a multichannel scattering problem.
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2.3.1 Introduction of polaronic quasiparticle operators

Quasiboson operator

First of all, we solve left and right eigenvalue problems [81] of the non-Hermitian matrix
Z̄q of Eq. (2.17) with t fixed as an adiabatic parameter, represented by

UL†
q Z̄q = EqUL†

q (2.33)

and
Z̄qU

R
q = UR

q Eq, (2.34)

respectively. Eq is an adiabatic eigenvalue diagonal matrix, and
{
UL
q , U

R
q

}
are the associ-

ated biorthogonal set of eigenvectors. The eigenvectors satisfy the orthogonality relation
UL†
q UR

q = 1 and the completeness UR
q U

L†
q = 1. We employ matrix notations, that is,

Z̄q =
{
Z̄q(k̃b̃b̃

′,kbb′)
}
, Eq = {Eqα}, and U

L/R
q =

{
U

L/R
qα (kbb′)

}
, where Eqα and U

L/R
qα (kbb′)

represent the eigenvalue and eigenvector of the αth state, respectively. As shown in Ap-
pendix B, we solve Eqs. (2.33) and (2.34) in an analytic manner, and thus, obtain the
expressions of the αth left and right eigenvectors as

UL†
qα = NL

qαV
(C)
q uL†

qα (2.35)

and
UR
qα = NR

qαV
(C)
q uR

qα, (2.36)

respectively. Here, u
L/R
q =

{
u
L/R
qα (kbb′)

}
, and N

L/R
qα represents a normalization constant,

which is determined by
NL

qαN
R
qα[V

(C)
q ]2

(
uL†
qαu

R
qα

)
= 1. (2.37)

The creation operator of the quasiboson of the αth state is defined as

B†
qα =

∑
kbb′

Ā†
q(kbb

′)UR
qα(kbb

′) ≡ Ā†
qU

R
qα. (2.38)

It is noted that we introduce this operator so as to make sure the commutation relation
of [Ĥ

(eff)
e (t), B†

qα(t)] = B†
qα(t)Eqα(t), where Ĥ

(eff)
e (t) is an effective electronic Hamiltonian

under the rotating wave approximation1. We define the adiabatic ground state of Ĥ
(eff)
e (t)

as |0⟩, and obtain the results of [Ĥ
(eff)
e (t), B†

qα(t)]|0⟩ = [Ĥ
(eff)
e (t)−E0]|1; qα⟩ = Eqα|1; qα⟩,

where |1; qα⟩ represents the single-quasiboson state. The mode qα is defined as |1; qα⟩ =
B†

qα(t)|0⟩, and E0 is the zero-point energy; we set E0 = 0 for the sake of simplicity.

Thus, we obtain the expression of Ĥ
(eff)
e (t)|1; qα⟩ = Eqα(t)|1; qα⟩. This procedure of the

quasibosonization reminds us of Dyson’s method of bosonization [82, 83]. It is remarked
that this procedure of the quasibosonization is correct just for the single-quasioboson
state. It would be questionable in the case that the number of quasibosons increases; for
instance, Ĥ

(eff)
e (t)|2; qα⟩ ≠ 2Eqα(t)|2; qα⟩, where a two-quasiboson state |2; qα⟩ is defined

as |2; qα⟩ =
√
2
−1
[B†

qα(t)]
2|0⟩.

1Consulting the approximations employed in Sec. 2.3.2, the correction to Ĥe + Ĥ ′(t) is given by
−
∑

αα′ B†
qαU

L†
qα ω̄U

R
qα′Bqα′ .
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The annihilation operator corresponding to the above-stated operator is defined as

Bqα =
∑
kbb′

UR†
qα (kbb

′)Āq(kbb
′) ≡ UR†

qα Āq. (2.39)

Employing the relation Z̄q = UR
q EqUL†

q , Eq. (2.16) is recast as follows:

−i
dB†

qα

dt
= B†

qαEqα + i
∑
α′

B†
qα′Wqα′α + [Ĥe−p, B

†
qα], (2.40)

where

Wqα′α = Wqα′α +
γ
(B)
qα′α

2
(2.41)

with a non-adiabatic coupling between the αth and α′th adiabatic states given by

Wqα′α =
∑
kbb′

dUL†
qα′(kbb′)

dt
UR
qα(kbb

′) ≡
dUL†

qα′

dt
UR
qα, (2.42)

and
γ
(B)
qα′α

2
=
∑
kbb′

UL†
qα′(kbb

′)
1

Tqkbb′
UR
qα(kbb

′). (2.43)

Equation (2.40) represents an adiabatic coupled equation, where Eqα(t) is adiabatic energy
at t related to the operator B†

qα(t). It is remarked that Bqα(t) and B†
qα(t) do not fulfill the

equal-time commutation relations for a real boson: [Bqα(t), B
†
q′α′(t)] ̸= δqq′δαα′ . Further,

Eqα is generally a complex number, although B†
qα is Hermitian-conjugate of Bqα. The set

of eigenstates {α} consists of a single discrete state signified as α1 with eigenenergy Eqα1

and continuum states signified as β with eigenenergy Eqβ: {α} = (α1, {β}). The states
α1 and {β} correspond to a plasmon-like mode and single-particle excitation modes in
interbands, respectively. Moreover, on the complex analogy of the Hellman-Feynman
theorem, Wqα′α is readily rewritten as

Wqα′α =
UL†
qα′

dZ̄q

dt
UR
qα

Eqα′ − Eqα
, α′ ̸= α, (2.44)

and Wqαα ̸= 0.
It is noted that we omit the exciton of another collective excitation mode; its energy

of the bound-states is below the joint-energy band dispersion, therefore, we assume that
the coupling between the phonon and exciton modes are negligibly small compared with
other electronic modes, and the effect of the exciton on the dynamics of concern is negli-
gible. This approximation is done by neglecting the terms relevant to the exciton in the
calculation of Eq. (2.11).

Quasiboson-LO phonon interaction

Following Eqs. (2.38) and (2.39), Ĥe−p of Eq. (2.5) is rewritten as

Ĥe−p =
∑
q,α

(
MqαcqB

†
qα +M∗

qαc
†
qBqα

)
, (2.45)
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where an effective coupling constant between a quasiboson and the LO phonon is given
by

Mqα =
∑
kb

gbqU
L†
qα(kbb). (2.46)

Thus, the commutator of [Ĥe−p, c
†
q] is readily evaluated as

[Ĥe−p, c
†
q] =

∑
α

MqαB
†
qα. (2.47)

On the other hand, the commutator of [Ĥe−p, B
†
qα] in Eq. (2.40) leads to

[Ĥe−p, B
†
qα] ≈ M ′′

−qαc−q +M ′∗
qαc

†
q, (2.48)

where the factorization approximation is employed; [Bqα, B
†
q′α′ ] and [B†

qα, B
†
q′α′ ] are re-

placed by ⟨[Bqα, B
†
q′α′ ]⟩ and ⟨[B†

qα, B
†
q′α′ ]⟩, respectively, and

M ′′
−qα =

∑
α′

M−qα′⟨[B†
−qα′ , B

†
qα]⟩ =

∑
kbb′

(gb−qρ̄bb′k − gb′−qρ̄bb′k+q)U
R
qα(kbb

′) (2.49)

and

M ′∗
qα =

∑
α′

M∗
qα′⟨[Bqα′ , B†

qα]⟩ =
∑
kbb′

(
g∗bqρ̄bb′k − g∗b′qρ̄bb′k+q

)
UR
qα(kbb

′). (2.50)

It is noted that Mqα, M
′
qα, and M ′′

−qα slowly vary in time because these functions are
given by the adiabatic eigenvectors UL†

q and UR
q , and furthermore, the density matrices

ρ̄bb′k slowly vary in time, particularly after the pulse irradiation. This fact is an essential
point that provides a theoretical basis to the introduction of the PQ picture.

As regards the effective coupling constant Mqα, it is represented by the sum of MF
qα

and MD
qα which originate from the Fröhlich interaction and the deformation potential

interaction, respectively, that is,

Mqα = MF
qα +MD

qα. (2.51)

The coupling constant gbq for the Fröhlich interaction in polar crystals is approximately
independent of the band indices; gbq ≈ gFq , and gFq is pure imaginary with |gFq | ∝ |q|−1

[41]. Following Eq. (2.46), MF
qα is represented as

MF
qα ≃ gFq

∑
kb

UL†
qα(kbb) = gFq N

L
qα, (2.52)

and in the small-q limit, the leading term of MF
qα is independent of q due to NL

qα ∝ |q|.
On the other hand, gbq for the deformation potential interaction represented by gDbq is real
and approximately independent of q. MD

qα is given by

MD
qα ≃

∑
kb

gDbqU
L†
qα(kbb), (2.53)

where the leading term of MD
qα is independent of q. The similar results hold correctly for

both M ′′
−qα and M ′∗

qα
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Polaronic quasiparticle operators

Following Eq. (2.48), the adiabatic coupled equation of Eq. (2.40) is rewritten as

−i
dB†

qα

dt
= B†

qαEqα + c†qM
′∗
qα + i

∑
α′

B†
qα′Wqα′α +M ′′

−qαc−q. (2.54)

Further, the equation of motion of the LO phonon of Eq. (2.20) becomes of the form:

−i

(
d

dt
+

1

Tqph

)
c†q = c†qωq +

∑
α

B†
qαMqα. (2.55)

We integrate Eqs. (2.54) and (2.55) into a single equation in a matrix form of

−i
d

dt
[B†

q, c
†
q] = [B†

q, c
†
q]hq + [iB†

qWq +M ′′
−qc−q, 0]. (2.56)

Here, hq ≡ {hqγγ′} is a non-Hermitian matrix provided by

hq =

[
Eq Mq

M ′†
q ωq

]
(2.57)

with γ, γ′ = 1 ∼ N + 2. N represents the number of electron-hole (discretized) continua
of single-particle excitation modes, that is, β = 1 ∼ N except for two discrete states
of the plasmon-like mode and the LO phonon mode signified as α1 and α2, respectively:
{γ} = ({β}, α1, α2). It is noted that we will adopt the matrix indices of α′, β′, γ′, and α′

i

(i = 1, 2) with the same meaning as α, β, γ, and αi, respectively.
In this section, we are exclusively concerned with the case where the continuum level of

{β} overlaps the two discrete levels of α1 and α2. This case is categorized into the Fano
problem, in other words, the multichannel scattering problem with one open channel
and two closed channels, except for hq being non-Hermitian. We take into account the
following coupled equations of ∑

γ′

hqγγ′V R
qγ′β = V R

qγβEqβ, (2.58)

where V R
qβ = {V R

qγβ} represents the right vector of the solution for given energy Eqβ. In

terms of V R
qβ, we define a set of N operators F †

qβ (β = 1 ∼ N) as

F †
qβ =

∑
β′

B†
qβ′V

R
qβ′β +B†

qα1
V R
qα1β

+ c†qV
R
qα2β

. (2.59)

Further, we introduce the left vector V L†
qβ = {V L†

qβγ} associated with V R
qβ in order to satisfy

the inverse relations

B†
qα =

∑
β

F †
qβV

L†
qβα, c†q =

∑
β

F †
qβV

L†
qβα2

, (2.60)

where
∑

γ V
L†
qβγV

R
qγβ′ = δββ′ and

∑
β V

R
qγβV

L†
qβγ′ = δγγ′ . Here, it is noted that the PQ

operator F †
qβ is introduced in a similar manner to that of the quasiboson operator B†

qα;
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the commutation relation [Ĥ(eff)(t), F †
qβ(t)] = F †

qβ(t)Eqβ(t) is ensured, where the total

effective Hamiltonian Ĥ(eff)(t) is provided by Ĥ(eff)(t) = Ĥ
(eff)
e (t) + Ĥp + Ĥe−p, and the

expression hq(t) =
∑

β V
R
qβ(t)Eqβ(t)V

L†
qβ (t) is employed in terms of Eq. (2.58).

Given Eq. (2.59), we obtain adiabatic coupled equations for F †
q from Eq. (2.56):

−i
d

dt
F †
qβ = F †

qβEqβ + i
∑
β′

F †
qβ′Iqβ′β +

∑
β′

M′′
−qββ′F−qβ′ , (2.61)

where Fq represents Hermitian-conjugate of F †
q . Further,

M′′
−qββ′ =

(∑
α

M ′′
−qαV

R
qαβ

)
V L
−qα2β′ (2.62)

and

Iq = Iq +
γ
(0)
q

2
. (2.63)

Iq represents a non-adiabatic interaction expressed as

Iqβ′β =
∑
αα′α′′

d
(
V L†
qβ′α′U

L†
qα′α′′

)
dt

(
UR
qα′′αV

R
qαβ

)
=

∑
αα′

V L†
qβ′αWqαα′V R

qα′β +
∑
α

dV L†
qβ′α

dt
V R
qαβ (2.64)

with Iq ̸= −I†q, and a phenomenological damping factor γ
(0)
qβ′β relevant to F †

qβ is provided
by

γ
(0)
qβ′β

2
=
∑
αα′

V L†
qβ′α′

γ
(B)
qα′α

2
V R
qαβ. (2.65)

Hereafter, we term the operators F †
qβ(t) and Fqβ(t) a creation operator and an annihilation

operator of PQ, respectively. These operators are not bosonic ones, and the ground state
of the PQ is provided by the direct product of the ground states of the quasiboson and
the LO phonon. Further, Eqβ(t) represents single-PQ adiabatic energy with mode qβ at
time t.

Retarded Green function associated with the PQ operator

We solve Eq. (2.61) in an approximate manner to obtain the closed analytic forms of
F †
qβ and Fqβ. The details of the derivation is described in Appendix C. The point of this

derivation is to approximate the non-adiabatic interaction Iq(t) under the following as-
sumption. Iq(t) is affected by the two contributions, namely, Wq(t) and a time-derivative
of V L†

q (t) [see Eq. (2.64)]. We have two pronounced effects on Wq(t). One is an effect of
a crossing between the adiabatic α′th and αth states. Here, the adiabatic energy curves
of Eqα′(t) and Eqα(t) tend to cross at t = tj −termed as exceptional point− [81], which
results in spike-like change of Wqα′α. It is seen that this effect originates from the energy
denominator in Eq. (2.44) reminiscent of a Landau-Zener coupling [84]. The other effect
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is attributed to abrupt change of Ω
(R)
bb′k(t) of Eq. (2.14), that is, dΩ

(R)
bb′k(t)/dt. These two

effects are also included in the time-derivative of V L†
q (t) in Eq. (2.64).

In the present section, we set the pulse-envelop function f(t) in Eq. (2.7) to a squared-
shape just for the sake of simplicity, that is,

f(t) = θ(t+ τL/2)θ(t− τL/2), (2.66)

where τL is temporal width. Thus, spike-like change of Wqα′α(t) arises at t = tj including

t = ±τL/2, whereas Z̄q, Eqα, and U
L/R
qα (kbb′) varies slowly in time owing to the rotating

wave approximation except for t = ±τL/2. Accordingly, Iq(t) would be well described as

Iq(t) ≈
∑
j

I(j)†
q δ(t− tj), (2.67)

where I
(j)
q is a constant matrix with I

(j)†
q ̸= −I

(j)
q . From among a set of the off-diagonal

elements {I(j)
qβ′ (̸=β)β}, we retain just single leading contribution, namely, I

(D)
qβ′(̸=β)β at t = tD.

In practical calculations, tD is set to τL/2, that is,

tD =
τL
2
. (2.68)

The associated retarded Green function is defined in terms of Fq and F †
q as [79, 80]

GR
qββ′(t, t′) = −iθ(t− t′)

⟨[
Fqβ(t), F

†
qβ′(t

′)
]⟩

. (2.69)

As shown in Appendix C.2, it ends up with

GR
qββ′(t, t′) = −iθ(t− t′)e−iΘqβ(t,tD)

∑
γγ′

V R†
qβγ(tD)Tqγγ′(t, t′)V R

qγ′β′(tD)e
iΘ∗

qβ′ (t
′,tD)

, (2.70)

where the matrix Tq is given by Eq. (C.38), where all effects of the off-diagonal com-

ponents {I(D)
qβ′(̸=β)β} at t = tD are incorporated. Θqβ(t, t

′) represents an adiabatic energy
phase provided by

Θqβ(t, t
′) =

∫ t

t′
dt′′

{
E∗
qβ(t

′′)− i

[
γ
(0)
qβ (t

′′)

2
+ I∗qββ(t

′′)

]}
, (2.71)

and the effect of the phenomenological damping is included in it. Further, in Θqβ(t, t
′),

the effect of the non-adiabatic correction due to diagonal components {I(j)
qββ} is also in-

corporated. We discuss this additional effect in more detail in Sec. 3.1.2.

2.3.2 Approximations employed

In the present subsection, first, we summarize the approximations employed for the tran-
sient FR problem. The major approximation is the factorization approximation employed
in Eqs. (2.10) and (2.48) in addition to the rotating wave approximation implemented in
Eq. (2.16). Next, we introduce the further approximations for actual calculations as
follows. (i) Time integration for solving Eq. (2.61) starts at t = tD = τL/2, where

25



the temporal width τL of the squared pulse is defined by Eq. (2.66). Thus, we ne-
glect contributions from the temporal region t ≤ tD. (ii) We assume the relation of
⟨[Bqα, B

†
q′α′ ]⟩ = δqq′δαα′ , so that Eq. (2.50) is provided by M ′

qα = Mqα. (iii) We neglect
effects of M ′′

−qα of Eq. (2.49) on Eqs. (2.54) and (2.61). (iv) We assume that Eq. (2.65) is

provided by γ
(0)
qββ′(t) = δββ′γqθ(t+ tD), where γq is a real and positive constant.

The approximation (i) is valid in the present system because τL is much shorter than
the relaxation time of the carrier-density of the order of 100 fs. Therefore, in the temporal
region of t > tD, owing to the rotating wave approximation, the adiabatic picture is
justified, which is the basis of the PQ picture. Further, we take into account just the
leading contribution of the non-adiabatic interaction I

(D)
qβ′ (̸=β)β at t = tD in Eq. (2.67).

Concerning the approximation (ii), we discuss the criterion of the validity of it in
Appendix C.3. This criterion is made sure in the temporal region t > tD as well as the
approximation (i), where the Coulomb correction to the Rabi frequency

∑
q V

(C)
q ρ̄b̄bk+q

in Eq. (2.19) is much smaller than ωq. Besides, this approximation demands that the
limited set of {α} with Eqα of real and positive numbers is employed for all the solutions
of Eqs. (2.33) and (2.34). As a result, the matrix hq of Eq. (2.57) becomes Hermitian, and
V L
qβ and V R

qβ become equivalent, which enables us to employ the solutions of the ordinary
Fano problem as a set of the vectors [46].

The approximation (iii) is attributed to the present quasibosonization scheme where
the effects of two-quasiboson states are removed as described below Eq. (2.38). Actually,
M ′′

−qα is pertinent to non-vanishing commutator between different quasi-boson operators
[see Eq. (2.49)]. This couples the PQ of the β′th state with that of the βth state accom-
panying momentum transfer from −q to q. The approximation (iv) is derived from the
assumption that Tqkbb′ provided in Eq. (2.9) is independent of k, b, and b′, and is generally
labeled as Tq12 : γq = 2/Tq12

2.3.3 Analytic expression of transient photoemission spectra

In the case that fq(t
′) is provided by a delta pulse as fq(t

′) = fq0δ(t
′ − tp), where fq0 is

independent of t′, the induced charge density of Eq. (2.21) becomes

n(ind)
q (tp + τ) =

1

4πV
fq0χ

(t)
q (tp + τ, tp). (2.72)

Here, tp is the time where fq(t
′) probes dynamics of concern, and n

(ind)
q (tp + τ) depends

on both tp and the relative time τ = t − t′, which is different from equilibrium systems;
they depend solely on τ , not on tp since temporal translational invariance is conserved.

Therefore, χ
(t)
q (tp + τ, tp) reveals the way of change in the induced charge density after tp.

The inverse dielectric function ϵ−1
q (tp + τ, tp) is provided as

ϵ−1
q (tp + τ, tp) = ϵ−1

∞

[
δ(τ) +

V

4π
v(C)
q χ(t)

q (tp + τ, tp)θ(τ)

]
, (2.73)

where v
(C)
q is given by Eq. (2.30), and ϵ∞ is a background dielectric constant provided in

Eq. (2.6). The Fourier transform of ϵq(tp + τ, tp) is readily obtained as follows:

ϵ̃q(tp;ω) =

∫ ∞

0

dτ e−iωτ ϵq(tp + τ, tp), (2.74)
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where the relation
∫∞
−∞ dt′′ϵ−1

q (tp+τ, t′′)ϵq(t
′′, tp) = δ(τ) is employed. Therefore, we obtain

a transient absorption coefficient αq(tp;ω) at time tp represented as

αq(tp;ω) =
ω

n(tp;ω)C
Iq(tp;ω), (2.75)

where
Iq(tp;ω) = Imϵ̃q(tp;ω). (2.76)

Here, n(tp;ω) is the index of refraction, which is approximately provided by n(tp;ω) ≈√
ϵ∞, and C is the speed of light. As regards Iq(tp;ω), it is remarked that this is nonlinear

in the pump field of Eq. (2.7). Further, the sign of ω in Eq. (2.74) is defined such
that transient photoemission spectra Iq(tp;ω) < 0 peak at positive ω, while transient
photoabsorption spectra Iq(tp;ω) > 0 peak at negative ω. We define the transient induced
photoemission spectra as

Īq(tp;ω) = −Iq(tp;ω). (2.77)

Next, we derive explicit expressions of the retarded density-density correlation function
DR

q (t, t
′) of Eq. (2.24) and the retarded phonon Green function D̄′R

q (t, t′) of Eq. (2.32)
within the present scheme. The details of the derivation and the analytical expressions
of χq(t, t

′) and χ′
q(t, t

′) are described in Appendix D. As regards DR
q (t, t

′), the density
operator of Eq. (2.25) becomes of the form

n̂q(t) =
1

V

∑
α

B†
qαN

L
qα, (2.78)

where Eq. (2.38), NL
qα =

∑
kb U

L†
qα(kbb) of Eq. (B.18), and the orthogonality relation of

the quasiboson operator are employed. According to this expression, it is seen that B†
qα

represents a fraction of electron density at the αth state weighted with NL
qα/V . Using

Eq. (2.60), Eq. (2.78) is rewritten as

n̂q(t) =
1

V

∑
βα

F †
qβV

L†
qβαN

L
qα. (2.79)

Eventually, with Eqs. (2.24), (2.69), and (2.79), we obtain

DR∗
q (t, t′) =

1

V 2

∑
αα′ββ′

NL∗
qα (t)V

L
qαβ(t)G

R
qββ′(t, t′)V

L†
qβ′α′(t

′)NL
qα′(t′). (2.80)

On the other hand, employing Eqs. (2.60) and (2.69), D̄′R
q (t, t′) becomes

D̄′R
q (t, t′) =

∑
ββ′

V L
qα2β

(t)GR
qββ′(t, t′)V

L†
qβ′α2

(t′). (2.81)

Lastly, it is noted that an overall phase factor eiηqα(t) of the normalization constant
NR

qα(t) of the αth solution UR
qα(t) is not determined, where ηqα(t) represents an arbitrary

real function of t. This arbitrariness leads the quasiboson operators B†
qα(t) and Bqα(t) to

be transformed as B†
qα(t) → B†

qα(t)e
iηqα(t) and Bqα(t) → Bqα(t)e

−iηqα(t), respectively. As

shown in Appendix E, χ
(t)
q (t, t′) of Eq. (2.22) is independent of any choice of ηqα(t), and

invariant with respect to these phase transformations.
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2.3.4 Allocation of time constants

Here, we summarize time constants employed in the present section. Single-particle den-
sity matrices ρbb′k defined below Eq. (2.14) follow the carrier-density relaxation time
constants T1 and T2. Here, T1 describes the relaxation of the carrier distribution function
ρbbk formed by the pump pulse irradiation to a quasi-equilibrium distribution function,
and T2 describes the dephasing of the transition amplitude ρbb̄k [41, 79]. We assume that
the two relaxation time constants of the induced carrier density with isotropic momentum
distribution are identical; T12 = T1 = T2. Tq12 is defined in Sec. 2.3.2, and represents the
phenomenological relaxation time constant of the induced carrier density with anisotropic
momentum distribution. The temporal region t < T12, where strongly photoexcited carri-
ers still stay in the excited states and interact with the phonon, corresponds to the ETR,
while the temporal region t ≳ T12 corresponds to the classical region.

Figure 2.1 represents schematic allocation of the time constants stated in the present
section, that is, tD, Tq12, and T12 in addition to Tqph attributed to phonon anharmonicity.
We show the time constants employed in the actual calculations in Table 2.1. Reference [3]
summarizes time scales for different stages of relaxation phenomena in photoexcited ex-
periments. For the analysis of the transient FR, we set tD, Tq12, T12, and Tqph to 7.5,
20, 90, and 5000 fs, respectively. This allocation of the time constants given by Fig. 2.1
is a requirement for the manifestation of the transient FR of concern, and the detail is
discussed in Sec. 3.1.2.

Time

0

τ

Eary-Time Region
(Quantum-Mechanical Region ) Classical Region

L

12q12
 t D TqphT  T  

Figure 2.1: Schematic diagram of various time constants employed in the analysis of the
transient FR. (From Ref. [69] with partial modification.)

Table 2.1: Time constants employed in the analysis of the transient FR.

Time constants
tD 7.5fs
Tq12 20fs
T12 90fs
Tqph 5ps

Concerning experimental estimates of the time constants, tD, Tq12, T12, and Tqph are
evaluated as 5, 16, 100, and 1300 fs, respectively by the CP measurements for Si at average
excited carrier density N̄ex = 4× 1019cm−3 in Ref. [6]. Tq12 for Si is also estimated in the
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pump-probe reflectivity study in Ref. [85] as 32 ± 5 fs at N̄ex = (5.5 ± 0.3) × 1018cm−3.
T12 for GaAs is evaluated by the numerical calculations as 50 fs at N̄ex = 3 × 1018cm−3

in Ref. [86]. Tqph is estimated from Raman scattering in Si; Tqph ≈ 2500 fs at low
temperature [87], and Tqph ≈ 1500 fs [87] and 2000 fs [88] at 300 K.

2.4 Analysis of Coherent Phonon Oscillatory Pattens

In the previous section, we solved the multichannel scattering problem. The scheme is
based on the approximation that the effects of the interband density matrices ρ̄bb̄k are
partly neglected so as to solve the Hermitian problem substituted for the non-Hermitian
problem hq of Eq. (2.57). This approximation scheme is justified for the case of the
relatively weak excitation conditions. Actually, in the calculations of the induced pho-
toemission spectra Īq(tp;ω) based on the previous scheme, we set the pulse area to 0.12π
and 0.20π for undoped Si and undoped GaAs, respectively, as shown in Sec. 3.1.

In the present scheme, we incorporate these neglected effects into calculations, and
investigate physical quantities even under the strong excitation conditions such as π- and
2π-pulse laser conditions. However as the price to be paid, the scattering problem to be
solved is replaced by the more tractable eigenvalue problem just for the sake of simplicity.
We solve the associated non-Hermitian problem, and derive an analytical expression of a
CP oscillatory pattern.

2.4.1 Introduction of polaronic quasiparticle operators

First, Eq. (2.16) is recast into the form:

−i

(
d

dt
+

1

Tqkbb

)
Ā†

q(kbb) =
∑
k′b′

Ā†
q(k

′b′b′)Zq(k
′b′b′,kbb)

+Ω̄
(R)

bb̄
(t)Ā†

q(kbb̄)− Ω̄
(R)

b̄b
(t)Ā†

q(kb̄b) (2.82)

and

−i

(
d

dt
+

1

Tqkbb̄

)
Ā†

q(kbb̄) = ω̄bb̄kqĀ
†
q(kbb̄) + Ω̄

(R)

b̄bk
(t)
{
Ā†

q(kbb)− Ā†
q(kb̄b̄)

}
+V (C)

q (ρbb̄k − ρbb̄k+q)
∑
k′b′

Ā†
q(k

′b′b′), (2.83)

where the c-number non-Hermitian matrix Zq is provided by

Zq(k
′b′b′,kbb) = δkk′δbb′ω̄b′b′k′q + V (C)

q (ρ̄bbk − ρ̄bbk+q). (2.84)

Next, we solve left and right eigenvalue problems of Zq as UL†
q Zq = EqUL†

q and ZqUR
q =

UR
q Eq with t fixed as an adiabatic parameter. Here, Eq is the eigenvalue, and UL

q and
UR
q represent the associated biorthogonal eigenvectors. In the long wave-length limit of

|q| → 0, the non-vanishing solution arises just from the collective excitation mode, whereas
intraband single-particle excitation modes vanish [41]. This procedure of introducing the
plasmon mode is somewhat different from that developed in the previous section in that
here we incorporate just the contribution from intraband excitation. The eigenvalue and
the eigenvectors are obtained by a similar manner described in Appendix B that interband

29



density matrices ρ̄bb̄k are removed from Eqs. (B.56) and (B.62). The adiabatic plasma
frequency ωqpl is provided by

ωqpl =

[
V (C)
q q2

∑
kb

ρ̄bbk∇2
kε

(r)
bk

] 1
2

, (2.85)

and the associated UL†
q (kbb) and UR

q (kbb) are given by

UL†
q (kbb) = N L

q V
(C)
q Gbbkq(ρ̄bbk − ρ̄bbk+q) (2.86)

and
UR
q (kbb) = NR

q V (C)
q Gbbkq, (2.87)

respectively, where Gbbkq = [ωqpl − ω̄bbkq]
−1. We determine the normalization constants

N L
q and NR

q with the condition of UL†
q UR

q = 1. Thus, the plasmon is represented as the
following operator:

B†
q =

∑
kb

Ā†
q(kbb)UR

q (kbb). (2.88)

The equations of motion of B†
q, c

†
q, and Ā†

q(kbb̄) of the interband single-particle exci-
tation mode are expressed in terms of the Heisenberg equations as

−i
dB†

q

dt
= (ωqpl − iWqpl + iγqpl)B†

q +M∗
qphc

†
q +

∑
kb

M ′
q(kbb̄)Ā

†
q(kbb̄), (2.89)

−i
dc†q
dt

= (ωqph + iγqph)c
†
q +MqphB†

q, (2.90)

and

−i
dĀ†

q(kbb̄)

dt
= (ω̄bb̄kq + iγbb̄kq)Ā

†
q(kbb̄) +Mq(kbb̄)B†

q, (2.91)

where effective couplings between the plasmon and single-particle excitation modes are
expressed as

Mq(kbb̄) = Ω̄
(R)

b̄bk
(t)
{
UL†
q (kbb)− UL†

q (kb̄b̄)
}
+ V (C)

q N L
q (ρ̄bb̄k − ρ̄bb̄k+q) (2.92)

and
M ′

q(kbb̄) = Ω̄
(R)

bb̄k
(t)
{
UR
q (kbb)− UR

q (kb̄b̄)
}
. (2.93)

Further, the non-adiabatic term is given by

Wqpl =
∑
kb

UL†
q (kbb)

dUR
q (kbb)

dt
(2.94)

and an effective coupling constant between the LO phonon and the plasmon is given by

Mqph =
∑
kb

gbqUL†
q (kbb). (2.95)

Besides, in the derivation of Eqs. (2.89)-(2.91), UL†
q UR

q = 1 and N L
q =

∑
kb UL†

q (kbb) are
used. Moreover,

γqph
2

=
1

Tqph

, (2.96)
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γqpl
2

=
∑
kb

UL†
q (kbb)

1

Tqkbb

UR
q (kbb), (2.97)

and
γbb̄kq
2

=
1

Tqkbb̄

, (2.98)

where Tqph is attributed to phonon anharmonicity, and Tqkbb′ is given in Eq. (2.9).
We integrate Eqs. (2.89)-(2.91) into a single equation, expressed as

−i
d

dt

[
c†q, Ā

†
q(kbb̄) · · · ,B†

q

]
=
[
c†q, Ā

†
q(kbb̄) · · · ,B†

q

]
Z̄q, (2.99)

where the non-Hermitian matrix Z̄q is provided by

Z̄q =


ωqph + iγqph 0 0 M∗

qph

0 ω̄bb̄kq + iγbb̄kq 0 M ′
q(kbb̄)

0 0
. . .

...
Mqph Mq(kbb̄) · · · ωqpl − iWqpl + iγqpl

 . (2.100)

Here, the indices of ph, pl, and (kbb̄) represent the phonon, the plasmon, and the single-
particle excitation in interbands, respectively. As shown in Appendix F, we solve the
left and right eigenvalue problems [81] of Z̄q as VL†

qj Z̄q = EqjVL†
qj and Z̄qVR

qj = VR
qjEqj,

respectively, with t fixed, and {j, j′, j′′} = (ph, {kbb̄}, pl). Eqj is the eigenvalue of the jth
mode, and VL

qj and VR
qj are the associated biorthogonal eigenvectors.

Now, we introduce the PQ operator as

P †
qj = c†qVR

qph,j + B†
qVR

qpl,j +
∑
kb

Ā†
q(kbb̄)VR

q(kbb̄),j, (2.101)

and the equation of motion of P †
qj is provided by

−i
dP †

qj

dt
= EqjP

†
qj − i

∑
j′

P †
qj′Xqj′j, (2.102)

where Xqjj′ represents a non-adiabatic coupling between the jth and j′th modes expressed
as

Xqjj′ =
∑
j′′

VL†
qjj′′

dVR
qj′′j′

dt
≡ VL†

qj

dVR
qj′

dt
. (2.103)

By analogy with the Hellman-Feynman theorem, this is cast into

Xqjj′ =
VL†
qj

dZ̄q

dt
VR
qj′

Eqj′ − Eqj

, j ̸= j′, (2.104)

and Xqjj ̸= 0.
We solve Eq. (2.102) in an approximate manner by neglecting the effects of the non-

adiabatic coupling. In the temporal region of t ≳ τL with the pulse width τL, it is assumed
that the non-adiabatic coupling term in the right-hand side of Eq. (2.102) is negligibly
small. In the present analysis, f(t) in Eq. (2.7) is set to the Gaussian-shaped function:

f(t) = exp(−t2/2σ2) (2.105)

with τL = 2
√
2ln2σ.
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2.4.2 Analytic expression of a coherent phonon oscillatory pat-
tern

The retarded phonon Green function given by Eq. (2.32) is rewritten as

D̄R
q (t, t

′) = −i
⟨[
cq(t), c

†
q(t

′)
]⟩

θ(t− t′)

= −i
∑
jj′

VL
qph,j(t)

⟨[
Pqj(t), P

†
qj′(t

′)
]⟩

VL†
qj′,ph(t

′)θ(t− t′), (2.106)

where a relation c†q =
∑

j P
†
qjV

L†
qiph is used. According to the linear response theory,

DR
q (t, t

′) indicates an induced charge density of ionic-core resulting from a delta-shaped
weak external-potential at t′. The induced charge density ascribed to the CP generation
is provided by

Qq(τ) ≡ DR
q (τ + t′, t′)−DR(0)

q (τ + t′, t′) (2.107)

except for an unimportant proportional constant with τ = t − t′ ≥ 0. Here, we subtract
the contribution of the free phonon Green function without the pump laser, represented
as

DR(0)
q (t, t′) = −2 sin[ωq(t− t′)]θ(t− t′), (2.108)

since this leads to the incoherent phonon signal. Hereafter, we are concerned exclusively
with the time of t′ = 0. Finally, Qq(τ) is rewritten as

Qq(τ) = Cq(τ) cos [ωqτ +Θq(τ)] . (2.109)

Cq(τ) and Θq(τ) are a transitory amplitude and a renormalized phase modulus π at τ ,
respectively. The Fourier transform of Qq(τ) and a power spectrum Sq(ω) are given by

Q̃q(ω) =

∫ ∞

0

e−iωτQq(τ)dτ (2.110)

and
Sq(ω) ∝ |Q̃q(ω)|2, (2.111)

respectively.
In particular, for the long-time limit of τ ≫ 2π/ωq, a non-vanishing value of VL

qph,j(t)
in Eq. (2.106) and Re {Eqj(t)} ≃ ωq are exclusively concerned. For an undoped semicon-
ductor, Eq. (2.106) becomes

D̄R
q (t, t

′) = −ie−iωq(t−t′)ξq(t, t
′)VL

qph,ph(t)V
L†
qph,ph(t

′)θ(t− t′), (2.112)

where VR†
qph,j(−∞) = δph,j,

[
cq(−∞), c†q(−∞)

]
= 1, and

[
cq,B†

q

]
=
[
cq, A

†
q(kbb̄)

]
= 0 are

used. Further,

ξq(t, t
′) = exp

[
−
∫ t

−∞
dt′′ImEqph(t

′′)−
∫ t′

−∞
dt′′ImEqph(t

′′)

]

× exp

[
−i

∫ t

t′
dt′′ {ReEqph(t

′′)− ωq}
]
. (2.113)

In the present dissertation, undopoed semiconductors are considered for the sake of sim-
plicity. In a doped semiconductor, we have additional contributions from VR†

qph,pl(−∞) ̸=
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0 and VR
qpl,ph(−∞) ̸= 0, nevertheless they would be negligibly small compared with

VR†
qph,ph(−∞) and VR

qph,ph(−∞). The initial phase θq and the asymptotic amplitude C0
qe

−γqphτ

are expressed as

θq =
π

2
− arg

[
ξq(τ, 0)VL†

qph,ph(0)− 1
]

(2.114)

modulus π, and

C0
q =

∣∣∣ξq(τ, 0)VL†
qph,ph(0)− 1

∣∣∣ , (2.115)

respectively, where VL
qph,ph(τ) = 1 is employed.

Lastly it is noted that the normalization constant NR
q (t) in UR

q (t), and the associated
operator B†

qα(t) are not determined up to an overall phase factor in the same way as
NR

qα(t) in UR
qα(t) and B†

qα(t) in Sec 2.3. However, physical quantities are unchanged for
these phase transformations, and not dependent on any choice of the phase factor for the
same reason as that shown in Appendix E.
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Chapter 3

Results and Discussion

In Fig. 3.1, we show the scheme of the CP generation dynamics. We take into account
exclusively opaque interband transitions accompanying real excited carriers. In the joint-
band energy dispersion, the carriers form the energy distribution depending on the Rabi
frequency Ω0cv in Eq. (2.7), the pulse width τL, and the detuning ∆ defined as

∆ = ω0 − Eg, (3.1)

with the laser frequency ω0 and the band gap energy at Γ point Eg. Further, the en-
ergy distribution partially overlaps with the energy of the LO phonon ωq. The pulse
width of concern is of an order of 10 fs, and corresponding spectral width of the laser is
approximately 300 meV to 400 meV.

Energy

∆=ω0-Eg

joint-energy band

ωq

Excited carriers
single-particle and 
collective excitation

LO-phonon

modes

Figure 3.1: The schematic diagram of the CP generation dynamics. Detuning ∆ is defined
by ∆ = ω0 −Eg with the laser frequency ω0 and the direct band gap Eg. (From Ref. [71]
with partial modification.)

Material parameters employed in the actual calculations are provided in Table 3.1.
Further, in order to evaluate the single-particle density matrices ρ̄bb′k(t), we solve optical
Bloch equations in advance within the two-band model constituted of c- and v-bands.
Hereafter, we refer the concerned materials of undoped Si and undoped GaAs just as Si
and GaAs, respectively, unless otherwise stated. Further, we assume the crystals to be
cubic.
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Table 3.1: Materials parameters of undoped Si and undoped GaAs used in the disser-
tation. mc and mv are effective masses of conduction- and valence-electrons at Γ point,
respectively. ϵ0 and ϵ∞ are a static dielectric constant and a dielectric constant in the high-
frequency limit, respectively. gDcq and gDvq are coupling constants between the conduction-
and valence-band electron and the LO phonon due to deformation-potential interaction,
respectively, where more accurate values are given by Ref. [89]. ωq is LO phonon fre-
quency at Γ point. Ns is the total number of sites considered in calculations, and d is a
lattice constant. Atomic units are used, unless otherwise stated.

Parameters undoped Si undoped GaAs
mc 0.158 0.067
mv -0.523 -0.45
ϵ0 11.9 11.53
ϵ∞ 11.9 10.10
gDcq 0 0
gDvq 0.147 0.0676
ωq 63 meV 35 meV
Ns 703(= 3.43× 105) 643(= 2.62× 105)
d 10.5 10.5

3.1 Transient Fano Resonance

In this section, we show the results of the numerical calculations of adiabatic energy in
Eqs. (2.33) and (2.34), and the transient induced photoemission spectra of Eq. (2.77) for
Si and GaAs. The pulse-envelop function f(t) in Eq. (2.7) is set to a squared-shape with
τL = 15 fs. Further, the magnitude of momentum q is assumed to be quite small, and set
to |q| = 0.015 (a.u.). Other parameters of the pulse laser employed in the calculations
are provided in Table 3.2.

Table 3.2: Parameters of a square-shaped pulse laser used in Sec. 3.1, where Ω0cv is the
Rabi frequency in Eq. (2.7), AL is the pulse area defined by AL =

∫∞
−∞Ω0cvf(t)dt with

the pulse-envelop function f(t), ∆ is the detuning defined by Eq. (3.1), and Nel is the
maximum excited-electron density.

Parameters Si GaAs
Ω0cv 16.5 meV 27.2 meV
AL 0.12π 0.20π
∆ 82 meV 73 meV
Nel 6.31× 1017/cm3 5.30× 1017/cm3
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Figure 3.2: Adiabatic energy curves of Si (in the unit of meV) as a function of time (in
the unit of fs). A red solid line, blue solid lines, a green solid line, a broken line, and an
orange solid line show ωq, {Eqβ}, Eqα1 , ωqpl, and Ω0cvf(t), respectively. Schematic change
of the excited electron density in time is depicted by the gradation of blue color, where
the threshold energy of {Eqβ} is represented by the lowest limit of this gradation. (From
Ref. [69].)

3.1.1 Adiabatic energy configuration

Figure 3.2 shows the calculated result of adiabatic energy curves Eqα(t) of quasiboson in
Si as a function of time in the small-q limit. A green solid line indicates Eqα1(t) ascribed
to a plasmon-like mode, and it is seen that the the green line is almost proportional to the
plasma frequency ωqpl(t) indicated by a broken line. Here, the maximum of the excited
electron density is 6.31 × 1017cm3. In fact, Eqα1(t) is dependent on Rabi frequencies of

Ω̄
(R)
cvk(t) and Ω̄

(R)
vck(t) of Eq. (2.19), and interband density matrices ρ̄cvk(t) and ρ̄vck(t) in

an intricate manner as shown in Appendix B. The difference of the functional shapes
between ωqpl(t) and Eqα1(t) are due to the transient effect of the Rabi frequencies and the
interband density matrices. After such effects are suppressed, namely, in the time region
of t > tL/2 = tD, Eqα1(t) becomes equivalent to ωqpl(t), apart from a renormalization

effect attributed to V
(C)
q on the Rabi frequencies.

Blue solid lines show discretized adiabatic-energy levels of a bundle of electron-hole
continua {Eqβ(t)}, where the lowest energy of them represents a threshold of these con-

tributions. As described in Appendix. C.1, this threshold is provided by |2Ω̄(R)
cvk(t)| in an

approximate manner, which roughly corresponds to Ω0cvf(t) [see Eqs. (2.7) and (2.19)]
represented by an orange solid line. The energy discretization for {Eqβ(t)} originates from
the incorporation of the finite number of sites in the calculations: V = Nsd

3 and Ns = 703

with lattice constant d. It is remarked that the formation of the continua {Eqβ(t)} is at-
tributed exclusively to single-particle excitation modes in interbands, and the effect of
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intrabands vanishes in the small-q limit. Further, schematic change of the excited carrier
density in time is shown by the gradation of blue color. The red line represents the LO
phonon energy ωq = 63 meV. Adiabatic energy curves of GaAs as a function of time
represent the similar behavior to those of Si, though not shown here.

As is seen in Fig. 3.2, the LO phonon mode α2 is embedded in the continuum state {β}
of the single-particle excitation modes right after the onset of the laser irradiation. This
effect continues even after the completion of the irradiation: t > tD. It is likely that Mqβ

of Eq. (2.46) causes a coupling between the LO phonon and the quasiboson continuum
state in a resonant manner, that is, at Eqβ ≈ ωq. As a result, FR is generated in the
case that the excited carrier density is high enough: Mqβ is dependent on the excited
carrier density. Such an energy configuration is one of the essential requirements to be
satisfied for the occurrence of the FR in addition to the allocation of the time constants
mentioned in Sec. 2.3.4. The plasmon-like mode α1 inclines to dive into the continua in
t > tD. However, FR ascribed to this mode is not expected to manifest itself since the
coupling between the α1th and βth modes is provided by the second-order interaction of
the form MqβM

∗
qα1

mediated by the LO phonon, and this would be negligible, as shown
later in Sec. 3.1.2.

Moreover, in Fig. 3.2, it is seen that the adiabatic energy curves in t > tD vary so slowly
in time that the PQ model based on the adiabatic picture is verified. The discontinuity
at t = ±τL/2 is attributed to the square-shaped pulse of Eq. (2.66).

3.1.2 Transient induced photoemission spectra

Transient induced photoemission spectra Īq(tp;ω) of Eq. (2.77) represent the change of
the electronic structure at probe time tp formed by a nonlinear optical process attributed
to the pump pulse irradiation . This is a decisive observable to comprehend the occur-
rence of transient and nonlinear FR. Here, we take into account Īq(tp;ω) of Si and GaAs
as a function of frequency ω. As seen from Eq. (2.22), the two interactions−the dy-
namically screened Coulomb interaction induced by electron and the LO phonon-induced
interaction− play a part to the total retarded longitudinal susceptibility, represented by

χ̃(t)
q (tp;ω) = χ̃q(tp;ω) + χ̃′

q(tp;ω). (3.2)

Here, χ̃
(t)
q (tp;ω), χ̃q(tp;ω), and χ̃′

q(tp;ω) show the Fourier transforms of χ
(t)
q (tp + τ, tp),

χq(tp + τ, tp), and χ′
q(tp + τ, tp) with respect to time τ into the frequency ω-domain,

respectively. χ̃q(tp;ω) is proportional to |q|2 in the small-q limit. On the other hand,
owing to Eq. (2.29), χ̃′

q(tp;ω) is proportional to |q|2 for the Frölich interaction of long
range, and |q|4 for the deformation potential interaction of short range. This fact reflects
on Īq(tp;ω) through Eq. (2.73), as it should be; in nonpolar crystals such as Si, since
spatial inversion symmetry exists, lattice absorption vanishes in the limit of a dipole
transition accompanying no momentum transfer, namely, q = 0.

Figure 3.3 shows Īq(tp;ω) of Si and GaAs at probe time tp = 15, 65, and 100 fs.
Blue and green lines represent the separate contributions from χ̃q(tp;ω) and χ̃′

q(tp;ω),
respectively, and red lines represent the total one. The contribution of χ̃q(tp;ω) is mostly
dominated by the plasmon-like mode α1, while that of χ̃′

q(tp;ω) is dominated by the
LO phonon mode α2. χ̃q(tp;ω) is attributed to electronic excitation through optical
interband transitions. Īq(tp;ω) includes structureless background spectra due to electron-
hole continuum modes {β}, which are almost constant in ω of concern. In both Īq(tp;ω)’s
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Figure 3.3: Transient induced photoemission spectra Īq(tp;ω) (red line) as a function of
frequency ω (in the unit of meV) for Si at probe time tp of (a) 15 fs, (b) 65 fs, and (c)
100 fs, and those for GaAs at probe time tp of (d) 15 fs, (e) 65 fs, and (f) 100fs. Blue and
green lines represent separate contributions to the spectra from χ̃q(tp;ω) and χ̃′

q(tp;ω),
respectively. (From Ref. [69] with partial modification.)
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of Si and GaAs, the formation of spectral peaks is due only to χ̃′
q(tp;ω). The width of the

spectral peaks follows 2/Tqph = 0.27 meV rather than natural spectral width. Further,
it is noted that the back ground spectra in Fig 3.3 is attributed just to the α1th mode.
The choice of the baseline, that is, the line of Īq(tp;ω) = 0 corresponds to removal of the
contributions from the continuum modes {β}, which would be structureless, just for the
sake of simplicity of the calculation.

Figure 3.3(a) represents Īq(tp;ω) of Si at tp = 15 fs. The spectrum is governed by the

contribution from χ̃q(tp;ω) attributed to the α1th mode, that is, χ̃
(t)
q (tp;ω) ≈ χ̃q(tp;ω),

and the spectrum shows monotonous decrease in ω. On the other hand, the contribution
from χ̃′

q(tp;ω) is negligible since it is proportional to |q|4. In Fig. 3.3(b), the contribu-
tion from χ̃q(tp;ω) becomes small due to Tq12, and therefore comparable with that from
χ̃′
q(tp;ω). It is remarked that asymmetric spectrum with a dip followed by a peak appears,

which is characteristic of FR . This spectral profile contrasts with that of the Lorentzian
profile shown in Fig. 3.3(c) at tp = 100 fs, where the spectrum is governed by χ̃′

q(tp;ω)

and χ̃
(t)
q (tp;ω) ≈ χ̃′

q(tp;ω).
As regards Īq(tp;ω) of GaAs, Fig. 3.3(d) shows spectra at tp = 15 fs with a discernible

peak attributed to the α2th mode. The contributions from χ̃q(tp;ω) of the background
continuum and χ̃′

q(tp;ω) of the peak are comparable order because both are proportional
to |q|2. Figure 3.3(e) shows the spectrum at tp = 65 fs governed by χ̃′

q(tp;ω). The spectral
profile is symmetric and different a lot from that of Si shown in Fig. 3.3(b). Figure 3.3(f)
shows the spectrum at tp = 100 fs representing the similar profile to that in Fig. 3.3(c).

Discussion on the spectral profile of Īq(tp;ω) based on the PQ picture

The origin of the manifestation of the transient FR shown in Fig. 3.3(b) can be elucidated
by inspection of the details of the numerical calculation, namely, analytic expression of the
retarded longitudinal susceptibility χ′

q(t, t
′) given by Eq. (2.28) and associated expressions

of Eqs. (D.15) and (D.31)-(D.33). According to the procedures, major difference between
the results of Si and GaAs originates just from the phase factor of the effective coupling
between the LO phonon and the quasiboson, that is,

Mqβ = |Mqβ|eiϕqβ (3.3)

apart from trivial difference of material parameters. As shown in Eqs. (2.51)-(2.53), Mqβ

is attributed to a phenomenological LO-phonon-induced deformation-potential interaction
gbq = gDbq that is real in non-polar crystals, and the Fröhlich interaction gbq = gFbq that
is pure imaginary in polar crystals. It is remarked that in GaAs, the contribution of the
deformation potential interaction in Mqβ is approximately an order of one thousand times
smaller than that of the Fröhlich interaction in our calculations, that is, gbq ≈ gFbq. Owing

to the approximation (ii) described in Sec. 2.3.2, UL†
qα(kbb) in Eq. (2.46) is considered to

be real, and therefore ϕqβ is determined by the phases of gDbq and gFbq; ϕqβ = 0, π for Si,
whereas ϕqβ = ±π/2 for GaAs.

Now, we examine how the difference of Mqβ influences the spectral profile of Īq(tp;ω)
with the PQ picture. As shown in Fig. 3.2, the LO phonon discrete state α2 is embedded
in the quasiboson continuum state β. They can be resonantly coupled, leading to the
formation of the FR state of the PQ. Given this situation, Fig. 3.4 schematically diagrams
the present FR dynamics, and we have the two transition processes. One is a direct process
through an optical transition matrix D

(c)
qβ from the quasiboson state to the PQ ground
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Figure 3.4: Schematic diagram of FR dynamics on the basis of the PQ picture, where
the LO phonon discrete state α2 is embedded in the quasiboson continuum state β .
The PQ FR state constituted of α2 and β is deexcited by an induced photoemission
process. Transition matrices of photoemission from α2 and β to the PQ ground state are
represented as D

(r)
qα2 and D

(c)
qβ , respectively. Further, a coupling matrix between α2 and β

is represented as M∗
qβ. (From Ref. [69] with partial modification.)

state. The other is a two-step resonant process which is mediated by M∗
qβ from β to α2,

followed by a deexcitation process through an optical transition matrix D
(r)
qα2 from α2 to

the PQ ground state. Here, we omit dependence of D
(c)
qβ , D

(r)
qα2 , and M∗

qβ on tp just for the
sake of simplicity. Consulting Shore’s model [90], the whole transition matrix Dqβ(tp;ω)
is represented as

Dqβ(tp;ω) = D
(c)
qβ +

D
(r)
qα2M

∗
qβ

ω − ωq + iΓqα2/2
, (3.4)

where the natural spectral width is provided by Γqα2 = 2πρqα2 |Mqα2 |2. ρqα2 is the density
of state of the quasiboson, and Mqα2 is the coupling matrix at Eqβ = ωq. The induced
photoemission spectrum is provided by Īq(tp;ω) = |Dqβ(tp;ω)|2, and this shows Shore’s
spectral profile in the vicinity of ω ≈ ωq, corresponding to well-known Fano’s formula [90].
That is,

Īq(tp;ω) ≈ Cqβ +
Aqα2 (ω − ωq) + Bqα2Γqα2/2

(ω − ωq)
2 + (Γqα2/2)

2 , (3.5)

where we obtain Shore’s spectral parameters represented by Aqα2 , Bqα2 , and Cqβ as

Aqα2 = 2|D(c)
qβ ||D

(r)
qα2

||Mqβ| cos ϕ̃qβ, (3.6)

Bqα2 = −2|D(c)
qβ ||D

(r)
qα2

||Mqβ| sin ϕ̃qβ +
|D(r)

qα2 |2|Mqβ|2

Γqα2/2
, (3.7)

and
Cqβ = |D(c)

qβ |
2, (3.8)

respectively. Here, the phase ϕ̃qβ is provided by ϕ̃qβ = ϕqβ+∆ϕqβ with ∆ϕqβ = arg[D
(c)
qβ−

D
(r)
qα2 ]. We obtain the associated Fano’s asymmetric q parameter by means of Shore’s
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Figure 3.5: (a) The crystal structure of Si (the diamond structure). A red filled circle
depicts each Si atom, and an arrow with a purple dotted line represents the direction of
electric field of a pump laser; the representative three directions of [001], [111], and [110]
are selected. (b) Schematic phonon energy-dispersion curve in Si along high symmetry
axes. The number in the abscissa shows Bloch momentum in the unit of 2π/d with a
lattice constant d.

parameters as

qqα2(tp) = rqα2(tp) + σqα2(tp)
√
[rqα2(tp)]

2 + 1 (3.9)

with rqα2(tp) = Bqα2/Aqα2 and σqα2(tp) = Aqα2/|Aqα2 |, and Cqβ represents a continuum
background.

The spectral profile depends on Aqα2 . On the occasion of ϕqβ = ±π/2, Aqα2 = 0 and
the spectral profile of Īq(tp;ω) becomes symmetric with |qqα2(tp)| infinite. This situation
corresponds to the profile of GaAs in Fig. 3.3(e), where ∆ϕqβ ≈ 0 is assumed so as to
match it to experiments. When ϕ̃qβ ̸= ±π/2, both Aqα2 and Bqα2 are finite, and the
spectral profile becomes asymmetric with |qqα2(tp)| finite. The profile of Si in Fig. 3.3(b)
with ϕqβ = 0, π is categorized into this case, where ∆ϕqβ ≈ 0 is assumed as well as the

case of GaAs. For Figs. 3.3(c) and 3.3(f), because D
(c)
qβ and |Mqβ| are negligible, Īq(tp;ω)

is dominated by the second term in the right-hand side of Eq. (3.7). As a result, the
spectral profile becomes symmetric. In conclusion, the effective coupling constant Mqβ

around Eqβ ≈ ωq plays a key part in the occurrence of the transient FR, and the spectral
profile is determined by ϕqβ as far as |Mqβ| is finite.

Next, we examine the optical transition matrix D
(r)
qα2 for the LO phonon. A Γ4 optical

phonon of GaAs is categorized into the space group T 2
d (F 4̄3m), whereas a Γ25′ optical

phonon of Si is categorized into the space group O7
h(Fd3m). An infrared photon excites

the Γ4 optical phonon directly through an electric dipole transition, namely, D
(r)
qα2 ̸= 0,

while the Γ25′ optical phonon is not infrared active owing to the existence of inversion
symmetry. This is the reason why in Īq(tp;ω) of GaAs, the contributions of χ̃′

q(tp;ω)
and χ̃q(tp;ω) are comparable orders even at tp = 15 as shown in Fig. 3.3(d). On the
other hand, in the time region for Si, the contribution of χ̃′

q(tp;ω) is much smaller than
that of χ̃q(tp;ω). However, the former contribution for Si does not necessarily vanish,

in other words, D
(r)
qα2 ̸= 0 in the present optically nonlinear and transient process. With
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the increase of tp, this contribution becomes more dominant as shown in Figs. 3.3(b)
and 3.3(c).

We are concerned with a crystal where a pump laser is irradiated in a certain direction,
rather than a free crystal, as schematically shown in Fig 3.5(a). Hereafter, we term the
former crystal a dressed crystal. On the occasion that an electric field of the laser is
applied in the representative directions of [001], [111], and [110], the symmetry of the
dressed crystal is reduced from that of the free crystal of the point group Oh into point
groups of C4v, C3v, and C2v, respectively. Thus, we obtain irreducible representations
subduced from the irreducible representation Γ25′ of Oh as follows [91]:

Γ25′ ↓ C4v = ∆2′ +∆5, (3.10)

Γ25′ ↓ C3v = Λ1 + Λ3, (3.11)

and
Γ25′ ↓ C2v = Σ1 + Σ2 + Σ3. (3.12)

Among the subduced representations obtained above, the irreducible representations of
Λ1, Λ3, and Σ3 are in agreement with the symmetry of an ionic momentum operator,
namely, Λ1 : {z}, Λ3 : {x ± iy}, and Σ3 : {z}, where Λ1 and Σ3 are single-valued
representations and Λ3 is a double-valued one. This result implies that the dressed crystal
can be infrared-active, and an optical deexcitation arises via an emission process induced
by an infrared laser, which differs from the free crystal.

We can interpret Eqs. (3.10)-(3.12) by consulting a phonon energy-dispersion diagram
of Si shown schematically in Fig. 3.5(b) [33]. The subduced representations obtained
here are in agreement with the compatibility relations with respect to Γ25′ point [91].
Concretely, for instance, the k group GΛ related to Λ point (kΛ) along the (111) axis
of Bloch momentum, that is, the direction of L point is a subgroup of the k group GΓ

related to the Γ point (kΓ = 0). Here, the symmetry of the dressed crystal in Si is lowered
from kΓ to kΛ along the (111) axis, and a threefold-degenerate level Γ25′ is lifted into a
twofold-degenerate level Λ3 and nondegenerate level Λ1. The similar fact also holds for
the subgroups of G∆ and GΣ . According to this discussion, the degree of magnitude of the
symmetry lowering is associated with the momentum change of q ≡ kΛ−kΓ, which results
from spatial inhomogeneity induced by the formation of polarized charge by the pump
laser. In other words, spatial inversion symmetry is broken by the generated polarization.
This is the reason why in Īq(tp;ω) of Si, the contribution from χ̃′

q(tp;ω) is reduced by the
order of |q|2 in comparison with that of GaAs, as seen from Fig. 3.3.

Therefore, a transition process governing χ̃′
q(tp;ω) is regarded as an electric-dipole

transition in the dressed crystal with absorption of, for example, a Λ1 optical phonon.
Further, this is also considered to be an electric quadrupole transition in the original
crystal with absorption of a Γ25′ optical phonon, as far as q ≈ 0; actually, the irreducible
representation is in harmony with the symmetry {xy, yz, zx} [33, 91]. Significant roles of
the electric quadrupole transition are also investigated in optical second harmonic gen-
eration from Si [92]. Further, it is reported that heavily excited carriers by the strong
femtosecond pulse induce lattice instability of Si and GaAs due to LO phonon distor-
tions [93]. It is remarked that the results obtained from a viewpoint of the group theory
remain unchanged for the present spectra calculated in a cubic model.
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Effect of the non-adiabatic correction

Next, we examine the effect of the non-adiabatic correction due to I
(C)
qββ on Īq(tp;ω) [see

Eqs. (2.67) and (2.71)]. This effect is fully neglected in the calculations of the spectra
shown in Fig. 3.3 as mentioned in Sec. 2.3.2. Here, we conduct the calculation of Īq(tp;ω)

at tp = 65 fs with given numerical values of ImI
(C)
qβ2β2

at t = tC = 72.5 fs; I
(C)
qβ2β2

is a
diagonal component of the non-adiabatic coupling in the vicinity of Eqβ ≈ ωq, and it is
supposed that associated off-diagonal components are much smaller than it. Figures 3.6
and 3.7 show Īq(tp;ω) of Si and GaAs, respectively at tp = 65 fs. It is remarked that

spectral profiles of Īq(tp;ω) are influenced by I
(C)
qββ in the limited region of tp < tC , and after

the time region, the effect is canceled. Therefore, both spectra of Figs. 3.3(c) and 3.3(f)

are independent of this effect. Further, the profile depends just on ImI
(C)
qββ, and ReI

(C)
qββ

leads to the damping effect, as readily seen from Eqs. (2.70) and (2.71). First, as regards
Si shown in Fig. 3.6, the spectral profiles of Īq(tp;ω) are definitely dependent on the value

of ImI
(C)
qβ2β2

. The profile of Fig. 3.6(b), which is the same as that of Fig. 3.3(b), changes to

the profile with a peak followed by a dip of Fig. 3.6(a) for ImI
(C)
qβ2β2

= −0.64π. This profile
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is characterized by qqα2(tp) < 0. Further, Fig. 3.6(c) shows a window resonance-shaped

profile of qqα2(tp) ≈ 0 with ImI
(C)
qβ2β2

= 0.70π. The similar changes of the spectral profiles
are also recognized in GaAs of Fig. 3.7(b), where the profile of Fig. 3.7(a) is the same as

that of Fig. 3.3(e). The spectra of qqα2 ≤ 0 for ImI
(C)
qβ2β2

< 0 is also obtained, though not
shown here. It is noted that in these calculations, we assume the non-adiabatic interaction
at t = tC due to a crossing between the energetically adjacent quasiboson states, and treat
it with given parameters. However after the completion of the laser irradiation, the effect
of the non-adiabatic interaction would be actually small because the density matrices
composing the non-adiabatic interaction are suppressed to some extent at t = tC , and the
energy curves vary slowly in time due to the rotating wave approximation.

Discussion from the viewpoint of the allocation of time constants

Prior to closing this section, we discuss the allocation of the time constants in Fig. 2.1
and Table 2.1 in order to deepen the understanding of the manifestation of the transient
FR, particularly in Si. As shown in Fig. 3.3(b), we obtain the asymmetric spectral profile
in the time region of Tq12 ≲ tp < T12. Actually in the ETR of tp < T12, the photoexcited
carriers are still populated around the energy region of ωq, that is, Eqβ ≈ ωq, leading
to the coupling between the carriers and the LO phonon through Mqβ to form the FR.
Further, in the region of Tq12 ≲ tp, the contribution from χ̃q(tp;ω) decreases, and the
spectral peak due to χ̃′

q(tp;ω) comes into existence. In the case of the different allocation
of the time constants, for instance, Tq12 is close to T12, that is, Tq12 ∼ T12, the FR profile
is no longer discernible because this is covered with the structureless continuum due to
χ̃q(tp;ω) even in the temporal region tp < T12. Moreover, in the region of tp ∼ T12, the
effect of Mqβ is so small that the FR is not caused. Therefore, it is understood that the
allocation of the time constants provided by Fig. 2.1 is a requirement for the manifestation
of the FR of Si in Īq(tp;ω), otherwise it is never realized.

3.2 Irregular Oscillatory-Patterns in the Early-Time

Region

In the present section, we show the calculated results of the oscillatory patterns Qq(τ) of
Eq. (2.109) and the power spectra Sq(ω) of Eq. (2.111) for Si. We employ a Gaussian-
shaped pulse laser with the pulse width τL = 10 fs, and furthermore we assume ξq(τ, 0) = 1
of Eq. (2.113).

3.2.1 Rabi frequency dependence

In Figs. 3.8(a) and 3.8(b), we show the calculated results of Θq(τ) and Cq(τ) at τ = 20
fs in the ETR as a function of Ω0cv, respectively, with ∆ = 0 meV and −136 meV. Both
Θq(τ) and Cq(τ) for ∆ = 0 meV represent irregular changes with cusp structures at

Ω0cv = Ω
(C1)
0cv ≡ 82 meV and Ω

(C2)
0cv ≡ 286 meV. Further, the envelopes of both functions

show steep changes around Ω0cv = 350 meV. In contrast, the behaviors of Θq(τ) and
Cq(τ) for ∆ = −136 meV are moderate over Ω0cv.

For the more precise interpretation of the results, we evaluate the real parts of the adi-
abatic energy Eqj(τ) at τ = 20 fs as a function of Ω0cv. Figure 3.8(c) shows the calculated
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0cv are shown by vertical brown dash

lines. (From Ref. [71] with partial modification.)
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results for ∆ = 0 meV, where filled and open red squares represent the eigenvalues mainly
governed by the phonon (j = ph) and the plasmon (j = pl), respectively. The plasma
frequencies ωqpl(τ) for ∆ = 0 meV and −136 meV are also shown by red and blue dash

lines, respectively. ωqpl(τ) for ∆ = 0 meV obviously coincides with ωq at Ω0cv = Ω
(C1)
0cv

and Ω
(C2)
0cv , and it leads to anticrossings between Re[Eqph(τ)] and Re[Eqpl(τ)].

Figure 3.8(d) shows the enlarged view of Re[Eqph(τ)] in Fig. 3.8(c). The difference
between Re[Eqph(τ)] and ωq shows the self-energy, which is attributed almost to the
interaction between the phonon and the plasmon; the effects of the single-particle exci-
tation modes would be much smaller. The self-energy for ∆ = 0 meV alters steeply at
Ω0cv = Ω

(C1)
0cv and Ω

(C2)
0cv , and these positions are in agreement with those of the manifesta-

tion of the cusp structures in Figs. 3.8(a) and 3.8(b). Therefore, it is concluded that the
anomalies in Θq(τ) and Cq(τ) are clearly ascribed to the anticrossings resulting from the
energetically resonant interaction between the phonon and the plasmon of the photoex-
cited carriers. According to Fig. 3.8(d), the plasmon-phonon interaction remains effective

in the range of [Ω
(C1)
0cv ,Ω

(C2)
0cv ]. As regards the case for ∆ = −136 meV, such anomalies are

not obtained since ωq > ωqpl(τ) within the present range of Ω0cv.
Moreover in Fig 3.8(c), ωqpl(τ) denoted by a dash line oscillates with a period of

approximately 350 meV. This is attributed to the interband Rabi flopping of the pho-
toexcited carriers [41, 79], where it ends at τ ≈ τL/2, because the approximate estimate

of 2π-pulse is Ω0cv = Ω
(2π)
0cv ≡ 388 meV for τL = 10 fs except for the Coulomb correction;

that of π-pulse is Ω
(π)
0cv = Ω

(2π)
0cv /2. Therefore, the evident alterations of Θq(τ) and Cq(τ)

around Ω0cv = Ω
(2π)
0cv for ∆ = 0 meV shown in Figs. 3.8(a) and 3.8(b) result from the Rabi

oscillation.
The calculated results of the initial phase θq and the asymptotic amplitude C0

q as a
function of Ω0cv are shown in Figs. 3.9(a) and 3.9(b), respectively, and the two quantities
are defined by Eqs. (2.114) and (2.115). It is seen that the Rabi-oscillatory patterns still
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appear in both of θq and C0
q for ∆ = 0 meV around Ω0cv = Ω

(2π)
0cv , whereas the cusp

structures vanish because the plasmon-phonon coupling is suppressed due to the carrier
relaxation. The experimental results of θq, which represent the dependence on the pump
fluence for lightly n-doped Si [8], are also shown in Fig. 3.9(a). As the fluence increases,
θq varies from 90◦ to the vicinity of 0◦. The result is in agreement with the calculated
one for ∆ = 0 meV. We’ll discuss the results of θq and C0

q later again.
Figures 3.10(a)-3.10(d) represent the calculated results of Qq(τ) in the ETR as a

function of τ for ∆ = 0 meV. Here, Ω0cv is set to Ω
(C1)′
0cv ≡ 81.6 meV, Ω

(π)′
0cv ≡ 190.4 meV,

Ω
(C2)′
0cv ≡ 299.2 meV, and Ω

(2π)′
0cv ≡ 353.6 meV, in the proximity to Ω

(C1)
0cv , Ω

(π)
0cv, Ω

(C2)
0cv , and

Ω
(2π)
0cv , respectively. As shown in Fig 3.8(c), the number of excited carriers is maximized at

Ω0cv = Ω
(π)′
0cv , and minimized at Ω0cv = Ω

(2π)′
0cv of the four. At Ω0cv = Ω

(C1)′
0cv and Ω

(C2)′
0cv , owing

to the plasmon-phonon resonant coupling, Qq(τ)’s show irregular oscillatory patterns from
a simple harmonics with a period of 2π/ωq = 66 fs. The transitory amplitudes Cq(τ) at

Ω0cv = Ω
(C1)′
0cv and Ω

(C2)′
0cv of the resonant conditions are approximately ten times larger than

that at Ω0cv = Ω
(π)′
0cv of the π-pulse laser condition, whereas the asymptotic amplitudes C0

q

of the resonant conditions are several times smaller than that of π-pulse laser condition [see
Fig. 3.9(b)]. Moreover, it is seen that the renormalized phase Θq(τ) changes anomalously,

in particular at Ω0cv = Ω
(C1)′
0cv ; the phase varies rapidly over 2π around τ = 10 fs attributed

presumably to the appearance of the strong anticrossing. Besides, Qq(τ) of Ω0cv = Ω
(π)′
0cv

deviates from a simple harmonics due to the maximized carrier inversion. In contrast,
Θq(τ) and Cq(τ) of Ω0cv = Ω

(2π)′
0cv are almost unchanged, and gradually approaches the

asymptotes; Qq(τ) represents a damped harmonic oscillation in most of the time-region.

3.2.2 Detuning dependence

In Figs. 3.11(a)-3.11(d), we show the calculated results of Qq(τ) as a function of τ and
their power spectra Sq(ω). The detuning is set to ∆ = −136, −54.4, −27.2, and 108.8
meV with Ω0cv = 108.8 meV. It is noted that in the calculations, we assume that the
interaction between the phonon and the plasmon, namely, Mqph in Eq. (2.95) is suppressed
owing to the phenomenological carrier relaxation time T12 which is set to 4000 a.u. ≈ 100
fs: Mqph → Mqphe

−τ/T12 is considered. It is seen that in Fig. 3.11(a), Qq(τ) represents
almost sinusoidal, and the spectral profile of Sq(ω) is symmetric. In Figs. 3.11(b) and
3.11(c), Qq(τ)’s oscillate with much larger amplitudes in τ ≲ 100 fs of the ETR than
those in τ ≳ 100 fs. Further, both Qq(τ)’s in the ETR show irregular oscillatory patterns
similar to those of Figs. 3.10(a)-3.10(c). It is remarked that asymmetric spectra are
manifested, and the Fano’s asymmetric q values [47] are negative. Here, it is noted that the
asymmetric spectral profiles are not due to FR, and the detail is shown later. In contrast,
in Fig. 3.11(d), the amplitudes in the ETR and the classical region are comparable, and a
symmetric spectrum is manifested. The oscillations with enhanced amplitudes in the ETR
in Figs 3.11(b) and 3.11(c) are attributed to the energetically resonant coupling between
the phonon and the plasmon. Here, at τ = 20 fs, the plasma frequency ωqpl(τ) = 59.6 meV
for ∆ = −54.4 meV, and ωqpl(τ) = 68.7 meV for ∆ = −27.2 meV. As time passes, the
plasmon-phonon interaction vanishes due to the carrier relaxation, and Qq(τ) approaches
the damped harmonic oscillation. It is readily shown that Sq(ω) attributed to the damped
harmonic oscillation becomes symmetric, and therefore, it is concluded that asymmetric
profiles of Sq(ω) are attributed to the anomalies of Qq(τ) in the ETR.
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In Fig. 3.12, we show the asymmetry parameter 1/q for Sq(ω) as a function of ∆
with Ω0cv = 108.8 meV. It is seen that 1/q are negative in the present ∆-region, and 1/q
approaches zero at ∆ ≲ −100 meV, that is, the spectral profile becomes symmetric. With
the increase of ∆, the excited carrier density becomes large and ωqpl(τ) approaches ωq,
and therefore the modulus of 1/q becomes large with its sign negative, since the resonant
plasmon-phonon coupling becomes more effective, namely, the anomalies of Qq(τ) is man-
ifested. At ∆ = −54.4 meV, 1/q = −0.286 and the profile is the most asymmetric. As ∆
increases further, 1/q approaches zero, namely, the profile becomes symmetric, since the
resonant coupling vanishes with ωqpl(τ) greater than ωq. In other words, the contribution
of the anomalies in the ETR becomes small, and the contribution of the damped har-
monic oscillation out of the ETR becomes dominant. The asymmetric spectra of Sq(ω)
are reminiscent of FR. However, these asymmetric profiles are not always attributed to
FR. The asymmetric spectra of Sq(ω) obtained here are due to the coupling between the
two discrete modes of the phonon and the plasmon.

Next, the abrupt behaviors of Qq(τ) at τ ∼ 10 fs shown in Figs. 3.11(b) and 3.11(c) are
discussed in detail. These are attributed to time-dependent coupling between the plasmon
and the phonon. In Fig. 3.13, we show Re[Eqpl(τ)]’s for ∆ = −54.4 meV and −27.2
meV with Ω0cv = 108.8 meV. It is seen that these Eqpl(τ)’s deviate from the associated
ωqpl(τ)’s particularly in the temporal region of τ ≲ 10 fs; at τ = 9 fs, Re[Eqpl(τ)] is below
ωqpl(τ) by roughly 10 meV for ∆ = −54.4 meV, and 5 meV for ∆ = −27.2 meV. The
difference from ωqpl(τ) is attributed to the self-energy renormalization due to the electron-
laser interaction, the electron-phonon interaction, and the Coulomb correction as shown
in Eq. (2.100). As time passes, Eqpl(τ) move toward ωqpl(τ). As regards ∆ = −54.4
meV, Re[Eqpl(τ)] approaches ωq at τ ∼ 10 fs rapidly, while the associated ωqpl(τ) remains
almost unaltered. Thus, Re[Eqpl(τ)] becomes slightly below ωq, and the resonant coupling
between the phonon and the plasmon becomes dominant in the region τ ≳ 15 fs. In other
words, the resonance is manifested after the suppression of the laser irradiation, leading
to the steep behavior of Qq(τ). On the other hand, Re[Eqpl(τ)] of ∆ = −27.2 meV
surpasses ωq at τ ∼ 9 fs, and the resonance effect is maximized at this moment, causing
the steep change of Qq(τ). In the region of τ ≳ 15 fs, Re[Eqpl(τ)] is greater than ωq by
approximately 10 meV, and the resonance effect is suppressed to a certain extent.
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furthermore, the energy of the phonon ωq is shown by the black dash line. (From Ref. [72].)

In Fig. 3.14(a) and 3.14(b), we show θq and C0
q as a function of ∆, respectively. The

Rabi frequency Ω0cv is set to 54.4 meV, 108.8 meV, and 244.8 meV. It is seen that θ ≈ 90◦

at ∆ ∼ −100 meV for all Ω0cv’s. With the increase of ∆, θq for Ω0cv = 108.8 meV and
244.8 meV change from 90◦; at ∆ = 108.8 meV, θq = −45.9◦ and −79.9◦ for Ω0cv = 108.8
meV and 244.8 meV, respectively. In contrast, θq for Ω0cv = 54.4 meV is almost unvaried.
On the other hand, C0

q for Ω0cv = 54.4 meV and 108.8 meV is enlarged with the increase
of ∆, whereas that for Ω0cv = 244.8 meV is maximized at ∆ ∼ 0.

The results of θq and C0
q are understood in terms of the magnitudes of the interactions

of electron with light and phonon. As shown in Eqs. (2.114) and (2.115), θq and C0
q are

determined in part by what happens in the ETR at τ = 0. Actually, the eigenvectors
appearing in Eqs. (2.114) and (2.115) are determined by the electron-light and electron-
phonon interactions. For small Ω0cv and negative ∆, the density of the photoexcited
carriers is small, and thus the associated couplings are weak, and therefore V L†

qph,ph(0) → 1
in Eqs. (2.114) and (2.115). Thus, θq approaches 90◦, namely, a sine phase, and C0

q

becomes small. In contrast, in the case that Ω0cv is large and ∆ is positive, the density of
the carriers is enhanced, and thus, θq changes from the sine phase, and C0

q is enlarged. It

is considered that the saturation of C0
q for Ω0cv = 244.8 meV in the vicinity of Ω

(π)
0cv would

be ascribed to the carrier inversion.

3.3 Comparison with Other Studies

In this section, we compare the calculated results shown in Secs. 3.1 and 3.2 with the
results of other experimental and theoretical studies. We begin with a comparison with
the experimental works for lightly n-doped Si of Refs. [6], [8], and [72], where a transient
electro-optic reflectivity was measured as a function of time delay in Γ25′ configuration.
This would correspond to the symmetry Γ25′ ↓ C3v given by Eq. (3.11), and the vibrational

51



Ω0cv =54.4meV

−90

0

90

Ω0cv =108.8meV

Ω0cv =244.8meV

(a)

Δ  [meV]

C
q

 [
ar

b
. 
u
.]

0

−100 0 100

10-2

10-4

(b)
θ

q
 [
d
eg

.]

−100 0 100
Δ  [meV]

Figure 3.14: (a) θq and (b) C0
q as a function of ∆ (in the unit of meV) for Ω0cv = 54.4

meV (blue diamond), 108.8 meV (red square), and 244.8 meV (orange triangle). (From
Ref. [72] with partial modification.)
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Figure 3.15: Asymmetry parameter 1/q of Fano profile obtained experimentally as a func-
tion of the photon energy (in the unit of eV). (From Ref. [72] with partial modification.)

state of the dressed crystal can be optically deexcited through an emission process induced
by an infrared laser polarized in the [111] direction. As regards Ref. [6], the continuous-
wavelet transform of the time signal was conducted, and asymmetric spectra were found
around 50 fs immediately after the irradiation of the pump pulse. This conspicuous
result suggested the transient manifestation of the quantum interference between the LO
phonon and the excited carriers leading to FR. Moreover, the authors supposed the birth
of a composite particle due to such a strong interaction, termed as PQ. The theoretical
model presented here is based on this supposition, and as described in Sec. 3.1, the PQ
picture succeeds in demonstrating the manifestation of the FR. The calculated result is
in agreement with the experimental one to some extent. Nevertheless, this fact does not
necessarily suggest that the PQ introduced here actually exists as a real entity. This is
beyond the scope of this study, although it is quite challenging.

Further, the initial phase θq as a function of the pump fluence was also evaluated
in Ref. [8], which is shown in Fig. 3.9(a). The calculated results of ∆ = 0 meV are
qualitatively consistent with the experimental ones. Here, the excited carrier density is
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Nex = 1.4×1019 cm−3 in the calculation with Ω0cv = 108.8 meV, andNex = 2.5×1019 cm−3

is evaluated in the experiment with the pump fluence 2.5 J/cm2 which corresponds to
Ω0cv = 100 meV [8]. Moreover, FT spectra of the reflectivity signals, and the dependence
of their asymmetric q values on the photon energy were investigated in Ref. [72]. Fig-
ure 3.15 shows the experimental results of 1/q, and this is in agreement to a certain extent
with the calculated ones shown in Fig. 3.12. Here, we refer to ∆ and the photon energy
as the pulse laser parameter in the present study and the experiment, respectively. In Si,
the direct band gap energy at Γ point is Eg ∼ 3.3 eV, and therefore the photon energy of
the experiment correspond roughly to −300 ≲ ∆ ≲ −100 meV, whereas −100 ≲ ∆ ≲ 100
meV in the present calculation. This difference of ∆ would be ascribed to bandgap renor-
malization via strong carrier excitation in the experiment [8]. Actually, as mentioned
above, real carrier excitation occurs considerably even when ∆ < 0 in the experiment,
and Nex is a comparable order with the calculated results.

As regards theoretical approaches, there are two studies concerning the FR accom-
panied by the CP generation. One of them was reported by Lee et al. [43], where time-
dependent Schrödinger equations were solved, and thus a phonon displacement function
was calculated for the system of GaAs under the far above-gap excitation condition. Thus,
the continuous-wavelet-transformed spectrum showed an asymmetric profile. Here, it is
understood that the FR results from the interference between two of the one-phonon
Raman processes with different time ordering. However, FR spectra have never been
observed in the experiments for GaAs so far, and the FR of Ref. [6] was manifested un-
der the resonant excitation condition with the real excited carriers. In the present study
of Īq(tp;ω), the FR in Si does not originates from the interference between the Raman
diagrams, and the FR is not manifested in GaAs except for the non-adiabatic correction.

The other was reported by Riffe [48], where a classical Fano oscillator model derived
from the Fano-Anderson Hamiltonian [46] was proposed. The associated Hamiltonian is
expressed in terms of the present PQ picture as

Ĥ(FA)
q = ωqc

†
qcq +

∑
β

EqβB†
qβBqβ +

∑
β

(MqβcqB
†
qβ +M∗

qβc
†
qBqβ), (3.13)

where the quasiboson is regarded as a real boson with real eigenenergy Eqβ. Displacement
functions related to the LO phonon and quasiboson operators are defined by

X(+)
q (t) = ⟨cq(t) + c†−q(t)⟩/2 (3.14)

and
x
(+)
qβ (t) = ⟨Bqβ(t) +B†

−qβ(t)⟩/2, (3.15)

respectively, and we obtain the associated equations of motion from Eq. (3.13). Further, in

the equations of motion forX
(+)
q (t) and x

(+)
qβ (t), a posteriori external forces are introduced,

which are termed as Fq(t) and fqβ(t), respectively. On the basis of the present PQ model,
these forces are mainly attributed to the time derivative of quasiboson adiabatic energy
dEqβ(t)/dt, the non-adiabatic coupling Wqββ′(t) of Eq. (2.42), and the time derivative of
the effective coupling dMqβ(t)/dt. Nevertheless in Riffe’s work, it was assumed that Eqβ
and Mqβ were independent of time, and furthermore in X

(+)
q (t) and x

(+)
qβ (t), expectation

values with respect to a coherent state were considered. This assumption leads to the
result that dEqβ(t)/dt, dMqβ(t)/dt, and Wqββ′(t) vanish simultaneously. Eventually, Fq(t)
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and fqβ(t) are ascribed just to the residual frictional forces as follows:

Fq(t) ≈ −
∑
ββ′

x
(+)
qβ (t)Im[γ

(B)
qββ′(t)Mqβ′ ]/2 (3.16)

and
fqβ(t) ≈ −Eqβ

∑
β′

x
(+)
qβ′ (t)Imγ

(B)
qβ′β(t)/2, (3.17)

respectively. In particular for Si, Mqβ and γ
(B)
qβ′β(t) are real. Therefore, both forces result

in Fq(t) ≈ 0 and fqβ(t) ≈ 0.
Finally, we compare the results of the initial phase θq with those of two theoretical

studies; one is the time-dependent density functional theory [44], and the other is the
simplified two-level model based on a perturbation with respect to the electron-light
interaction [49]. In the both results, θq ∼ 90◦, namely, the sine phase in the case that ∆
is large negative. According to the former study, θq changed from the sine phase with the
increase of ∆, which is in agreement with the present results. The former also evaluated
θq for 0.5 eV ≲ ∆ ≲ 2 eV. However, such a large positive ∆ of a non-resonant excitation
condition is out of concern in the present analysis. As regards the latter study, θq for
∆ > 0 was not examined.

3.4 Validity of the Present Model for the CP Gener-

ation

In this section, we discuss the validity of the model adopted in the present study for the
CP generation from a viewpoint of the band structure. First, we assume a simple two-
band parabolic energy dispersion, where c-band and v-band (heavy-hole band) are taken
into consideration; the actual band structure is more complicated than that employed
in the calculations. In fact, the joint-band energy dispersion of c-band with a light hole
band referred to v′-band, and the dispersion of c-band with a spin-orbit split-off hole
band referred to v′′-band would also have contributions to the formation of the collective
excitation (plasmon) and single-particle excitation modes to some extent. Hereafter, let
us represent the joint-band energy dispersion of c-band with bv-band as

ϵ
(cbv)
k = ε

(r)
ck − ε

(r)
bvk

− Eg, (3.18)

where bv = v, v′, and v′′, and ε
(r)
bk is given in Eq. (2.13). An opaque interband transition

forms real excited carriers, and the electron state with momentum k satisfying

ϵ
(cbv)
k ≲ 1/τL, (3.19)

contributes to this transition, where τL is the pulse width, and the case of ∆ = 0 is
considered for the sake of simplicity. Thus, a hole band with greater effective mass plays
a role for the real carrier excitation to a larger extent, because the electronic states
up to larger k become effective. In fact, v-band mostly governs the carrier excitation,
although v′- and v′′-bands have limited contributions to it; for instance, values of the
average effective mass of v-, v′-, and v′′-bands are 0.54, 0.15, 0.23, respectively in Si,
and 0.53, 0.08, and 0.15, respectively in GaAs [33]. Further, as regards v′′-band, the
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contribution of this would be smaller than that of the other bands since the spin-orbit
splitting of the valence bands is of an order of tens to hundreds meV for semiconductors of
concern [33], whereas v- and v′-bands are degenerate at Γ point. Therefore, it is remarked
that the v-band electrons in the proximity to this critical point are dominant for the
carrier formation.

Second, we take into account just the Γ − Γ carrier transitions. Actually in the
CP generation, a lot of carrier transitions along the ∆ and Λ directions arise. In this
paragraph, we discuss the band structure especially for Si. The energy dispersion of
v-band along the ∆ (X-valley) and Λ (L-valley) directions are almost parallel to the
energy dispersion of c-band. Therefore, the joint-band energy dispersion of c-band with
v-band becomes almost dispersionless, in other words, independent of k and ϵ

(cbv)
k ≈

0. Thus, it is remarked that the k-dispersive carrier distribution is produced by the
interband transitions just near Γ point, leading to the collective excitation and single-
particle excitation modes.

Third, as regards non-polar materials with the diamond crystal structure such as Si,
the LO phonon mode and the transverse optical (TO) phonon mode are degenerate at
Γ25′ point. Therefore, the latter mode would partially contribute to the CP signal with
the same asymptotic frequency as ωq, and we consider the former mode exclusively in the
present study. The TO phonon is coupled with the carriers through the deformation po-
tential interaction, represented as a similar expression of Eqs. (2.53) and (2.95). However,
unlike the LO phonon, the TO phonon does not interact with the plamon characteristic of
a longitudinal wave [94, 95]. Therefore, it is stated that the irregular CP signals shown in
Sec. 3.2 are governed mostly by the LO phonon. Incidentally, concerning the observation
of TO phonon modes, this has been reported recently in a GaAs crystal, and the TO
phonon is coherently excited by broadband terahertz pulses through direct coupling [96].
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Chapter 4

Conclusion

The fully quantum mechanical model based on the PQ picture for the CP generation in
semiconductors is constructed. In this model, the LO phonon, the plasmon of the collec-
tive excitation, and the electron-hole continua of the single-particle excitations are taken
into consideration. The model is applied to the non-equilibrium and transient system in-
duced by the opaque interband transition with the ultrashort pulse laser. Thereby, quan-
tum mechanical effects inherent in the interactions among the above-mentioned modes are
theoretically revealed, that is, the optically nonlinear and transient FR, the anomalous
oscillatory pattern ascribed to the plasmon-phonon resonant interaction, and the Rabi
flopping. It is found that these quantum effects enrich the underlying physics of the CP
generation in the ETR.

The transient FR is manifested in the transient induced photoemission spectra; an
asymmetric spectral profile appears in the temporal region of Tq12 ≲ tp ≲ T12 for Si,
whereas the spectral profile of GaAs is always symmetric, apart from the non-adiabatic
correction due to Iqββ(t). The difference between Si and GaAs is due to the effective
coupling Mqβ between the phonon and the quasiboson of the continuum state; by con-
sulting Shore’s model, the spectral profiles are strongly dependent on argMqβ, and the
asymmetry in spectra is due to the LO phonon deformation interaction rather than the
Fröhlich interaction. After the ETR of |Mqβ| ≈ 0, the profiles become symmetric in both
Si and GaAs.

The transient plasmon-phonon resonance and the Rabi flopping also appear in the
ETR. In the CP displacement function of Si, irregular oscillatory patterns due to the
plasmon-phonon resonance are observed just in the ETR, and the associated power spectra
become asymmetric, though this asymmetry is not attributed to FR. This resonance
effect is expected to be verified in experiments by reducing the masking effect ascribed
to coherent artifacts. To be concrete, for instance, orthogonal polarizations of the pump
and probe beams with an attosecond pulse enable us to monitor dynamics in the ETR
without coherent artifacts [97]. Further, the resonance effect would be enhanced in polar
crystals such as GaAs because the Fröhlich interaction is much larger than the deformation
potential interaction. On the other hand, the Rabi flopping is also manifested after the
ETR, and discernible in experiments by measuring the initial phase and the asymptotic
amplitude as a function of the Rabi frequency Ω0cv up to more than Ω

(2π)
0cv . As regards the

initial phase, it shows the sine phase under the weak excitation conditions, and varies from
the sine one as the excitation becomes stronger. The calculated results are in agreement
with experimental and other theoretical ones to a certain extent.
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The PQ model presented here is straightforward applicable to CP generation dynamics
in heavily doped semiconductors and other attractive systems such as diamond [98] and
SiC [99]. However, there is room to improve the means of the investigation. This model is
not suitable for fully quantitative calculations because of the difficulty of evaluating the
non-adiabatic coupling due to its spike-like behavior in the proximity of the crossing region
between energetically adjacent adiabatic states, which can influence physical quantities.
For instance, as shown in Figs. 3.6 and 3.7, the spectral profiles of Īq(tp;ω) depend
also on an imaginary part of Iqββ(t) in addition to argMqβ, and the asymmetric profile
is possibly manifested even in GaAs. Therefore, it is worth developing the theoretical
framework so as to bear more quantitative investigation. As more sophisticated numerical
recipes, for instance, a diabatic-by-sector method [100, 101] and a R-matrix propagation
method [102, 103] are substituted for the adiabatic expansion, although a heavy numerical
burden would be incurred.

Finally, it is remarked that the PQ model creates a byproduct of the plasmon-like
mode, which is introduced as one of the quasiboson modes. The plasmon-like mode
is affected not only by excited carrier density but also pump-laser field and Coulomb
interaction. The energy of the plasmon Eqα1 or Eqpl differs from the plasma frequency
under the laser irradiation, though the latter one is also renormalized by the plasmon-
phonon interaction. Moreover, the energy-eigenvalue becomes of a complex number even
with the transferred momentum |q| → 0; the imaginary part of the energy suggests an
effect of Landau or anti-Landau damping. Therefore, the plasmon mode found in this
study possibly has potential to enrich physics to be explored.
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Appendix A

Derivation of Eq. (2.11): A
Factrization Approximation

For the purpose of deriving Eq. (2.10), we apply the following commutation relation to
[Ĥe + Ĥ ′(t), A†

q(kbb
′)] in a repeated manner:[

A†
q1
(k1b1b

′
1), A

†
q2
(k2b2b

′
2)
]

=
[
a†b1,k1+q1

ab′1k1
, a†b2,k2+q2

ab′2k2

]
= a†b1,k1+q1

ab′2k2
δb′1b2δk1,k2+q2

−a†b2,k2+q2
ab′1k1

δb1b′2δk1+q1,k2 . (A.1)

First, the commutator [Ĥe, A
†
q(kbb

′)] is given by[
Ĥe, A

†
q(kbb

′)
]

= (ε′bk+q − ε′b′k)A
†
q(kbb

′) +
1

2

∑
q′(̸=0)k′b̃

V
(C)
q′

{
A†

q′(k
′b̃b̃)A†

q−q′(kbb
′)

−A†
q′(k

′b̃b̃)A†
q−q′(k + q′bb′) + A†

q+q′(kbb
′)A†

−q′(k
′b̃b̃)

− A†
q+q′(k − q′bb′)A†

−q′(k
′b̃b̃)
}
, (A.2)

where ε′bk = εbk − 1/2
∑

q ̸=0 V
(C)
q . By means of the factorization approximation, the four-

operator term of A†
q′(k

′b̃b̃)A†
q−q′(kbb′), which appears as the first term in the curl brackets

of the right-hand side of Eq. (A.2), is rewritten as

A†
q′(k

′b̃b̃)A†
q−q′(kbb

′) ≈ ⟨a†
b̃,k′+q′ab̃k′⟩A†

q−q′(kbb
′) + A†

q′(k
′b̃b̃)⟨a†b,k+q−q′ab′k⟩

−⟨a†
b̃,k′+q′ab′k⟩a

†
b,k+q−q′ab′k′ − a†

b̃,k′+q′ab′k⟨a
†
b,k+q−q′ab′k′⟩

≈ ρb̃b̃k′δq′0A
†
q(kbb

′) + A†
q(k

′b̃b̃)ρbb′kδq′q

−ρb̃b′kδk′+q′,kA
†
q(k − q′bb′)− A†

q(kb̃b
′)ρbb′k′δk′+q′,k+q. (A.3)

In the first equality, we make the factorization approximation to split the four-operator
term into products of a two-operator term and a two-operator expectation value, where
⟨Ô⟩ represents an expectation value of an operator Ô with respect to the ground state.
Further, in the second equality, we make the random-phase approximation and replace the
expectation value by a density matrix ρbb′k ≡ ⟨a†b,kab′k⟩. The similar reduction procedure
is applied to the other four-operator terms in Eq. (A.2). As a result, the commutator of
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[Ĥe, A
†
q(kbb

′)] is expressed as the form which is linearized with respect to a single kind of
operator of the form A†

q.

Next, we evaluate the commutator [Ĥ ′(t), A†
q(kbb

′)] by means of Eq. (A.1), leading to

[Ĥ ′(t), A†
q(kbb

′)] = −Ωcv(t)
[
A†

q(kcb
′)δvb − A†

q(kbv)δcb′
]

−Ωvc(t)
[
A†

q(kvb
′)δcb − A†

q(kbc)δvb′
]
. (A.4)

From the resulting expressions of Eqs. (A.2) and (A.4), we eventually obtain Eq. (2.10),

[Ĥe(t), A
†
q(kbb

′)] ≈
∑
k̃b̃b̃′

A†
q(k̃b̃b̃

′)Zq(k̃b̃b̃
′,kbb′). (A.5)

The expression of Zq given in Eq. (2.11), and it is linearized with respect to the operator
A†

q.
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Appendix B

Solutions of Eigenvalue Equations of
Eqs. (2.33) and (2.34)

First, we solve the left eigenvalue equation of Eq. (2.33) in an analytic manner. Explicit
expressions of the equations for respective components of the left eigenvector UL†

q are
provided as follows:

UL†
q (kcc) = gcckq

{
V (C)
q ∆ρ̄cckq

∑
k′

U (+)
q (k′)−

[
Ω̄

(R)
vck U

L†
q (kvc)− Ω̄

(R)
cvk U

L†
q (kcv)

]}
,

(B.1)

UL†
q (kvv) = gvvkq

{
V (C)
q ∆ρ̄vvkq

∑
k′

U (+)
q (k′) +

[
Ω̄

(R)
vck U

L†
q (kvc)− Ω̄

(R)
cvk U

L†
q (kcv)

]}
,

(B.2)

UL†
q (kcv) = gcvkq

{
V (C)
q ∆ρ̄cvkq

∑
k′

U (+)
q (k′) + Ω̄

(R)
vck U

(−)
q (k)

}
, (B.3)

and

UL†
q (kvc) = gvckq

{
V (C)
q ∆ρ̄vckq

∑
k′

U (+)
q (k′)− Ω̄

(R)
cvk U

(−)
q (k)

}
, (B.4)

where
gbb′kq = [Eqα − ω̄bb′q]

−1 (B.5)

with ω̄bb′kq ≡ ωbb′kq − ω̄bb′ , and

U (±)
q (k) = UL†

q (kcc)± UL†
q (kvv). (B.6)

Besides, ωbb′q, ∆ρ̄bb′kq, and Ω̄
(R)
bb′k are provided in Eqs. (2.12), (2.15), and (2.19), respec-

tively.
We eliminate UL†

q (kcv) and UL†
q (kvc) by putting Eqs. (B.3) and (B.4) into Eqs. (B.1)

and (B.2). Further, employing Eq. (B.6), we obtain a set of equations for U
(±)
q (k):

U (+)
q (k) = V (C)

q P(1)
kq

∑
k′

U (+)
q (k′) + [gcckq − gvvkq]WkqU

(−)
q (k), (B.7)

and
U (−)
q (k) = V (C)

q P(2)
kq

∑
k′

U (+)
q (k′), (B.8)
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where P(1)
kq and P(2)

kq are provided by

P(1)
kq = gcckq∆ρ̄cckq + gvvkq∆ρ̄vvkq + (gcckq − gvvkq)∆Ωkq, (B.9)

and

P(2)
kq = [1− (gcckq + gvvkq)Wkq]

−1

× [gcckq∆ρ̄cckq − gvvkq∆ρ̄vvkq + (gcckq + gvvkq)∆Ωkq] , (B.10)

respectively Further, ∆Ωkq and Wkq are given by

∆Ωkq = Ω̄
(R)
cvkgcvkq∆ρ̄cvkq − Ω̄

(R)
vckgvckq∆ρ̄vckq, (B.11)

and
Wkq = Ω̄

(R)
vckgvckqΩ̄

(R)
cvk + Ω̄

(R)
cvkgcvkqΩ̄

(R)
vck, (B.12)

respectively. We eliminate U
(−)
q (k) by putting Eq. (B.8) into Eq. (B.7), leading to

U (+)
q (k) = V (C)

q Pkq

∑
k′

U (+)
q (k′), (B.13)

where Pkq is given by

Pkq = P(1)
kq + (gcckq − gvvkq)WkqP(2)

kq . (B.14)

We take the summation of both sides of Eq. (B.13) over k, expressed as∑
k

U (+)
q (k) = V (C)

q

∑
k

Pkq

∑
k′

U (+)
q (k′), (B.15)

and obtain an identity relation:

1 = V (C)
q

∑
k

Pkq(Eqα), (B.16)

where the energy-dependence of Pkq is explicitly shown. We solve the transcendental
equation of Eq. (B.16), and determine a full set of eigenenergies denoted as {Eqα}. The

αth solution of U
(+)
qα (k) is given by

U (+)
qα (k) = NL

qαV
(C)
q Pkq(Eqα), (B.17)

where NL
qα represents a proportional constant to be determined later. Further, in terms

of the identity relation of Eq. (B.16), we obtain the following relation∑
k

U (+)
qα (k) = NL

qα, (B.18)

and thus, by use of Eq. (B.8), the αth solution of U
(−)
qα (k) is written as

U (−)
qα (k) = NL

qαV
(C)
q P(2)

kq (Eqα). (B.19)
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Therefore, owing to the relation of Eq. (B.6), UL†
q (kcc) and UL†

q (kvv) are determined.
Moreover, UL†

q (kcv) and UL†
q (kvc) are also determined by inserting the expressions of

U
(±)
qα (k) into Eqs. (B.3) and (B.4). In summary, UL†

q (kbb′) is expressed as

UL†
qα(kbb

′) = NL
qαV

(C)
q uL†

qα(kbb
′), (B.20)

where

uL†
qα(kcc) =

1

2

[
Pkq(Eqα) + P(2)

kq (Eqα)
]
, (B.21)

uL†
qα(kvv) =

1

2

[
Pkq(Eqα)− P (2)

kq (Eqα)
]
, (B.22)

uL†
qα(kcv) = gcvkq

[
∆ρ̄cvkq + Ω̄

(R)
vckP

(2)
kq (Eqα)

]
, (B.23)

and
uL†
qα(kvc) = gvckq

[
∆ρ̄vckq − Ω̄

(R)
cvkP

(2)
kq (Eqα)

]
. (B.24)

Next, we solve the right eigenvalue equation of Eq. (2.34) in an analytic manner.
Explicit expressions of the equations for respective components of the right eigenvector
UR
q are provided as follows:

UR
q (kcc) = gcckq

{
V (C)
q

∑
k′

U ′(+)
q (k′) +WkqU

′(−)
q (k′)

}
, (B.25)

UR
q (kvv) = gvvkq

{
V (C)
q

∑
k′

U ′(+)
q (k′)−WkqU

′(−)
q (k′)

}
, (B.26)

UR
q (kcv) = gcvkqΩ̄

(R)
cvkU

′(−)
q (k′), (B.27)

and
UR
q (kvc) = −gvckqΩ̄

(R)
vckU

′(−)
q (k′), (B.28)

where
U ′(+)
q (k) =

∑
bb′

∆ρ̄bb′kqU
R
q (kbb

′), (B.29)

and
U ′(−)
q (k) = UR

q (kcc)− UR
q (kvv). (B.30)

We define U
′(d)
q (k) as

U ′(d)
q (k) =

∑
b

∆ρ̄bbkqU
R
q (kbb), (B.31)

and thus, Eq. (B.29) is cast into

U ′(+)
q (k) = U ′(d)

q (k) + ∆ΩkqU
′(−)
q (k). (B.32)

We put Eqs. (B.25) and (B.26) into Eqs. (B.30) and (B.31), and thus, obtain

U ′(−)
q (k) = V (C)

q P ′(2)
kq

∑
k′

U ′(+)
q (k′) (B.33)
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and

U ′(d)
q (k) =

(∑
b

∆ρ̄bbkq gbbkq

)
V (C)
q U ′(+)

q (k) + P ′(3)
kq U ′(−)

q (k), (B.34)

where
P ′(2)

kq = [1− (gcckq + gvvkq)Wkq]
−1 (gcckq − gvvkq)V

(C)
q (B.35)

and
P ′(3)

kq = (∆ρ̄cckq gcckq −∆ρ̄vvkq gvvkq)Wkq. (B.36)

We put Eqs. (B.33) and (B.34) into Eq. (B.32), leading to

U ′(+)
q (k) = V (C)

q Pkq

∑
k′

U ′(+)
q (k′), (B.37)

which looks similar to Eq. (B.13).
By taking the summation of both sides of Eq. (B.37), the identity relation of Eq. (B.16)

is obtained again, and the αth solution of U
′(+)
qα (k) is given by the form:

U ′(+)
qα (k) = NR

qαV
(C)
q Pkq(Eqα) (B.38)

with the normalization constant of NR
qα. Moreover, the following relation is straightfor-

ward derived ∑
k

U ′(+)
qα (k) = NR

qα, (B.39)

and thus, by use of Eq. (B.33), the αth solution of U
′(−)
qα (k) is given by

U ′(−)
qα (k) = NR

qαV
(C)
q P ′(2)

kq (Eqα). (B.40)

UR
q (kbb

′) is expressed as

UR
qα(kbb

′) = NR
qαV

(C)
q uR

qα(kbb
′), (B.41)

and explicit expressions of uR
qα(kbb

′) are obtained by means of Eqs. (B.25)-(B.28), (B.38),
and (B.40). In summary,

uR
qα(kcc) = gcckq [1 + (gcckq − gvvkq)GkqWkq] , (B.42)

uR
qα(kvv) = gvvkq [1− (gcckq − gvvkq)GkqWkq] , (B.43)

uR
qα(kcv) = gcvkqΩ̄

(R)
kcv(gcckq − gvvkq)Gkq, (B.44)

and
uR
qα(kvc) = −gvckqΩ̄

(R)
kvc(gcckq − gvvkq)Gkq, (B.45)

where
Gkq = [1− (gcckq + gvvkq)Wkq]

−1 . (B.46)

Both of the left and right eigenvectors thus obtained evidently satisfy the biorthogonal
relation ∑

kbb′

UL†
qα(kbb

′)UR
qα′(kbb′) = δαα′ , (B.47)
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and the completeness∑
α

UR
qα(k1b1b

′
1)U

L†
qα(k2b2b

′
2) = δk1k2δb1b2δb′1b′2 . (B.48)

We determine the normalization constants NL
qα and NR

qα with the normalization condition∑
kbb′

UL†
qα(kbb

′)UR
qα(kbb

′) = 1, (B.49)

which is expressed in terms of Eqs. (B.20) and (B.41) as[
NL

qαN
R
qα

(
V (C)
q

)2]−1

=
∑
kbb′

uL†
qα(kbb

′)uR
qα(kbb

′). (B.50)

Finally, we derive the expressions of the eigenenergy-determining transcendental equa-
tion of Eq. (B.16) and the normalization condition of Eq. (B.50) in the small-q limit of
our primary concern. In this limit, ρ̄bb′kq, gbb′kq, and Gkq are written as

∆ρ̄bb′kq ≃ −|q|q̂ ·∇ρ̄bb′k, (B.51)

gbbkq ≃ 1

Eq

(
1 +

1

Eq
|q|q̂ ·∇ε

(r)
bk

)
, (B.52)

gbb̄kq ≃ gbb̄k,q=0 ≡ gbb̄k, (B.53)

and

Gkq =

(
1− 2Wkq

Eq

)−1

, (B.54)

where ∇ represents a gradient with respect to k, in other words, ∂/∂k. ε
(r)
bk is provided

in Eq. (2.13). q̂ = q/|q|, and b̄ represents b̄ ̸= b. Equation (B.16) is cast into the form

K(Eq) = 1, (B.55)

where

K(Eq) =
V

(C)
q q2

E2
q

∑
k

{
ρ̄cck (q̂ ·∇)

[(
q̂ ·∇ε

(r)
ck

)
+
(
q̂ ·∇∆ε

(r)
k

)WkqGkq

Eq

]
+ρ̄′vvk (q̂ ·∇)

[(
q̂ ·∇ε

(r)
vk

)
−
(
q̂ ·∇∆ε

(r)
k

)WkqGkq

Eq

]
+ρ̄cvk (q̂ ·∇)

[(
q̂ ·∇∆ε

(r)
k

)
Ω̄

(R)
kcvgkcv

(
1 +

2WkqGkq

Eq

)]
−ρ̄vck (q̂ ·∇)

[(
q̂ ·∇∆ε

(r)
k

)
Ω̄

(R)
kvcgkvc

(
1 +

2WkqGkq

Eq

)]}
(B.56)

with
∆ε

(r)
k = ε

(r)
ck − ε

(r)
vk . (B.57)

Further,
ρ̄′vvk = ρ̄vvk − 1 ≤ 0, (B.58)
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and |ρ̄′vvk| represents a hole density, where the second term in ∇ρ̄′vvk becomes zero. Using
Eqs. (B.5) and (B.12), and defining

Dkq(Eq) = E2
q − w̄2

cvkq − |2Ω̄(R)
kcv|

2, (B.59)

Eq. (B.56) is expressed as

K(Eq) =
1

E2
q

(
ω2
qpl +

4π

ϵ∞

∑
k

{
1

2
(ρ̄cck − ρ̄′vvk) (q̂ ·∇)

[(
q̂ ·∇∆ε

(r)
k

) |2Ω̄(R)
kcv|2

Dkq(Eq)

]

+ρ̄cvk (q̂ ·∇)

[(
q̂ ·∇∆ε

(r)
k

) Ω̄
(R)
kcv(Eq + w̄cvkq)

Dkq(Eq)

]

−ρ̄vck (q̂ ·∇)

[(
q̂ ·∇∆ε

(r)
k

) Ω̄
(R)
kvc(Eq + w̄vckq)

Dkq(Eq)

]})
. (B.60)

Here, ωqpl shows the plasma frequency, provided by

ωqpl =

[
V (C)
q q2

∑
kb

ρ̄bbk∇2
kε

(r)
bk

] 1
2

. (B.61)

In the case of the Rabi frequency terms, that is, Ω̄
(R)
kcv and Ω̄

(R)
kvc being negligibly small,

Eq.(B.55) is straightforward solved to provide E2
q equal to ω2

qpl.
Next, Eq. (B.50) is cast into the form[

NL
qαN

R
qα

(
V (C)
q

)2]−1

= − q2

E2
qα

∑
kbb′

(q̂ ·∇ρ̄bb′k) fbb′k, (B.62)

where

fcck =
1

Eq

[
(q̂ ·∇)

(
ε
(r)
ck + ε

(r)
vk

)
+
(
q̂ ·∇∆ε

(r)
k

)
Gkqdkq

]
, (B.63)

fvvk =
1

Eq

[
(q̂ ·∇)

(
ε
(r)
ck + ε

(r)
vk

)
−
(
q̂ ·∇∆ε

(r)
k

)
Gkqdkq

]
, (B.64)

fcvk =
(
q̂ ·∇∆ε

(r)
k

)
gcvkΩ̄

(R)
kcvGkq

(
gcvk +

2dkq
Eq

)
, (B.65)

and

fvck = −
(
q̂ ·∇∆ε

(r)
k

)
gvckΩ̄

(R)
kvcGkq

(
gvck +

2dkq
Eq

)
, (B.66)

with

dkq = 1 + GkqWkq

(
1

Eq
+

g2cvk + g2vck
gcvk + gvck

)
≈ 1 +

2

Eq
GkqWkq ≈ Gkq. (B.67)

It is noted that the normalization constants and both of uL†
q and uR

q are in proportion to
|q| in the small q-limit.

Moreover, replacing Eqα by −E∗
qα in Eq. (B.60) and taking a complex conjugate of

both sides of the equation, we readily obtain a relation

K(Eqα) =
[
K(−E∗

qα)
]∗
. (B.68)
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This fact implies that a pair of Eqα+ and Eqα−(≡ −E∗
qα+

) are solutions of Eq. (B.55)
simultaneously. We apply the same procedure to Eq. (B.62), and obtain a relation

NL
qα+

NR
qα+

= −
[
NL

qα−N
R
qα−

]∗
. (B.69)

According to an energy-phase of exp
[
i
∫ t

t′
Eqα(τ)dτ

]
, it is seen that Eqα+ plays a role of

a complex energy of a quasiboson created by an operator of B†
qα+

. Thus, amplitude of

this operator is temporally damps, following exp
[
−
∫ t

t′
ImEqα+(τ)dτ

]
. Similarly, Eqα− is

readily interpreted as a complex energy of the quasiboson annihilated by an operator

Bqα− , where amplitude of it diminishes following exp
[
−
∫ t

t′
ImEqα+(τ)dτ

]
again.
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Appendix C

Closed Analytic Forms of F
†
qβ and

Fqβ Derived by Solving Eq. (2.61)

C.1 Introduction of Operators of F 0†
qβ and F 0

qβ

Before solving Eq. (2.61), we consider an equation of motion of another PQ operator

F 0†
qβ =

∑
β′

B0†
qβ′Vqβ′β +B0†

qα1
Vqα1β + c†qVqα2β, (C.1)

which is provided by

−i
d

dt
F 0†
qβ = F 0†

qβE
0
qβ. (C.2)

Eq. (C.1) resembles Eq. (2.59), but a quasiboson operator B0†
q and an [(N + 2) × N ]-

rectangular matrix Vq are different from B†
q and V R

q , respectively. Vq satisfies an equation

h0
qVq = VqE0

q , (C.3)

which differs from Eq. (2.58). h0
q represents a Hermitian matrix provided by

h0
q =

[
E0
q Mq

M †
q ωq

]
, (C.4)

where, E0
q is real, as defined below Eq. (C.12). Moreover, similarly to Eq. (2.60), we

introduce an [N × (N + 2)]-rectangular matrix V̄q to ensure the inverse relation of Eq.
(C.1), that is,

B0†
qα =

∑
β

F 0†
qβV̄qβα, c†q =

∑
β

F 0†
qβV̄qβα2 . (C.5)

Therefore, we obtain V̄qVq = 1 and VqV̄q = 1 which correspond to the expressions provided
below Eq. (2.60) for V R

q and V L†
q . In addition, we introduce F 0

q as a Hermitian-conjugate
of F 0†

q , namely,

F 0
qβ =

∑
β′

V ∗
qββ′B0

qβ′ + V ∗
qβα1

B0
qα1

+ V ∗
qβα2

cq. (C.6)
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Here, both of F 0
qβ and F 0†

qβ are required to satisfy the expectation values of equal-time
commutation relations as follows:

⟨[F 0
qβ, F

0†
q′β′ ]⟩ = δqq′δββ′ , (C.7)

and
⟨[F 0

qβ, F
0
q′β′ ]⟩ = ⟨[F 0†

qβ, F
0†
q′β′ ]⟩ = 0, (C.8)

instead of the corresponding equal-time commutation relations where expectation values
are not taken. Under these conditions, we can consider F 0

qβ and F 0†
qβ as boson operators.

In Eqs. (C.7) and (C.8), we omit the argument t of these operators just for the sake of
simplicity. Applying Eqs. (C.1) and (C.6) to Eqs. (C.7) and (C.8), it is seen that the
following conditions are imposed on B0

qα and B0†
qα as:

⟨[B0
qα, B

0†
q′α′ ]⟩ = δqq′δαα′ , (C.9)

⟨[B0
qα, B

0
q′α′ ]⟩ = ⟨[B0†

qα, B
0†
q′α′ ]⟩ = 0, (C.10)

and
V̄q = V †

q . (C.11)

In Sec. C.3, we examine the criteria of the validity of this bosonization scheme.
A set of solutions Vq of the Fano problem provided by the adiabatic coupled-equations

of Eq. (C.3) is shown in Sec. C.4. On the other hand, a set of eigenvalues E0
q follows the

equation
K0(E0

q) = 1, (C.12)

where K0(E0
q) is expressed as

K0(E0
q) =

(
1

E0
q

)2
{
ω2
qpl +

4π

ϵ∞

∑
k

1

2
(ρ̄cck − ρ̄′vvk) (q̂ ·∇)

×

[(
q̂ ·∇∆ε

(r)
k

) |2Ω̄(R)
kcv|2(

E0
q

)2 − w̄2
cvkq − |2Ω̄(R)

kcv|2

]}
. (C.13)

Here, ωqpl is the plasma frequency provided by Eq. (B.61), q̂ = q/|q|, and ∇ ≡ ∂/∂k.
[Actually, K0(E0

q) is substituted for K(Eq) of Eq. (B.60) by employing the approxima-
tion for deriving Eq. (C.46) from Eq. (C.42). In other words, we adopt the equality of
Eq. (C.51), and neglect interband density matrices.]

Below, we discuss a couple of properties of solutions of the transcendental equation
of Eq. (C.12). In Fig. C.1, we show a trace of K0(E0

q) as a function of E0
q for Si; we

also obtain the similar trace for GaAs, though not shown here. Points of intersection of
K0(E0

q) with unity represent real solutions of Eq. (C.12). [It should be noted that just
a set of solutions, where the corresponding normalization constants satisfy Eq. (C.52), is
suitable for the present bosonization scheme.] Hereafter, let the normalization constants
for the αth state be expressed as

NL
qα = NR∗

qα ≡ N0
qα, (C.14)

where N0
qα is real, unless otherwise stated. Existence of such a set of real eigenvalues,

{E0
qα}, is in agreement with the requirement that h0

q should be Hermitian.
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Figure C.1: A trace of K0(E0
q) as a function of E0

q (in the unit of meV). K0(E0
q) = 1 is

shown by a horizontal solid line.

Figure C.2 shows this set of eigenvalues as a function of time. It seems that these
energy curves well reproduce those in Fig. 3.2 calculated without the bosonization scheme.
This fact would demonstrate the validity of this scheme. Moreover, it is noted that
even after the completion of the laser irradiation, Ω̄

(R)
kcv does not vanish because of the

Coulomb correction. In the case of Ω̄
(R)
kcv = 0, we obtain just solutions of E0

q = ±ωqpl for
Eq. (C.12), and the solutions of the electron-hole continua of Fig. C.2 vanish. Therefore,
the Coulomb correction is essential so as to form the continuum states. The continuum
states are coupled with the LO phonon, resulting in FR after the completion of the laser
irradiation.

According to Fig. C.1, it is seen that the eigenvalues belonging to the continuum states
β’s are located in the vicinity of the poles attributed to the denominator in the square
brackets of the right-hand side of Eq. (C.13), except for a solution of E0

qα1
corresponding

to the plasmon. Hence, the eigenvalue for the βth state is well approximated to be

E0
qβ ≈ ±

√
ω̄2
cvkq + |2Ω̄(R)

kcv|2, (C.15)

and furthermore, we can consider the index β to be approximately equal to Bloch mo-
mentum |k|: as regards plus and minus signs of Eq. (C.15), consult Eq.(B.68).

C.2 Approximate Solutions of F †
qβ and Fqβ

We solve Eq. (2.61) in an approximate manner in terms of the PQ operators of F 0†
qβ

introduced above. [Refer to Secs. 2.3.1 and 2.3.2 for the approximation employed.] To do
this, firstly we define a new operator F̃ 0†

qβ as

F̃ 0†
qβ(t) = F 0†

qβ(t) e
−Z∗

qβ(t,t0), (C.16)
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Figure C.2: Adiabatic energy curves of Si (in the unit of meV) as a function of time t (in
the unit of fs). The curves are calculated on the basis of Eq. (C.12). A green solid line
represents a plasmon-like mode, and blue solid lines represent a bundle of the electron-
hole continua. Further, an orange line represents the alternation of bare Rabi frequency
Ω0cv of squared shape [see Eqs. (2.7) and (2.66)] as a function of t. In addition, a red
solid line represents the LO phonon energy ωq = 63 meV, and a broken line represents
the plasma frequency ωqpl proportional to the total electron density, just for the purpose
of comparison of the plasmon-like mode. The gradation of blue color shows the schematic
change of the excited carrier density in t, where the lowest limit of the gradation means
the threshold energy of a bundle of the electron-hole continua.

where t0 represents initial time when an initial condition is imposed before the laser
irradiation: t0 < −τL/2. Here, both effects of the non-adiabatic correction due to diagonal
components and the phenomenological damping are incorporated in

Zqβ(t, t̃) =

∫ t

t̃

dt′

[
γ
(0)
qβ (t

′)

2
+ I∗qββ(t

′)

]
. (C.17)

For the sake of later convenience, we define Iqβ(t, t̃) as

Iqβ(t, t̃) =

∫ t

t̃

dt′I∗qββ(t
′). (C.18)

Consulting Eq. (C.2), it is seen that F̃ 0†
qβ(t) fulfills the equation of motion provided by

−i
d

dt
F̃ 0†
qβ(t) = F̃ 0†

qβ(t)

{
E0
qβ(t) + i

[
γ
(0)
qβ (t)

2
+ Iqββ(t)

]}
. (C.19)

Subtracting Eq. (C.19) from Eq. (2.61) side by side, and defining ∆F †
qβ as

∆F †
qβ = F †

qβ − F̃ 0†
qβ, (C.20)
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we obtain the following equation of motion as:

−i
d

dt
∆F †

qβ(t) = ∆F †
qβ(t)

{
Eqβ(t) + i

[
γ
(0)
qβ (t)

2
+ Iqββ(t)

]}
+ F̃ 0†

qβ(t)
[
Eqβ(t)− E0

qβ(t)
]

+i
∑

β′ (̸=β)

[
F̃ 0†
qβ′(t) + ∆F †

qβ′(t)
]
Iqβ′β(t). (C.21)

The formal solution of this is given by

∆F †
qβ(t) = ∆F †

qβ(t0)e
iΘ∗

qβ(t,t0) + i

∫ t

t0

dt′F̃ 0†
qβ(t

′)
[
Eqβ(t′)− E0

qβ(t
′)
]
e−i[Θ∗

qβ(t
′,t0)−Θ∗

qβ(t,t0)]

−
∑

β′ (̸=β)

∫ t

t0

dt′
[
F̃ 0†
qβ′(t

′) + ∆F †
qβ′(t

′)
]
Iqβ′β(t

′)e−i[Θ∗
qβ(t

′,t0)−Θ∗
qβ(t,t0)], (C.22)

where Θqβ(t, t
′) represents an adiabatic energy phase provided by

Θqβ(t, t
′) =

∫ t

t′
dt′′

{
E∗
qβ(t

′′)− i

[
γ
(0)
qβ (t

′′)

2
+ I∗qββ(t

′′)

]}
. (C.23)

It is supposed that the initial condition of the above equation is provided by

∆F †
qβ(t0) = 0, (C.24)

that is, F †
qβ(t0) = F 0†

qβ(t0), with an additional approximation that E∗
qβ(t) ≈ E0

qβ(t), leading
to

Θqβ(t, t
′) ≈

∫ t

t′
dt′

{
E0
qβ(t

′′)− i

[
γ
(0)
qβ (t

′′)

2
+ I∗qββ(t

′′)

]}
. (C.25)

Therefore, Eq. (C.22) becomes

∆F †
qβ(t) ≈ −

∑
β′ (̸=β)

∫ t

t0

dt′
[
F̃ 0†
qβ′(t

′) + ∆F †
qβ′(t

′)
]
Iqβ′β(t

′)e−i[Θ∗
qβ(t

′,t0)−Θ∗
qβ(t,t0)]. (C.26)

By putting Eq. (2.67) into Eq. (C.26), we obtain

∆F †
qβ(t) ≈ −

∑
j

∑
β′( ̸=β)

[
F̃ 0†
qβ′(tj) + ∆F †

qβ′(tj)
]
I
(j)∗
qβ′βθ(t− tj)e

−i[Θ∗
qβ(tj ,t0)−Θ∗

qβ(t,t0)]. (C.27)

As described in Sec. 2.3.1, from among a set of the off-diagonal elements of the non-
adiabatic interaction, we retain just the single leading contribution at t = tD = τL/2.
Thus, we obtain

∆F †
qβ(tD) ≈ −

∑
β′

F̃ 0†
qβ′(tD)

[
ϕq(tD)

1

1 + ϕq(tD)

]
β′β

, (C.28)

where
ϕqβ′β(t) = I

(D)∗
qβ′βθ(t− tD)δ̄β′β (C.29)
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with δ̄β′β = 1− δβ′β. If we consider more than two contributions of {I(j)
qβ′ ̸=β}, we obtain a

set of ∆F †
qβ(tj)’s in a more complicated closed-form than Eq. (C.28). Hereafter, we simply

take account of just I
(D)
qβ′β since the present theoretical framework is described succinctly.

By putting Eq. (C.28) back into Eq. (C.27), we obtain ∆F †
qβ(t) as

∆F †
qβ(t) ≈ −eiΘ

∗
qβ(t,t0)

∑
β′

F 0†
qβ′(t0)

[
1

1 + ϕ̃q(tD)
ϕ̃q(t)

]
β′β

, (C.30)

where ϕ̃q is defined as

ϕ̃qβ′β(t) = e
iΘ∗

β′ (tD,t0)ϕqβ′β(t)e
−iΘ∗

β(tD,t0), (C.31)

and Eq. (C.16) is used. Therefore, in view of Eq. (C.20), F †
qβ(t) is provided by

F †
qβ(t) = eiΘ

∗
qβ(t,t0)

∑
β′

F 0†
qβ′(t0)

[
1 + ϕ̃q(tD)− ϕ̃q(t)

1 + ϕ̃q(tD)

]
β′β

= eiΘ
∗
qβ(t,tD)

∑
β′

F 0†
qβ′(tD)T ′

qβ′β(t), (C.32)

and by taking its Hermitian-conjugate, we obtain

Fqβ(t) = e−iΘqβ(t,tD)
∑
β′

T ′†
qββ′(t)F

0
qβ′(tD). (C.33)

Here, the off-diagonal components of the non-adiabatic interaction are incorporated to
T ′
q(t) defined as

T ′
qβ′β(t) =

[
1 + ϕ̃q(tD)− ϕ̃q(t)

1 + ϕ̃q(tD)

]
β′β

e−Z∗
qβ(tD,t0). (C.34)

The retarded Green function is defined in terms of Fq and F †
q as [79, 80]

GR
qββ′(t, t′) = −iθ(t− t′)

⟨[
Fqβ(t), F

†
qβ′(t

′)
]⟩

, (C.35)

and the concomitant advanced Green function is provided by

GA
qββ′(t, t′) =

[
GR

qβ′β(t
′, t)
]∗
. (C.36)

Putting Eqs. (C.32) and (C.33) into Eq. (C.35), the retarded Green function ends up with

GR
qββ′(t, t′) = −iθ(t− t′)e−iΘqβ(t,tD)

∑
γγ′

V R†
qβγ(tD)Tqγγ′(t, t′)V R

qγ′β′(tD)e
iΘ∗

qβ′ (t
′,tD)

, (C.37)

where Eq. (C.7) is employed. Here, we introduce the matrix of Tq for the purpose of later
convenience as

Tq(t, t
′) = T †

q (t)Tq(t
′) (C.38)

with

Tq(t) = T ′
q(t)V̄

R
q (tD). (C.39)
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Similarly to Eq. (C.37), we evaluate the expectation values of equal-time commutation
relations for the PQ operators as

⟨[Fqβ(t), F
†
q′β′(t)]⟩ = e−iΘqβ(t,tD)

∑
γγ′

V R†
qβγ(tD)Tqγγ′(t, t)V R

qγ′β′(tD)e
iΘ∗

qβ′ (t,tD)
, (C.40)

and
⟨[Fqβ(t), Fq′β′(t)]⟩ = ⟨[F †

qβ(t), F
†
q′β′(t)]⟩ = 0, (C.41)

due to Eq. (C.8).

C.3 Bosonization Scheme and its Approximate Va-

lidity

First, we evaluate the expectation value of ⟨[Bqα, B
†
q′α′ ]⟩, and it is reduced to

⟨[Bqα, B
†
q′α′ ]⟩ =

∑
kk′b1b′1b2b

′
2

UR†
qα (kb1b

′
1)⟨[Āq(kb1b

′
1), Ā

†
q′(k

′b2b
′
2)]⟩UR

q′α′(k′b2b
′
2)

= δqq′

∑
kb2b3

{∑
kb1

[
UR†
qα (kb1b2)ρ̄b1b3k − UR†

qα (kb3b1)ρ̄b2b1k+q

]}
×UR

qα′(kb2b3), (C.42)

where Eqs. (2.38) and (2.39) are employed in the first equality. Here, we define ŪL†
qα as

the term in the curl brackets of the second equality of the right-hand side of Eq. (C.42),
that is,

ŪL†
qα(kb2b3) = NR∗

qα V
(C)
q ūL†

qα(kb2b3), (C.43)

where
ūL†
qα(kb2b3) =

∑
b1

[
uR†
qα(kb1b2)ρ̄b1b3k − uR†

qα(kb3b1)ρ̄b2b1k+q

]
. (C.44)

Thus, Eq. (C.42) is cast into the form

⟨[Bqα, B
†
q′α′ ]⟩ = δqq′

∑
kb2b3

ŪL†
qα(kb2b3)U

R
qα′(kb2b3). (C.45)

If ŪL†
qα(kb2b3) were exactly in agreement with UL†

qα(kb2b3), the expectation value of present
concern would satisfy a desirable relation of

⟨[Bqα, B
†
q′α′ ]⟩ = δqq′δαα′ (C.46)

due to UL†
q UR

q = 1.
Below, we evaluate the following quantity:

xαα′ =
∣∣∣δαα′ − ⟨[Bqα, B

†
q′α′ ]⟩

∣∣∣
=

∣∣∣∣∣∑
kbb′

[
UL†
qα(kbb

′)− ŪL†
qα(kbb

′)
]
UR
qα′(kbb′)

∣∣∣∣∣
=

∣∣∣∣∣NL
qαN

R
qα′(V (C)

q )2
∑
kbb′

[
uL†
qα(kbb

′)−
NR∗

qα′

NL
qα

ūL†
qα(kbb

′)

]
uR
qα′(kbb′)

∣∣∣∣∣ , (C.47)
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where Eqs. (B.21)-(B.24) and (B.42)-(B.45) are used in the last equality. xαα′ plays a
role for an estimate of the criterion of the validity of concern.

We evaluate this expression in the small-|q| limit. In terms of the power series with

respect to the ratio of the Rabi frequency Ω̄
(R)
kcv of Eq. (2.19) to adiabatic energy Eqα,

namely,

rkqα ≡ Ω̄
(R)
kcv

Eqα
, (C.48)

the summation in the last equality of Eq. (C.47) is expressed as

∑
kbb′

[
uL†
qα(kbb

′)−
NR∗

qα′

NL
qα

ūL†
qα(kbb

′)

]
uR
qα′(kbb′)

= − q2

EqαEqα′

[(
1

Eqα
+

1

Eqα′

)
−

NR∗
qα′

NL
qα

(
1

E∗
qα

+
1

Eqα′

)]∑
kb

(q̂ · ∇ρ̄bbk)(q̂ · ∇ε
(r)
kb )

+
′∑

n,n′

∑
k

(terms factorized by rnkqα rn
′

kqα′) (C.49)

Here,
∑′ means that the summation over n and n′ are taken except for the term with

n = n′ = 0.
As is stated in Sec. 2.3.2, we are concerned particularly with the temporal region after

the completion of the laser irradiation. In this region, Eq. (C.48) is described by the ratio
of the Coulomb correction to adiabatic energy, that is,

rkqα =

∑
q V

(C)
q ρ̄cvk+q

Eqα
. (C.50)

The adiabatic energy of concern is around the LO phonon energy ωq, and ωq = 63 meV for
Si and 35 meV for GaAs. On the other hand, according to our calculation, the magnitude
of the Coulomb correction is of the order of several meV at most. Therefore, the second
term in the right-hand side of Eq. (C.49) is negligibly small compared with the first term.

Further, additional conditions are imposed on Eq. (C.49) so as to satisfy that xαα′

almost vanishes as follows: the first is that the limited set of {α} with Eqα of real is
retained out of the solutions of Eqs. (2.33) and (2.34), and the second is that

NR∗
qα = NL

qα. (C.51)

Most of the solutions of Eq. (C.13), namely, E0
qα are real or satisfy |ReE0

qα| ≫ |ImE0
qα|,

which ensures the first condition. Further, the corresponding normalization constants
with

NL
qαN

R
qα = |NL

qα|2 > 0 (C.52)

provide NL
qα = NR

qα = N0
qα of real c-numbers. Eventually, Eq. (C.9) proves to be approxi-

mately correct. Moreover as a result of the approximation made here, the relation of Eq.
(C.10) can be assumed, and thus, the effective coupling constants of M ′′

−qα and M ′∗
qα are

reduced to M ′′
−qα = 0 and M ′∗

qα = M∗
qα, respectively.
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C.4 Solutions of the Fano Problem given by Adia-

batic Coupled-Equations of Eq. (C.3)

In this section, we seek solutions of the Fano Problem provided by Eq. (C.3). Hereafter,
just for the sake of typographical simplicity, we omit a superscript ”0” of h0

q, N
0
q , E

0
q,

and E0
q , and replace these notations with non-superscript counterparts of hq, Nq, Eq, and

Eq, respectively, as far as it is not likely to cause unnecessary confusion between them.
Therefore, Eq. (C.3) is read as

hqVq = VqEq, (C.53)

where the Hermitian matrix hq is provided by

hq =

 Eq 0 Mq

0 ωqα1 Mqα1

M †
q M∗

qα1
ωqα2

 ≡
[
Eq zq
z†q h

(d)
q

]
. (C.54)

Recalling the notations employed right below Eq. (2.58), N means the number of dis-
cretized continua. Here, Eq = {Eqβδββ′} represents a (N × N)-diagonal matrix, Mq =
{Mqβ} is a (N ×1)-matrix, ωqα1 ≡ Eqα1 , and ωqα2 ≡ ωq. Moreover, zq is a (N ×2)-matrix

and h
(d)
q is a (2× 2)-matrix, provided by

zq =
[
0 Mq

]
(C.55)

and

h(d)
q =

[
ωqα1 Mqα1

M∗
qα1

ωqα2

]
, (C.56)

respectively.
The Fano problem of concern is a scattering problem with a given energy Eqβ with

one open-channel and two closed channels [47]. Hence, Eq. (C.53) is of the form of

hq

[
ηq
νq

]
=

[
ηq
νq

]
Eq, (C.57)

where ηq = {ηqββ} and νq = {νqµβ} (µ = {α1, α2}) represent block matrices with size
of (N × N) and (2 × N), respectively, and Vq is replaced by Vq = t[ηq, νq]. We obtain
explicit expressions of Eq. (C.57) as:

Eqβ′ηqβ′β +
∑
µ

zqβ′µνqµβ = ηqβ′βEqβ, (C.58)

and ∑
β′

z∗qβ′µηqβ′β +
∑
µ′

h
(d)
qµµ′νqµ′β = νqµβEqβ. (C.59)

Equation (C.58) is rewritten as

ηqβ′β =

(
P

1

Eqβ − Eqβ′
+∆qβδβ′β

)∑
µ

zqβ′µνqµβ, (C.60)
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where P[1/(Eqβ −Eqβ′)] means that a Cauchy’s principle value of [1/(Eqβ −Eqβ′)] is taken,
and ∆qβ is a constant to be determined later. By putting this expression back into
Eq. (C.59), we obtain∑

µ′

[
h
(d)
qµµ′ + σqµµ′(Eqβ)

]
νqµ′β +∆qβz

∗
qβµ

∑
µ′

zqβµ′νqµ′β = νqµβEqβ, (C.61)

where σqµµ′(Eqβ) is provided by

σqµµ′(Eqβ) =
∑
β′

P
z∗qβ′µzqβ′µ′

Eqβ − Eqβ′
. (C.62)

We make the matrix elements in square brackets of the first term of the left-hand side of
Eq. (C.61) diagonal in terms of a diagonalization matrix A(r) as follows:[

h(d)
q + σq(Eqβ)

]
µµ′ =

∑
µ′′

A
(r)
µ′µ′′ωqµ′′A

(r)†
µ′′µ, (C.63)

with an eigenvalue as ωqµ. Therefore, defining ν̃q and z̃q as

ν̃qµβ =
∑
ν′

A
(r)†
µµ′ νqµ′β, (C.64)

and
z̃qβµ =

∑
ν′

zqβµ′A
(r)
µ′µ, (C.65)

Eq. (C.61) is cast into the form:

ν̃qµβ = ∆qβ

z̃∗qβµ
Eqβ − ωqµ

∑
µ′

z̃qβµ′ ν̃qµ′β, (C.66)

where ∆qβ is determined by

∆−1
qβ =

∑
µ

|z̃qβµ|2

Eqβ − ωqµ

. (C.67)

According to the commutation relations of Eqs. (C.7) and (C.9), we obtain the fol-
lowing relations: ∑

β

ν̃qµβ ν̃
∗
qµ′β = δµµ′ , (C.68)

∑
β

ν̃qµβη
∗
qβ′β = 0,

∑
β

ηqβ′β ν̃
∗
qµβ = 0, (C.69)

and ∑
β′′

ηqββ′′η∗qβ′β′′ = δββ′ , (C.70)

where Eq. (C.5) is employed in view of Eq. (C.11). By putting Eq. (C.60) into the two
equations of Eq. (C.69), and subtracting the resulting equations side by side, we obtain∑

β′′

Z̃qββ′′

(
P

1

Eqβ′′ − Eqβ
− P

1

Eqβ′′ − Eqβ′

)
Z̃†

qβ′′β′ = Z̃qββ′∆qβ′Z̃†
qβ′β′ − Z̃qββ∆qβZ̃†

qββ′ ,

(C.71)
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where
Z̃qββ′ =

∑
µ

z̃qβµν̃qµβ′ . (C.72)

Moreover, applying Eq. (C.60) to Eq. (C.70) again yields

δββ′ =
∑
β′′

Z̃qββ′′P
(

1

Eqβ′′ − Eqβ
1

Eqβ′′ − Eqβ′

)
Z̃†

qβ′′β′ + Z̃qββ∆qβP
1

Eqβ − Eqβ′
Z̃qββ′

−Z̃qββ′∆qβ′P
1

Eqβ − Eqβ′
Z̃qβ′β′ + δββ′∆2

qβ|Z̃qββ|2

= δββ′
[
(πρqβ)

2 +∆2
qβ

]
|Z̃qββ|2, (C.73)

where in the first equality, Eq. (C.72) is employed. Further, in the second equality,
Poincaré’s theorem is applied, that is,

P
(

1

Eqβ′′ − Eqβ
1

Eqβ′′ − Eqβ′

)
=

1

Eqβ − Eqβ′

(
P

1

Eqβ′′ − Eqβ
− P

1

Eqβ′′ − Eqβ′

)
+π2δ(Eqβ′′ − Eqβ)δ(Eqβ′′ − Eqβ′), (C.74)

where a density of state ρqβ of state β is defined as

ρqβ =
dβ

dEqβ
. (C.75)

Here, by substituting Zqβ for ∆qβZ̃qββ just for the sake of simplicity, we obtain

Zqβ = ∆qβZ̃qββ =

1 +(πρqβ∑
µ

|z̃qβµ|2

Eqβ − ωqµ

)2
−1/2

(C.76)

from Eq. (C.73) in view of Eq. (C.67).
Therefore, from Eq. (C.66), we readily obtain

ν̃qµβ =
z̃∗qβµ

Eqβ − ωqµ

Zqβ, (C.77)

and eventually, νqµβ is given by means of Eq. (C.64). Further, by putting Eq. (C.77)
into Eq. (C.72), we obtain the expression of Z̃qββ′ . Accordingly, from Eq. (C.60), ηqβ′β is
provided by

ηqβ′β =

[∑
µ

(
P
z̃qβ′µz̃

∗
qβµ

Eqβ − Eqβ′

1

Eqβ − ωqµ

)
+ δβ′β

]
Zqβ. (C.78)
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Appendix D

Derivation of an Expression of Total
Retarded Longitudinal Susceptibility
within the Framework of the
Bosonization Scheme

D.1 Derivation of a Redatderd Susceptibility due to

Electron-Induced Interaction χq(t, t
′)

Using Eqs. (2.70) and (2.80), the retarded susceptibility χq(t, t
′) of Eq. (2.23) is read as

iχ−q(t, t
′) =

4π

V

∑
αα′γγ′

NL∗
qα (t)

{
Rqαγ(t, tD)Tqγγ′(t, t′) [Rq(t

′, tD)]
†
γ′α′

}
NL

qα′(t′), (D.1)

where Rqγγ′(t, tD) is defined as

Rqγγ′(t, tD) =
∑
β

V L
qγβ(t)e

−iΘqβ(t)V R†
qβγ′(tD). (D.2)

Hereafter, it is understood that Θqβ(t, tD) provided in Eq. (C.25) is replaced by Θqβ(t),
that is,

Θqβ(t) = Θqβ(t, tD) (D.3)

just for the sake of simplicity.
Unfortunately, without approximation, we would tackle a formidable task to solve the

non-Hermitian Fano problem of Eq. (2.58), and hence to obtain V R
q and V L

q for evaluating
Eq. (D.2). Therefore, it would be preferable to approximately substitute a Hermitian
Fano problem for Eq. (2.58), that is, Eq. (C.3) is solved. Such an approximation would
be correct within the criterion of the validity of the bosonization scheme described in Sec.
C.3. Hereafter, just for the sake of typographical simplicity, we omit a superscript ”0”
of h0

q, N
0
q , E

0
q, and E0

q , and replace these notations with non-superscript counterparts of
hq, Nq, Eq, and Eq, respectively, as far as it is not likely to cause unnecessary confusion
between them. Thus, Eq. (2.58) is read as Eq. (C.53).
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Accordingly, we substitute Vq, V
†
q , and Nq for V R

q , V L†
q , and NL

q , respectively [see
Eqs. (C.11) and (C.14)], and thus, Eq. (D.2) becomes of the approximated form:

Rqγγ′(t, tD) ≈
∑
β

Vqγβ(t)e
−iΘqβ(t)V †

qβγ′(tD). (D.4)

For the convenience of practical calculations, we evaluate

R̃qγγ′(t, tD) =
∑
β

Ṽqγβ(t)e
−iΘqβ(t)Ṽ †

qβγ′(tD), (D.5)

rather than Rq(t, tD), where Ṽq(t) is defined as

Ṽqγβ(t) =
∑
γ′

A(r)
qγγ′(t)Vqγ′β(t). (D.6)

Here, a [(N + 2)× (N + 2)]-matrix A(r) is introduced as follows:

A(r)
q =

[
1 0

0 A
(r)
q

]
, (D.7)

where A(r) is composed of two diagonal block matrices of a [N×N ]-unit block matrix with

γ, γ′ = 1 ∼ N , and a (2× 2)-block-matrix just equal to A
(r)
q related to h

(d)
q in Eq. (C.54)

with γ, γ′ = (N + 1) ∼ (N + 2). A
(r)
q is defined in Eq. (C.63), which indicates the degree

of mixing between the two discrete levels of α1 and α2. The rest of off-diagonal block
matrices is nothing but rectangular matrices with null components. Thus, Eq. (D.4) is
provided by

Rqγγ′(t, tD) =
∑
γ′′γ′′′

A(r)†
qγγ′′(t)R̃qγ′′γ′′′(t, tD)A(r)

qγ′′′γ′(tD). (D.8)

An explicit expression of R̃qγγ′(t, tD) with γ = α, which is derived in Sec. D.4, is
provided by

Rqαγ′(t, tD) =
∑
β

A(r)†
qαβ(t) exp

[
−i

∫ t

tD

Eqβ(t′′)dt′′
]
e−Zqβ(t,tD)A(r)

qβγ′(tD)

+
∑
p=1,2

A(r)†
qααp

(t) exp

[
−i

∫ t

tD

E (r)
qαp

(t′′)dt′′
]
exp

[
−
∫ t

tD

Γqαp(t
′′)

2
dt′′
]

×e−Zqβp (t,tD)Dqαp(t, tD)A
(r)
qαpγ′(tD). (D.9)

Here, E (r)
qαp represents resonance energy of state αp (αp = α1, α2), provided by

E (r)
qαp

(t) = Eqβp(t), (D.10)

and Γqαp represents natural resonance width (full width at half maximum) of state αp,
provided by

Γqαp(t) = 2πρqβp(t)|z̃qβpαp(t)|2, (D.11)

where
z̃qβµ =

∑
µ′

zqβµ′A
(r)
qµ′µ = MqβA

(r)
qα2µ

. (D.12)
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Further, we introduce a new index βp, which implies the index of continuum β with

Eqβ ≈ Eqαp . By solving Eq. (C.12), we obtain the adiabatic energy E (r)
qα2(t) of Si, and

Fig. D.1 shows its energy curve as a function time. It is seen that the adiabatic energy
varies within a couple of meV. We obtain the similar result for GaAs, though not shown
here.

62.4

62.8

63.2

63.6

64.0

64.4

10 20 30 40 50 60 70 80 90 100

ε
  

  
(t

)
q

α
2

(r
)

t  [fs]

[m
eV

] Si

Figure D.1: A trace of adiabatic energy E (r)
qα2(t) (in the unit of meV) as a function of time

t (in the unit of fs).

In Eq. (D.11), ρqβp(t) represents a density of state of βp at time t, and we obtain an ap-
proximate expression of ρqβp(t) in terms of Eq. (C.15). It is noted that the contribution of
the non-adiabatic correction is incorporated in Zqβ(t, tD) of Eq. (C.17), that is, Iqβ(t, tD)
of Eq. (C.18). This is a complex number in general, and is approximately provided by

Iqβ(t, tD) ≈
∑
j

I
(j)
qββ θ(t− tj)θ(tj − tD), (D.13)

due to Eq. (2.67). In particular, the imaginary part of it as
∑
j

ImI
(j)
qββ θ(t− tj)θ(tj − tD)

plays a significant role of determining the spectral profiles attributed to the transient FR,
as shown in Sec. 3.1.2. In addition, γ

(0)
qβ2

(t′) in Zqβ2(t, tD) is considered as negligibly small,
that is,

γ
(0)
qβ2

(t′) ≈ 0, (D.14)

since Vqαβ2 ≈ 0 because of α ̸= α2; a discrete-like FR-feature is mostly determined by the
component Vqα2β2 ≈ 1.

Moreover, in Eq.(D.9), Dqαp(t, tD) is provided by

Dqαp(t, tD) =
πρ0qβp

Γ̄qαp(t, tD)/2

{[
∆Γqαp(t; t)− iz̃qβpαp(t)

] [
∆Γqαp(t; tD) + iz̃∗qβpαp

(tD)
]

−
[
∆Γqαp(t; t)− πρ0qβp

|z̃qβpαp(t)|2
] [

∆Γqαp(t; tD)− πρ0qβp
|z̃qβpαp(tD)|2

]
+ (πρ0qβp

)2|z̃qβpαp(t)|2|z̃qβpαp(tD)|2
}
, (D.15)
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where

∆Γqαp(t; t
′) =

1

2
Γ̄qαp(t, tD)− πρ0qβp

|z̃qβpαp(t
′)|2, (D.16)

Γ̄qαp(t, tD) =
1

2

[
Γqαp(t) + Γqαp(tD)

]
, (D.17)

and ρ0qβp
= ρqβp(tD) [see also Eqs. (D.51) and (D.57)]. It is remarked that the first

and second terms of the right-hand side of Eq. (D.9) represent the contributions from a
background continuum and a resonance state αp, respectively. Furthermore, it is noted
that ∆Γqαp(tD; tD) = 0 at equal time, and thus, Dqαp(tD, tD) = 1 and Rqαγ(tD, tD) = δαγ,
as it should be.

As discussed in Sec. 3.1, in particular, the function Dqα2(t; tD) plays an essential role
of determining the spectral profiles of the transient FR of concern. Rqγγ′(t, tD) consists of
Dqα2(t; tD) as shown in Eq. (D.9), and Rqγγ′(t, tD) contains a meaning of time-evolution
of PQ from state γ′ at tD to state γ at t, as is shown in Eq. (D.4).

Owing to the presence of the adiabatic energy phase in Eq. (D.9), iχ−q of Eq. (D.1)
includes the following form of expression as

Sαα′(t, t′) = exp

[
−i

∫ t

tD

Eα(t′′)dt′′
]
Xαα′(t, t′) exp

[
i

∫ t′

tD

E∗
α′(t′′)dt′′

]
, (D.18)

where Eα(t) represents a complex energy, if necessary, with a negative imaginary part as-
cribed to natural resonance width, and Xαα′(t, t′) represents an arbitrary matrix element;
specific forms of Eα(t) and Xαα′(t, t′) will be provided later in Eqs. (D.25) and (D.26). We
set τ ≡ t− t′ ≥ 0, and obtain

Sαα′(t, t′) = e−iEα′ (tD)τΞαα′(t′ + τ, t′), (D.19)

where

Ξαα′(t′ + τ, t′) = Xαα′(t′ + τ, t′) exp

{
−i

∫ t′+τ

t′
[E∗

α′(t′′)− Eα′(tD)] dt
′′

}

× exp

{
−i

∫ t′+τ

tD

[Eα(t′′)− E∗
α′(t′′)] dt′′

}
. (D.20)

Further, Ξαα′(t′ + τ, t′) is approximated as

Ξαα′(t′ + τ, t′) ≈ δαα′Ξα(t
′ + τ, t′), (D.21)

where

Ξα(t
′ + τ, t′) = Xαα(t

′ + τ, t′) exp

{
−i

∫ t′+τ

t′
[E∗

α(t
′′)− Eα(tD)] dt′′

}

× exp

{
−2

∫ t′+τ

tD

ImEα(t′′)dt′′
}
. (D.22)

This approximation would be verified for relatively large t satisfying the condition that∣∣∣∣∣
∫ t′+τ

tD

Re [Eα(t′′)− E∗
α′(t′′)] dt′′

∣∣∣∣∣≫ 2π, (D.23)
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because the last exponential function in the right-hand side of Eq. (D.20) oscillates rapidly
with the increase of t, and a dominant contribution originates just from ReEα(t′′) =
ReEα′(t′′).

Applying Eqs. (D.9) and (D.19) to Eq. (D.1), Eq. (2.80) ends up with

iχ−q(t
′ + τ, t′) =

4π

V
θ(τ)

[∑
β

e−iEqβτΞ
(c)
qβ(t

′ + τ, t′)

+
∑
p=1,2

e−i[E(r)
qαp−iΓqαp/2]τΞ

(r)
qβp

(t′ + τ, t′)

]
. (D.24)

Hereafter, we omit the argument of tD in Eqβ(tD), E (r)
qαp(tD), and Γqαp(tD) just for the

sake of simplicity, unless otherwise stated. Ξ
(c)
qβ(t

′ + τ, t′) and Ξ
(r)
qαp(t

′ + τ, t′) correspond

to Eq. (D.22), where Xαα(t
′ + τ, t′) is replaced by X

(c)
qββ(t

′ + τ, t′) and X
(r)
qαpαp(t

′ + τ, t′),

respectively. Further, Eα is replaced by Eqβ and E (r)
qαp−iΓqαp/2, respectively. X

(c)
qαβ(t

′+τ, t′)

and X
(r)
qαpαp(t

′ + τ, t′) are provided by

X
(c)
qββ(t

′ + τ, t′) = Nqβ(t
′ + τ)Tqββ(t

′ + τ, t′)Nqβ(t
′)e−Zqβ(t

′+τ,t′)e−2ReZqβ(t
′,tD), (D.25)

and

X(r)
qαpαp

(t′ + τ, t′) = Ñ (r)
qαp

(t′ + τ)Dqαp(t
′ + τ, tD)T̃

(r)
qαpαp

(t′ + τ, t′)

×D∗
qαp

(t′, tD)Ñ
(r)†
qαp

(t′)e−Zqβp (t
′+τ,t′)e−2ReZqβp (t

′,tD), (D.26)

respectively. Here
Ñ (r)

qαp
(t) = [Nq(t)A(r)†

q (t)]αp , (D.27)

and
T̃ (r)
q = A(r)

q (tD)TqA(r)†
q (tD). (D.28)

It is remarked that in the first term in the squared brackets of the right-hand side of
Eq. (D.24), the summation over β contains not only terms with positive energy Eqβ > 0,
but also terms with negative energy Eqβ < 0.

D.2 Derivation of a Retarded Susceptibility due to

LO-Phonon-Induced Interaction χ′
q(t, t

′)

On the other hand, as regards the retarded susceptibility of χ′
q(t

′+ τ, t′) of Eq. (2.28), the
associated retarded phonon Green function D̄′R

q (t, t′) in Eq. (2.32) is rewritten as

iD̄′R
q (t, t′) =

∑
ββ′

Vqα2β(t)
⟨[

Fqβ(t), F
†
qβ′(t

′)
]⟩

V †
qβ′α2

(t′),

= i
∑
ββ′

Vqα2β(t)G
R
qββ′(t, t′)V

†
qβ′α2

(t′)

=
∑
γγ′

Rqα2γ(t, tD)Tqγγ′(t, t′) [Rq(t
′, tD)]

†
γ′α2

, (D.29)
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where Eqs. (2.59), (2.60), and (C.35) are employed. Further, in the third equality,
Eqs. (2.70) and (D.4) are used. Similarly to Eq. (D.9), Rqα2γ(t, tD) is expressed as

Rqα2γ(t, tD) =
∑
p=1,2

A(r)†
qα2αp

(t) exp

[
−i

∫ t

tD

E (r)
qαp

(t′′)dt′′
]
exp

[
−
∫ t

tD

Γqαp(t
′′)

2
dt′′
]

×e−Zqβp (t,tD)Dqαp(t, tD)A(r)
qαpγ(tD). (D.30)

Therefore, χ′
q(t

′ + τ, t′) of Eq. (2.28) becomes

iχ′
q(t

′ + τ, t′) =
4π

V

∑
p=1,2

{
e−i[E(r)

qαp−iΓqαp/2]τΠ(r)
qαp

(t′ + τ, t′)

− ei[E
(r)
−qαp

+iΓ−qαp/2]τΠ
(r)∗
−qαp

(t′ + τ, t′)
}
, (D.31)

where

Π(r)
qαp

(t′ + τ, t′) = P (r)
qαpαp

(t′ + τ, t′) exp

{
−i

∫ t′+τ

t′

[
E∗
qβp

(t′′)− E (r)
qαp

]
dt′′

}

× exp

{∫ t′+τ

tD

Γqβp(t
′′)dt′′

}
, (D.32)

and

P (r)
qαpαp

(t′ + τ, t′) =
∣∣g′q∣∣2 A(r)†

qα2αp
(t′ + τ)Dqαp(t

′ + τ, tD)T̃
(r)
qαpαp

(t′ + τ, t′)

×D∗
qαp

(t′, tD)A
(r)
qαpα2

(t′)e−Zqβp (t
′+τ,t′)e−2ReZqβp (t

′,tD). (D.33)

D.3 Expression of χ
(t)
q (t′ + τ, t′)

According to Eqs. (D.24) and (D.31), we eventually obtain the explicit expression of the

total retarded susceptibility χ
(t)
q (t′ + τ, t′) of Eq. (2.22) as

−iχ(t)
q (t′ + τ, t′) =

4π

V

∑
β=β±

eiEqβτΞ
(c)∗
qβ (t′ + τ, t′)

+
∑
p=1,2

ei[E
(r)
qαp+iΓqαp/2]τ

[
Ξ(r)∗
qαp

(t′ + τ, t′) + Π(r)∗
qαp

(t′ + τ, t′)
]

−
∑
p=1,2

e−i[E(r)
qαp−iΓqαp/2]τΠ(r)

qαp
(t′ + τ, t′)

}
. (D.34)

Further, we take into account the following relations as: Eqβ = E−qβ, E (r)
qαp = E (r)

−qαp
,

Γqαp = Γ−qαp , and Ξ
(r)
qαp(t

′+τ, t′) = Ξ
(r)
−qαp

(t′+τ, t′), which are readily verified by consulting
Appendix B within the framework of the bosonization scheme provided in Sec. C.3 and
the small-q limit.
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D.4 Calculation of R̃qγγ′(t, tD) of Eq. (D.5)

For the calculation of R̃qγγ′(t, tD) of Eq. (D.5), we take into account the following four
cases:

R̃qαpαp′
(t, tD) =

∑
β

ν̃qαpβ(t)e
−iΘqβ(t)ν̃∗

qαp′β
(tD), (D.35)

R̃qαpβ′(t, tD) =
∑
β

ν̃qαpβ(t)e
−iΘqβ(t)η∗qβ′β(tD), (D.36)

R̃qβ′αp(t, tD) =
∑
β

ηqβ′β(t)e
−iΘqβ(t)ν̃∗

qαpβ(tD), (D.37)

and
R̃qβ′β′′(t, tD) =

∑
β

ηqβ′β(t)e
−iΘqβ(t)η∗qβ′′β(tD), (D.38)

where the matrix components of ν̃qαpβ(t) and ηqβ′β(t) in Ṽqγβ are provided by Eqs. (C.77)
and (C.78), respectively. Further, time-dependence of every term is explicitly shown, and
αp, αp′ = α1, α2.

All of the expressions of R̃qγγ′(t, tD) given above contain a common factor of Zqβ(t)Z∗
qβ(tD).

According to Eq. (C.76), [Zqβ(t)]
−2 is written as

[Zqβ(t)]
−2 = {[Eqβ(t)− ωqα1(t)][Eqβ(t)− ωqα2(t)]}

−2 Lqβ(t), (D.39)

where

Lqβ(t) = {[Eqβ(t)− ωqα1(t)][Eqβ(t)− ωqα2(t)]}
2 + [γqβα2(t)/2]

2[Eqβ(t)− ωqα1(t)]
2

+[γqβα1(t)/2]
2[Eqβ(t)− ωqα2(t)]

2 + 2[γqβα1(t)/2]
2[γqβα2(t)/2]

2

×[Eqβ(t)− ωqα1(t)]
2[Eqβ(t)− ωqα2(t)], (D.40)

with
γqβαp(t) = 2πρqβ(t)|z̃qβαp(t)|2 (D.41)

[for ρqβ(t), refer to Eq. (C.75)]. Obviously, we have four solutions, provided by Eqβ(t) =
E (±)
qβp

(t), ensuring an algebraic equation of Lqβ(t) = 0 with p = 1, 2. By assuming that an

order of [γqβαp(t)/2]/[ωqαp′ (t)− ωqαp(t)] for p ̸= p′ is negligibly small, namely,

γqβαp(t)/2

|ωqαp′ (t)− ωqαp(t)|
≈

Γqαp(t)/2

|ωqαp′ (t)− ωqαp(t)|
≪ 1, (D.42)

the solutions of E (±)
qβp

(t) are given in an approximate manner as

E (±)
qβp

(t) ≈ ωqαp(t)± iγqβαp(t)/2 ≈ ωqαp(t)± iΓqαp(t)/2. (D.43)

Here, in both of the first equality of Eq. (D.42) and the second equality of Eq. (D.43),
γqβαp(t) is evaluated in the proximity of Eqβ(t) ≈ ωqαp(t), and Γqαp(t) is substituted for
γqβαp(t), namely,

Γqαp(t) = 2πρqβp(t)|z̃qβpαp(t)|2 (D.44)
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[for βp, see below Eq. (D.12)]. Therefore, Eq. (D.40) is rewritten as

Lqβ(t) ≈
∏
p=1,2

[
Eqβ(t)− E (+)

qβp
(t)
] [

Eqβ(t)− E (−)
qβp

(t)
]
. (D.45)

Thus, in terms of L0
qβ(t) defined as

L0
qβ(t) =

∏
p=1,2

[
Eqβ(t)− ωqαp(t)

]
, (D.46)

Zqβ(t)Z∗
qβ(tD) is cast into

Zqβ(t)Z∗
qβ(tD) =

L0
qβ(t)L

0
qβ(tD)

[Lqβ(t)Lqβ(tD)]
1/2

. (D.47)

The factor of Lqβ(t)Lqβ(tD) in the denominator of Eq. (D.47) is rewritten as products of
a term

L(p,±)
qβ (t, tD) =

[
Eqβ(t)− E (±)

qβp
(t)
] [

Eqβ(tD)− E (±)
qβp

(tD)
]
, (D.48)

that is,

Lqβ(t)Lqβ(tD) =
∏

p,σ=±

L(p,σ)
qβ (t, tD), (D.49)

where a plus or minus sign corresponds to the signs in Eq. (D.48). In fact, L(p,±)
qβ (t, tD) is

reduced to the approximate form:

L(p,±)
qβ (t, tD) ≈

{
Eqβ(tD)− ωqαp(tD)∓

i

2
Γ̄qαp(t, tD)

}2

, (D.50)

and

Γ̄qαp(t, tD) =
1

2

[
Γqαp(t) + Γqαp(tD)

]
. (D.51)

For deriving Eqs. (D.49) and (D.50), the approximations of

Eqβ(t)− ωqαp(t) ≈ Eqβ(tD)− ωqαp(tD), (D.52)

and
Γqαp(t) ≈ Γqαp(tD) (D.53)

are partially employed, respectively. It is noted that these approximations would be
verified in the case of Eqβ ≈ ωqαp , that is, in the resonant condition of β ≈ βp. Using
Eq. (D.50), the denominator of Eq. (D.47) becomes

[Lqβ(t)Lqβ(tD)]
1/2 =

∏
p

{[
Eqβ(tD)− ωqαp(tD)

]2
+
[
Γ̄qαp(t, tD)/2

]2}
. (D.54)

This indicates that an integrand of R̃qγγ′(t, tD) in Eqs. (D.35)-(D.38) as a function of
Eqβ(tD) contains two first-order poles at

Eqβ(tD) = ωqαp(tD)−
i

2
Γ̄qαp(t, tD) (D.55)
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in the lower-half complex-Eqβ(tD)-plane with p = 1, 2.
To begin with an evaluation of Eq. (D.35), by using Eq. (C.77), R̃qαpαp′

(t, tD) is recast
into

R̃qαpαp′ (t, tD) =
∑
β

z̃∗qβαp
(t)z̃qβαp′ (tD)e

−iΘqβ(t)Zqβ(t)Z∗
qβ(tD)[

Eqβ(t)− ωqαp(t)
] [

Eqβ(tD)− ωqαp′ (tD)
]

=

∮
lower

dEqβ(tD)ρ0qβ

×
z̃∗qβαp

(t)z̃qβαp′
(tD)e

−iΘqβ(t)Zqβ(t)Z∗
qβ(tD)[

Eqβ(t)− ωqαp(t)
] [

Eqβ(tD)− ωqαp′ (tD)
] . (D.56)

Here, in the second equality, we replace the summation over β with an integral over
Eqβ(tD) in view of Eq. (C.75). Further, a density of state, ρ0qβ, at time tD is represented
as

ρ0qβ = ρqβ(tD). (D.57)

Moreover, this is rewritten as a contour integral with respect to a complex variable of
Eqβ(tD). The contour is along a semicircle with an infinite radius in a lower-half plane
including a real axis, and this choice of the path is ensured by existence of a vanishing
exponential function of exp [−iΘqβ(t)] along the lower-half plane. This would be verified
by rewriting the adiabatic energy phase Θqβ(t) of Eqs. (C.25) and (D.3) as

Θqβ(t) ≈ Eqβ(tD)(t− tD) +

∫ t

tD

dt′
[
Eqβp(t

′)− Eqβp(tD)
]
− iZqβp(t, tD), (D.58)

where Zqβ(t, tD) is provided by Eq. (C.17), and β is approximately replaced by βp in the
second and third terms of Eq. (D.58). Therefore, the evaluation of Eq. (D.56) results in
calculus of residues at the poles provided by Eq. (D.55); it is noted that spurious poles
emerging in a denominator of the integrand of Eq. (D.56) are exactly canceled with a factor
of L0

qβ(t)L
0
qβ(tD) in Zqβ(t)Z∗

qβ(tD), as shown in Eq. (D.47). The resulting expression is
represented as follows:

R̃qαpαp′ (t, tD) ≈ δαpαp′ exp

{
−i

∫ t

tD

[
E (r)
qαp

(t′′)− i
Γqαp(t

′′)

2

]
dt′′
}

×e−Zqβp (t,tD)
πρ0qβp

Γ̄qαp(t, tD)/2
z̃qβpαp(t)z̃

†
qβpαp

(tD), (D.59)

where E (r)
qαp(t

′′) is substituted for Eqβp(t
′′). It is evident that this expression is just consis-

tent with the identity relation provided by

R̃qαpαp′
(tD, tD) = δαpαp′

(D.60)

owing to Zqβp(tD, tD) = 1, where this arises from an equal-time commutation relation of
Eq. (C.68). In fact, such compatibility is realized by virtue of neglecting additional terms
emerging on the way of reduction of Eq. (D.56), on the basis of the approximations made
in Eqs. (D.42) and Eq. (D.50).

We employ the similar reduction procedures to that of Eq. (D.35) in order to evaluate
Eqs. (D.36)-(D.38). Thus, below, we remark just the points of difference between the ways
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of calculations of the former equation and the latter three ones without describing details
of derivations. As regards Eq. (D.36), ηqβ′β is composed of two terms including δβ′β and
a Cauchy’s principle value, as seen in Eq. (C.78). For the reason to be mentioned right
below, we evaluate an expression of the form,

∑
β′ R̃qαpβ′(t, tD)Cβ′ , rather than Eq. (D.36),

where Cβ′ represents an auxiliary regular-function of Eqβ′ . One part of this expression
with δβ′β is straightforward evaluated in the similar way as done for Eq. (D.35). On the
other hand, the other part of it contains the Cauchy’s principle value of an integral over
Eqβ. For evaluating this contour integral, the path of integral is to be modified from that
taken in Eq. (D.35) so as to avoid a singular point of Eqβ = Eqβ′ . The equation resulting
from this integration is cast into the form of another integral over Eqβ′ . That is the reason
why the auxiliary function Cβ′ is introduced in advance. We implement the integration
by means of calculus of residues, and obtain the expression as follows:

R̃qαpβ′(t, tD) ≈ δβpβ′ exp

{
−i

∫ t

tD

[
E (r)
qαp

(t′′)− i
Γqαp(t

′′)

2

]
dt′′
}

×(−i)e−Zqβp (t,tD)πρ0qβp

[
1−

πρ0qβp
|z̃qβpαp(tD)|2

Γ̄qαp(t, tD)/2

]
z̃qβpαp(t). (D.61)

Similarly, Eq. (D.37) becomes

R̃qβ′αp
(t, tD) ≈ δβ′βp exp

{
−i

∫ t

tD

[
E (r)
qαp

(t′′)− i
Γqαp(t

′′)

2

]
dt′′
}

×(+i)e−Zqβp (t,tD)πρ0qβp

[
1−

πρ0qβp
|z̃qβpαp(t)|2

Γ̄qαp(t, tD)/2

]
z̃∗qβpαp

(tD). (D.62)

It is evident that this expression is just consistent with the identity relation provided by

R̃qαpβ(tD, tD) = 0, R̃qβαp(tD, tD) = 0, (D.63)

where these are attributed to equal-time commutation relations of Eq. (C.69).
Finally, for evaluation of Eq. (D.38), this is more complicated than the others of

Eqs. (D.35)-(D.37), since a dual integral of Cauchy’s principle values is included ascribed
to the presence of the first term in parentheses of Eq. (C.78). For the same reason as
the introduction of an auxiliary function to R̃qβαp(t, tD) in advance, we introduce aux-
iliary regular-functions of Eqβ′ and Eqβ′′ , namely, Cβ′ and C ′

β′′ , respectively, and calcu-

late
∑

β′β′′ Cβ′R̃qβ′β′′(t, tD)C
′
β′′ in place of Eq. (D.38). Because of Poincaré’s theorem of

Eq. (C.74), the product of Cauchy’s principle values is split into a sum of two Cauchy’s
principle values and delta-functions, which makes the resulting contour integrals feasible.
We conduct lengthy but elementary calculations, and obtain the following final expression
of Eq. (D.38) as:

R̃qβ′β′′(t, tD) ≈ δβ′β′′ exp

{
−i

∫ t

tD

Eqβ′(t′′)dt′′
}
e−Zqβ′ (t,tD)

+
∑
p

δβ′βpδβ′′βp exp

{
−i

∫ t

tD

[
E (r)
qαp

(t′′)− i
Γqαp(t

′′)

2

]
dt′′
}

×e−Zqβp (t,tD)(πρ0qβp
)2
[
|z̃qβpαp(t)|2 + |z̃qβpαp(tD)|2

−
2πρ0qβp

|z̃qβpαp(t)|2|z̃qβpαp(tD)|2

Γ̄qαp(t, tD)/2

]
. (D.64)
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It is evident that this expression is just consistent with the identity relation provided by

R̃qβ′β′′(tD, tD) = δβ′β′′ , (D.65)

where this is attributed to equal-time commutation relation of Eq. (C.70).
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Appendix E

The Phase-Transformation
Invariance of the Present Study

In a biorthogonal set of eigenvectors {UL
qα(t), U

R
qα(t)} provided in Eqs. (2.33) and (2.34),

the normalization constants NL
qα(t) and NR

qα(t) are not determined up to overall phase

factors. Here, owing to such arbitrariness, the set of {ŨL
qα(t), Ũ

R
qα(t)} are also solutions,

given as
ŨL†
qα(t) = e−iηqα(t)UL†

qα(t) (E.1)

and
ŨR
qα(t) = eiηqα(t)UR

qα(t) (E.2)

under the normalization condition that ŨL†
qα(t)Ũ

R
qα(t) = UL†

qα(t)U
R
qα(t) = 1. Here, ηqα(t)

represents an arbitrary real function of time. Because the operators B†
qα and Bqα are

defined as B†
qα = Ā†

qU
R
qα and Bqα = UR†

qα Āq, respectively, as shown in Eqs. (2.38) and
(2.39), these are transformed as

B†
qα(t) → B̃†

qα(t) = B†
qα(t)e

iηqα(t) (E.3)

and
Bqα(t) → B̃qα(t) = Bqα(t)e

−iηqα(t), (E.4)

respectively. It is understood that such a transformation corresponds to the (temporally
local) gauge transformation with respect to the operators B†

qα and Bqα.
It is readily confirmed that a set of equations of motion provided by Eqs. (2.54) and

(2.55) remains unchanged under the transformation of Eqs. (E.3) and (E.4), since Mqα,
M ′′

−qα, M
′∗
qα, and Wqα′α given by Eqs. (2.46), (2.49), (2.50), and (2.41), respectively are

transformed as follows:

Mqα(t) → M̃qα(t) = e−iηqα(t)Mqα(t), (E.5)

M ′′
−qα(t) → M̃ ′′

−qα(t) = eiηqα(t)M ′′
−qα(t), (E.6)

M ′∗
qα(t) → M̃ ′∗

qα(t) = eiηqα(t)M ′∗
qα(t), (E.7)

and

Wqα′α → W̃qα′α = e−i[ηqα′ (t)−ηqα(t)]Wqα′α − i
dηqα(t)

dt
δα′α, (E.8)

respectively.
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On the other hand, the matrix hq = {hqγγ′} provided by Eq. (2.57) with {γ} =
({α}, α2) and {γ′} = ({α′}, α′

2) is transformed into

hq(t) → h̃q(t) ≡ Pq(t)hq(t)P†
q(t)

=

[
Eq(t) M̃q

M̃ ′†
q ωq

]
, (E.9)

where Pq represents a diagonal matrix defined as

Pqγγ′(t) = e−i[ηqα(t)+ηqα2 (t)]δγγ′δγα + e−iηqα2δγγ′δγα2 . (E.10)

ηqα2(t) is an arbitrary real function of t. The matrix equation provided by Eq. (2.58) is
transformed into ∑

γ′

h̃qγγ′Ṽ R
qγ′β = Ṽ R

qγβEqβ, (E.11)

and thus, we obtain the relations of

Ṽ R
q (t) = Pq(t)V

R
q (t), Ṽ L†

q (t) = V L†
q (t)P†

q(t). (E.12)

Here, V L†
q and Ṽ L†

q represent the left vectors associated with the right vectors V R
q and

Ṽ R
q , respectively, ensuring the normalization conditions V L†

q V R
q = Ṽ L†

q Ṽ R
q = 1. Given

Eqs. (E.3) and (E.12), the PQ operators are simply transformed into

F †
qβ(t) → F̃ †

qβ(t) = F †
qβ(t)e

−iηqα2(t) (E.13)

and
Fqβ(t) → F̃qβ(t) = Fqβ(t)e

iηqα2 (t). (E.14)

Thus, the retarded Green function provided by Eq. (2.69) is transformed such that

GR
qββ′(t, t′) → G̃R

qββ′(t, t′) = GR
qββ′(t, t′)ei[ηqα2 (t)−ηqα2 (t

′)]. (E.15)

Below, we show that the total retarded longitudinal susceptibility χ
(t)
q (t, t′) provided

by Eq. (2.22) is unaltered under the phase transformation of concern. This is given by a
sum of the retarded susceptibility attributed to the electron-induced interaction χq(t, t

′)
and that of the LO phonon-induced interaction χ′

q(t, t
′). Further, these are composed

of the correlation functions DR
q (t, t

′) and D̄′R
q (t, t′) provided by Eqs. (2.80) and (2.81),

respectively. Therefore, in view of Eq. (E.1), (E.2), (E.12), and (E.15), it is readily
verified that these are unchanged under the phase transformation.

In conclusion, the theory developed in the dissertation remains invariant under the
phase transformation, as it should be, and physical quantities related to χ

(t)
q (t, t′) are

independent of the selection of the phases of ηqα(t) and ηqα2(t).
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Appendix F

Eigenvalue Problem of Z̄q in
Eq. (2.100)

Owing to a relatively sparse form of the matrix Z̄q of Eq. (2.100), we obtain analytical
expressions of transcendental equation for determining the eigenvalues and the associated
eigenvectors. The transcendental equation to be solved for the eigenvalues is expressed
as follows:

(ω̃qpl − Eq)
∏
j ̸=pl

(ω̃qj − Eq)−
∑
j ̸=pl

MqjM
′
qj

∏
j′ ̸=j,pl

(ω̃qj′ − Eq) = 0, (F.1)

where ω̃qj is provided by ω̃qpl = ωqpl − iWqpl + iγqpl, ω̃qph = ωq + iγqph, and ω̃q(kbb̄) =

ω̄bb̄kq + iγbb̄kq, respectively. Further, M ′
qph = M∗

qph and M
(′)
q(kbb̄)

= M
(′)
q (kbb̄). Equation

(F.1) is cast into the form of

Eqj = ω̃qj −
ω̃qj − Eqj

ω̃qpl − Eqj

∑
j′ ̸=pl

Mqj′M
′
qj′

ω̃qj′ − Eqj

. (F.2)

Here, Mq(kbb̄) of Eq. (2.92) and M ′
q(kbb̄) of Eq. (2.93) are expressed in the small q-limit

as

Mq(kbb̄) = −|q|N L
q V

(C)
q

[
Ω̄

(R)

b̄bk
(t)

ωqpl

(q̂ ·∇) (ρ̄bbk − ρ̄b̄b̄k) + (q̂ ·∇)ρ̄bb̄k

]
(F.3)

and

M ′
q(kbb̄) = |q|NR

q V (C)
q

Ω̄
(R)

bb̄k
(t)

ω2
qpl

(q̂ ·∇∆ε
(r)
k ), (F.4)
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respectively. ∆ε
(r)
k is provided by Eq. (B.57). Further, the summation with respect to

j′ = {(kbb̄)} in the second term of the right-hand side of Eq. (F.2) is expressed as

∑
kb

Mq(kbb̄)M
′
q(kbb̄)

ω̃bb̄kq − Eqj

= −q2
N L

q NR
q V

(C)2

q

ω2
qpl

∑
k

×

[
(q̂ ·∇ρ̄cck)(q̂ ·∇∆ε

(r)
k )

|Ω̄(R)
cvk(t)|2

ωqpl

(
1

ω̃cvkq − Eqj

+
1

ω̃vckq − Eqj

)

−(q̂ ·∇ρ̄vvk)(q̂ ·∇∆ε
(r)
k )

|Ω̄(R)
cvk(t)|2

ωqpl

(
1

ω̃cvkq − Eqj

+
1

ω̃vckq − Eqj

)
+(q̂ ·∇ρ̄cvk)(q̂ ·∇∆ε

(r)
k )

Ω̄
(R)
cvk(t)

ω̃cvkq − Eqj

−(q̂ ·∇ρ̄vck)(q̂ ·∇∆ε
(r)
k )

Ω̄
(R)
vck(t)

ω̃vckq − Eqj

]
. (F.5)

The left and right eigenvectors are provided by

VL†
qj = N̄ L

qjv
L†
qj , VR

qj = N̄R
qjv

R
qj. (F.6)

N̄ L
qj and N̄R

qj are normalization constants of the left and right eigenvectors, respectively.

Hereafter, a matrix index l = {ph, (kbb̄)} is employed, and thus, vL†qj is determined by the
following equations as

(ω̃ql − Eqj)v
L†
ql,j +Mqlv

L†
qpl,j = 0 (F.7)

and ∑
l

M ′
qlv

L†
ql,j + (ω̃qpl − Eqj)v

L†
qplj = 0. (F.8)

On the other hand, vRqj are determined by the following equations as

(ω̃ql − Eqj)v
R
ql,j +M ′

qlv
R
qpl,j = 0 (F.9)

and ∑
l

Mqlv
R
ql,j + (ω̃qpl − Eqj)v

R
qpl,j = 0. (F.10)

In particular, for the analysis of the initial phase of an undoped semiconductor, we
are concerned with the normalization constants just for j = ph. In the case that vL†qph,ph

and vRqph,ph are set to 1, other components of the eigenvectors are provided by

vL†qpl,ph =
Eqph − ω̃qph

Mqph

, vL†ql,ph =
Mql(Eqph − ω̃qph)

Mqph(Eqph − ω̃ql)
(F.11)

and

vRqpl,ph =
Eqph − ω̃qph

M ′
qph

, vRql,ph =
M ′

ql(Eqph − ω̃qph)

Mqph(Eqph − ω̃ql)
. (F.12)

The normalization constants are determined by the normalization condition of VL†
qphVR

qph =
1, which is cast into the form of(

N̄L
qphN̄

R
qph

)−1
= 1 +

(Eqph − ω̃qph)
2

|Mqph|2
+

(Eqph − ω̃qph)
2

|Mqph|2
∑
kb

Mq(kbb̄)M
′
q(kbb̄)

(Eqph − ω̃bb̄kq)
2
, (F.13)
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where the summation in the third term of the right hand side of Eq. (F.13) becomes the
similar expression to Eq. (F.5).

94



Bibliography

[1] K. Yamanouchi, S. Cundiff, R. de Vivie-Riedle, M. Kuwata-Gonokami, and L. Di-
Mauro (Editors), Ultrafast Phenomena XIX: Proceedings of the 19th International
Conference, Springer Proceedings in Physics 162, (Springer-Verlag, Berlin, 2015).

[2] T. Dekorsy, G. C. Cho, and H. Kurz, “Coherent phonons in condensed me-
dia,” in Light Scattering in Solids VIII: Fullerens, Semiconductor Surfaces, Co-
herent Phonons, Topics in Applied Physics Vol. 76, edited by M. Cardona and
G. Güntherodt (Springer-Verlag, Berlin, 2000) Chap. 4.

[3] A. V. Kuznetsov and C. J. Stanton, “Theory of coherent phonon oscillations in bulk
GaAs,” in Ultrafast Phenomena in Semiconductors, edited by K. T. Tsen (Springer-
Verlag, Berlin, 2001) Chap. 7.
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