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Abstract

This thesis explores robot programming from the perspective of end-users. It
takes under consideration not just the development of robot software, but also
how the robot is operated. It is based on research in the fields of robotics, soft-
ware engineering and human computer interaction. By combining these fields I
hope to make a significant contribution to how humans interact with robots in the
future.

Whereas in the past robots have been confined to factory environments, re-
cently affordable robots such as NAO from Softbank Robotics and OP2 from ROBO-
TIS have become available for use in personal environments. These robots can be
programmed to do various tasks desired by the user, such as performing demon-
strations, communicating information retrieved from the Internet and interacting
with objects in the environment. Even so, currently robots are not as ubiquitous
in our environments as one might expect them to be.

Robots are deployed into an environment that they interact with through sens-
ing and actuation. The robot senses for stimuli and actuates a response after pro-
cessing the stimuli. The components of the robot that sense for stimuli are called
sensors, and the components that actuate a response are called actuators. Sensors
and actuators are physical components embedded inside of the robot.

To connect sensors and actuators, some processing is necessary. Because the
robots that we consider in this thesis are of general purpose, the processing has
to be reconfigurable, or programmable, using software. Hence the sensors and
actuators of the robot have to be exposed within a software platform, and some
means of programming has to be offered to reconfigure the processing done by
the robot.

An example of a field in which such a platform might be used is Socially Assis-
tive Robotics (SAR). In SAR, robots use their sensors and actuators to exhibit be-
haviors that model human social behaviors. Researchers hypothesize that using
a robot in this way allows them to have great precision in teaching certain social
behaviors [87]. Children also tend to react favorably to the toy-like appearance of
the robot platforms considered in this thesis. Hence, therapists are interested in
using robots as a therapeuthic instrument.

Currently a SAR experiment requires the following participating roles: A de-
veloper (either a person or a group of people), an operator (typically a single per-
son) and a user (the therapist). Before the experiment, the therapist will com-
municate with the developer to design software that the therapist can use in the
experiment. During the experiment itself there is also an operator present who
controls the robot through the software written by the developer.

The need for communication between these three roles creates a long lead time
before experiments can be performed. Details can get lost during communication,
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which can cause bugs in the software. Ideally, the therapist would be able to de-
velop and operate the robot software with minimal support from other people
and groups. The therapist should in this case take on the roles of developer and
operator.

Robot programming is however notoriously complex. Robots are distributed
embedded systems operating in physical environments. Writing software for robots
requires knowledge of physics, concurrency, computational constraints, how to
deal with dynamic environments and how to ensure safety of both the user and
the robot.

In Software Engineering, the problem of interaction between development and
operations has recently gathered a lot of interest both in academic and in profes-
sional circles. Many organizations have adopted an approach called DevOps to try
to improve the interaction between development and operations. DevOps is for-
mally defined as a set of practices that tries to reduce the time required for changes
in a system to evolve from development to operations, without negatively affect-
ing quality [11]. In practice however organizations define DevOps as simply the
interaction between development and operations [42].

In this research I aim to create a programming environment that allows end-
users to develop and operate applications in Socially Assistive Robotics experi-
ments. To that end I will answer the following research questions:

• What applications are used in SAR experiments?

• What other approaches exist to develop and operate robots?

• What are the components of the programming environment?

• How effective is the programming environment?

• How can the programming environment be used in different contexts?

To answer the question of what applications are used in SAR experiments, I
performed a systematic literature review. Our search returned 24 papers, from
which 16 were included for closer analysis. To do this analysis I used a conceptual
framework inspired by Behavior-based Robotics. I was interested in finding out
which robot was used (most use the robot NAO), what the goals of the applica-
tion were (teaching, assisting, playing, instructing), how the robot was controlled
(manually in most of the experiments), what kind of behaviors the robot exhibited
(reacting to touch, pointing at body parts, singing a song, dancing, among others),
what kind of actuators the robot used (always motors, sometimes speakers, hardly
ever any other type of actuator) and what kind of sensors the robot used (in many
studies the robot did not use any sensors at all, in others the robot frequently used
camera and/or microphone). The results of this study can be used for designing
software frameworks targeting Humanoid Socially Assistive Robotics.

Existing platforms exist that allow robots to be programmed. Major exam-
ples of this are the Robot Operating System (ROS), Choregraphe and Targets-
Drives-Means (TDM). ROS is aimed towards robotics researchers and not end-
users. Choregraphe is not explicitly aimed towards end-users, but aims to be a
beginner friendly programming environment. TDM is aimed towards end-users,
and a user-friendly programming interface for TDM has been developed for the
Android smartphone operating system.
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In ROS an application consists of nodes that are connected to other nodes
through topics. Nodes can subscribe to topics, after which they will get notified
when a node publishes to this topic. The structure created through this mecha-
nism can be described as a graph in which the nodes and topics are vertices con-
nected by edges signalling publishing and subscribing.

In Choregraphe an application consists of boxes that are connected to other
boxes through ports. Boxes can have ports to start and stop the box, as well as
data input and output ports. Boxes act like small machines that accept inputs, can
do some processing and can produce output. Custom boxes can be build, but, as
is shown in this thesis, even expert users of Choregraphe encounter difficulty in
that task. It is especially hard to create boxes that combine different types of data.

Target-Drives-Means is a robot software architecture focused on end-user de-
velopment, and it is based on the behavior-based robotics paradigm [7]. In TDM
a program is a collection of behaviors. A behavior is a collection of action groups.
A complex behaviour is a behavior that includes other behaviors. For complex be-
haviors the action groups of the included behaviors are joined to form the action
groups of the complex behavior. An action group is a collection of action units.
An action unit is composed of an action and a condition.

Platforms such as ROS, Choregraphe and TDM need facilities that go beyond
connecting nodes (ROS), boxes (Choregraphe) or actions/conditions (TDM) in or-
der to make them powerful enough for an end-user to develop new applications
with. Users need to be able to develop custom nodes (ROS), boxes (Choregraphe)
and actions/conditions (TDM). Currently the users can use the following for do-
ing this:

• ROS: Developing nodes using supported programming languages such as
C++ and Python.

• Choregraphe: Developing boxes using Python, subgraphs and specialized
builders for movement and dialog.

• TDM: Developing actions and conditions using Python.

Both ROS and TDM require the user to have a good knowledge of program-
ming to be a proficient user of the platforms. Choregraphe has more powerful
facilities for end-users, however if a user wants to create behaviors, outside of
movement and dialog, some experience of programming is necessary. I believe
that an easier method for end-users to develop applications for robots exists. In
this thesis I will present this and compare it with Choregraphe to show that this
new method is indeed beneficial.

I call this new method Reactive Robot Programming (RRP). It is based on re-
cent developments in software engineering, were programming languages are be-
ing extended with the capability to process streams of data [71]. Low level robot
behaviors can be separated into three tasks: Sensing, Computation/Planning and
Acting [7]. In RRP sensors and actuators can be connected using connectors and
intermediary streams. The combination of sensors, streams, actuators and their
connectors forms a graphical structure that I call the RRP Graph.

RRP is more usable than other solutions thanks to the following mechanisms:

• Streams are a natural way of reasoning about events happening in the real
world.
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• Seperating sensing, planning and acting makes it easy to reason about an
RRP Graph.

• Having a small set of connectors to learn makes it easy to get started with
using RRP.

• People are naturally visually oriented, a visual notation leverages this innate
ability.

An important aspect of the RRP Graph is the usage of procedural parameters.
In the RRP Graph, most connectors accept a procedure as a parameter. Practically,
the connector in this case specifies what should be done, while the procedural pa-
rameter specifies how to do it. The following connectors are currently supported:

map Uses a procedural parameter to map inputs to outputs. Useful for exam-
ple for doing a calculation on the input (e.g. a coordinate transform or dis-
tance calculation) or selecting a specific value from a structure (e.g. taking
the value from a field of an object or looking up an index in an area).

filter Uses a procedural parameter to filter inputs that do not match a certain
predicate. Useful for implementing range filters (e.g. filtering objects that
are close or far) and category filters (e.g. filtering objects that have been seen
before or are new; filtering faces that have been recognized or have not been
recognized).

timestamp Adds a timestamp to the inputs. Useful for reasoning based on time
(e.g. when combining two streams, ensure a maximum time difference be-
tween two events).

sample Samples an input at a certain rate. Useful for reducing unneeded compu-
tation and avoiding overloading an actuator.

combineLatest Uses a procedural parameter to combine inputs from multiple
streams. Useful for sensor fusion.

merge Merges inputs from multiple streams. Useful when multiple streams pro-
duce the same type of output (e.g. when having redundant sensors such as
two sonar sensors).

An interpreter called the RRP Runtime can read the RRP Graph and based on it
initialize the sensors and actuators on the robot. The RRP Runtime will also ensure
that data will flow from sensors to actuators through connectors as specified by
the RRP Graph. As part of this the RRP Runtime removes the need for the user
to take into consideration concurrency inside the software domain, however the
user still has to consider concurrency in the physical domain (i.e. conflicts arising
because certain sensors and actuators cannot be active at the same time due to
logical constraints, for example an arm can only be in one position at the same
time).

A Visual Programming Environment (VPE) enables the specification of pro-
grams using the RRP Graph by end-users. Procedural parameters can either be
specified directly as a body of connectors, or can be stored as a helper in which
case they can be reused by multiple connectors. The VPE is implemented as a web

iv



application to allow it to be used by multiple devices without needing seperate na-
tive applications. The VPE is a Single Page Application (SPA) and hence does not
require reloading the page at any time during its usage. This is realized by using
Web Sockets that maintain a client-server connection while the VPE is being used.
Additionally the VPE has support for multiple users interacting simultaneously.

The VPE uses a graph database for storing the applications created by users.
A graph database naturally supports the structure of the RRP Graph. Inside the
graph sensors, actuators and streams are stored as nodes, while simple connec-
tors are stored as edges. Connectors are considered simple if they connect a single
input stream to a single output stream and either do not take a procedural param-
eter or define the procedural parameter directly as a body of the connector (i.e.
they do not use a helper). In the other cases the connector will be stored as a node
instead.

The VPE and the Runtime make use of various layers of abstractions to make
it easier to add support for different databases (currently only the Neo4j graph
database is supported, but support for XML files would be a valuable addition),
robots (currently only Softbank NAO is supported) and even execution models
(for example using either multithreading, multiprocessing or even grid comput-
ing) in the future.

Validation of the programming environment is done through various case stud-
ies and by performing a user study. In the case studies I show how the RRP Graphs
can be used to construct various useful behaviours for a robot. In one such appli-
cation the robot changes its tracking behavior of an object based on the distance
to the object. I then show that this behavior can be ran on a robot [40]. Each case
study is not only designed as RRP Graph but also implemented using the VPE. In
the user study I show that end-users, people with little programming experience,
can use the VPE to easily explain, debug and create behaviours. I also show that
based on the time tasks took to complete in our VPE and a state of the art com-
mercial platform (Choregraphe), our VPE is competitive with Choregraphe in the
explanation and debugging task and exceeds the capabilities of Choregraphe in
the creation task [44]. Based on self evaluation by the participants using NASA-
TLX, our VPE and Choregraphe are competitive for the explanation and debug-
ging tasks, while our VPE again exceeds the capabilities of Choregraphe in the
creation task.
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Chapter 1

Introduction

The idea that one day man made creatures would roam the world has existed for
thousands of years. For example, in Greek mythology an automaton called Talos
(or Talon) which was made of bronze was said to protect the island of Crete. In the
18th century automata such as the duck of Vaucanson entertained the people of
Europe. Humankind has been able to see various advances in the field of robots, a
term that was coined in a 1920 Czech science fiction play called “Rossum’s Univer-
sal Robots”. These days much of our quality of life is provided by goods produced
by industrial robots. The effectiveness of robots would not have been achiev-
able however without developments in another technological field, namely that
of computers.

In the 19th century Babbage created early computers such as the difference en-
gine, which was a large industrial device able to compute polynomial functions.
In the 20th century Alonzo Church invented the lambda calculus for specifying
computation. A few years later Church’s student Alan Turing came up with a
mathematical model of computation defining an abstract machine, referred to as
a Turing machine. It was later proven that the lambda calculus of Church and
Turing machines both had the same computional abilities, forming the Church-
Turing thesis. Von Neumann was able to create a practical computer architecture
based on the theoretical concepts of a Turing machine (which because of its in-
clusion of an infinite tape is not a machine that can practically be build). Today,
the architecture of virtually every PC is based on the ideas of von Neumann. The
ideas of Church were further developed by John McCarthy, who implemented a
language based on the lambda calculus, called LISP (short for LISt Processing).
McCarthy is also considered one of the grandfathers of the field of Artificial In-
telligence, which seeks to embed intelligence into man-made artifacts.

Robots are commonly found in factories, however in our daily lifes we do
not often encounter robots yet. Recently various affordable robot platforms have
become available, such as the canine-shaped robot AIBO from Sony, humanoid
shaped robots such as NAO and Pepper from Softbank and OP2 from Robotis.
These robots are social robots, i.e. they are designed to interact with people. So-
cial robots can be contrasted with industrial robots that typically operate in an
environment away from people, to whom the robots could perform harm. So-
cial robots are useful for supplementing the activities of professionals in various
fields, such as customer service, therapy and elderly care. This thesis specifically
focuses on applications within the field of Socially Assistive Robotics.
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CHAPTER 1. INTRODUCTION

Figure 1.1: A schematic representation of the preparation and performance of an
experiment in the field of Socially Assistive Robotics.

Even though social robots seem applicable for various fields, in practice they
are only rarely encountered. One of the problems of social robotics is that soft-
ware is necessary to make a robot do a useful task. Social robots however need
to operate in complex environments that are both dynamic and inherintly con-
current. Dynamic refers to the environment constantly changing, e.g. objects can
enter the environment freely, can mutate within the environment (e.g. changing
pose) and can exit the environment at any time. Concurrent means that this dy-
namicity applies to multiple objects of different types. The software running on
the robot needs to react intelligently to the stimuli being generated by the objects
within the environment. This is challenging to realize for both novice and expe-
rienced programmers.

If social robots are to flourish, a simple approach has to be developed that hides
the complexity posed by the environments in which users want to apply the robot.

This section introduces the reader to the application area of this research, the
objectives of this research and the methodology for performing the research.

1.1 Socially Assistive Robotics
In recent years researchers have used robots with the purpose of socially assisting
people. Such applications are reviewed in Chapter 2. One major contribution in
this field was made by researchers of University of Hertfordshire in the United
Kingdom. In a study they show that children are more likely to react favorably to
a robotic actor than a regular person [87].

Figure 1.1 shows how an experiment in the field of Socially Assistive Robotics
is typically performed. SAR Experiments consist of a preparation phase and an
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execution phase. There are five components which play a part in the experiment:
The robot (which consists of both hardware and software), the developer who
creates the robot, the operator who operates the robot during the experiment, the
therapist who wants to use a robot within an experiment, and the subject that will
physically interact with the robot.

During the preparation phase a therapist and a developer work together on
specifying the requirements of the robot application. These requirements include
aspects of both hardware (i.e. the robot) and software (that controls the robot).
Typically an iterative process is used in which the developer elicitates require-
ments from the therapist and constructs prototypes that attempt to fulfil these
requirements. This process can last from days to weeks to months, depending
on the type of application necessary and the availability of existing hardware and
software1.

After a prototype has been developed that matches the requirements of the
therapist, the hardware and software will be made available to the operator. An
important part of the robot is a set of instructions on how to use it2.

During the experiment the operator interacts with the therapist to determine
which behaviors the robot should exhibit. Experiments in Socially Assistive Ro-
botics use completely manual control, completely autonomous control or a mix
of both3. In the case of completely manual control an operator teleoperates the
robot. In the case of completely autonomous control the operator only needs to
configure the robot to start the right control application. The robot itself interacts
with the subject, which is observed by the therapist.

1.2 Research objectives
The main research objective is to create a reactive robot programming environment
so that end-users can develop and operate applications for Socially Assistive Robotics
(SAR) experiments with minimal support from a robot programming expert.

To be able to reach this objective, the following subobjectives were formulated:

1. To describe the current applications of Socially Assistive Robotics.

2. To describe the current approaches to develop and operate robot software.

3. To develop the reactive robot programing environment.

4. To test the effectiveness of the developed robot programming environment.

5. To describe the contexts in which the robot programming environment can
effectively be applied.

1The field of Software Product Line Engineering studies how hardware and software can be
most efficiently reused. Chapter 2 will look at this in more depth.

2The amount of documentation needed is a controversial topic in the field of Software En-
gineering. Traditional waterfall-like models of software development have often put too much
emphasis on the production of documentation. Agile software development methods emphasize
working software over documentation. Discovering how much documentation is necessary is a
complicated pursuit and is very dependent on the context in which the software will be used.

3More on this in Chapter 2.
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1.3 Methodology
This research was performed using the Design Science Methodology as described
by Wieringa [98]. Two specific techniques which were applied were Systematic
Literature Review and User Studies.

Systematic Literature Review When starting a research project on a topic in which
the researcher has little or no experience, it is wise to start with a System-
atic Literature Review. By performing a search on an academic literature
database using well defined search terms and well thought out inclusion
and exclusion criteria, a researcher can get an accurate overview of the state
of research in that field. In specific fields such as medicine it is very common
for researchers to perform SLR’s periodically and publish these in order to
make it easy for other researchers to grasp the research field. We based our
approach to performing SLRs on the explorations by Kitchenham on per-
forming SLRs in the field of Empirical Software Engineering [62].

User Studies When working on artifacts that primarily target a user and a mea-
surement of usability of the artifact is required, a user study can be per-
formed. Typically the user will be asked to perform a set of tasks and the
performance of the user is measured both quantitatively (by for example
recording the time taken to perform the task) and qualitatively (by for exam-
ple interviewing the user about his experience using the artifact). We based
our approach on performing user studies on the guidelines of performing
studies in Human-Computer Interaction as written by MacKenzie [66].
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Chapter 2

Literature Review

This chapter reviews the literature of Cognitive Robotics Architectures, Software
Engineering for Robotics, Visual Programming for Robots, Programming by Do-
main Experts/End-Users and Applications of Socially Assistive Robotics. Each
subject will be discussed in its respective section.

2.1 Cognitive Robotics Architectures
One of the goals of roboticians is to build robots that look like and behave like
humans. Researchers such as Hiroshi Ishiguro have been able to create very hu-
manlike robots. This thesis however does not specifically focus on humanlike
robots. That said, robots are required to exhibit some degree of intelligence to get
accepted as a companion by humans. It is hence interesting to look at solutions to
bestow even as little as the illusion of intelligence into a robot.

Self regulating systems are one form of intelligent systems. Cybernetics stud-
ies the communication and control of animals and machines [96]. Using simple
connections between sensors and actuators machines can be build that exhibit
basic intelligence, as demonstrated by Braitenberg’s vehicles [18]. According to
Minsky’s Society of Mind theory, a complex mind is constructed from many sim-
ple individual parts [72]. In the subsumption architecture a robot has multiple
control layers that can inhibit each other [21]. Researchers as MIT have built vari-
ous robots using the subsumption architecture [20], such as the sonar navigation
robot Allen, six-legged hexapod Genghis, the robotic tour guide Polly and the hu-
manoid robot Cog. Arkin coined the term Behaviour-Based Robotics and wrote a
comprehensive review of the field [7].

Motor schemas is another architectural style for constructing behaviour-based
robots [6]. It is typically used for reactive navigation in 2D and 3D spaces. Mo-
tor schemas can describe basic behaviours and can be combined to create more
complex behaviours. For example, by combining the avoid-static-obstacle and the
move-to-goal schemas by summing their vector fields a new schema move-to-goal-
while-avoiding-static-obstacle can be created [7].

Many producers of robots develop their own architecture for programming
and controlling the robot, leading to the proposal of an architectural descrip-
tion language to homogenize the process of developing frameworks in a formal
way [82]. Many other projects try to offer middleware solutions for connecting
software components, such as the Robot Operating System [81], YARP [45] and
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OROCOS [25].

2.2 Software Engineering for Robotics
This section will look at techniques for constructing software which can aid in the
Robotics Software Engineering process.

Research has focused on introducing Component-Based Software Engineering
practices in robotics [23, 24]. A shift from code-driven to model-driven designs
was proposed in order to manage the complexity of robot software [88]. Model-
Driven Software Development (MDSD) for Robotics attempts to construct robot
software using models [22]. MDSD for Robotics is seen as a direction to move
to a higher level of abstraction [89]. Some of the first applications of MDSD in
the field of robotics were an application on the Sony Aibo robot [17] and an ap-
plication using Lego Mindstorms [60]. Some of the projects that explore MDSD
for Robotics are (according to a review article [83]) the European Union funded
BRICS project [26], RobotML (which is part of the French research project PRO-
TEUS) [36], SmartSoft [88], and 𝑉3𝐶𝑀𝑀 [4].

While MDSE might focus on a single product with many variable compo-
nents, Software Product Line Engineering (SPLE) is increasingly being applied
in industry as an approach to construct families of software [29]. The approach
for enabling the combination these building blocks together is based on Software
Product Line Engineering (SPLE) for Robotics [50]. SPLE divides the process of
developing software into two phases: Domain Engineering and Application En-
gineering [79]. The goal of Domain Engineering is to create models of a domain in
which it is beneficial to reuse a significant portion of behaviour. The goal of Appli-
cation Engineering is to use the models created during the Domain Engineering
phase to develop working applications. The HyperFlex toolchain attempts to of-
fer this kind of capabilities [51]. Robots that operate in a complex environment
might benefit from software that can adapt itself at runtime [52]. SmartTCL is an
architecture that supports managing run-time variability [65].

Various other European Union projects that explore software engineering is-
sues in the field of robotics are underway. The VERSATILE project studies how
robots can be applied in highly reconfigurable production lines. The ROS Indus-
trial project studies how the Robot Operating System can best be used for indus-
trial robots. The RobMoSys project studies further how models can be used to
support robotic systems.

2.3 Visual Programming for Robots
We already mentioned Lego Mindstorms as a platform for programming robot
applications. While Lego Mindstorms is a great project that allows children to
learn how to construct and program robots, the programming tools do not scale to
larger applications due to the following limitations (adopted from [74, chapter 3]):

• Predetermined values for block parameters such as motor speeds.

• Only a single global control loop.
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• No branching structures such as if and switch.

• Only a single speed setting for the differential drive.

RoboFlow is a visual programming language that allows end-users to program
a robot to perform mobile manipulation tasks [3]. It uses the flowchart-based pro-
gramming paradigm, in which a program consists of decision and action nodes.
Action nodes make the robot perform some behaviour while decision nodes can
control the flow of a program based on environmental sensing.

Choregraphe is a graphical tool for programming humanoid robots such as
Pepper and NAO [80]. For those robots it is the de facto standard visual program-
ming tool. The programming paradigm of Choregraphe resembles flowcharts.
Boxes have input and output ports, on which they can receive data (input) or trans-
mit data from (output). The boxes themselves are provided as box libraries.

The RT System Editor of OpenRTM-aist is a tool for visually configuring Robot
Technology Components (standardized by the Object Management Group) [5].
Once expert programmers have developed the components needed to achieve a
certain kind of task, a domain user can combine the components using a drag and
drop interface and arrow connectors.

Targets-Drives-Means (TDM) is a runtime environment and proposed visual
programming environment for robots [13–15]. The basic building blocks of pro-
grams in TDM are behaviours. Behaviours are sorted using score calculators. At
any time, the behaviour with the lowest calculated score will be activated. Be-
haviours contain a list of actions that will get activated in parallel if a per-action-
assigned condition is valid. The action and conditions themselves are written us-
ing the Python programming language. Additionaly the behaviours can act as
states in a state machine in which the conditions can act as transitions.

2.4 Programming by Domain Experts and End-Users
Professional Software Engineers typically spend a lot of time to become experts in
the domain that they develop software for. Instead of developing tailor made soft-
ware for a specific user, computer scientist try to move the software engineering
process to a higher level of abstraction. Abstractions can be collected in a plat-
form aimed towards Domain Experts or End-Users, who can use the abstractions
to solve the problems they face. The discipline of Software Product Line Engi-
neering (which we shortly discussed in the section on Software Engineering for
Robotics) tries to offer this abstraction to Domain Experts and the discipline of
End-User Programming tries to offer this abstraction to regular end-users.

Many systems have been developed for programming using the visual capa-
bilities of people. This section reviews the ones that most contributed to this re-
search.

2.4.1 End-User Programming
Logo is one of the first educational programming languages developed, originally
being released in 1967 [1]. Its developers were Wally Feurzeig, Seymour Papert
and Cynthia Solomon. Logo was originally a text based programming language,
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however various graphical versions of Logo have been implemented. Logo used a
turtle figure which acted as an onscreen cursor, allowing the user to easily create
graphics. It has also been implemented in dialects such as NetLogo and StarLogo,
which are today still used for visualizing mathematical models and artificial in-
telligence algorithms. The Logo programming language is based on the Lisp pro-
gramming language which was invented by John McCarthy [68].

HyperCard was an end-user programming tool for the Apple Macintosh [64].
It allowed users to create a graphical interface and an underlying database. Addi-
tionally users could write scripts using a simple scripting language called Hyper-
Talk. More recently Mac computers have featured a tool called Automator which
allows users to create scripts for performing automated tasks.

AgentSheets [84] is a VPL aimed towards educating computer science in public
schools. It allows the definition of a program using “if A then B” statements,
where A is a condition and B is one or more actions to be performed in sequence.

Etoys [61] is a project, which was directed by Alan Kay while working at Dis-
ney, aimed to support constructionist learning. It allowed the user to easily mod-
ify the Morphic graphical interface using a block based programming language.

Spreadsheets are also a tool used by end-users for creating programs. By al-
lowing the user to create formulas in which functions and mathematical opera-
tors can be combined with cells, numeric processing applications can be written.
Spreadsheet software such as Microsoft Excel also allows for the writing of scripts
to further customize the spreadsheets using Visual Basic. Similarly, a product
called Microsoft Access allows the creation of database applications by using a
drag-and-drop user interface creator combined with the SQL query language and
Visual Basic. These more advanced features of Excel and Access are however ori-
ented towards people with some programming education.

Scratch is a modern Visual Programming Language [85]. It allows a program-
mer to sequentially connect blocks. Blocks start by reacting to an event, after
which a sequence to steps is executed. A web-based block-based programming
language inspired by Scratch called Blockly was developed by Google [46]. Google
then used Blockly in their platform for end-users to create applications for An-
droid, called App Inventor [99]. This project is now being maintained by MIT.
A Scratch based programming environment that incorporates features from func-
tional programming called Snap was developed by Brian Harvey and Jens Mönig [57].

Scratch and Snap are mostly used for creating 2D animations. Alice, a project
formerly led by Randy Pausch, is a block based visual programming language for
creating 3D animations [34].

2.4.2 Automata and Flow-Based Programming
Various system notations and programming environments exist for modeling a
program as rectangles or circles that are connected using arrows. These mod-
els can be either descriptive, i.e. describing how an existing system functions or
validating an existing system, or prescriptive, i.e. describing how a system to be
build should function. Prescriptive models can be used for communication be-
tween people and in some cases can be used to generate new artifacts such as
source code.

State diagrams or state tables can be used to model automata, and both nota-
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tions have equal modeling capabilities. Modern computers are based on automata
theory, using a physical architecture invented by von Neumann and a computa-
tional architecture based on Turing Machines [93]. It seems logical that the un-
derlying model of computation should be used to model computation using soft-
ware. The model of a Turing Machine is however quite verbose and hard to use
for modeling high level applications that are used today.

Simple machines such as a stopwatch or a turnstile can be modeled using a
simple type of automaton called a finite-state machine (FSM). Such a machine con-
sists of a set of states and transition functions between the states. Finite-state ma-
chines can be found in many embedded computing applications because of their
simplicity and flexibility to model simple machines. Two traditional formalisms
for finite-state machines are Mealy and Moore machines. Mealy machines [69]
define the actions performed in a state within the state itself, hence it does not
matter how the state is entered, the resulting actions will be the same. Moore ma-
chines [73] define the actions performed in a state on the transitions to the state,
in which case it does matter how the state is entered. Practical robotics program-
ming environments such as TDM and ROS (inside a package called smach) in-
clude an FSM. Harel statecharts are another FSM formalism [55], extending state
diagrams with hierchical modeling, concurrency and communication (broadcast-
ing) formalisms. While FSMs are useful for modeling simple machines, they do
not have the full computational capabilities of a Turing machine, and are not typ-
ically used in highly interactive applications.

Automata are aimed towards system engineers, however there are alternative
notations such as flow charts that are more commonly used by software engineers
or even by end-users. Flow charts model the sequence of actions performed by a
system, which differentiates them from state diagrams, that instead model the
states a system can be in. The arrows in flow charts show the direction of inter-
action after a task has been completed. A particularly successful implementation
of flow charts for domain experts is Business Process Modeling Notation, which
is standardized by the Object Management Group [27]. Research by Green and
Petre shows that flow charts are a user friendly technique for modeling sequential
behaviour [54].

While most of the beforementioned diagramming notations are used as means
of communication between people, a technique called Dataflow Programming
tries to extent flowcharts to be a useful technique for programming new systems.
There are many examples of systems adopting the dataflow programming pa-
radigm, such as LabVIEW, Max/MSP, Pure Data and Simulink. Typically these
systems are used by domain experts who have technical knowledge but might
have little programming experience.

2.5 Applications of Socially Assistive Robotics
We performed a Systematic Literature Review (SLR) in order to accomplish the
first research objective, to describe the current applications of Socially Assistive
Robotics. Because the literature review regarding this subject was performed in
order to answer one of the main research questions of this thesis, a Systematic
Literature Review (SLR) was performed [62]. An SLR allows for an exhaustive
synthesis of the literature regarding a certain topic to be performed.
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The main question is how Humanoid Robots are being applied in Socially As-
sistive Robotics experiments. This question is split up into the following subques-
tions:

1. What robot was developed or used?

2. What are the goals of the robot application?

3. How was the robot controlled?

4. What kind of behaviours did the robot exhibit?

5. Which type of sensors were used?

6. Which type of actuators were used?

The third subquestion, how the robot was controlled, is the hardest to answer.
The autonomy of the human subjects and of the robot have to be considered. Ex-
periments which have real human subjects and a robot which is controlled man-
ually, but covertly, are called Wizard of Oz experiments. Various other combi-
nations of “Wizard” and “Oz” are suggested to reflect on various levels of au-
tonomy of the human subjects and of the robot [90]. Experiments which are per-
formed with real human subjects and a completely autonomous robot can be con-
sidered as “Wizard and Oz”. As this research is about applications of robotics,
studies which do not have real human subjects have been excluded. Autonomy of
a robot is a spectrum ranging from completely autonomous to completely man-
ual/teleoperated. Studies were classified based on three levels of this spectrum:
Autonomous, mixed and manual.

2.5.1 Methodology
To select studies for inclusion in this review the search term (social or socially)
and assistive and (robots or robotics) and humanoid was applied to the Web of Sci-
ence database. The composite search string allows to find a compact yet complete
list of papers indexed by the database searched. This search was last performed
on the 1st of February 2016 and returned 24 papers. One inclusion criterium was
used, that to be included, a paper should discuss a primary study of the imple-
mentation of a robotic application and should hence not be limited to a theoretical
treatise of robotic application construction or be a review article. These exclusion
criteria were used: (1) Paper is written in a language other than English and (2)
paper is inaccessible through the academic literature databases of the University
of Tsukuba.

To decide whether the paper met the inclusion criteria and did not meet any of
the exclusion criteria at least the title and abstract for every paper returned by the
search were studied. All the papers included in the study were completely read,
and data was extracted from them using the conceptual framework.

2.5.2 Conceptual Framework
While doing the research a conceptual framework was iteratively constructed to
store the knowledge gained during the study. If any concept would get added
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Application

Behaviour

ActuatorSensor

Control

Manual
Autonomous

Mixed

Figure 2.1: Behaviour-based Conceptual Framework of SAR applications. Regular
lines represent association. The open triangle arrow represents an is-a relation-
ship.

or removed to the framework a verification would be performed to determine
whether this influenced the data extraction from any of the previous papers stud-
ied. This approach is based on the Grounded Theory methodology of perform-
ing qualitative research [53]. If this research would be repeated by a different
researcher (while using the same methodology), the conceptual framework con-
structed should be similar.

Figure 2.1 shows the conceptual framework that was used to evaluate the stud-
ies. The conceptual framework defines the following concepts:

• Robot: Each study used one or more robots for which the an application was
developed.

• Goal: Each robotic application tries to accomplish one or more goals.

• Behaviour: To achieve the goals the robot has to exhibit one or more be-
haviours.

• Actuator: To exhibit a behaviour a robot has to use one or more actuators,
which are hardware components which can make changes to the world. In
this research we are interested in the type of actuator.

• Sensor: Sensors are hardware components which retrieve information from
the environment in which the robot is deployed. We only concern ourselves
with sensors providing exteroception, i.e. perception of things happening
outside of the robot embodiment [7].

• Control: Robotic applications define behaviours in terms of combinations
of sensors and actuators. Control concerns how components of these two
types are connected. We define three types of control: Autonomous, mixed
or manual (Wizard of Oz).

• Autonomous Control: Control exercised by some automated system, such
as algorithms running on the robot. Any control action taken by the robot
in response to an action performed by a research subject is also considered
autonomous.

• Manual Control: Control by a human operator through a programming in-
terface of the robot.
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Figure 2.2: Quantitative evaluation of the studies.

• Mixed Control: Mixed control by both some automated system and a human
operator.

Metadata for the studies also includes the title, authors, year of publication
and research goals.

2.5.3 Results
Quantitative and qualitative data was collected from the studies. Figure 2.2 shows
the quantitative results. Table 2.1 shows the qualitative results. These results are
used to determine the requirements of the robot programming environment.
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Table 2.1: Information gathered from the studies.
Ref. Robot Application Goal Control Behaviours Actuators Sensors
[31] KASPAR Teach children with ASD to

identify their body parts and
increase their body awareness

Mixed Reacting to touch; identifying
body part and asking partici-
pant to match; identifying se-
quence of body parts and ask-
ing the participant to match;
and singing a song while danc-
ing and encouraging the parti-
cipant to join

Motors, speakers Tactile

[86] KASPAR Teach children with ASD about
various topics related to their
self, their body and social inter-
action

Autonomous Respond to touch in different
areas by moving the body of the
robot

Motors Tactile

[47] NAO Assist staff in kindergartens Manual Singing a song while danc-
ing, initiating personal contact,
playing a game, falling/getting
up, giving explanations

Motors, speakers Microphone

[92] NAO Assisting in elderly care Autonomous Providing environmental infor-
mation; playing music; mana-
ging phone calls; monitoring
self treatment; monitoring the
environment; providing video
calls

Motors, spea-
kers, projector

Microphone,
camera, external
sensor network

[2] NAO Play a role-taking game with a
patient

Manual Pretend play using talking, ges-
turing and playing music

Motors, speakers None used

[48] NAO Interact with teachers Mixed Detecting nearby people, tal-
king to people, grasping

Motors, speakers Camera

[8, 9] NAO Deliver a letter Manual Walking, bowing, handing over
a letter, waving

Motors None used

[12] NAO Test and train children with
ASD about attention skills

Mixed Asking questions while mo-
ving naturally

Motors, speakers Camera network

[100] NAO Interacting with an ASD child Manual Sitting, moving / dancing,
speaking

Motors, speakers None used

[75] NAO Engage with and instruct hotel
guests

Autonomous Looking at hotel guests, read-
ing from a script

Motors, speakers
(Text-To-Speech)

Kinect

[95] Bandit Assist individuals post-stroke Autonomous Giving instructions / feedback
/ motivating, pointing, nod-
ding

Motors, speakers Wire puzzle

[87] Robota Interact with an autistic child Manual Move according to operator’s
instructions

Motors None used

[63,
94]

Robovie R3,
NAO

Tutor sign language to a child Mixed Indicating signs from Turkish
Sign Language

Motors, LED’s,
speakers

Kinect, camera,
microphone

[67] NAO Teach exercises to prevent back
pain

Manual Demonstrate exercises to sub-
jects

Motors None used
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Chapter 3

Development and Operations

This chapter gives a short summary of DevOps, which refers to interaction be-
tween development and operations. It is largely based on a Systematic Literature
Review performed in 2014 [41, 42] and a qualitative interview based study per-
formed between 2014 to 2016 [43].

For the purpose of this research we define DevOps as interaction between de-
velopment and operations. DevOps is necessary because software systems have
become more complex, whereas in the past one could install a software package
on their PC and use it standalone, these days software is often either completely
hosted remotely (e.g. Software-as-a-Service) or has remote components. We say
that his type of software has a significant operational component. The software
needs to be both developed and operated to deliver value.

Even though agile software development methodologies such as Scrum and
Extreme Programming are considered as modern, they do not typically concern
how the developed software has to be operated. DevOps is not a new methodo-
logy but rather an extension to existing methodologies. Some organizations and
researchers have tried to create methodologies for combining agile software devel-
opment with DevOps, examples of this being the Scaled Agile Framework (SAFe)
and Disciplined Agile Delivery (DAD) While these newly developed methodolo-
gies are interesting artifacts of study, in this thesis we are not concerned with the
specific implementations of DevOps, but rather the high level philosophy behind
DevOps.

We explore the interaction between development and operations at multiple
levels, ranging from the individual to the whole organization. The interaction is
supported through a set of principles and practices, which we will also shortly
review. The chapter will also discuss how DevOps could be applied in the field
of robotics. The same drivers of DevOps adoption in the field of Information Sys-
tems also exist in the field of robotics: Robotic technology no longer runs com-
pletely standalone but has some remote components (e.g. for monitoring the func-
tioning of the system, remote control, installing/updating software components,
etcetera).

3.1 Levels of DevOps
DevOps originated from the fields of Enterprise and Information Systems. It can
be applied on multiple levels and mostly impacts the individuals, teams and de-
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partments within an organization.

Individual DevOps at the level of the the individual refers to what skills an indi-
vidual person should have to be able to function in a software project with
a significant operational component. Typically organizations hire separate
personnel for the tasks of developing and operating software. The discipline
of development is typically practiced by software engineers or software de-
velopers. The discipline of operations is typically practiced by system op-
erators or system administrators. DevOps applied to the individual level
means that a developer should get enough skills to be able to support an
operator in their daily work, and vice versa, operators should get enough
skills to be able to support developers in their daily work.

Team The team level of DevOps refers to what roles a team working on soft-
ware should include. Traditionally organizations had seperate teams fo-
cused on developing and operating software. DevOps applied to the team
level means that a team should be responsible for both developing and oper-
ating software. Practically this means that a team needs members that have
experience in both development and operations.

Department The department level of DevOps refers to how organizations should
be structured. Tradionally organizations have a department that focuses on
developing software and a department that focuses on operating software.
DevOps applied to the organization level means that organizations have de-
partments that are both developing and operating software. Practically, de-
partments should focus on both developing and operating software. This
can be achieved by organizing departments by services provided instead of
disciplines practiced.

3.2 Principles and practices of DevOps
Various practices are adopted which can either been seen as being correlated with
organizations that adopt DevOps, or are thought to lead to better interaction be-
tween development and operations. This section will discuss some major prac-
tices of both categories.

Culture Culture refers to the culture within a team and organization. Organiza-
tions seek to create a culture in which the disciplines of both development
and operations are given enough consideration. Development personnel
should realize that the value of a system is only produced when a system
is being succesfully operated. To support this, developers need to consider
operations when formulating the requirements of a system. Systems should
also be documented in a way that operators can easily make the system op-
erational, independent of the help of the original developers.

Automation Automation refers to automation of the software process itself. It is
logical that a field focuses on automating work turns its attention inwards
to optimize its own performance. Automation in DevOps takes a holistic
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perspective, considering automation of the software process from develop-
ment to operations, instead of considering automation within each disci-
pline seperately. For example, when developers check software into version
control, a watch process can trigger a test suite, and if that test suite reports
no errors, another watch process can automatically deploy the software into
a beta testing environment.

Measurement Measurement refers to measurement of the efficiency and effec-
tiveness of the software process. Again, DevOps takes a holistic perspec-
tive, measuring various aspects of the software process from development
to operations, instead of only performing measurements within each dis-
cipline seperately. For example, many organizations measure the time be-
tween elicitation of a feature, implemention of the feature and availability of
the feature to the users of a system.

Sharing Sharing refers to how development and operations personnel share space,
responsibilities, resources, knowledge and information. Sharing is required
for development and operations personnel to effectively work together.

Monitoring Monitoring refers to keeping track of the efficiency and effectiveness
of a running system. Some aspects of a system can be monitored without any
modifications to the software itself, e.g. CPU and memory usage. Other as-
pects require the software to be modified, e.g. to log the actions performed
by users. In either case having knowledge of the software process can im-
prove the analysis capabilities of development and operations personnel.
For example, an inefficient implementation of some algorithm can cause a
higher CPU and memory usage. Development and operations personnel
can also work together to visualize monitoring. Many organizations have
for example implemented dashboards that report on the quality of service
of systems, which are easily viewable within the offices of personnel.

Lean Lean refers to a method for finding and eliminating waste within a pro-
cess. Lean in DevOps focuses on finding and eliminating waste created by
a lack of interaction between development and operations. For example,
when development personnel release software without proper documenta-
tion, operations personnel might have problems with making the software
operational.

3.3 Usage in organizations
We studied how six organizations apply DevOps [43]. Four organizations were
based in The Netherlands, one organization was based in the United Kingdom
and one organization was based in the United States. We labeled the organizations
FinCom1, FinCom2, SupportCom, PortalCom, UtilCom and CommunitySoft. The
organizations were recruited at an industry conference on Agile Software Devel-
opment and through personal connections. We recruited senior level employees
at each organization to participate. We interviewed the participants, asking them
questions about the implementation of DevOps within their organization.

The following list summarizes our findings for each organization:
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FinCom1 Motivation: Reduce lead time for new projects; improve problem solv-
ing; increase feedback.
Implementation: Introduced DevOps teams; Adopted DevOps Engineer Job
Title; Put development and operations personnel under same management.
Problems: Employee discomfort with openness; Resistance against increased
reponsibilities of development personnel; Development personnel consider-
ing Ops work as chaotic.
Results: Improved lead time.

FinCom2 Motivation: Reduce system downtime; Reduce workforce size; Support
automation.
Implementation: Using Xebia and UrbanCode frameworks for measuring
progress; Introduced policy of making software available to actual users
each iteraction; Introduced time and location overlap between development
and operations personnel; Trained employees in System Thinking.
Problems: Employees focusing on production rather than improving pro-
duction capacity; Management skepticism due to lack of evidence of effec-
tiveness.
Results: Improved testing for one team.

SupportCom Motivation: Reduce miscommunication between development and
operations personnel; Reduce release time of SaaS product.
Implementation: Introduced a specialized DevOps team.
Problems: Development personnel considering Ops work as ad hoc and
chaotic; Reduced capabilities for management oversight.
Results: Increased problem solving capabilities; Improved communication
between development and operations personnel; Fewer escalations of issues.

PortalCom Motivation: Release software more often; Free up resources to work
on new features instead of problem solving; Increase product quality; In-
crease process velocity.
Implementation: Experiment with one team as DevOps team; Automation
(version control and environment provisioning tooling).
Problems: Restructuring needed; Team members needed to have a wide
skillset.
Results: Increased process velocity; Less time spend on setting up environ-
ments.

UtilCom Motivation: Deal with challenges in developing and operating complex
scalable service architecture.
Implementation: Operations personnel trained in software development tech-
niques; More respect given to people in a DevOps role than before; Adopted
systematic approach to operations; DevOps is considered as a role held by
select people; Single team explicitly called DevOps team; Implicit focus on
DevOps by all dev and ops.
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Problems: No terminology for evaluating progress; New metrics were needed
for evaluating progress.
Results: Reduced escalations, false alarms and duplicate alarms.

CommunitySoft Motivation: Get more direct feedback from stakeholders.
Implementation: Introduced Continuous Integration as coordination tool;
No separation between development and operations roles; Constant cau-
tious experimentation.
Problems: Hard to find balance between producing and improving produc-
tion capability; Not every member has sufficient skills for DevOps approach;
Difficulty automating everything.
Results: Working software is regularly being delivered to stakeholders; Dev-
Ops as supporting instrument of adopting technical practices such as Con-
tinous Integration and Continuous Delivery.

3.4 Relevance to Robotics
DevOps originated from the fields of Enterprise and Information Systems and its
practices can hence directly be applied to Cloud Robotics. On a philosophical level
however DevOps touches upon a major problem in robotics: Robots are not just
hard to develop but are also hard to operate. We hence formulate two perspectives
of DevOps, that of DevOps by End-Users and that of DevOps for Cloud Robotics.

3.4.1 DevOps by End-Users
For a robot to be useful it needs to be developed with the operational goals of
the end-user in mind. Robots have been highly successful in industrial applica-
tions for which it is easy to discover the operational characteristics of the robot,
such as its size, functions, power usage, etcetera. In the past few years more gen-
eral purpose industrial robots such as Baxter from Rethink Robotics have become
available.

The general purpose robots that this thesis is concerned with, such as the Hu-
manoid robot NAO, have had mixed success in fulfilling the goals of end-users.
NAO is suitable to perform tasks such as dancing and tasks that are mostly com-
posed of prerecorded tasks such as scripted motion and scripted speech. The
robot has been less successful in more dynamic tasks, although the usage of NAO
in robot soccer shows that it is quite a versatile robot. The development of NAO for
robot soccer has however involved university students in the fields of Computer
Science and Mechanical Engineering, who are not the end-users which the pro-
gramming environment presented in this thesis is targeted towards. One of the
ways in which the end-user is aided in developing and operating software for the
NAO robot is through Choregraphe, a visual robot programming environment.

Features such as being able to easily deploy software to a robot can greatly aid
in the development and operations of robot software. However the most benefit of
a DevOps approach is gained when considering robots that are operating in real
world environments that use external services to supplement local capabilities,
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i.e. Cloud Robotics. In the following subsection we will discuss DevOps applied
to Cloud Robotics.

3.4.2 DevOps for Cloud Robotics
Robots can both use a cloud environment for supporting their behavior, or can be
controlled from the cloud environment. Examples of the robot supporting their
behavior through a cloud is the usage of cloud services for performing object and
speech recognition. While these tasks can be performed on the robot itself, cloud
services can offer more accurate results due to their increased computational and
storage capabilities. Robots can also be controlled from the cloud environment,
either through teleoperation, by pushing applications to the robot or by pushing
updates to the software running on the robot.

Robots might use a network for communication between components embed-
ded within the embodiment of the robot. Additionally a group of robots might
communicate, potentially forming a swarm of robots. Platforms for Cloud Ro-
botics, such as the European Union supported Rapyuta project, typically offer a
computational model in which functionality can easily be transferred from run-
ning on a robot to running in an external cloud environment.

The value of a robot in this case depends not just on the performance of the
hardware and software running on the robot itself, but also on the availability
of the cloud services. Cloud services have to be designed so that they are resil-
lient to failure, elastic to varying loads and responsive to the requests of the robot
consuming the service.
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Reactive Robot Programming

A major limitation of current visual programming tools for robotics is that they
rely on expert programmers to deliver a library of functionality that an end-user
can then use. It is currently impossible to completely remove the need for expert
programmers to write certain parts of a robotic system. Some tasks require a sig-
nificant level of expertise, such as controlling low level hardware, such as sensors
and actuators, and interacting with the operating system controlling the robot.
Given a robot and a library that controls the low level hardware and interacts
with the operating system, we believe it is possible to make available for the end
users tools that allow him or her to perform more of the programming tasks typ-
ically performed by expert programmers. To this effect we propose a paradigm
called Reactive Robot Programming (RRP), which allows end-users to create be-
haviours for robots. These behaviours can then be used in higher level tools such
as Choregraphe, OpenRTM-aist or TDM.

RRP is a programming paradigm for developing and operating reactive soft-
ware for robots, with a focus on End-User Programming. Robots are a type of Re-
active System, which are systems that react to stimuli from an environment and
can respond to these stimuli, potentially attemping to inhibit them [97]. Reactive
systems have become the main type of system that computer users interact with,
however an entirely different class of systems exist, that of transformational sys-
tems, which purpose is to transform some input to an output while receiving min-
imal intermediary instructions. Examples of transformational systems are com-
pilers and translation tools. Examples of reactive systems commonly used these
days are applications for smartphones and graphical applications on computers.
RRP is an application of Reactive Programming in the field of robotics.

Reactive Programming is a paradigm for developing reactive systems. It has
gained a lot of attention after Microsoft released the Reactive Extensions program-
ming API. This was first made available for the Microsoft .NET framework and
later was ported to Java (RxJava), Python (RxPy), JavaScript (RxJS) and various
other languages. The name Reactive Extensions refers to the Reactive Program-
ming Paradigm implemented using Extension Methods. Extension Methods al-
low programmers to extend an existing class with new methods, without modi-
fying the existing class. From the perspective of this research, Extension Methods
are an implementation detail of ReactiveX, Reactive Robot Programming does not
require a language to support Extension Methods.

Reactive Extensions are motivated by the Observer/Observable design pat-
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Figure 4.1: Structure of the Observer pattern (using the Object Modelling Tech-
nique, a predecessor of the Unified Modeling Language). [From: 49, Chapter 5]

tern [49], which Figure 4.1 shows. In this design pattern there is one observable
subject that can notify a group of observer objects of events. Depending on the
implementation, the observer objects either get passed a payload describing the
event, or they have to query the subject.

Reactive Programming can be seen an extension to Event-Driven Program-
ming. In Event-Driven Programming, code is triggered by the occurance of a cer-
tain event. Visual programming languages such as Scratch are Event-Driven, i.e. a
set of steps is sequentially executed when a specified event occurs. The program-
mer can select the type of event that should trigger the execution.

Reactive Programming focuses on modelling the logic of how events are re-
lated. In RRP for example, events detected by sensors can be combined using
various connectors (such as combine and merge). The programmer in this case
specifies how to process the events leading to a certain actuator output.

In simple domains, such as 2D/3D animations and form-based graphical user
interfaces, event-driven programming is often adequate as there is a one-on-one
mapping between events and actions. In more complex domains, such as video
games and robotics, there is a more complex relationship between events and ac-
tions, and we would argue that in this case reactive programming is more benefi-
cial.

A useful particularity of the Observer pattern is that it was shown by Meijer to
be the dual of the Enumerator (iterator) design pattern [70], a duality not noticed
in the traditional design pattern literature. This implies that whereas the iterator
pattern allows for interactive behavior in which the enumerator pulls data from the
enumerable, the observer pattern allows for reactive behavior in which the subject
pushes data to the observer.

In the late 20th century researchers were researching a variant of Reactive Pro-
gramming using Functional Programming Languages such as Haskell. Early ap-
plications of FRP included Virtual Reality [38], animation [39], user interfaces [32],
visual tracking [78] and robotics [59, 76, 77]. In the 21st century (Functional) Reac-
tive Programming became a mainstream technique with the release of APIs and
languages such as Reactive Extensions, the Java 9 Stream API, SodiumFRP [16]
and Elm [33].

In Reactive Programming a programmer uses streams and connectors. Some
of these streams are sources of data, some are final destinations (sinks) and some
are temporary streams created to make a graph more manageable. Stream con-
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Sensor

Stream
(a) Sensing

𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡

𝑖𝑛𝑝𝑢𝑡

𝑜𝑢𝑡𝑝𝑢𝑡

(b) Planning

Stream

Actuator

(c) Acting

Figure 4.2: Main elements of the RRP Graph.

nectors are a typical part of a software architecture, in which various dimensions
for stream connectors exist [91]:

• Delivery: Best effort, exactly once, at most once or at least once.

• Bounds: Bounded or unbounded.

• Buffering: Buffered or unbuffered.

• Throughput: Atomic units or higher order units.

• State: Stateless or stateful.

• Identity: Named or unnamed.

• Synchronicity: Synchronous, asynchronous or time out synchronous.

• Format: Raw or structured.

• Cardinality: Binary or N-ary (multi-sender, multi-receiver or multi-sender/-
receiver).

The following sections will introduce the graph representation constructed for
specifying behaviors in RRP, the connectors that are currently implemented and
various sample applications.

4.1 Graph Representation
For teaching and describing Reactive Programming techniques there are four no-
tations frequently used:

Marble diagrams These diagrams give an example of input given to a connector
and the output produced by the connector. This notation mostly originated
from Reactive Extensions and can be used for giving examples of behaviours,
but are less suitable for creating new behaviours.

Data Flow Diagrams These diagrams give a model for how the data flows from
sources through connectors to destinations. This notation is more suitable
for describing behaviours and is similar to the notation that we use.
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𝑆𝑡𝑟𝑒𝑎𝑚[0]
𝑖𝑛𝑝𝑢𝑡 ⋯ 𝑆𝑡𝑟𝑒𝑎𝑚[𝑛]

𝑖𝑛𝑝𝑢𝑡

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡

𝑣𝑎𝑙𝑢𝑒[0]
𝑖𝑛𝑝𝑢𝑡

⋯ 𝑣𝑎𝑙𝑢𝑒[𝑛]
𝑖𝑛𝑝𝑢𝑡

𝑜𝑢𝑡𝑝𝑢𝑡

Figure 4.3: Merging
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𝑜𝑢𝑡𝑝𝑢𝑡

Figure 4.4: Branching

Flowcharts These diagrams give a model for how the control flows between steps.
This notation is more suitable for describing sequential behaviour, and is
hence different from the notation that we use.

Functional programming notation Functional programming gives denotational
semantics for specifying programs. These map closely to mathematical for-
mula and can be used to proof the validity of a functional program. Our
mathematical notation is inspired by functional programming notation but
does not fully comply with it.

The RRP Graph is a model of robot behavior that separates the concerns of
sensing, planning and acting. Figure 4.2 depicts the graph respresentation. Sub-
figure 4.2a shows that sensors can send data to a stream, which in this case will be
called a sensor stream. Subfigure 4.2b shows that sensors can be connected using
connectors that take parameters. Zero, one or multiple parameters can be defined
for a connector. Subfigure 4.2c shows that streams can send data to an actuator,
in which case the stream is called an actuator stream.

Sensing means getting information from the environment, either propriocep-
tive or exteroceptive. Proprioceptive sensing means retrieving data from sensors
that measure some property of the robot. Examples of such sensors are rotary
sensors for getting joint angles or temperature sensors for getting joint temper-
ature. Exteroceptive sensing means retrieving data from sensors that measure
some property from outside of the embodiment of the robot. Examples of such
sensors are vision (via a camera), audio (via a microphone) or touch (via bumpers
or capacitive sensors). In RRP sensors are not just low level hardware components
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𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡
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Figure 4.5: Anonymous stream

but also higher level software components such as Computer Vision algorithms.
Two frequently used sensors for example are a red ball sensor and a color blob
sensor. The robot can be programmed to start sensing by adding a Sensor Stream.

Acting means acting on to the environment, again either on the internal en-
vironment of the robot or on the external environment. In the case of acting this
distinction is however less clear, as a change in the internal environment of the
robot will often lead to a change on the external environment. For example if a
robot has to pick up a ball that lies in front of the robot, it needs to control its joint
angles so as to move to a desired location. There are also side effects of internal
actuation. For example a robot can stiffen its joints, which might not change the
pose of the robot but will make the motors of the robot produce more heat. Some
actions the robot might take are hard to observe externally, such as the robot stor-
ing a face in its memory. The robot can act by sending an input to an Actuator
Stream.

To process sensor data the programmer can add connectors to streams. This
way a Directed Acyclic Graph is formed, in which the sensor streams are sources,
streams with no sensor nor actuator are regular vertices and actuator streams are
sinks. Connectors are labeled edges. The parameters given to the connectors are
modeled as properties of the edges.

Figure 4.3 shows how multiple streams can send their data to a single con-
nector. In this case the connector defines how to synchronize the data from the
multiple input streams. RRP currently supports a simple merge in which the lat-
est value of the input sensor is used, and a more complicated merge in which a
procedural parameter specifies how to combine the inputs.

The dual of merging, i.e. splitting, is not explicitly supported, however branches
can be created by having multiple connectors taking inputs from the same input
stream. Figure 4.4 depicts this. Additionally one could imagine connectors that
have multiple inputs and outputs. In order to keep the paradigm simple RRP does
not currently support these.

To reduce the size of graphs anonymous streams can be used. In this case
streams in between sensor and actuator streams can be hidden. Figure 4.5 depicts
this.

In the next section we will introduce the connectors which are currently sup-
ported.
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4.2 Procedural Parameters

To be able to offer a small set of high level connectors we make use of Procedural
Parameters. A procedural parameter is a parameter that itself is a procedure [30].
Procedures are higher order functions, which means that they can be treated as
any other variable [10]. To ensure validity, functions are expected to be pure, that
means that they are free of side effects [71]. If functions are inpure they can make
changes to a system that can not be seen by merely looking at the graph.

An example of using procedural parameters is the following (in pseudocode):
1: 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 = 𝑙𝑖𝑠𝑡(1 … 10)
2: 𝑠𝑞𝑢𝑎𝑟𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟 → 𝑛𝑢𝑚𝑏𝑒𝑟2

3: 𝑛𝑢𝑚𝑏𝑒𝑟𝑠.𝑓 𝑜𝑟𝑒𝑎𝑐ℎ(𝑠𝑞𝑢𝑎𝑟𝑒)
4: 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 ⇔ 𝑙𝑖𝑠𝑡(1, 4, 9, 16, 25, 36, 49, 64, 81, 100)

Line 1 defines a list of numbers from 1 to 10. Line 2 defines a function that
takes as input a number and returns as output the square of the number. Line 3
uses an operator called 𝑓 𝑜𝑟𝑒𝑎𝑐ℎ of the list of numbers to which the lambda function
square is given as argument. Line 4 shows the resulting value of the list 𝑛𝑢𝑚𝑏𝑒𝑟𝑠,
which got squared. Note that in this example 𝑠𝑞𝑢𝑎𝑟𝑒 is a function that is free of
side effects, however 𝑓 𝑜𝑟𝑒𝑎𝑐ℎ has side effects as it modified the list to which it is
applied.

The same example can be implemented in Python as follows:

1 >>> numbers = l i s t ( range ( 1 , 1 1 ) )
2 >>> square = lambda number : number * *2
3 >>> squared = map( square , numbers )
4 >>> l i s t ( squared )
5 [ 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100]

The notation used for this example is equal to doctest, in which a line starting
with a triple greater-than sign (>>>) is a line inputted and a line not starting
with a triple greater-than sign is expected output. Line 1 defines a list of numbers
ranging from 1 to 11 (exclusive). Line 2 defines a function that takes as input a
number and returns as output the square of the number. The syntax for lambda
functions in Python is defined as 𝑙𝑎𝑚𝑏𝑑𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ∶ 𝑏𝑜𝑑𝑦 where 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 is
a list of parameters separated by a comma. If no parameters are supplied this
can be omitted. Body is the body of the function, and can contain a single Python
statement. Line 3 defines a variable called 𝑠𝑞𝑢𝑎𝑟𝑒𝑑, which contains the return value
of applying the 𝑠𝑞𝑢𝑎𝑟𝑒 function and the 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 list to the 𝑚𝑎𝑝 function. 𝑚𝑎𝑝 is a
built-in function of the Python language. Line 4 converts the 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 variable to a
list. Line 5 shows the output, a list of squared numbers. Note that in this example,
unlike the example in pseudocode, the list of numbers has not been altered. This
is because unlike the foreach operator such as used in the pseudocode example,
the Python example uses the map function that produces a new list of numbers
and is hence free of side effects. Other languages, such as JavaScript, actually
implement an 𝑎𝑟𝑟𝑎𝑦.𝑓 𝑜𝑟𝐸𝑎𝑐ℎ function, but in the Reactive Programming style use
of such functions with side effects should be avoided.
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4.3 Connectors
The following connectors are currently implemented:

map Uses a procedural parameter to map inputs to outputs. Useful for exam-
ple for doing a calculation on the input (e.g. a coordinate transform or dis-
tance calculation) or selecting a specific value from a structure (e.g. taking
the value from a field of an object or looking up an index in an area).

filter Uses a procedural parameter to filter inputs which do not match a certain
predicate. Useful for implementing range filters (e.g. filtering objects that
are close or far) and category filters (e.g. filtering objects that have been seen
before or are new; filtering faces that have been recognized or have not been
recognized).

timestamp Adds a timestamp to the inputs. Useful for reasoning based on time
(e.g. when combining two streams, ensure a maximum time difference be-
tween two events).

sample Samples an input at a certain rate. Useful for reducing unneeded compu-
tation and avoiding overloading an actuator.

combineLatest Uses a procedural parameter to combine inputs from multiple
streams. Useful for sensor fusion.

merge Merges inputs from multiple streams. Useful when multiple streams pro-
duce the same type of output (e.g. when having redundant sensors such as
two sonar sensors).

subscribe Sends inputs to an actuator. Used whenever the robot should actually
make a change to change the environment.

I also overload the operator ↣ to mean “passes messages to”, that is:

𝐴 ↣ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) ↣ 𝐵

Where 𝐴 and 𝐵 are streams, means that “𝐴 passes messages to a 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 param-
eterized by 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 that passes messages to 𝐵”. Alternatively one could define
a tuple (𝐴, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝐵), e.g. (𝐴, 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒, ∅, 𝐵) means that “𝐴 passes
messages to the 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 connector, which takes no parameters, that passes mes-
sages to 𝐵”. In Python we would write: 𝐵 = 𝐴.𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒(). The message from 𝐴 to
the connector is an output of 𝐴 and an input to the connector given the specified
parameters. The message from the connector to 𝐵 is an output of the connector
and an input to 𝐵.

4.3.1 Map
It will often occur that the output of a sensor needs to be transformed in some
ways to be usuable as input for an actuator. One example is when the position of
an object in the camera frame might need to be transformed to a position in the
end-effector frame (inverse kinematics). Another example is when a data structure
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𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡

map(𝜆 ∶ 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 → 𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑝𝑝𝑒𝑑)

𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡

𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡

𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑝𝑝𝑒𝑑

Figure 4.6: Diagram of the map connector

is given and the programmer is only concerned with a subset of the data given by
one field of the structure. Yet another example is when a list of items is given
and the programmer is only interested in one element of the list for which the
programmer knows the index. A final example is when an object is given and
the programmer wants to perform some calculation over the object, for example
getting the distance to an object.

In all of these cases the 𝑚𝑎𝑝 connector can be used. This connector applies
to each input value a procedural parameter 𝜆 and puts the result in the output
stream.

Definition 4.3.1. 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡 ↣ 𝑚𝑎𝑝(𝜆 ∶ 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 → 𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑝𝑝𝑒𝑑) ↣ 𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡:
Takes as input value 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 from 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡. Produces output 𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑝𝑝𝑒𝑑 =
𝜆(𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡) to 𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡. Also see Figure 4.6.

4.3.2 Filter
Depending on the application, not all sensor data might be of interest. For exam-
ple, a programmer might only be interested in objects that are either close or that
are far. It might also be the case that a programmer is only interested in objects of
a specific category, or in objects that do not fit in that category, e.g. faces that are
new and faces that have been seen before.

In these cases the filter connector can be used to remove spurious data. This
connector applies to each input value a procedural parameter 𝜆 and puts that same
value in the output stream if 𝜆 returned true.

Definition 4.3.2. 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡 ↣ 𝑓 𝑖𝑙𝑡𝑒𝑟(𝜆 ∶ 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 → 𝑣𝑎𝑙𝑢𝑒𝑓 𝑖𝑙𝑡𝑒𝑟) ↣ 𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡:
Takes as input value 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 from 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡. Produces output 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 to
𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡 if 𝑣𝑎𝑙𝑢𝑒𝑓 𝑖𝑙𝑡𝑒𝑟 = 𝜆(𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡) = 𝑇𝑟𝑢𝑒. Also see Figure 4.7.

4.3.3 Timestamp
When reasoning based on time it is beneficial to add a timestamp to data. This
is especially useful if the sensor that produces the data does not provide a times-
tamp already. Theoretically, in realtime applications one might even want to add
a timestamp to sensor data that already contains a timestamp from the sensor, to
ensure that the timestamp will be equal throughout the RRP Graph. RRP does
however not currently offer any realtime programming support.
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𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡

filter(𝜆 ∶ 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 → 𝑣𝑎𝑙𝑢𝑒𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑)

𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡

𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡

𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 𝑖𝑓 𝑣𝑎𝑙𝑢𝑒𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑇𝑟𝑢𝑒

Figure 4.7: Diagram of the filter connector

𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡

timestamp

𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡

𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡

(𝑡𝑖𝑚𝑒(), 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡)

Figure 4.8: Diagram of the timestamp connector

One case in which timestamps can be used is when a programmer combines
two streams and wants to ensure a maximum time difference between events be-
ing generated from the two streams. The CombineLatest connector, which will
be introduced shortly, combines the latest known value from a set of streams. It
could however be that one of these streams contains a very old value. By first
timestamping the input streams, then combining the timestamped streams, and
then filtering out values where there is a too big difference between the times-
tamps, a programmer can produce the desired result. This is quite an advanced
use case which a novice programmer might not encounter.

The 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 connector takes any item as input and puts the timestamped
input into the output stream.

Definition 4.3.3. 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡 ↣ 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝() ↣ 𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡: Takes as input a
value 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 from 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡.

Produces output (𝑡𝑖𝑚𝑒(), 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡) to 𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡, where 𝑡𝑖𝑚𝑒() is a function
that returns the current time. Also see Figure 4.8.

4.3.4 Sample
Some sensors can produce data as a rate which is unnecessarily high. This can
cause computation overhead and can even overload actuators that accept inputs
at a lower rate.

For example, the robot NAO has camera which produces frames with a reso-
lution of 1280x960 pixels at 30 frames per second. When tracking objects (e.g. vi-
sual servoing) this is a decent frame rate. However when the programmer wants
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𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡

sample(𝑟𝑎𝑡𝑒)

𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡

𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡

𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡

Figure 4.9: Diagram of the sample connector

the robot to switch tracking modes (for example, from head tracking to full body
tracking) such a high frame rate is unnecessary. In this case the programmer can
decide to use only one or two frames per second, however we do not want to
change the capture rate of the camera itself as a high frame rate is required for the
motor control of the actual tracking tasks.

To compensate for this a programmer can use the 𝑠𝑎𝑚𝑝𝑙𝑒 connector. 𝑠𝑎𝑚𝑝𝑙𝑒
takes the latest value, each 𝑟𝑎𝑡𝑒 milliseconds, from the input stream and puts this
value in the output stream.

Definition 4.3.4. 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡 ↣ 𝑠𝑎𝑚𝑝𝑙𝑒(𝑟𝑎𝑡𝑒) ↣ 𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡: Creates a timer with
a duration of 𝑟𝑎𝑡𝑒 miliseconds. When the timer expires, takes as input a value
𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 from 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡, produces output 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 to 𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡 and restarts
the timer. Also see Figure 4.9.

4.3.5 CombineLatest
Many applications require the combination of data produced by multiple sen-
sors. For example to determine whether an object is on the left right side of the
robot torso, the summation of an object’s radian angle in the robot’s camera frame
(located in the head of the robot) and the head yaw rotation can be used. Such
sensor fusion applications can be performed using the 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐿𝑎𝑡𝑒𝑠𝑡 connector.
This connector combines the latest value of one input stream with cached val-
ues of the other input streams. For each input value on one of the input streams,
the 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐿𝑎𝑡𝑒𝑠𝑡 connector retrieves the latest (cached) value of the other input
streams and applies the function 𝜆 on the values. It then inserts the results of the
procedural parameter call in the output stream.

Definition 4.3.5. 𝑆𝑡𝑟𝑒𝑎𝑚[0]
𝑖𝑛𝑝𝑢𝑡, … , 𝑆𝑡𝑟𝑒𝑎𝑚[𝑛]

𝑖𝑛𝑝𝑢𝑡 ↣ 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝐿𝑎𝑡𝑒𝑠𝑡(𝜆 ∶ 𝑣𝑎𝑙𝑢𝑒[0]
𝑖𝑛𝑝𝑢𝑡, … , 𝑣𝑎𝑙𝑢𝑒[𝑛]

𝑖𝑛𝑝𝑢𝑡 →
𝑣𝑎𝑙𝑢𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) ↣ 𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡.

Let 𝑖 be the index of the stream on which the latest input was received;
Then 𝑆𝑡𝑟𝑒𝑎𝑚[𝑖]

𝑖𝑛𝑝𝑢𝑡 is that stream.
Takes as input a value 𝑣𝑎𝑙𝑢𝑒[𝑖]

𝑖𝑛𝑝𝑢𝑡 from 𝑆𝑡𝑟𝑒𝑎𝑚[𝑖]
𝑖𝑛𝑝𝑢𝑡 and stores this in the cache.

Produces output 𝜆(𝑣𝑎𝑙𝑢𝑒[0]
𝑖𝑛𝑝𝑢𝑡, … , 𝑣𝑎𝑙𝑢𝑒[𝑖]

𝑖𝑛𝑝𝑢𝑡, … , 𝑣𝑎𝑙𝑢𝑒[𝑛]
𝑖𝑛𝑝𝑢𝑡) to 𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡, where

𝑣𝑎𝑙𝑢𝑒[𝑗]
𝑖𝑛𝑝𝑢𝑡 ∈ {𝑖𝑛𝑝𝑢𝑡[0], … , 𝑣𝑎𝑙𝑢𝑒[𝑛]

𝑖𝑛𝑝𝑢𝑡} and 𝑖 ≠ 𝑗, is a cached value of 𝑆𝑡𝑟𝑒𝑎𝑚[𝑗]
𝑖𝑛𝑝𝑢𝑡.

Also see Figure 4.10.
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𝑆𝑡𝑟𝑒𝑎𝑚[0]
𝑖𝑛𝑝𝑢𝑡 ⋯ 𝑆𝑡𝑟𝑒𝑎𝑚[𝑛]

𝑖𝑛𝑝𝑢𝑡

combineLatest(𝜆 ∶ 𝑣𝑎𝑙𝑢𝑒[0]
𝑖𝑛𝑝𝑢𝑡, … , 𝑣𝑎𝑙𝑢𝑒[𝑛]

𝑖𝑛𝑝𝑢𝑡 → 𝑣𝑎𝑙𝑢𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑)

𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡

𝑣𝑎𝑙𝑢𝑒[0]
𝑖𝑛𝑝𝑢𝑡

⋯ 𝑣𝑎𝑙𝑢𝑒[𝑛]
𝑖𝑛𝑝𝑢𝑡

𝑜𝑢𝑡𝑝𝑢𝑡

Figure 4.10: Diagram of the combineLatest connector

𝑆𝑡𝑟𝑒𝑎𝑚[0]
𝑖𝑛𝑝𝑢𝑡 ⋯ 𝑆𝑡𝑟𝑒𝑎𝑚[𝑛]

𝑖𝑛𝑝𝑢𝑡

merge

𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡

𝑣𝑎𝑙𝑢𝑒[0]
𝑖𝑛𝑝𝑢𝑡

⋯ 𝑣𝑎𝑙𝑢𝑒[𝑛]
𝑖𝑛𝑝𝑢𝑡

𝑜𝑢𝑡𝑝𝑢𝑡

Figure 4.11: Diagram of the merge connector

4.3.6 Merge
When there are multiple sensors that produce similar data a programmer might
want to merge these. For example, when detecting color balls of three colors these
three ball sensor streams can be merged into a single stream. The 𝑚𝑒𝑟𝑔𝑒 connector
outputs an input given to it from multiple streams.

Definition 4.3.6. 𝑆𝑡𝑟𝑒𝑎𝑚[0]
𝑖𝑛𝑝𝑢𝑡, … , 𝑆𝑡𝑟𝑒𝑎𝑚[𝑛]

𝑖𝑛𝑝𝑢𝑡 ↣ 𝑚𝑒𝑟𝑔𝑒() ↣ 𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡. Where:
Let 𝑖 be the index of the stream on which the latest input was received;
Then 𝑆𝑡𝑟𝑒𝑎𝑚[𝑖]

𝑖𝑛𝑝𝑢𝑡 is that stream.
Takes as input a value 𝑣𝑎𝑙𝑢𝑒[𝑖]

𝑖𝑛𝑝𝑢𝑡 from 𝑆𝑡𝑟𝑒𝑎𝑚[𝑖]
𝑖𝑛𝑝𝑢𝑡.

Produces output 𝑣𝑎𝑙𝑢𝑒[𝑖]
𝑖𝑛𝑝𝑢𝑡 to 𝑆𝑡𝑟𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡. Also see Figure 4.11.

4.3.7 Subscribe
Most connectors in RRP are free of side effects, i.e. they cannot influence any value
outside of the RRP Graph. This makes the RRP Graph easy to understand: Noth-
ing is changed about the robot unless the programmer explicitly defines so. For
robotics applications it is obvious that there is a need of side effects. To introduce
side effects the programmer can use a special connector called subscribe. This
connector sends its inputs to an actuator. Note that, as explained earlier, in RRP
any change to the state both inside the robot or outside the robot is done via an
actuator.
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Stream

subscribe

𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡

output

𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡

Figure 4.12: Diagram of the subscribe connector

Red Ball

Red Eyes

subscribe

Green Ball

Green Eyes

subscribe

Blue Ball

Blue Eyes

subscribe

Figure 4.13: Reflect ball color sample application RRP Graph

Definition 4.3.7. 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑝𝑢𝑡 ↣ 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒() ↣ 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟. Takes as input a value
𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡. Sends 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑝𝑢𝑡 to 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟. Also see Figure 4.12.

4.4 Sample Applications
In this section I will show various sample applications using the diagram notation
used earlier in this chapter.

4.4.1 Reflect ball color
The goal of the robot is to look for a colored ball, and if spotted change the eye
colors to reflect on the ball detected.

The following assumptions can be made:

• The robot detects balls of the colors red, green and blue.

• The following sensors are available: Red Ball, Green Ball, Blue Ball.

• The following actuators are available: Red Eyes, Green Eyes, Blue Eyes.

Figure 4.13 shows how this application can be implemented as an RRP Graph.

4.4.2 Say ball color
The goal of the robot is to look for a colored ball, and if spotted say the color of
the ball detected.

The following assumptions can be made:

• The robot detects balls of the colors red, green and blue.
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Red Ball

sample(1000)

Say Red

subscribe

Green Ball

sample(1000)

Say Green

subscribe

Blue Ball

sample(1000)

Say Blue

subscribe

Figure 4.14: Say ball color sample application RRP Graph

Red Ball

map(ball → ”red”)

Green Ball

map(ball → ”green”)

Blue Ball

map(ball → ”blue”)

merge

sample(1000)

subscribe

Say Input

Figure 4.15: Say ball color with merge sample application RRP Graph

• The following sensors are available: Red Ball, Green Ball, Blue Ball.

• The following actuators are available: Say Red, Say Green, Say Blue.

• The robot has to say the color once per second.

Figure 4.14 shows how this application can be implemented as an RRP Graph.

4.4.3 Say ball color with merge
The say ball color implementation has some duplication, which can be removed
by using the merge connector.

The following assumptions are made:

• The robot detects balls of the colors red, green and blue.

• The following sensors are available: Red Ball, Green Ball, Blue Ball.

• The following actuator is available: Say Input.

• The robot has to say the color once per second.

Figure 4.15 shows how this application can be implemented as an RRP Graph.
A map connector is used to create a text string for each ball color. In this case

the input value (𝑏𝑎𝑙𝑙) is actually not used for generating the output (the string
containing the color of the ball). Using the merge connector the ball strings are
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Red Ball

map(ball_to_distance)

map(distance_to_brightness)

subscribe

Eye Brightness

Figure 4.16: Distance to brightness sample application RRP Graph

merged into a single (anonymous) stream. Then a sample of this merged stream
is taken every second using the sample connector. Finally using subscribe the ball
string is send to an actuator that makes the robot say the input value.

4.4.4 Distance to brightness
The goal of the robot is to look for a red ball, and if spotted change the brightness
of its eye LEDs based on the distance to the ball.

The following assumptions are made:

• The robot detects red balls using a Red Ball sensor.

• There is a procedure called ball_to_distance, which can calculate the distance
to the ball given a ball as input.

• There is a procedure balled distance_to_brightness, which can calculate a bright-
ness value given a distance as input.

• There is an actuator called Eye Brightness, which takes a brightness value as
input and changes the intensity of the eye LEDs to the input.

Figure 4.16 shows how this application can be implemented as an RRP Graph.

4.4.5 Track far balls with head, close balls with head and body
The goal of the robot is to track far away balls with its head, and balls that are
close with both its head and its body.

The following assumptions are made:

• The robot detects balls using a Ball sensor.

• There is a procedure called ball_to_distance, which can calculate the distance
to the ball given a ball as input.

• There are the following two actuators: (1) Head Tracker, (2) Head and Body
Tracker.

Figure 4.17 shows how this application can be implemented as an RRP Graph.
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Ball

map(ball_to_distance)

filter(distance → distance > 50) filter(distance → distance ≤ 50)

subscribe subscribe

Head Tracker Head and Body Tracker

Figure 4.17: Simple tracking sample application RRP Graph

Face Detection

sample(10000)

filter(face → face.new)

filter(face → face.recognized_new_face)

subscribe

Remember Face

subscribe

Say “Hello”

filter(face → not face.new)

subscribe

Say “Hello Again”

Figure 4.18: Greeting sample application RRP Graph

4.4.6 Greeter
The goal of the robot is to greet people, either saying “Hello” to people who the
robot has not seen before, and “Hello Again” to people who the robot has seen
before.

The following assumptions are made:

• The robot detects faces using a Face Detection sensor.

• Faces have a field called 𝑛𝑒𝑤 which is 𝑇𝑟𝑢𝑒 if the face has not been seen be-
fore.

• Faces have a field called 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑_𝑛𝑒𝑤_𝑓 𝑎𝑐𝑒 if a new face was detected and
the quality of the detection was good enough to remember the face.

• There are the following three actuators: (1) Say “Hello”, (2) Say “Hello Again”,
(3) Remember Face.

• The robot checks for faces every 10 seconds.

Figure 4.18 shows how this application can be implemented as an RRP Graph.
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Ball

BallSamples

sample(500)

Distance

map(ball_to_distance)

filter(pair → pair𝑑 ≤ 20)

map(ball_x_and_distance)

map(pair →pair𝑥)

combine(+)

Head Yaw

map(select_arm)

subscribesubscribesubscribe

filter(d → d ≥ 50) filter(d → 20 < d < 50)

HeadTracker HeadBodyTracker ArmTracker

Figure 4.19: Complex tracking sample application RRP Graph

4.4.7 Track far balls with head, medium balls with head and body,
close balls with nearest arm

The goal of the robot is to track far away balls with its head, medium distance balls
with the head and body, and close distance balls with the arm nearest to the ball.

The following assumptions are made:

• The robot detects balls using a Ball sensor.

• The head yaw angle is retrieved using a Head Yaw sensor.

• There is a procedure called 𝑏𝑎𝑙𝑙_𝑡𝑜_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, which can calculate the distance
to the ball given a ball as input.

• There is a procedure called 𝑏𝑎𝑙𝑙_𝑥_𝑎𝑛𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, which can calculate the dis-
tance to the ball given a ball as input and returns a pair of distance 𝑑 and
ball x-angle 𝑥.

• There is a procedure called 𝑠𝑒𝑙𝑒𝑐𝑡_𝑎𝑟𝑚, which given an input angle relative
to the torso frame of the robot returns either “left” if the angle is negative or
“right” if the angle is positive.

• There are the following three actuators: (1) Head Tracker, (2) Head and Body
Tracker and (3) Arm Tracker, where the Arm Tracker actuator accepts as
input value the arm to use for tracking.

Figure 4.19 shows how this application can be implemented as an RRP Graph.
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4.4.8 Fixing a timing bug in the tracking example
The previous example contains a bug. If a ball has moved from close to medium
or far distance, the combine(+) connector will have a cached version of the ball.
When the head of the robot moves, the Head Yaw sensor stream will produce a
new angle. The new head yaw angle will be combined with an old ball angle,
the arm to use for tracking the ball at its old angle will be computed and the arm
tracker will be enabled with that arm value. This will happen even though the
ball is not at a close distance! A solution to this problem requires the use of the
timestamp operator.

By adding a timestamp to the value of the head yaw and ball position we can
check whether the ball has been close to the robot in a fixed time period. For
example, we can say that if a ball was spotted closely to the robot in the previous
second, we will assume the ball is still close. This also requires us to modify the
parameter to the combine operator to take into account that it now gets two pairs
as input:

• Ball angle and timestamp

• Head yaw and timestamp

We define the following procedure for combining these: combinator = ℎ, 𝑏 →
(ℎ𝑣 + 𝑏𝑣, ℎ𝑡 − 𝑏𝑡) in which ℎ is the head yaw, 𝑏 is the ball angle, and the timestamp
connector makes pairs with the keys 𝑣 as value and 𝑡 as timestamp. Just as in the
previous example, ball angles are combined using a summation. For the times-
tamp we substract the time that the ball was detected from the time that the head
moved. This is the time between seeing a ball and moving the head. If the ball
was seen after moving the head, this value will be negative.

The following procedure can now be used to filter out cases in which the head
moved but a ball has not been detected as close within the last second: 𝑎 → 𝑎𝑡 <
1𝑠𝑒𝑐. After filtering out spurrious head yaw movements we can discard the times-
tamp. This is done in a similar way as that the distance was discarded earlier in
the graph.

Figure 4.20 shows how the bug has been fixed in the tracking example.
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Ball

BallSamples

sample(500)

Distance

map(ball_to_distance)

filter(pair → pair𝑑 ≤ 20)

map(ball_x_and_distance)

map(pair → pair𝑥)

timestamp

combine(combinator)

Head Yaw

timestamp

filter(𝑎 → 𝑎𝑡 < 1𝑠𝑒𝑐)

map(pair → pair𝑣)

map(select_arm)

subscribesubscribesubscribe

filter(d → d ≥ 50) filter(d → 20 < d < 50)

HeadTracker HeadBodyTracker ArmTracker

Figure 4.20: Complex tracking sample application RRP Graph
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Chapter 5

Interpreter for Reactive Robot
Programming

RRP is a programming paradigm which can currently be applied by using an in-
terpreter. The interpreter can load an RRP Graph and execute it on a robot. The
RRP Interpreter is aimed towards more experienced users, novice users do not di-
rectly have to interact with the interpreter as they can use a Visual Programming
Environment, which is explained in the next chapter.

In this chapter we present the requirements of the interpreter and how it was
implemented.

5.1 Requirements
The requirements of the interpreter are as follows:

• Runs on a control PC.

• Can load an RRP Graph from various data sources.

• Can run an RRP Graph on various robots.

– Initialize sensors;
– Process events from sensors as specified by the RRP Graph;
– Send outputs to actuators.

• Supports the following connectors:

– Map;
– Filter;
– Timestamp;
– Sample;
– CombineLatest;
– Merge;
– Subscribe.

• Includes functionality for exploring the behaviours stored in a data source.
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Shell

AdapterFactory

Adapter

RobotFactory

Runtime

Robot

EngineFactory

Engine

Figure 5.1: High level overview of the interpreter architecture.

• It should be easy to add support for a new robot.

• It should be easy to add support for a new data source.

5.2 Implementation
Currently RRP supports one robot, one data source and a limited set of sensors
and actuators on the robot. Because the RRP Interpreter is continuously being
developed, this section shows a snapshot of the current state.

The RRP Interpreter was developed using the Python programming language
with support for the Softbanks NAO robot and the Neo4j Graph Database as data
source. It includes a shell for exploring the behaviours stored in a data source,
and a runtime environment for running behaviours on the robot.

Figure 5.1 gives a high level overview of the interpreter architecture.

5.2.1 Shell
The shell is an interactive console application that allows an operator to explore
the behaviours stored in the data source and also to stimulate sensors on a running
instance of an RRP Graph on the robot. Table 5.1 shows a list of the commands
supported by the shell.

5.2.2 Runtime environment
The runtime environment can initialize an RRP Graph on the robot. To accom-
plish this, it uses an engine that specifies the threading behavior. By using a fac-
tory method an engine can be created. This section discusses the standard multi-
threaded engine. An experimental single threaded engine using an event loop is
also under development, as well as an experimental engine using multiprocess-
ing.

The engine itself runs in a thread, that when started initializes the helpers for
a graph and loops over the sensor streams of a graph. The sensor streams are the
streams that have a sensor attached to them. The engine will initialize the sensor
streams, the connectors and the actuator streams.

The implemented model of RRP Graphs closely matches the description in the
previous chapter. As could be seen in the examples, there are two ways of imple-
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Table 5.1: Commands supported by the shell

Command Description
Connect Connect to an RRP daemon
Disconnect Disconnect from an RRP daemon
Stimulate Send input to a sensor
Show programs Show programs (behaviours) in the data source
Load program Load a program for exploring in the shell
Show streams Show all streams in the program
Load stream Loads a stream for exploring in the shell
Show out streams Shows all outgoing streams from the loaded stream
Show in streams Shows all incoming streams to the loaded stream
Show out ops Show all outgoing connectors from the loaded stream
Show in ops Show all incoming connectors to the loaded stream
Show start streams Show all streams that have a sensor attached
Show commands Show a list of supported commands
Exit Exit from the shell

menting a procedural parameter, namely by declaring the procedural parameter
directly in the graph or by referring to an existing procedure. In the RRP Inter-
preter referring to an existing procedure is done by defining the procedure as a
helper. Helpers are initialized by the RRP Interpreter before the streams are ini-
tialized.

Stream initialization follows this algorithm:

1. If the stream is a sensor stream:

(a) Get the sensor from the robot model;
(b) Initialize the sensor if it is not currently running.

2. If the stream is an actuator stream:

(a) Get the actuator from the robot model;
(b) Initialize the actuator if it is not currently running.

3. Create an instance of the stream and store this for later use;

4. Loop through the outgoing connectors for this stream:

(a) If the output stream is not initialized yet:
i. Initialize the stream using this algorithm;

ii. Initialize the connector using a connector factory, connect it to the
initialized stream and store it for later use.

(b) If the output stream is already initialized (then the connector has to be a
many to one connector, as a stream can have only one input connector):

i. Retrieve the connector instance;
ii. Adds the current stream as source to the connector;

iii. Connect the current stream to the connector.
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The engine automatically creates threads for the sensors used and manages
the subscriptions for connectors. The map, filter, timestamp, combineLatest and
merge connectors inherit the thread of their input stream. The sample connector
runs in its own thread as it is maintaining a timer.

After the RRP Graph is initialized the sensors will be active on the robot and
will feed data to their connectors. The currently implemented connectors behave
as follows:

Map • Initialization:
1. If the procedural parameter is a body, evaluate it using Python’s

𝑒𝑣𝑎𝑙 function and store it.
2. If the procedural parameter is a helper, it has already been initial-

ized when the engine initialized the graph, so store the reference
to the helper.

• Input received:
1. Pass the input to the procedural parameter;
2. Pass the result of the previous step as input to the output stream.

Filter • Initialization:
1. If the procedural parameter is a body, evaluate it using Python’s

𝑒𝑣𝑎𝑙 function and store it.
2. If the procedural parameter is a helper, it has already been initial-

ized when the engine initialized the graph, so store the reference
to the helper.

• Input received:
1. Pass the input to the procedural parameter;
2. If the result of the previous step was True, pass the input to the

output stream.

Timestamp • Initialization: Store the start time.
• Input received: Pass a tuple containing the input and the current time

minus the start time to the output stream.

Sample • Initialization: Start a timer that fires according to the sample period.
• Input received: Set the latest value to the input.
• Timer fires:

1. If there is a latest value stored, pass it to the output stream and reset
the latest value.

2. If there is no latest value stored, do nothing.

CombineLatest • Initialization: Initialize a dictionary with as keys each input
stream to store the latest value received from them.

• Input received:
1. Store the input in the dictionary with as key the input stream;
2. If an input has been received on every input stream, pass the input

values from the dictionary to the procedural parameter;
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Table 5.2: Actuated joints of the robot

Joint Supported rotation
Head Pitch Yaw
Right hand Open & Close
Right wrist Yaw
Right shoulder Roll Pitch
Right elbow Roll Pitch YawPitch
Right hip Roll Yaw
Right knee Pitch
Right ankle Roll Pitch
Left hand Open & Close
Left wrist Yaw
Left shoulder Roll Pitch
Left elbow Roll Yaw
Left hip Roll Pitch YawPitch
Left knee Pitch
Left ankle Roll Pitch

3. Pass the result of the previous step as input to the output stream.

Merge • Initialization: No specific initialization needed.
• Input received: Send the input to the output stream.

Subscribe • Initialization: No specific initialization needed.
• Input received: Send the input to the actuator associated with this sub-

scription.

Another behavior worth describing is the termination of an RRP Graph. This
is initialized when the operator sends the termination signal to the RRP Runtime.
Because there are various threads running these have to be shut down to cleanly
terminate. Basically the RRP Runtime will walk through the RRP Graph and in
post-order stop the streams and their input connectors. For sample connectors the
RRP Runtime will also stop the timer thread. For sensor streams the RRP Runtime
will stop the sensor thread. Finally the engine thread will be stopped.

5.2.3 Robot: Softbank NAO
Table 5.2 shows the joints of the robot for which the angle can be sensed and
actuated. In the case of right hip yawpitch and left hip yawpitch only a single
motor is used for actuation.

The following sensors are currently supported:

Red ball Detects red balls in the camera frame.

Blob Detects blobs of a specified color in the camera frame.

WordRecognized Detects words from a dictionary.
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FaceDetection Detects faces in the camera frame.

JointPosition Gets the position of a joint, typically in radians, but for hands this
is a percentage.

The following actuators are currently supported:

EyeLedColor Changes the colors of the eye LEDs.

RememberFace Remembers a detected face for later recognition.

SayInput Uses TTS to say a message inputted.

SayParameter Uses TTS to say a message given as parameter when initializing
the actuator.

Tracker Changes tracking mode to a parameter given when initializing the actu-
ator.

SetJointPosition Changes position for a joint specified as parameter when initial-
izing the actuator to a joint angle given as input to the actuator. Allows for
joint groups to be used and arrays of angles as input.

Print Prints a message to the console.

While adding sensors and actuators is not complicated, currently an experi-
enced programmer is expected to provide a robot specific framework. The cur-
rently supported sensors and actuators were added for the purpose of creating
sample applications and conducting experiments. For end-users to use RRP some
cooperation with an experienced software engineer is needed to add the sensor
and actuator support for the desired application domain.

5.2.4 Data Source: Graph Database
Currently the only supported data source is a graph database called Neo4j. Graph
databases store data in a graphical format called a labeled property graph. La-
beled property graph have the following properties [37]:

• They contain nodes (vertices) and relationships (edges).

• Nodes have properties associated with them, which are defined as key-value
pairs.

• Nodes can be assigned one or more labels.

• Relationships have a name, a direction and a start and end node.

• Just like nodes, relationships can have properties.

Neo4j is a schemaless database, which means that any desired structure has
to be enforced by applications reading and writing from/to the graph. Figure 5.2
shows an abstract description of the graph database model used. Nodes are drawn
as circles and relationships as arrows. Properties are collected inside a rectangle
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Program Stream

connector

program Connector

in

out

uuid, nameuuid, name uuid, name

Sensor

sensor

Actuator

actuator

uuid, name

uuid, name

Figure 5.2: Abstract description of the graph database model

in the corner of the node to which they belong. Properties on relationships are ig-
nored in the figure. Connectors can be modeled either as a relationship between
two streams or as a node. The following connectors are modeled as relationships:
Map with body, filter with body, sample, timestamp and subscribe. The follow-
ing connectors are modeled as nodes: Map with helper, filter with helper, com-
bineLatest and merge.

Neo4j supports querying the graph database using a query language called
Cypher. For example, the following Cypher query returns a program with its
streams:
MATCH (p : Program) < −[ :program] −( s : Stream )
WHERE id (p ) = 351
RETURN p , s
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Chapter 6

Visual Programming Environment
for Reactive Robot Programming

The RRP Interpreter introduced in the previous chapter provides the technical
infrastructure for executing RRP Graphs on a robot. End-users expect a more
friendly environment, which is why a Visual Programming Environment was de-
veloped. As has been shown earlier, many Visual Programming Environments
for learning programming and for novice programmers already exist, however
few of them are aimed towards programming robots.

At the same time, the reactive programming paradigm is often teached by us-
ing diagrammatic notations, some examples have been shown in Chapter 4. These
diagrams are however not executable, and besides that are aimed towards teach-
ing more experienced programmers about reactive programming. We introduce
a tool for creating executable diagrams of applications according to the principles
of RRP. Whereas the technical term for these diagrams is RRP Graphs, this chap-
ter refers to RRP Graphs using the word “behaviours”. Our tool is called the RRP
VPE, but this chapter refers to it as “the VPE”.

This chapter discusses the requirements of the VPE and shows how we imple-
mented it.

6.1 Requirements
This section splits the requirements of the VPE between functional (about func-
tionality offered by the VPE) and non-functional (about technical features of the
VPE) requirements. The functional requirements are:

• Allows the management of behaviours (adding, removing, editing).

• Allows modelling of behaviours:

– Adding/removing/editing sensor streams;
– Adding/removing/editing connectors;
– Adding/removing/editing actuator streams.

• Allows the management of reusable code fragments (adding, removing, edit-
ing).
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• Allows starting/stopping applications on the robot.

The non-functional requirements are:

• Implemented as a web application.

• Supports both mouse and touch interaction.

• Allows for multiple users to interact with the VPE at the same time.

• Modern interaction without page refreshes.

6.2 Implementation
We implemented the VPE as a web application using Node.js and the ExpressJS
framework. The Pug template language is used for specifying views. The VPE has
been implemented as a Single Page Application, which allows for a very smooth
user experience without any page refreshes. Communication between the client
side (web browser) and server side (Node.js/ExpressJS web application) is per-
formed using the socket.io library. The user interface has been developed using
the Bootstrap CSS framework, JSPlumb graphing library and KnockoutJS data
binding library. Care was taken to support both mouse and touch interaction
in the user interface, by for example not using specific mouse events and having
elements of adequate size for touch interaction.

On the server side major domain constructs such as behaviours, streams, con-
nectors and helpers each have their own module that handles communication
with the client, a model that specifies their structure and a data access object
(DAO) that reads and writes to the graph database. On the client side there are
also modules to communicate with the server side modules, as well as models for
controlling behaviour and data.

The usage of web sockets and broadcasting of changes made to behaviours en-
ables multi-user support, which means that users can work together. A limitation
of the current system however is the lack of locking mechanisms, which means
that to avoid errors from occuring two users should coordinate their changes.

6.2.1 Mapping behaviours to RRP Graphs
RRP Graphs do not directly map to behaviours in the VPE because the VPE does
not currently support anonymous streams. This means that whenever we used
an anonymous stream in the RRP Graph examples, for example between two con-
nectors, for the corresponding behaviour in the VPE we added an extra stream.
One benefit of this approach is that the input value for procedural parameters can
always be derived from the input stream name, and can hence be omitted from
the diagram. To ensure that the user can write stylistically correct Python code,
stream names are converted to arguments using the following procedure: The first
letter is made lowercase, the first letter after a space is capitalized and spaces are
removed. For example, a stream named “Red ball” will be offered as argument as
“redBall”.
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(a) Sensor stream (b) Stream (c) Actuator stream

Figure 6.1: Three types of streams in RRP

Figure 6.1 shows the three types of streams supported in RRP: Sensor streams
(6.1a), ordinary streams (6.1b) and actuator streams (6.1c). The programmer can
recognize streams in multiple ways:

• By color: Blue for sensor streams, green for ordinary streams, magenta for
actuator streams.

• By location: Sensor streams are on the top of a branch, ordinary streams are
in the middle of a branch, actuator streams are at the bottom of a branch.

• By incoming/outgoing connectors: Sensor streams only have outgoing con-
nectors, ordinary streams have both outgoing and incoming connectors, ac-
tuator streams only have incoming connectors.

• By shape: Sensor streams and actuator streams are squares, ordinary streams
are ovals.

6.3 Walkthrough
Figures 6.2 to 6.15 show a walkthrough of adding a simple behaviour; starting to
track an object when it is close to the robot. Some steps have been omitted from
the process for the sake of brevity.
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Figure 6.2: A blank program (behaviour) has been loaded.

Figure 6.3: By clicking on “Add sensor”, a list drops down in which the user can
select the sensor to add. Assume the user selects RedBall.
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Figure 6.4: A sensor stream for the selected sensor has been added to the be-
haviour.

Figure 6.5: After having added a sensor stream the user can select it and a menu
appears below it. For sensor streams this menu has three buttons: Thunderbolt:
To add a connector starting from the sensor stream; Pencil: To change parameters
of the sensor stream; Trash can: To remove the sensor stream.
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Figure 6.6: After clicking on the thunderbolt icon a menu dropped down showing
the connectors that can be added to the behaviour.

Figure 6.7: After clicking on the map connector a modal window opens in which
the user can specify the procedural parameter and enter a name for the output
stream to be generated. For specifying the procedural parameter the user has two
options: (1) Specify the procedural parameter as a body; and (2) Select a helper to
use as procedural parameter.
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Figure 6.8: The user selects the helper distance, enters DistanceToBall as output
stream name and clicks on Save.

Figure 6.9: An output stream has been added and the RedBall sensor stream has
been connected with the output stream using a map connector taking the helper
distance as procedural parameter.
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Figure 6.10: The user has clicked on the DistanceToBall stream, followed by clicking
on the thunderbolt icon and selecting the filter connector and entering distanceto-
ball < 20 as body and Close balls as output stream name.

Figure 6.11: After clicking on Save, an output stream has been added and the
DistanceToBall stream has been connected to the Close balls stream with a filter con-
nector taking as procedural parameter distancetoball < 20.
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Figure 6.12: The user has clicked on the Close balls stream, followed by clicking
on the thunderbolt icon and selecting the subscribe connecor and selecting the
Tracker output module.

Figure 6.13: After clicking on Save, an actuator stream has been added and the
Close balls stream has been connected to the Tracker actuator stream with a subscribe
connector.
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Figure 6.14: The user has clicked on the Tracker actuator stream and clicks on the
pencil icon from the dropdown menu.

Figure 6.15: The user selects the Head as tracking mode and the Left arm as effector.
Then the user clicks on Save. After this the program is ready to be run on the robot.
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Chapter 7

User Experiment

We performed a user study to verify the effectiveness of the VPE for end-users.
This chapter introduces the method used and the results obtained.

7.1 Method
We recruited eight participants (mean age 28, standard deviation 3, 6 male, 2 fe-
male) who were students and faculty in laboratories of the University of Tsukuba,
to take part in a comparative study using the Visual Programming Environment
for RRP and a state-of-the-art programming tool for novice programmers, namely
Choregraphe. All of these participants had experience with doing experiments
in the field of Human-Robot Interaction. Additionally we recruited one parti-
pant who is a therapist (age 30, male). For this therapist the experimental con-
ditions differed slightly, and hence the data from this participant is not used in
the mean/standard deviation in any table and not included in any graph. At the
start of the experiment we asked participants to self-evaluate their skills regarding
various topics related to programming and robotics.

During the experiment participants were asked to perform three tasks using
each tool:

1. An explanation task, in which the experimenter showed the participant a be-
haviour diagram and asked the participant to explain how the robot would
behave when running the program.

2. A debugging task, in which the experimenter showed the partipant a be-
haviour diagram that contained a mistake and asked the participant to ex-
plain what was the mistake in the diagram.

3. A creation task, in which the experimenter described a behaviour of the
robot to the participant, and asked the participant to create the behaviour.

For the explanation task the participant had to explain a diagram for a differ-
ent behaviour in each tool. Differences in the explanation task performance were
hence both caused by difference in the actual behaviour and differences in the
diagram notation of the tools. For the debug task the participant had to find a
different mistake in a behaviour diagram for the same desired behaviour in each
tool. Differences in the debug task performance were hence both caused by dif-
ferences in the mistake in the behaviour diagram and differences in the diagram
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Table 7.1: Experimental conditions

Property Condition
𝛼 𝛽 𝛾 𝛿

First tool Choregraphe RRP Choregraphe RRP
Second tool RRP Choregraphe RRP Choregraphe
Explain task (CHOR) Say ball color Mirror ball color
Explain task (RRP) Mirror ball color Say ball color
Debug task Distance to brightness
Create task Tracking

notation of the tools. For the creation task the participant had to create a diagram
for the same behaviour in each tool. Differences in the creation task performance
were hence only caused by the different notation on the tools.

The experiment was counter-balanced by having half of the participants first
perform the tasks with RRP and then with Choregraphe, and the other half first
with Choregraphe and then with RRP. This was to correct for a learning effect
which can occur because the tasks were similar and the tools have some common
characteristics. Another factor for which counter-balancing was applied was for
the explanation task, as it was not sound to make the subject explain the same
behaviour twice.

In the case of Choregraphe, for each task the experimenter explained the boxes
used for the behaviour. In the case of RRP, the experimenter explained the sen-
sors streams, intermediary streams, actuator streams and connectors. The experi-
menter gave the participant 10 minutes to complete each task. In the case of parti-
cipant nine, the maximum duration for the creation task was extended to 15 min-
utes in advance of the experiment. After performing the task the experimenter
asked the participant to fill in a self-evaluation survey of the workload. The sur-
vey used was a standard survey from the NASA-TLX assessment tool. We did a
“raw TLX” evaluation, as we did not perform a pairwise comparison [56].

The experimenter gave an instruction manual to the participant. During the
experiment the participant could look back at the instructions when needed.

7.2 Tasks
Because of counterbalancing on both the tool factor and the explanation task fac-
tor there are four different experimental conditions, described by Table 7.1. The
behaviours performed by the participants and referred to in the table are as fol-
lows:

1. Explain:

• Mirror ball color: Color eyes of the robot based on detection of colored
balls.

• Say ball color: Make the robot say the color of colored ball detected.

2. Debug (Distance to brightness): Change the brightness of the robot eye LEDs
based on distance to a ball.
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Table 7.2: Prior skills of the participants according to a likert scale obtained by
self evaluation. Mean does not include participant 9.

Skill Participant Mean1 2 3 4 5 6 7 8 9*
Visual programming 2 2 2 1 4 4 5 3 2 2.5
Robot programming 4 2 1 2 4 3 5 4 1 3.5
NAO programming 4 2 1 1 4 4 5 3 1 3.5
Choregraphe 3 1 1 1 4 4 5 3 1 3
Complex Event Processing 4 1 1 1 4 2 5 2 1 2
Functional Programming 1 3 1 1 4 3 5 3 1 3
Reactive Programming 4 1 1 1 4 2 5 2 1 2
Median 4 2 1 1 4 3 5 3 1

3. Create (Tracking): Make the robot track far balls with its head, close balls
with its body and arm.

Each experimental condition was assigned to two participants in the experi-
ment.

Figures 7.1, 7.2, 7.3 and 7.4 show the behaviour diagrams that participants
either had to explain, debug or create.

7.3 Results
Table 7.2 shows how subjects evaluated themselves in terms of skills that might
influence the experimental results. From this data it can be seen that there was
a wide variety in the skill levels of the participants, ranging from having very
little experience with most skill (e.g. participants 2, 3, 4 and 9) to having a high
level of experience with most skills (e.g. participants 1, 5 and 7). The median skill
level of the participants was average. We also note that some participants that are
HRI researchers (participants 2, 3 and 4) rate their skills similarly to the therapist
(participant 9) that we recruited for this experiment.

7.3.1 Task Duration
Table 7.3 shows the time it took for each participant to complete the tasks using
each tool. In the table headers, CHOR stands for Choregraphe. Figure 7.5 graphs
the mean and standard deviation of the duration for each task.

The time taken to complete each task increased as the tasks became harder. As
mentioned earlier, the participants were given ten minutes to complete each task
(15 minutes for the creation task for participant 9). The text DNC signals that a
participant was not able to complete the task in time or made a mistake which
invalidates their result. The latter was the case for one participant using RRP in
the debugging task, one participant using Choregraphe in the debugging task and
for each participant using Choregraphe in the creation task.

For the explanation task and the debugging task there was no statistically sig-
nificant difference between using RRP and Choregraphe. For the creation task
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(a) Explain task A implemented using RRP

(b) Explain task A implemented using Choregraphe

Figure 7.1: RRP and Choregraphe implementations of Explain task A
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(a) Explain task B implemented using RRP

(b) Explain task B implemented using Choregraphe

Figure 7.2: RRP and Choregraphe implementations of Explain task B
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(a) Debug task in RRP (bug present) (b) Debug task in RRP (bug fixed)

(c) Debug task in Choregraphe (bug present)

(d) Debug task in Choregraphe (bug fixed)

Figure 7.3: RRP and Choregraphe implementations of Debug task
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(a) Create task implemented using RRP

(b) Create task implemented using Choregraphe

Figure 7.4: RRP and Choregraphe implementations of Create task
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Table 7.3: Time taken per task. Mean/SD do not include partipant 9.

Participant Task
A B C

(condition) CHOR RRP CHOR RRP CHOR RRP
1 (𝛼) 00:52 01:16 00:47 00:44 DNC 04:31
2 (𝛽) 02:19 01:14 01:08 01:04 DNC 02:42
3 (𝛾) 02:22 01:15 01:19 02:55 DNC 05:10
4 (𝛿) 02:20 01:32 00:47 00:38 DNC 05:15
5 (𝛿) 00:35 00:31 02:44 DNC DNC 06:49
6 (𝛾) 00:57 00:28 02:00 01:51 DNC 07:46
7 (𝛽) 00:34 00:37 00:49 00:51 DNC 05:25
8 (𝛼) 00:37 00:40 02:30 05:03 DNC 07:10
9* (𝛼) 05:20 01:47 DNC 08:17 DNC 09:48
Mean 01:28 00:58 01:31 02:53 10:00 05:36
SD 00:49 00:26 00:48 03:14 0 01:37

there was a statistically significant difference between using RRP and Choregraphe.
We can say that the creation task was completed faster using RRP than using
Choregraphe.

7.3.2 Self-evaluation of workload using NASA-TLX
Table 7.4 shows the self-evaluation using NASA-TLX of each participant.

Figures 7.6, 7.7, and 7.8 graph the self evaluation mean and standard deviation
per task.

The perceived workload increased as the tasks became harder.
The differences for the explanation task and debugging task are not statistically

significant for any subscale. The difference for the creation task is statistically
significant. We can say that participants felt a lower workload for the creation
task using RRP versus Choregraphe.
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Figure 7.7: Self evaluation of task Debug
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Table 7.4: NASA-TLX self evaluation. Mean/SD do not include participant 9.

Tool Task Subscale Participant Mean SD1 2 3 4 5 6 7 8 9*

C
ho

re
gr

ap
he

1

Mental demand 10 20 15 45 0 15 5 5 0 14.375 13.999
Physical demand 5 0 0 5 0 5 5 0 0 2.500 2.672
Temporal demand 5 20 50 45 0 5 5 10 25 17.500 19.456
Performance 5 10 0 25 0 30 5 5 0 10.000 11.338
Effort 15 15 25 75 0 10 5 10 35 19.375 23.669
Frustration 5 5 5 45 0 10 5 0 20 9.375 14.744

2

Mental demand 5 10 25 50 40 10 10 15 60 20.625 16.352
Physical demand 5 0 5 5 0 10 5 0 0 3.750 3.535
Temporal demand 5 10 50 25 0 10 5 10 80 14.375 16.132
Performance 10 5 0 15 0 60 5 15 95 13.750 19.594
Effort 10 5 20 65 40 35 10 15 80 25.000 20.354
Frustration 5 0 25 10 0 5 5 15 90 8.125 8.425

3

Mental demand 50 50 65 100 45 45 25 50 80 53.750 21.671
Physical demand 25 0 60 15 0 15 10 0 10 15.625 20.077
Temporal demand 60 50 25 75 0 15 20 60 95 38.125 26.583
Performance 70 5 75 65 45 85 25 75 10 55.625 28.086
Effort 70 75 65 75 0 75 25 65 70 56.250 28.125
Frustration 75 50 65 75 0 25 35 60 80 48.125 26.449

RR
P

1

Mental demand 5 10 5 25 0 10 10 5 0 8.750 7.440
Physical demand 5 0 0 5 0 10 5 0 0 3.125 3.720
Temporal demand 5 0 60 25 0 10 10 5 0 14.375 20.077
Performance 5 0 0 10 0 65 5 5 5 11.250 21.998
Effort 5 5 10 10 0 15 10 5 5 7.500 4.629
Frustration 5 0 10 15 0 10 10 5 0 6.875 5.303

2

Mental demand 10 10 40 40 45 10 10 40 55 25.625 16.783
Physical demand 5 0 5 5 0 10 5 0 0 3.750 3.535
Temporal demand 5 5 25 15 0 10 10 40 70 13.750 13.024
Performance 10 5 35 5 100 40 5 15 60 26.875 32.616
Effort 10 5 50 45 45 25 10 30 70 27.500 17.928
Frustration 10 0 40 10 0 10 5 25 50 12.500 13.627

3

Mental demand 10 15 40 75 20 10 20 45 30 29.375 22.589
Physical demand 5 0 40 20 0 10 10 0 0 10.625 13.741
Temporal demand 10 10 60 45 0 10 10 60 65 25.625 24.991
Performance 5 5 5 25 0 45 5 5 45 11.875 15.338
Effort 10 10 60 85 20 10 15 55 60 33.125 29.269
Frustration 10 0 25 50 0 10 5 45 25 18.125 19.809
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Discussion

In this chapter we will discuss the benefits and limitations of the Reactive Robot
Programming Paradigm as well as discuss specific characteristics of our devel-
oped interpreter and Visual Programming Environment.

8.1 Benefits of Reactive Robot Programming
Robots are a natural reactive system because of their embedding into a complex
environment and their use of sensors and actuators. The transformational system
paradigm is not a natural fit for the intelligent robotics domain because it requires
a programmer to use constructs such as threads and loops to deal with concepts
such as concurrency and a continuous life time.

We believe RRP is a beneficial robot programming paradigm for four reasons.
First, RRP is concurrent by default as sensors are active in parallel. A pro-

grammer hence does not have to manually construct threads or processes to create
concurrent behaviour. This allows the programmer to focus on solving problems
related to the behaviour that the robot should exhibit, and not dealing with tech-
nical characteristics of the programming environment.

Second, the separation between sensing, planning and acting is made explicit.
This allows a programmer to look at a behaviour diagram and quickly understand
how the robot is supposed to behave when the behaviour is active. Even though
this separation between sensing, planning and acting is common in the robotics
literature, we have been unable to show a statistically significant difference be-
tween our solution and a solution that does not separate between this (Chore-
graphe).

Third, RRP offers a small set of connectors which, thanks to procedural pa-
rameters, have many applications. Other environments for programming robots
typically require the programmer to create blocks (e.g. nodes in ROS and boxes in
Choregraphe). Tools such as Choregraphe offer a library of blocks that the pro-
grammer can use, however this library is typically quite restrictive. Increasing the
size of the blocks library is not by definition beneficial for the programmer, as this
increases the time required for studying about the library. High level connectors
with procedural parameters separate what blocks should do and how they should
do it. This allows a programmer to learn a small set of connectors and apply these
in many situations.

Fourth, RRP offers a visualization of behaviours that can easily be used for
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learning, communication, programming and debugging. Many solutions for pro-
gramming robots, for example ROS, are text-based and offer generation of dia-
grams. These diagrams are only useful for communication and debugging. Chore-
graphe offers a graphical notation that is useful for programming and debugging,
but it is less useful for learning and communication as a lot of information is hid-
den behind property windows or mouse hovers. TDM offers a graphical notation
that can be used for learning and communication and a library for programming
in Python, but currently there is no tool that supports visually designing TDM
diagrams. Hence the notation is at this point not useful for programming and de-
bugging by novice programmers. RRP Graphs can be used for all four purposes.

8.2 Limitations of Reactive Robot Programming
This section will discuss some of the limitations of RRP. Most of the limitations
are actually design decisions to keep RRP simple and easy to learn for novice pro-
grammers. For RRP to be more widely applicable, even by more experienced pro-
grammers for example, some of these limitations should be resolved.

8.2.1 Non determinism
RRP Graphs are non-deterministic, meaning that one cannot always predict the
outcome of running a graph with only a static view of the graph. This is caused
by the execution of the RRP Graph being dependent on previous inputs. Vari-
ous behaviours can be modelled that are non-deterministic. For example, simply
adding a sample-connector between a sensor and an actuator already adds a delay
between the robot sensing an event and creating an actuator response. If in that
scenario the event occurs multiple times within a single sample period, the robot
will respond less often to the event occuring than if the sample-connector had not
been added. Another example is when using the combine operator. In this case
the behaviour of the RRP Graph is not determined by the most recent event that
occured but also by cached values of earlier events. This lead to some interest-
ing bugs, of which we demonstrated one case in the final sample application in
Chapter 4.

While these examples are non deterministic when considering the static per-
spective of the RRP Graph, they are still deterministic when considering the graph
from a dynamic perspective (i.e. taking into account the current state of connec-
tors). More difficult cases of non-determinism are caused by race conditions.
For example, a query such as “did event A occur before event B” in a combine-
connector cannot simply be answered by considering the order of inputs. In RRP,
each sensor runs in its own thread. When the sensor receives data, it will start
processing that data on its respective thread. When a connector is encountered
that has a dedicated thread (such as a sample) the processing will continue on
that thread. Each connector adds some processing overhead, however the dura-
tion of this processing overhead can vary significantly. This means that an event
occuring earlier on one sensor than an event on another sensor can arive later at a
connector with multiple inputs. Worse, race conditions can occur on events that
arrived on the same sensor. A solution to these problems is using timestamps
when timing is important.

70 Chapter 8



8.2. LIMITATIONS OF REACTIVE ROBOT PROGRAMMING

Non determinism makes graphs harder to interpret, can introduce bugs and
complicates testing. Taking timestamps into account in the processing of events
is not an ideal solution. Bugs can occur that are hard to understand, even by ex-
perienced programmers. Testing requires a programmer to repeatedly present
combinations of inputs to the program. This is however a problem with software
testing in general, as the famous Dutch Computer Scientist Edsger Dijkstra com-
mented: “Testing shows the presence, not the absence of bugs” [28].

8.2.2 No ports
We made a conscious decision not to add ports to streams and connectors in RRP,
to simplify their usage. As was mentioned before, streams either take no input
(sensor streams) or they take a single input. At the same time streams have either
no output (actuator streams) or they have one or multiple outputs, however the
output is always broadcasted on all outputs. Connectors are more versatile, with
connectors such as CombineLatest taking a homogeneous set of inputs.

Not having ports does not seem to be a problem for most behaviours, as we
have shown in Chapter 4. The biggest problem with not having ports is that it
becomes hard to create higher level connectors. For example consider a connec-
tor called FilterCompare, that takes three inputs: Two values (left side and right
side) and an infix operator (e.g. smaller than, smaller than/equals, equals, larger
than/equals, larger than). Currently this kind of behaviour requires the program-
mer to use the CombineLatest connector to pair the inputs together, and then the
Filter connector to do the comparison.

One workaround could be to use the horizontal positioning of inputs to deter-
mine how the input should be used by the connector. In our experience however
this leads to surprise and confusion by users.

Not having ports allows for simple diagrams to be constructed. To create more
powerful applications in the future programmers using RRP would need to have
the ability to create new connectors and use ports to disambiguate the inputs.

8.2.3 Actuator coordination
A limitation of RRP is that it currently does not have any logic for dealing with
actuator coordination. For example, if one behaviour tries to make the robot point
towards a ball and another behaviour tries to make the robot point towards a per-
son, a race condition occurs. This is not a topic that we deeply explored in this
research, however various existing robot programming systems offer solutions.

In the subsumption architecture [20, 21], behaviours are assigned to a unique
layer. Behaviours at lower layers can be interrupted by behaviours at higher lay-
ers if both behaviours access a common resource. This however assumes that a
total ordering of the behaviours exists. A robot might want to combine different
behaviours, such as liveliness and interacting with a person. The total ordering
hence forces some static constraints on the robot behaviour.

In Targets-Drives-Means [13–15] behaviours are prioritized using a score calcu-
lator. The score calculator can be used to make a robot behave more dynamically
in response to its environment. Within a behaviour action units have a defined
order. If two action units that use the same resource compete for that resource,
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TDM will give priority to the action unit in the behaviour with the best score. If
both action units are part of the same behaviour then their relative ordering is
used to determine which action unit should be allowed to use the resource. It
is undefined what happens when action units in two behaviours with the same
score try to access a resource. Additionally, organizing the score calculators to
correctly determine the priority of behaviours is a complex task as characteristics
about the physical world have to be mapped to score calculators, and these score
calculators have to be matched.

For example, we can imagine a robot that is programmed to help people who
are lost in a shopping mall. The robot can calculate the distance to people in the
shopping mall as well as categorize people as needing help or not needing help.
The robot now has to combine continuous data (distance to people) with categor-
ical data (whether a person needs help or not). Score calculators however operate
only on integers, hence the two pieces of data somehow have to be combined into
an integer value.

Another approach for combining conflicting actuator commands is Motor Sche-
mas [6]. Motor Schemas use vector fields for specifying behaviours, hence they
are mostly applicable for geometric operations. As was shown in Chapter 2, some
behaviours can be created by combining vector fields, e.g. the move-to-goal-while-
avoiding-static-obstacle behaviour. Other behaviours are harder to combine, such
as the point-at-ball and point-at-person behaviours. Summing both vector fields in
this case makes the robot point somewhere in the middle of both targets, which is
not a logical behaviour. In this case a partial order to decide the priority of both
behaviours is necessary.

Boxes in Choregraphe [80] have start and stop ports. This means that it is up to
the programmer to decide when to start and stop behaviours. Besides that boxes
can have additional ports which can be used to convey state between boxes. Even
though this is a widely applicable method for dealing with actuator coordination,
it completely puts the burden on the programmer.

Another option is to broadcast signals which can be used for synchronizing dif-
ferent behaviours. This closely resembles the model of ROS [81], in which many
nodes can publish to a topic and many nodes can subscribe to a topic. It is also a
mechanism which is part of Harel statecharts [55]. Both ROS and Harel are how-
ever solutions aimed at experienced programmers and cannot easily be applied
by novices. Besides, both solutions still require a programmer to think about syn-
chronization between each combination of behaviours.

The problem of synchronization between each combination of behaviours is
that this requires the programmer to model a maximum of 2𝑛 scenarios, where 𝑛
is the number of actuators. For maximum flexibility, each scenario needs a “score
calculator” with 𝑛 parameters, containing the state of each behaviour. If one be-
haviour is modified, this could lead to the programmer having to modify all the
scenarios. This can quickly get troublesome and would be hard to present to the
programmer in a user friendly manner.

8.3 Interpreter
We developed an interpreter to run RRP programs on a robot. The current imple-
mentation has some limitations which could be improved in the future.
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Currently the only supported robot is NAO from Softbank Robotics. That said,
there is a layer of abstraction which should make it easy to add robots with similar
sensing and acting capabilities as NAO. One platform which should be especially
easy to add support for is the robot Pepper, also from Softbank Robotics. The API
for Pepper is written in the same language as the API for NAO. Also, the API for
both robots is very similar. It would be more complicated to add robots that have
an API not written in Python, as a conversion layer would need to be implemented.
To be compatible with the API for NAO, we were also pushed to use Python 2.7,
which is the latest version of Python supported by the API for NAO.

Currently the only supported data source is the Neo4j Graph Database. Just
like in the case of robots, there is an abstraction layer which should make it easy
to add new data sources. Of course, support for other graph databases would be
easiest to add. Other types such as XML files should also be relatively easy to add
support for.

One improvement which we are planning to implement in a next version of the
interpreter is separation between the process that communicates with the robot
and the process that performs computation of the RRP Graph. These processes
can be connected using message queues (e.g. ZeroMQ [58] or Data Distribution
Service [35]). If this is implemented, both processes could be developed inde-
pendently from each other, for example using different Python versions and even
different programming languages.

Some of the limitations of non determinism, which we discussed earlier in
this chapter, could be solved by implementing new engines in the interpreter. A
frame-based engine could for example ensure that the entire graph is executed at
a certain frame rate. Within such a frame, all the inputs received on the sensors
would be synchronized. This kind of engine would behave very differently from
the currently implemented engine.

8.4 Visual Programming Environment
Some changes suggested in the discussion section on the Interpreter also require
a change in the Visual Programming Environment. To support multiple robots
an configuration field has to be added to the VPE to select the robot a behaviour
is written for. A similar configuration field has to be added to support multiple
engines.

The VPE currently has limited capabilities for working with multiple users
in the same behaviour diagram. Actions taken by a user are automatically syn-
chronized to other users, however a race condition can occur when multiple users
modify the same connector at the same time. A locking mechanism could be im-
plemented that locks a connector while another user is editing the connector.

Currently there is a one way connection between the robot and the VPE, i.e. the
user can start behaviours on the robot using the VPE, but the VPE will not get any
feedback from the behaviours. For example, it would be interesting to see in the
VPE when certain connectors are being activated. Another example would be to
see what information is inputted into a connector and outputted by the connector.
If this data is numeric it could also be graphed over time.

The visualization of the RRP Graph could be improved by using a distinctive
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visual style for different connectors, by for example using graphical icons. Addi-
tionally users might want to customize the visualization of an RRP Graph.

These are software engineering problems for which a solution exists, however
due to limited time and low research value we decided not to focus on them at
this time.

8.5 When to use Reactive Robot Programming?
As we have shown, there are various benefits and limitations to Reactive Robot
Programming, the interpreter and the visual programming environment. The
famous Computer Scientist Fred Brooks once stated that there is no silver bul-
let in software engineering, i.e. that “there is no single development, in either
technology of management technique, which by itself promises even one order of
magnitude improvement within a decade in productivity, in reliability, in sim-
plicity” [19]. The same applies to Reactive Robot Programming and Reactive Pro-
gramming in general.

One probably wonders however if there is an easy set of criteria to decide
whether to use Reactive Robot Programming or more traditional approaches (e.g.
imperative programming of robot software). One simple criterium is the com-
plexity of the events occuring in the domain and their mapping with actions by
the system under development.

If there is a one-to-one mapping from events to actions and the action to be
performed does not depend on any details about the event besides that the event
occured, then probably an imperative programming approach is adequate. It is
easy in this case to set up an event loop and call imperative code based on the
events that occur.

However if there is a more complicated mapping from events to actions, for
example if multiple events in concert determine an action, or the event contains
some data which influences the action to be taken, then the Reactive Robot Pro-
gramming approach is beneficial. Reactive Robot Programming offers a set of
connectors that can be used to process the events, e.g. by extracting/transform-
ing/filtering/combining data. Interactive robots are a technology in which prob-
lems frequently exhibit this more complicated mapping, and hence, except for the
most basic applications, reactive robot programming is a beneficial approach.
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Conclusion

In this thesis we presented a new paradigm for the development and operations
of software for robots, called Reactive Robot Programming. This approach is es-
pecially useful for end-users to program a robot that needs to interact with the
outside world.

At the start of this thesis we states that our main research objective is to create
a reactive robot programming environment so that end-users can develop and op-
erate applications for Socially Assistive Robotics (SAR) experiments with minimal
support from a robot programming expert. To this end we studied what type
of applications therapists and researchers in the field of Human-Robot Interac-
tion were currently creating. We also studied which approaches programmers of
robots currently use to develop and operate software for robots. We then used this
knowledge to develop a robot programming environment which allows program-
mers to create reactive applications for their robot. We tested the effectiveness of
our developed reactive robot programming environment by studying the perfor-
mance of both experienced and inexperienced programmers using our tool and a
state of the art tool for novice robot programmers (Choregraphe). Finally we con-
sidered when it is beneficial to use our reactive robot programming environment
instead of more traditional ways of programming robots.

This research has resulted in various contributions to academia and industry.
We believe that the knowledge produced regarding the application of Reactive
Programming to Robotics can be used by other researchers to improve robot soft-
ware platforms in the future. All of the software that we developed as part of
this research has been released as open source and can be used by anyone who is
interested in using the software or to further improve it.

We hope that end-users and experienced programmers alike can benefit from
our work.
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