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Abstract

Let g be a hyperbolic Kac-Moody algebra of rank 2, and set λ := Λ1 − Λ2, where Λ1,
Λ2 are the fundamental weights. Denote by V (λ) the extremal weight module of extremal
weight λ with vλ the extremal weight vector of weight λ, and by B(λ) the crystal basis of
V (λ) with uλ the element corresponding to vλ. We prove that (i) (the crystal graph of) B(λ)
is connected, (ii) the subset B(λ)µ of elements of weight µ in B(λ) is a finite set for every
integral weight µ, and B(λ)λ = {uλ}, (iii) every extremal element in B(λ) is contained in
the Weyl group orbit of uλ. Also, we prove that the crystal B(λ) of all Lakshmibai-Seshadri
paths of shape λ is connected, and give an explicit description of Lakshmibai-Seshadri paths
of shape λ.

1 Introduction.

In this paper, we study the structure of the crystal basis of the extremal weight module V (λ)
of extremal weight λ := Λ1 − Λ2 over the quantized universal enveloping algebra associated to a
hyperbolic Kac-Moody algebra of rank 2, where Λ1, Λ2 are the fundamental weights. Also, we
study the structure of the crystal B(λ) of all Lakshmibai-Seshadri (LS for short) paths of shape λ,
and give an explicit description of LS paths of shape λ.

Let us explain the background and motivation. Let g be a symmetrizable Kac-Moody algebra
over C with P the integral weight lattice, Uq(g) the quantized universal enveloping algebra over
C(q) associated to g, with Ei and Fi, i ∈ I, the Chevalley generators corresponding to αi and
−αi, respectively. And let {αi}i∈I the set of the simple roots of g. The extremal weight module
V (µ) of extremal weight µ ∈ P is the integrable Uq(g)-module generated by a single element
vµ with the defining relation that vµ is an extremal weight vector of weight µ; this module was
introduced by Kashiwara [K2, Proposition 8.2.2] as a natural generalization of integrable highest
(or lowest) weight modules. He also proved that V (µ) has a crystal basis B(µ). We know from
[K2, Proposition 8.2.2 (iv) and (v)] that V (µ) ∼= V (wµ) as Uq(g)-modules, and B(µ) ∼= B(wµ) as
crystals for all µ ∈ P and w ∈ W , where W is the Weyl group of g. Also, we know from the
comment at the end of [K2, §8.2] that if µ ∈ P is dominant (resp., antidominant), then V (µ) is
isomorphic to the integrable highest (resp., lowest) weight module of highest (resp., lowest) weight
µ, and B(µ) is isomorphic to its crystal basis. So, we are interested in those µ ∈ P such that

any element of Wµ is neither dominant nor antidominant. (1.1)

If g is of finite type, then there is no µ ∈ P satisfying the condition (1.1); it is well-known that
Wµ contains a (unique) dominant integral weight for every µ ∈ P . Assume that g is of affine type,
and let c be the canonical central element of g. Then, µ ∈ P satisfies the condition (1.1) if and
only if µ is level-zero, that is, (µ ̸= 0, and) ⟨µ, c⟩ = 0. In [K5] and [BN], they deeply studied the
basic structure of V (µ) and B(µ) for level-zero µ ∈ P . Using results in [K5] and [BN], Naito and
Sagaki proved in [NS1] and [NS2] that if µ is a positive integer multiple of a level-zero fundamental
weight, then the crystal basis B(µ) is isomorphic to the crystal B(µ) of LS paths of shape µ. After
that, in [INS], they introduced semi-infinite LS paths in terms of the semi-infinite Bruhat order
on the affine Weyl group, and proved that for level-zero dominant µ ∈ P , the crystal basis B(µ) is
isomorphic to the crystal of semi-infinite LS paths of shape µ. Thus, in the finite and affine cases,
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we have already finished the basic study of the structures of V (µ) and B(µ), and had combinatorial
realization for B(µ).

In this paper, we consider the case where g = g(A) is a hyperbolic Kac-Moody algebra of rank
2 with Cartan matrix

A =

(
2 −a1
−a2 2

)
, where a1, a2 ∈ Z>0, a1a2 > 4.

In Proposition 3.2, it will be proved that λ = Λ1 − Λ2 satisfies the condition (1.1) if a1, a2 ≥ 2.
We will prove the following theorems and corollary.

Theorem 1.1 ( = Theorem 3.5). The crystal graph of B(λ) is connected.

Corollary 1.2 ( = Corollary 3.6). For every µ ∈ P , the subset B(λ)µ of elements of weight µ in
B(λ) is a finite set. In particular, B(λ)λ = {uλ}, where uλ is the element of B(λ) corresponding to
the extremal weight vector vλ ∈ V (λ).

Since B(λ) is a normal crystal, B(λ) has a canonical action Sw (w ∈ W ) of the Weyl group W

(see §2.2). Then, uλ ∈ B(λ) is an extremal element of weight λ.

Theorem 1.3 ( = Theorem 3.7). (1) Let x, y ∈ W . Then, Sxuλ = Syuλ if and only if xλ = yλ.
(2) If b ∈ B(λ) is extremal, then there exists w ∈ W such that b = Swuλ.

Theorem 1.4 ( = Theorem 3.8). The crystal graph of B(λ) is connected.

Theorem 1.5 ( = Theorem 3.9). Assume that a1, a2 ≥ 2. An LS path of shape λ = Λ1 − Λ2 is
either of the form (i) or (ii):
(i) (xm+s−1λ, . . . , xm+1λ, xmλ; σ0, σ1, . . . , σs), where m ≥ 0, s ≥ 1, and 0 = σ0 < σ1 < · · · < σs = 1
satisfy the condition that pm+s−uσu ∈ Z for 1 ≤ u ≤ s− 1.
(ii) (ym−s+1λ, . . . , ym−1λ, ymλ; δ0, δ1, . . . , δs), wherem ≥ s−1, s ≥ 1, and 0 = δ0 < δ1 < · · · < δs = 1
satisfy the condition that qm−s+u+1δu ∈ Z for 1 ≤ u ≤ s− 1.
Here, the elements xm, ym ∈ W,m ≥ 0, are defined in (3.2), (3.3), and the sequences {pm}m≥0 and
{qm}m≥0 are defined in (3.6), (3.7).

As an application of the theorems and corollary above, we prove in [SY, Theorem 3.6] that the
crystal basis B(λ) of the extremal weight module V (λ) of extremal weight λ is isomorphic to the
crystal B(λ) of all LS paths of shape λ.

This paper is organized as follows. In Section 2, we fix our notation, and recall the definitions
and basic properties of extremal weight modules and their crystal bases. Also, we recall the
definition of LS paths. In Subsections 3.1 and 3.2, we introduce some extra notation for the case
that g is a hyperbolic Kac-Moody algebra of rank 2, and show that λ = Λ1 − Λ2 satisfies the
condition (1.1) if a1, a2 ≥ 2. In Subsection 3.3, we state our main results (the four theorems and
one corollary above). Subsections 3.4, 3.5, 3.6, and 3.7 are devoted to proofs of Theorems 3.5, 3.7,
3.8, and 3.9, respectively. In Appendix, we give an explicit description of the root operators.
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2 Preliminaries.

2.1 Kac-Moody algebras.

Let A = (aij)i,j∈I be a symmetrizable generalized Cartan matrix with I the finite index set. Let
g = g(A) be the Kac-Moody algebra associated to A over C. Denote by h the Cartan subalgebra
of g, {αi | i ∈ I} ⊂ h∗ := HomC(h,C) the set of simple roots, and {α∨

i | i ∈ I} ⊂ h the set of
simple coroots. We set Q+ :=

∑
i∈I Z≥0αi. Denote by W = ⟨ri | i ∈ I⟩ the Weyl group of g, where

ri is the simple reflection in αi for i ∈ I. Let Λi ∈ h∗, i ∈ I, be the fundamental weights for g,
i.e., ⟨Λi, α

∨
j ⟩ = δi,j for i, j ∈ I, and set P :=

⊕
i∈I ZΛi. Let P

+ :=
∑

i∈I Z≥0Λi the set of dominant
integral weights, and −P+ :=

∑
i∈I Z≤0Λi the set of antidominant integral weights.

2.2 Crystal bases and crystals.

For the details on crystal bases and crystals, see [K3] and [HK]. Let B be a crystal, and let ẽi
and f̃i, i ∈ I, be the Kashiwara operators for B. For b ∈ B and i ∈ I, we set ẽmax

i b := ẽ
εi(b)
i b if

εi(b) = max{n ≥ 0 | ẽni b ̸= 0}, where 0 is an extra element not contained in any crystal. Similarly,

we set f̃max
i b := f̃

φi(b)
i b if φi(b) = max{n ≥ 0 | f̃n

i b ̸= 0}.

Definition 2.1 (see [K2, page 389] and [K3, page 182]). A crystal B is said to be normal if
it satisfies the following condition (N) for every J ⊂ I such that the Levi subalgebra gJ of g
corresponding to J is finite-dimensional:

(N) if we regard B as a crystal for Uq(gJ) by restriction, then it is isomorphic to the crystal
basis of a finite-dimensional Uq(gJ)-module.

Remark 2.2. If B is a normal crystal, then εi(b) = max{n ≥ 0 | ẽni b ̸= 0} and φi(b) = max{n ≥
0 | f̃n

i b ̸= 0} for all b ∈ B and i ∈ I.

We know from [K2, §7] (see also [K3, Theorem 11.1]) that a normal crystal B has an action of
the Weyl group W as follows. For i ∈ I and b ∈ B, we set

Sib :=

{
f̃
⟨wt(b),α∨

i ⟩
i b if ⟨wt(b), α∨

i ⟩ ≥ 0,

ẽ
−⟨wt(b),α∨

i ⟩
i b if ⟨wt(b), α∨

i ⟩ ≤ 0.

Then, for w ∈ W , we set Sw := Si1 · · ·Sik if w = ri1 · · · rik . Notice that wt(Swb) = wwt(b) for
w ∈ W and b ∈ B.

An element b of a normal crystal B is said to be extremal if for each w ∈ W and i ∈ I,{
ẽi(Swb) = 0 if ⟨wt(Swb), α

∨
i ⟩ ≥ 0,

f̃i(Swb) = 0 if ⟨wt(Swb), α
∨
i ⟩ ≤ 0.

Now, let B(∞) (resp., B(−∞)) be the crystal basis of the negative part U−
q (g) (resp., the

positive part U+
q (g)) of the quantized universal enveloping algebra Uq(g) over C(q) associated to

g; for a realization of B(∞), see Appendix B. Let u∞ ∈ B(∞) (resp., u−∞ ∈ B(−∞)) be the
element corresponding to 1 ∈ U−

q (g) (resp., 1 ∈ U+
q (g)). Denote by ẽi and f̃i, i ∈ I, the raising
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and lowering Kashiwara operators on B(±∞), respectively. For i ∈ I, we define εi, φi : B(∞)→ Z
and εi, φi : B(−∞)→ Z by

εi(b) := max{n ≥ 0 | ẽni b ̸= 0}, φi(b) := εi(b) + ⟨wt(b), α∨
i ⟩ for b ∈ B(∞),

φi(b) := max{n ≥ 0 | f̃n
i b ̸= 0}, εi(b) := φi(b)− ⟨wt(b), α∨

i ⟩ for b ∈ B(−∞),

respectively. Denote by ∗ : B(±∞)→ B(±∞) the ∗-operator on B(±∞), which is induced from a
C(q)-algebra antiautomorphism ∗ : Uq(g) → Uq(g) (see [K1, Theorem 2.1.1] and [K3, §8.3]). We
see that wt(b∗) = wt(b) for all b ∈ B(±∞). The next lemma follows immediately from the fact
that f̃k

i u∞ (resp., ẽki u−∞) is a unique element of weight −kαi (resp., kαi) in B(∞) (resp., B(−∞)).

Lemma 2.3. We have (f̃k
i u∞)∗ = f̃k

i u∞ for all k ∈ Z≥0 and i ∈ I. Similarly, we have (ẽki u−∞)∗ =
ẽki u−∞ for all k ∈ Z≥0 and i ∈ I.

For µ ∈ P , denote by Tµ = {tµ} the crystal consisting of a single element tµ such that
wt(tµ) = µ,

ẽitµ = f̃itµ = 0 for i ∈ I,

εi(tµ) = φi(tµ) = −∞ for i ∈ I.

2.3 Crystal bases of extremal weight modules.

Let µ ∈ P be an arbitrary integral weight. The extremal weight module V (µ) of extremal weight
µ is, by definition, the integrable Uq(g)-module generated by a single element vµ with the defining
relation that vµ is an “extremal weight vector” of weight µ; recall from [K5, §3.1] that vµ is an
extremal weight vector of weight µ if (vµ is a weight vector of weight µ and) there exists a family
{vw}w∈W of weight vectors in V (µ) such that vid = vµ, and such that for every i ∈ I and w ∈ W

with n := ⟨wµ, α∨
i ⟩ ≥ 0 (resp., ≤ 0), the equalities Eivw = 0 and F

(n)
i vw = vriw (resp., Fivw = 0 and

E
(−n)
i vw = vriw) hold, where for i ∈ I and m ∈ Z≥0, E

(m)
i and F

(m)
i are the m-th divided powers of

Ei and Fi, respectively. Note that the weight of vw is wµ. We know from [K2, Proposition 8.2.2]
that V (µ) has a crystal basis B(µ).

Remark 2.4. We see from [K2, Proposition 8.2.2 (iv) and (v)] that V (µ) ∼= V (wµ) as Uq(g)-
modules, and B(µ) ∼= B(wµ) as crystals for all µ ∈ P and w ∈ W . Also, we know from the
comment at the end of [K2, §8.2] that if µ ∈ P is dominant (resp., antidominant), then V (µ) is
isomorphic, as a Uq(g)-module, to the integrable highest (resp., lowest) weight module of highest
(resp., lowest) weight µ, and B(µ) is isomorphic, as a crystal, to its crystal basis. So, we are
interested in those µ ∈ P such that

any element of Wµ is neither dominant nor antidominant. (2.1)

Now, the crystal basis B(µ) can be realized (as a crystal) as follows. We set

B :=
⊔
µ∈P

B(∞)⊗ Tµ ⊗ B(−∞);

in fact, B is isomorphic, as a crystal, to the crystal basis B(Ũq(g)) of the modified quantized
universal enveloping algebra Ũq(g) associated to g (see [K2, Theorem 3.1.1]). Denote by ∗ : B → B
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the ∗-operation on B, which is induced from a C(q)-algebra antiautomorphism ∗ : Ũq(g) → Ũq(g)
(see [K2, Theorem 4.3.2]); we know from [K2, Corollary 4.3.3] that for b1 ∈ B(∞), b2 ∈ B(−∞), µ ∈
P ,

(b1 ⊗ tµ ⊗ b2)
∗ = b∗1 ⊗ t−µ−wt(b1)−wt(b2) ⊗ b∗2. (2.2)

Because B is a normal crystal by [K2, §2.1 and Theorem 3.1.1], B has the action of the Weyl
group W as mentioned in §2.2. We know the following proposition from [K2, Proposition 8.2.2
(and Theorem 3.1.1)].

Proposition 2.5. For µ ∈ P , the subset

{b ∈ B(∞)⊗ Tµ ⊗ B(−∞) | b∗ is extremal} (2.3)

is a subcrystal of B(∞)⊗ Tµ ⊗ B(−∞), and is isomorphic, as a crystal, to the crystal basis B(µ)
of the extremal weight module V (µ) of extremal weight µ.

In the following, we identify the crystal basis B(µ) with the subcrystal (2.3) of B(∞) ⊗ Tµ ⊗
B(−∞). We set

uµ := u∞ ⊗ tµ ⊗ u−∞ ∈ B(∞)⊗ Tµ ⊗ B(−∞) (2.4)

Then, uµ is an extremal element of weight µ contained in B(µ), which corresponds to the extremal
weight vector vµ ∈ V (µ).

2.4 Lakshmibai-Seshadri paths.

Let us recall the definition of Lakshmibai-Seshadri paths (LS paths for short) from [L2, §4] (see
also [Y, §2.2]). Let µ ∈ P be an arbitrary integral weight.

Definition 2.6. For ν, ν ′ ∈ Wµ, we write ν ≥ ν ′ if there exist a sequence ν = ξ0, ξ1, . . . , ξp = ν ′

of elements in Wµ and a sequence β1, . . . , βp of positive real roots such that ξq = rβqξq−1 and
⟨ξq−1, β

∨
q ⟩ < 0 for each q = 1, 2, . . . , p, where for a positive real root β, rβ ∈ W denotes the

reflection in β, and β∨ denotes the dual root of β. If ν ≥ ν ′, then we define dist(ν, ν ′) to be the
maximal length p of all possible such sequences ν = ξ0, ξ1, . . . , ξp = ν ′ for (ν, ν ′).

Definition 2.7. Let ν, ν ′ ∈ Wµ with ν > ν ′, and let 0 < σ < 1 be a rational number. A σ-chain
for (ν, ν ′) is, by definition, a sequence ν = ξ0 > ξ1 > · · · > ξp = ν ′ of elements in Wµ such that
dist(ξq−1, ξq) = 1 and σ⟨ξq−1, β

∨
q ⟩ ∈ Z<0 for all q = 1, 2, . . . , p, where βq is the positive real root

corresponding to ξq−1 > ξq with dist(ξq−1, ξq) = 1.

Definition 2.8. An LS path of shape µ is a pair π = (ν ; σ) of a sequence ν : ν1 > ν2 > · · · > νs
of elements in Wµ and a sequence σ : 0 = σ0 < σ1 < · · · < σs = 1 of rational numbers satisfying
the condition that there exists a σu-chain for (νu, νu+1) for all u = 1, 2, . . . , s− 1.

Denote by B(µ) the set of LS paths of shape µ. We identify π = (ν ; σ) ∈ B(µ) (as in Definition
2.8) with the following piecewise-linear continuous map π : [0, 1]→ R⊗Z P :

π(t) =
u−1∑
k=1

(σk − σk−1)νk + (t− σu−1)νu for σu−1 ≤ t ≤ σu, 1 ≤ u ≤ s.
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Remark 2.9. We see from the definition of LS paths that πν := (ν; 0, 1) ∈ B(µ) for every ν ∈ Wµ,
which corresponds to the straight line πν(t) = tν for t ∈ [0, 1].

Now, we endow B(µ) with a crystal structure as follows. First, we define wt(π) := π(1) for
π ∈ B(µ); we know from [L2, Lemma 4.5] that π(1) ∈ P . Next, for π ∈ B(µ) and i ∈ I, we define

Hπ
i (t) := ⟨π(t), α∨

i ⟩ for t ∈ [0, 1], mπ
i := min{Hπ

i (t) | t ∈ [0, 1]}. (2.5)

We know from [L2, Lemma 4.5] that

all local minimal values of Hπ
i (t) are integers; (2.6)

in particular, mπ
i is a nonpositive integer, and Hπ

i (1)−mπ
i is a nonnegative integer. We define ẽiπ

as follows: If mπ
i = 0, then we set ẽiπ := 0. If mπ

i ≤ −1, then we set

t1 := min{t ∈ [0, 1] | Hπ
i (t) = mπ

i },
t0 := max{t ∈ [0, t1] | Hπ

i (t) = mπ
i + 1};

(2.7)

we see by (2.6) that

Hπ
i (t) is strictly decreasing on [t0, t1]. (2.8)

We define

(ẽiπ)(t) :=


π(t) if 0 ≤ t ≤ t0,

ri(π(t)− π(t0)) + π(t0) if t0 ≤ t ≤ t1,

π(t) + αi if t1 ≤ t ≤ 1;

we know from [L2, §4] that ẽiπ ∈ B(λ). Similarly, we define f̃iπ as follows: If Hπ
i (1) −mπ

i = 0,
then we set f̃iπ := 0. If Hπ

i (1)−mπ
i ≥ 1, then we set

t0 := max{t ∈ [0, 1] | Hπ
i (t) = mπ

i },
t1 := min{t ∈ [t0, 1] | Hπ

i (t) = mπ
i + 1};

(2.9)

we see by (2.6) that

Hπ
i (t) is strictly increasing on [t0, t1]. (2.10)

We define

(f̃iπ)(t) :=


π(t) if 0 ≤ t ≤ t0,

ri(π(t)− π(t0)) + π(t0) if t0 ≤ t ≤ t1,

π(t)− αi if t1 ≤ t ≤ 1;

we know from [L2, §4] that f̃iπ ∈ B(µ). We set ẽi0 = f̃i0 := 0 for i ∈ I. Finally, for π ∈ B(µ) and
i ∈ I, we set

εi(π) := max{n ∈ Z≥0 | ẽni π ̸= 0}, φi(π) := max{n ∈ Z≥0 | f̃n
i π ̸= 0}.
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Theorem 2.10 ([L2, §2 and §4]). The set B(µ), together with the maps wt : B(µ) → P, ẽi, f̃i :
B(µ) ∪ {0} → B(µ) ∪ {0}, i ∈ I, and εi, φi : B(µ)→ Z≥0, i ∈ I, becomes a crystal.

Remark 2.11. We see from the definition of LS paths that B(wµ) = B(µ) for all w ∈ W and
µ ∈ P . Also, we know from [K4] and [J] that if µ ∈ P is dominant (resp., antidominant), then
B(µ) is isomorphic, as a crystal, to the crystal basis of the integrable highest (resp., lowest) weight
module of highest (resp., lowest) µ. Hence, also for B(µ), we are interested in those µ ∈ P satisfying
the condition (2.1).

For π = (ν1, ν2, . . . , νs; σ0, σ1, . . . , σs) ∈ B(λ), we set ι(π) := ν1 and κ(π) := νs.

Lemma 2.12 ([L1, Proposition 4.2], [L2, Proposition 4.7]). Let π ∈ B(λ), and i ∈ I. If
⟨κ(π), α∨

i ⟩ > 0, then κ(f̃max
i π) = riκ(π). If ⟨ι(π), α∨

i ⟩ < 0, then ι(ẽmax
i π) = riι(π).

Since B(µ) is a normal crystal, B(µ) has the action of the Weyl group W as mentioned in §2.2
(see also [L2, Theorem 8.1]). We can easily show the next lemma by induction on the length of
w ∈ W .

Lemma 2.13. For w ∈ W , we have Swπµ = πwµ. In particular, πµ is an extremal element of
weight µ.

3 Main results.

3.1 Hyperbolic Kac-Moody algebra of rank 2.

Form this section, we assume that

A =

(
2 −a1
−a2 2

)
, where a1, a2 ∈ Z>0 and a1a2 > 4, (3.1)

with I = {1, 2}. Note that W = {xm, ym | m ∈ Z≥0}, where

xm :=

{
(r2r1)

k if m = 2k with k ∈ Z≥0,

r1(r2r1)
k if m = 2k + 1 with k ∈ Z≥0.

(3.2)

ym :=

{
(r1r2)

k if m = 2k with k ∈ Z≥0,

r2(r1r2)
k if m = 2k + 1 with k ∈ Z≥0.

(3.3)

Let ∆+
re denote the set of positive real roots. We see that

∆+
re =

{
xlα2, yl+1α1 | l ∈ Zeven≥0

}
⊔
{
ylα1, xl+1α2 | l ∈ Zeven≥0

}
, (3.4)

where Zeven≥0 denotes the set of even nonnegative integers.

Remark 3.1. In fact, we know from [Kac, Exercise 5.25] that

∆+
re = {cjα1 + dj+1α2 and cj+1α1 + djα2 | j ≥ 0} ,

where the sequences {cj}j≥0 and {dj}j≥0 are defined by

c0 = d0 = 0, d1 = c1 = 1, and

{
cj+2 = a1dj+1 − cj,

dj+2 = a2cj+1 − dj.

Recall that P = ZΛ1 ⊕ ZΛ2, P
+ = Z≥0Λ1 + Z≥0Λ2 ⊂ P , and −P+ = Z≤0Λ1 + Z≤0Λ2 ⊂ P .
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3.2 An integral weight whose Weyl group orbit does not intersect with
neither P+ nor −P+.

We set

λ := Λ1 − Λ2. (3.5)

Proposition 3.2. Assume that a1, a2 ≥ 2. The weight λ = Λ1 − Λ2 satisfies that Wλ ∩ (P+ ∪
(−P+)) = ∅ (see (2.1)).

Remark 3.3. If a1 = 1, then we have y1(Λ1 − Λ2) = r2(Λ1 − Λ2) = Λ2 ∈ P+. If a2 = 1, then we
have x1(Λ1 − Λ2) = r1(Λ1 − Λ2) = −Λ1 ∈ −P+.

Assume that a1, a2 ≥ 2. We define {pm}m∈Z≥0
and {qm}m∈Z≥0

by:

p0 = p1 = 1 and pm+2 =

{
a2pm+1 − pm (if m is even),

a1pm+1 − pm (if m is odd),
(3.6)

q0 = q1 = 1 and qm+2 =

{
a1qm+1 − qm (if m is even),

a2qm+1 − qm (if m is odd).
(3.7)

Then we see that 1 = p0 = p1 ≤ p2 < p3 < · · · and 1 = q0 = q1 ≤ q2 < q3 < · · · ; note that p1 = p2
if and only if a2 = 2, and q1 = q2 if and only if a1 = 2. Proposition 3.2 follows immediately from
the following lemmas and the fact that W = {xm, ym | m ∈ Z≥0} (see (3.2) and (3.3)).

Lemma 3.4. Assume that a1, a2 ≥ 2. For m ∈ Z≥0,

xmλ =

{
pm+1Λ1 − pmΛ2 if m is even,

−pmΛ1 + pm+1Λ2 if m is odd,
(3.8)

ymλ =

{
qmΛ1 − qm+1Λ2 if m is even,

−qm+1Λ1 + qmΛ2 if m is odd.
(3.9)

Proof. We give a proof only for (3.8); the proof for (3.9) is similar. We show (3.8) by induction on
m. If m = 0 or m = 1, then (3.8) is obvious. Assume that m > 1. If m is even, then

xm+1λ = r1(xmλ) = r1(pm+1Λ1 − pmΛ2) = −pm+1Λ1 + (a2pm+1 − pm)Λ2.

Since m is even, we have a2pm+1 − pm = pm+2 by the definition (3.6). Therefore, we obtain
xm+1λ = −pm+1Λ1 + pm+2Λ2, as desired. If m is odd, then

xm+1λ = r2(xmλ) = r2(−pmΛ1 + pm+1Λ2) = (a1pm+1 − pm)Λ1 − pm+1Λ2.

Since m is odd, we have a1pm+1 − pm = pm+2 by the definition (3.7). Therefore, we obtain
xm+1λ = pm+2Λ1 − pm+1Λ2, as desired.
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3.3 Main Theorems and corollary.

Theorem 3.5 (will be proved in §3.4). For each b ∈ B(λ), there exist i1, . . . , ik ∈ I such that
b = f̃ik · · · f̃i1uλ or b = ẽik · · · ẽi1uλ. In particular, the crystal graph of B(λ) is connected.

The next corollary follows immediately from Theorem 3.5.

Corollary 3.6. For every µ ∈ P , the subset B(λ)µ of elements of weight µ in B(λ) is a finite set.
In particular, B(λ)λ = {uλ}.

Recall from the comment after (2.4) that uλ is an extremal element of weight λ.

Theorem 3.7 (will be proved in §3.5). (1) Let x, y ∈ W . Then, Sxuλ = Syuλ if and only if
xλ = yλ.

(2) If b ∈ B(λ) is extremal, then there exists w ∈ W such that b = Swuλ.

Theorem 3.8 (will be proved in §3.6). The crystal graph of B(λ) is connected.

Theorem 3.9 (will be proved in §3.7). Assume that a1, a2 ≥ 2. An LS path π of shape λ is either
of the form (i) or (ii):
(i) (xm+s−1λ, . . . , xm+1λ, xmλ; σ0, σ1, . . . , σs), where m ≥ 0, s ≥ 1, and 0 = σ0 < σ1 < · · · < σs = 1
satisfy the condition that pm+s−uσu ∈ Z for 1 ≤ u ≤ s− 1.
(ii) (ym−s+1λ, . . . , ym−1λ, ymλ; δ0, δ1, . . . , δs), wherem ≥ s−1, s ≥ 1, and 0 = δ0 < δ1 < · · · < δs = 1
satisfy the condition that qm−s+u+1δu ∈ Z for 1 ≤ u ≤ s− 1.

3.4 Proof of Theorem 3.5.

Lemma 3.10. Let i ∈ I and b ∈ B(λ) be such that ẽib ̸= 0. If b is of the form : b = b1⊗ tλ⊗ u−∞
with b1 ̸= u∞, then ẽib = ẽib1 ⊗ tλ ⊗ u−∞.

Proof. Suppose, for a contradiction, that ẽib = b1 ⊗ tλ ⊗ ẽiu−∞. By (2.2) and Lemma 2.3, we see
that

(ẽib)
∗ = b∗1 ⊗ t−λ−wt(b1)−αi

⊗ ẽiu−∞. (3.10)

Notice that f̃i(ẽib)
∗ ̸= 0 by the tensor product rule of crystals. Since ẽib ∈ B(λ), it follows that

(ẽib)
∗ is an extremal element of weight −λ. Hence we see that f̃1(ẽ1b)

∗ = 0, which implies that
i = 2, and (ẽ2b)

∗ = b∗1 ⊗ t−λ−wt(b1)−α2 ⊗ ẽ2u−∞. Since (ẽ2b)
∗ is an extremal element of weight

−λ, we see that ẽ21(ẽ2b)
∗ = ẽ1S1(ẽ2b)

∗ = 0 and ẽ2(ẽ2b)
∗ = 0. By these equalities and the tensor

product rule of crystals, we have ε1(b
∗
1) ≤ ε1((ẽ2b)

∗) = 1 and ε2(b
∗
1) ≤ ε2((ẽ2b)

∗) = 0. Thus we get
ε2(b

∗
1) = 0. Moreover, since b1 ̸= u∞ by assumption, we obtain ε1(b

∗
1) = 1. Thus, b∗1 is of the form

: b∗1 = f̃1b
′
1 for some b′1 ∈ B(∞) such that ẽ1b

′
1 = 0. Because ẽ21(ẽ2b)

∗ = ẽ1S1(ẽ2b)
∗ = 0 as seen

above, we see by the tensor product rule of crystals that

S1(ẽ2b)
∗ = ẽ1(ẽ2b)

∗ = ẽ1b
∗
1 ⊗ t−λ−wt(b1)−α2 ⊗ ẽ2u−∞ = b′1 ⊗ t−λ−wt(b1)−α2 ⊗ ẽ2u−∞;

note that f̃2S1(ẽ2b)
∗ ̸= 0 by the tensor product rule of crystals. However, since S1(ẽ2b)

∗ is an
extremal element of weight −r1λ, and since ⟨−r1λ, α∨

2 ⟩ = −a2 + 1 ≤ 0, we have f̃2(S1(ẽ2b)
∗) = 0,

which is a contradiction. Thus we have proved the lemma.
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The proof of the next lemma is similar to the proof of Lemma 3.10.

Lemma 3.11. Let i ∈ I and b ∈ B(λ) be such that f̃ib ̸= 0. If b is of the form : b = u∞ ⊗ tλ ⊗ b2
with b2 ̸= u−∞, then f̃ib = u∞ ⊗ tλ ⊗ f̃ib2.

Proposition 3.12. It holds that B(λ) ⊂ (B(∞)⊗ tλ ⊗ u−∞) ∪ (u∞ ⊗ tλ ⊗ B(−∞)).

Proof. By Lemmas 3.10 and 3.11, the subset

B(λ) ∩
(
(B(λ)⊗ tλ ⊗ u−∞) ∪ (u∞ ⊗ tλ ⊗ B(λ))

)
=: C

is a subcrystal of B(λ). Therefore it suffices to show that every element b ∈ B(λ) is connected
to an element of C. Write b as b = b1 ⊗ tλ ⊗ b2 with b1 ∈ B(∞) and b2 ∈ B(−∞). It is known
that there exist i1, . . . , ik ∈ I such that f̃max

ik
· · · f̃max

i1
b2 = u−∞. Then we see by the tensor product

rule of crystals that f̃max
ik
· · · f̃max

i1
b = b′1 ⊗ tλ ⊗ u−∞ for some b′1 ∈ B(∞), which implies that

f̃max
ik
· · · f̃max

i1
b ∈ C. Thus we have proved the proposition.

Recall that −wt(b1) ∈ Q+ =
∑

i∈I Z≥0αi for every b1 ∈ B(∞); for α =
∑

i∈I kiαi ∈ Q+, we set
| ± α| :=

∑
i∈I ki ∈ Z≥0.

Proof of Theorem 3.5. By Proposition 3.12, b ∈ B(λ) is either of the following forms: b = b1⊗ tλ⊗
u−∞ for some b1 ∈ B(∞), or b = u∞ ⊗ tλ ⊗ b2 for some b2 ∈ B(−∞). We show by induction on
|wt(b1)| that if b ∈ B(λ) is the form b = b1 ⊗ tλ ⊗ u−∞ for some b1 ∈ B(∞), then b = f̃ik · · · f̃i1uλ

for some i1, . . . , ik ∈ I. If |wt(b1)| = 0, then the assertion is obvious since b1 = u∞, and hence
b = uλ. Assume that |wt(b1)| ≥ 1. Since b1 ̸= u∞, there exists i ∈ I such that ẽib1 ̸= 0; we see by
the tensor product rule of crystals that ẽib ̸= 0. Moreover, we deduce by Lemma 3.10 that

ẽib = ẽi(b1 ⊗ tλ ⊗ u−λ) = ẽib1 ⊗ tλ ⊗ u−∞.

Since |wt(ẽib1)| = k − 1, it follows by the induction hypothesis that there exist i1, . . . , ik ∈ I such
that ẽib = f̃ik · · · f̃i1uλ. Then we obtain b = f̃if̃ik · · · f̃i1uλ.

Similarly, we show by induction on |wt(b2)| that if b ∈ B(λ) is the form b = u∞ ⊗ tλ ⊗ b2 for
some b2 ∈ B(−∞), then b = ẽik · · · ẽi1uλ for some i1, . . . , ik ∈ I. Thus we have proved Theorem
3.5.

3.5 Proof of Theorem 3.7.

First, we show part (1) of Theorem 3.7. The “only if ” part is obvious. To show the “if” part,
assume that xλ = yλ for x, y ∈ W . Then the weight of the element Sx−1Syuλ is equal to x

−1yλ = λ.
Therefore, by Corollary 3.6, we obtain Sx−1Syuλ = uλ, and hence Sxuλ = Syuλ, as desired.

Next, we show part (2) of Theorem 3.7. Let b ∈ B(λ) be an extremal element. By Proposition
3.12, b is either of the following forms: b = b1 ⊗ tλ ⊗ u−∞ for some b1 ∈ B(∞) or b = u∞ ⊗ tλ ⊗ b2
for some b2 ∈ B(−∞). We show by induction on |wt(b1)| that if an extremal element b ∈ B(λ)
is of the form : b = b1 ⊗ tλ ⊗ u−∞ for some b1 ∈ B(∞), then there exists w ∈ W such that
b = Swuλ. If |wt(b1)| = 0, then the assertion is obvious since b1 = u∞, and hence b = uλ. Assume
that |wt(b1)| > 0. There exists i ∈ I such that ẽib1 ̸= 0; notice that ẽib ̸= 0 by the tensor
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product rule of crystals. Since b is an extremal element by assumption, we see that φi(b) = 0 and
⟨wt(b), α∨

i ⟩ = −εi(b) ≤ −1; we set n := −⟨wt(b), α∨
i ⟩ ≥ 1. We deduce that

Sib = ẽni (b1 ⊗ tλ ⊗ u−∞) = ẽn−1
i (ẽib1 ⊗ tλ ⊗ u−∞) by Lemma 3.10

= (ẽni b1)⊗ tλ ⊗ u−∞ by the tensor product rule of crystals.

Because Sib is also an extremal element in B(λ), and |wt(ẽni b1)| < |wt(b1)|, it follows from the
induction hypothesis that Sib = Swuλ for some w ∈ W . Thus we get b = SiSwuλ = Sriwuλ.

Similarly, we can show by induction on |wt(b2)| that if an extremal element b ∈ B(λ) is of the
form: b = u∞ ⊗ tλ ⊗ b2 for some b2 ∈ B(−∞), then there exists w ∈ W such that b = Swuλ. Thus
we have proved Theorem 3.7.

3.6 Proof of Theorem 3.8.

If a1 = 1 or a2 = 1, then B(λ) is connected by Remark 3.3 and (2.1). So, we assume that a1, a2 ≥ 2.
In order to prove Theorem 3.8 in this case, we need some lemmas.

Lemma 3.13. Let m ∈ Z≥0, and β ∈ ∆+
re.

(1) Assume that m is even. Then, ⟨xmλ, β∨⟩ ∈ Z<0 if and only if β = xlα2 or yl+1α1 for some
l ∈ Zeven≥0.
(2) Assume that m is odd. Then, ⟨xmλ, β∨⟩ ∈ Z<0 if and only if β = ylα1 or xl+1α2 for some
l ∈ Zeven≥0.

Proof. We give a proof only for part (1); the proof for part (2) is similar. First we show the “if” part
of part (1). Let l ∈ Zeven≥0. We have ⟨xmλ, xlα

∨
2 ⟩ = ⟨x−1

l xmλ, α∨
2 ⟩. Here, if m ≥ l (resp., m ≤ l),

then x−1
l xm is equal to xm−l (resp., yl−m). Therefore, by (3.8), we have ⟨xmλ, xlα

∨
2 ⟩ = −pm−l ∈ Z<0

(resp., = −ql−m+1 ∈ Z<0). Similarly, we can show that ⟨xmλ, yl+1α
∨
1 ⟩ < 0.

Next, we show that the “only if ” part of part (1); by (3.4), it suffices to show that if β =
xl+1α2 or ylα1 for l ∈ Zeven≥0, then ⟨xmλ, β

∨⟩ > 0. We have ⟨xmλ, xl+1α
∨
2 ⟩ = ⟨x−1

l+1xmλ, α
∨
2 ⟩ =

⟨xm+l+1λ, α
∨
2 ⟩. By (3.8), we have ⟨xmλ, xl+1α

∨
2 ⟩ = pm+l+2 > 0. Similarly, we can show that

⟨xmλ, ylα
∨
1 ⟩ > 0. This completes the proof of the lemma.

The next lemma can be shown in exactly the same way as Lemma 3.13.

Lemma 3.14. Let m ∈ Z≥0 and β ∈ ∆+
re.

(1) Assume that m is even. Then, ⟨ymλ, β∨⟩ ∈ Z<0 if and only if β = xlα2 or yl+1α1 for some
l ∈ Zeven≥0.
(2) Assume that m is odd. Then, ⟨ymλ, β∨⟩ ∈ Z<0 if and only if β = ylα1 or xl+1α2 for some
l ∈ Zeven≥0.

Lemma 3.15. (1) For m ∈ Z≥1, we have xmλ > xm−1λ with dist(xmλ, xm−1λ) = 1. And rixmλ =
xm−1λ, where i = 2 if m is even, and i = 1 if m is odd.
(2) For m ∈ Z≥1, we have ym−1λ > ymλ with dist(ym−1λ, ymλ) = 1. And rjymλ = ym−1λ, where
i = 1 if m is even, and i = 2 if m is odd.

Proof. We give a proof only for part (1); the proof for part (2) is similar. We see from Lemma 3.13
that ⟨xmλ, α

∨
i ⟩ < 0. Therefore, we obtain that xmλ > rixmλ = xm−1λ. Since ⟨xm−1λ, α

∨
i ⟩ > 0, we

see by [L2, Lemma 4.1] that dist(rixmλ, xm−1λ) = dist(xmλ, xm−1λ)−1. Since dist(rixmλ, xm−1λ) =
dist(xm−1λ, xm−1λ) = 0, we obtain dist(xmλ, xm−1λ) = 1, as desired.
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Proposition 3.16. The Hasse diagram of Wλ is

· · · α1←− x2λ
α2←− x1λ

α1←− x0λ = λ = y0λ
α2←− y1λ

α1←− y2λ
α1←− · · · .

Proof. Let µ, ν ∈ Wλ be such that µ > ν with dist(µ, ν) = 1, and let β ∈ ∆+
re be the (unique)

positive real root such that ν = rβµ; by Lemma 3.15, it suffices to show that β = α1 or α2. By
Lemma 3.13, if µ = xmλ and m is even, then β = xlα2 or yl+1α1 for some l ∈ Zeven≥0. Assume

that β = xlα2 for some l ∈ Zeven≥0; note that rβ = (r2r1)
l
2 r2(r1r2)

l
2 . We see from Lemma 3.15

that there exist a directed path

µ = xmλ
α2←− xm−1λ

α1←− · · · α2←− rβµ = ν

of length 2l + 1 from µ to ν in the Hasse diagram of Wλ. Because dist(µ, ν) = 1 by assumption,
we obtain l = 0, and hence β = α2. Assume that β = yl+1α1 for some l ∈ Zeven≥0; note

that r2(r1r2)
l
2 r1(r2r1)

l
2 r2. By the same reasoning as above, there exists a direct path of length

2l+3 > 1 from µ to ν in the Hasse diagram of Wλ. However, this contradicts the assumption that
dist(µ, ν) = 1. Similarly, we can show that if µ = xmλ and m is odd, then β = α1. Also, we can
show the assertion for the case that µ = ymλ in exactly the same way as above. This completes
the proof of the proposition.

Lemma 3.17. For any rational number 0 < σ < 1 and any µ, ν ∈ Wλ such that µ > ν, there
does not exist a σ-chain µ = µ0 > · · · > µr = ν for (µ, ν) such that µk = λ for some 0 ≤ k ≤ r.

Proof. Suppose that µk = λ for some 0 ≤ k ≤ r. Note that r ≥ 1 since µ > ν. If k < r

(resp., k > 0), then it follows from Proposition 3.16 that µk+1 = r2λ (resp., µk−1 = r1λ) since
dist(µk, µk+1) = 1 (resp., dist(µk−1, µk) = 1) by the assumption of the σ-chain. Thus, we obtain
σ = −σ⟨λ, α∨

2 ⟩ ∈ Z (resp., σ = σ⟨λ, α∨
1 ⟩ ∈ Z), which contradicts the assumption 0 < σ < 1. If

k = 0 or k = r, it is clear that σ = −σ⟨λ, α∨
2 ⟩ ∈ Z or σ = −σ⟨r1λ, α∨

1 ⟩ ∈ Z by Proposition 3.16.
This also contradicts the assumption. Thus, the lemma has been proved.

The next proposition follows immediately from Lemma 3.17 and the definition of LS paths.

Proposition 3.18. Let π = (ν1, . . . , νs ; σ0, . . . , σs) ∈ B(λ). If νu = λ for some 1 ≤ u ≤ s,
then s = 1 and π = (λ ; 0, 1).

Proof of Theorem 3.8. We show that every π ∈ B(λ) is connected to (λ; 0, 1) ∈ B(λ) in the crystal
graph of B(λ). Assume first that ι(π) = xmλ for some m ∈ Z≥0. We show by induction on m that
π is connected to (λ; 0, 1). If m = 0, then the assertion follows immediately from Proposition
3.18. Assume that m > 0. Define

i :=

{
2 (if m is even),

1 (if m is odd);

note that ⟨xmλ, α
∨
i ⟩ < 0 and rixmλ = xm−1λ (see Lemma 3.15). By Lemma 2.12, ι(ẽmax

i π) =
riι(π) = rixmλ = xm−1λ. By the induction hypothesis, ẽmax

i π is connected to (λ ; 0, 1), and hence
so is π.

Assume next that ι(π) = ymλ for some m ∈ Z≥0. Since κ(π) ≤ ι(π) by the definition of an LS
path, we see by Proposition 3.16 that κ(π) = ykλ for some k ≥ m. Hence it suffices to show that
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if π ∈ B(λ) satisfies that κ(π) = ykλ for some k ∈ Z≥0, then π is connected to (λ; 0, 1). If k = 0,
then the assertion follows immediately from Proposition 3.18. Assume that k > 0. Define

j :=

{
1 (if k is even),

2 (if k is odd);

note that ⟨ykλ, α∨
j ⟩ > 0 and rjykλ = yk−1λ. By Lemma 2.12, κ(f̃max

j π) = rjκ(π) = rjykλ = yk−1λ.

By the induction hypothesis, f̃max
j π is connected to (λ ; 0, 1), and hence so is π. Thus, we have

proved Theorem 3.8.

3.7 Proof of Theorem 3.9.

Throughout this subsection, we assume that a1, a2 ̸= 1 in (3.1). Recall that the sequences
{pm}m∈Z≥0

and {qm}m∈Z≥0
are defined in (3.6) and (3.7), respectively.

Lemma 3.19. For each k ≥ 0, the numbers pk and pk+1 are relatively prime. Also, the numbers
qk and qk+1 are relatively prime.

Proof. We give a proof only for pk and pk+1; the proof for qk and qk+1 is similar. Suppose that the
assertion is false, and let m be the minimum k ≥ 0 such that pk and pk+1 have a common divisor
greater than 1. Let d ∈ Z>1 be a common divisor of pm and pm+1. Since{

pm+1 = a2pm − pm−1 (if m is even),

pm+1 = a1pm − pm−1 (if m is odd),

we can deduce that pm and pm−1 have the same common divisor d, which contradicts the minimality
of m. Thus, we have proved the lemma.

Lemma 3.20. Let 0 < σ < 1 be a rational number, and let µ, ν ∈ Wλ be such that µ > ν. If
µ = µ0 > µ1 > · · · > µt = ν is a σ-chain for (µ, ν), then t = 1.

Proof. Suppose that t ≥ 2. Assume first that µ0 = xmλ; by Lemma 3.17, we have m ≥ 3. Since
dist(µ0, µ1) = dist(µ1, µ2) = 1 by the definition of a σ-chain, we see by Proposition 3.16 that
µ1 = xm−1λ and µ2 = xm−2λ. Take i, j ∈ {1, 2} such that µ1 = riµ0 and µ2 = rjµ1. Then, by
Lemma 3.4,

⟨µ0, α
∨
i ⟩ = ⟨xmλ, α

∨
i ⟩ = −pm, ⟨µ1, α

∨
j ⟩ = ⟨xm−1λ, α

∨
j ⟩ = −pm−1.

Since −pm and −pm−1 are relatively prime (see Lemma 3.19), there does not exist a 0 < σ < 1
satisfying the condition that both −σpm and −σpm−1 are integers. This contradicts our assumption
that µ = µ0 > µ1 > · · · > µt = ν is a σ-chain for (µ, ν). Similarly, we can get a contradiction also
in the case of µ0 = ymλ for some m ∈ Z≥1. Thus, we have proved Lemma 3.20.

Proof of Theorem 3.9. Let π = (ν1, . . . , νs;σ0, . . . , σs) ∈ B(λ). Assume first that νs = xmλ for
some m ≥ 0. Since ν1 > ν2 > · · · > νs = xmλ by the definition of an LS path, we see by
Proposition 3.16 that

ν1 = xk1λ, ν2 = xk2λ, . . . , νs−1 = xks−1λ
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for some k1 > k2 > · · · > ks−1 > m. Here we recall that there exists a σs−1-chain for (νs−1, νs) =
(xks−1λ, xmλ) by the definition of an LS path. By Lemma 3.20, we see that the length of this σs−1-
chain is equal to 1, which implies that dist(νs−1, νs) = dist(xks−1λ, xmλ) = 1. Hence it follows from
Proposition 3.16 that ks−1 = m+1. Take i ∈ I such that xmλ = rixm+1λ. Then, by the definition
of a σs−1-chain, we have σs−1⟨xm+1λ, α

∨
i ⟩ ∈ Z. Since ⟨xm+1λ, α

∨
i ⟩ = −pm+1 by (3.8), we obtain

pm+1σs−1 ∈ Z. By repeating this argument, we deduce that ku = m+ s− u and pm+s−uσu ∈ Z for
every 1 ≤ u ≤ s− 1. Hence, π is of the form (i).

Assume next that π = (ν1, . . . , νs; δ0, . . . , δs) ∈ B(λ) and νs = ymλ for some m ≥ 0. Suppose
that (s ≥ 2 and) there exists 1 ≤ u ≤ s− 1 such that νu+1 = ykλ for some k ≥ 0, but νu = xlλ for
some l ≥ 0. By the definition of an LS path, there exists a δu-chain for (νu, νu+1) (1 ≤ u ≤ s− 1).
Then, by Lemma 3.20, the length of this δu-chain is equal to 1, which implies that dist(νu, νu+1) =
dist(xlλ, ykλ) = 1. By the Hasse diagram in Proposition 3.16, we see that (l, k) = (1, 0) or (0, 1)
Since x0λ = y0λ = λ, it follows form Proposition 3.18 that s = 1, which contradicts s ≥ 2.
Therefore, we conclude that

ν1 = yk1λ, ν2 = yk2λ, . . . , νs = yksλ = ymλ,

where 0 ≤ k1 < k2 < · · · < ks−1 < ks = m. By the same argument as above, we deduce that
ku = m − s + u and qm−s+u+1δu ∈ Z. Hence, π is of the form (ii). This completes the proof of
Theorem 3.9.

Appendices

A Explicit description of the root operators.

As an application of Theorem 3.9, we give an explicit description of the root operators ẽi and f̃i
for i = 1, 2. First, let π ∈ B(λ) be of the form (i) in Theorem 3.9. We set

C(1)
u :=

m+s−1∑
k=m+s−u

(σm+s−k − σm+s−k−1)(−1)kpk+ξk ,

C(2)
u :=

m+s−1∑
k=m+s−u

(σm+s−k − σm+s−k−1)(−1)k+1pk+ξk+1
,

where {pm}m∈Z≥0
is defined as (3.6), and for k ∈ Z≥0,

ξk :=

{
1 if k is even,

0 if k is odd.

Then,
wt(π) = C(1)

s Λ1 + C(2)
s Λ2.

Note that ±⟨xuλ, α
∨
i ⟩ > 0 if and only if ∓⟨xu+1λ, α

∨
i ⟩ > 0 for each u ∈ Z≥0. Thus we see (cf.

(2.5)) that
mπ

i = min{C(i)
u | 0 ≤ u ≤ s}.
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Let us give an explicit description of f̃iπ. We set

u0 := max{0 ≤ u ≤ s | C(i)
u = mπ

i };

if u0 = s, then f̃iπ = 0. Assume that 0 ≤ u0 ≤ s − 1; we see that σu0 is equal to t0 in (2.9). By
fact (2.10), we deduce that t1 in (2.9) is equal to

σ′
u0

:=


σu0 +

1

pm+s−u0−1+ξm+s−u0−1

if i = 1,

σu0 +
1

pm+s−u0−1+ξm+s−u0

if i = 2,

which satisfies σu0 < σ′
u0
≤ σu0+1; notice that if σ′

u0
= σu0+1, then u0 = s − 1, and hence

σ′
u0

= σs = 1. We have

f̃iπ =


(xm+sλ, xm+s−1λ, . . . , xmλ; σ0, σ

′
0, σ1, . . . , σs) if u0 = 0 and σ′

u0
< σu0+1,

(rixmλ; 0, 1) if u0 = 0 and σ′
u0

= σu0+1,

(xm+s−1λ, . . . , xmλ;σ0, . . . , σu0−1, σ
′
u0
, σu0+1, . . . , σs) if u0 ≥ 1 and σ′

u0
< σu0+1,

(xm+s−1λ, . . . , xm−1λ;σ0, . . . , σs−2, σs) if u0 ≥ 1 and σ′
u0

= σu0+1.

(A.1)

Similarly, we give an explicit description of ẽiπ as follows. We set

u1 := min{0 ≤ u ≤ s | C(i)
u = mπ

i };

if u1 = 0, then ẽiπ = 0. Assume that 1 ≤ u1 ≤ s; we see that σu1 is equal to t1 in (2.7). By fact
(2.8), we deduce that t1 in (2.7) is equal to

σ′
u1

:=


σu1 −

1

pm+s−u1+ξm+s−u1

if i = 1,

σu1 −
1

pm+s−u1+ξm+s−u1+1

if i = 2,

which satisfies σu1−1 ≤ σ′
u1
≤ σu1 ; notice that if σ′

u1
= σu1−1, then u1 = 1 and hence σ′

u1
= σ0 = 0.

We have

ẽiπ =


(xm+s−1λ, . . . , xmλ, xm−1λ;σ0, . . . , σs−1, σ

′
s, σs) if u1 = s and σu1−1 < σ′

u1
,

(rixmλ; 0, 1) if u1 = s and σu1−1 = σ′
u1
,

(xm+s−1λ, . . . , xmλ;σ0, . . . , σu1−1, σ
′
u1
, σu1+1, . . . , σs) if u1 ≤ s− 1, σu1−1 < σ′

u1
,

(xm+s−2λ, . . . , xmλ;σ0, σ2, . . . , σs) if u1 ≤ s− 1, σu1−1 = σ′
u1
,

(A.2)

where we understand x−1λ = y1λ.

Example A.1. Assume that

π = (r2r1r2r1λ, r1r2r1λ, r2r1λ; 0,
1

p4
,
2

p3
, 1) ∈ B(λ),
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which is an element of the form in Theorem 3.9 (i) with m = 2 and s = 3. Let us compute f̃iπ for
i = 1, 2, using formula (A.1). If i = 1, then we have u0 = 2, σ′

u0
= 3

p3
if a1 = 2 and u0 = 0, σ′

u0
= 1

p5

if a1 ≥ 3; note that 3
p3

= 1 if b = 3. Thus,

f̃1π =



(r2r1r2r1λ, r1r2r1λ; 0,
1

p4
, 1) if a1 = 2, a2 = 3,

(r2r1r2r1λ, r1r2r1λ, r2r1λ; 0,
1

p4
,
3

p3
, 1) if a1 = 2, a2 > 3,

(r1r2r1r2r1λ, r2r1r2r1λ, r1r2r1λ, r2r1λ; 0,
1

p5
,
1

p4
,
2

p3
, 1) if a1 ≥ 3;

remark that if a1 = 2, then a2 > 3. If i = 2, then we have u0 = 1, σ′
u0

= 2
p4
. Thus,

f̃2π = (r2r1r2r1λ, r1r2r1λ, r2r1λ; 0,
2

p4
,
2

p3
, 1).

Next, let π ∈ B(λ) be of the form (ii) in Theorem 3.9. By a similar argument to above, we
have the following explicit descriptions of f̃iπ and ẽiπ. We set

D(1)
v :=

m−s+v∑
k=m−s+1

(δk−m+s − δk−m+s−1)(−1)kqk+ξk+1
,

D(2)
v :=

m−s+v∑
k=m−s+1

(δk−m+s − δk−m+s−1(−1)k+1qk+ξk ,

where {qm}m∈Z≥0
is define as (3.7). Then

wt(π) = D(1)
s Λ1 +D(2)

s Λ2.

We have
mπ

i = min{D(i)
v | 0 ≤ v ≤ s}.

Let us give an explicit description of f̃iπ. We set

v0 := max{0 ≤ v ≤ s | D(i)
v = mπ

i };

if v0 = s, then f̃iπ = 0. Assume that 0 ≤ v0 ≤ s− 1. we set

δ′v0 :=


δv0 +

1

pm−s+v0+1+ξm−s+v0+2

if i = 1,

δv0 +
1

pm−s+v0+1+ξm−s+v0+1

if i = 2.

We have

f̃iπ =


(ym−sλ, ym−s+1λ, . . . , ymλ; δ0, δ

′
0, δ1, . . . , δs) if v0 = 0 and δ′v0 < δv0+1,

(riymλ; 0, 1) if v0 = 0 and δ′v0 = δv0+1,

(ym−s+1λ, . . . , ymλ; δ0, . . . , δv0−1, δ
′
v0
, δv0+1, . . . , δs) if v0 ≥ 1 and δ′v0 < δv0+1,

(ym−s+1λ, . . . , ym−1λ; δ0, . . . , δs−2, δs) if v0 ≥ 1 and δ′u0
= δv0+1.

(A.3)
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where we understand y−1λ = x1λ.

Similarly, we give an explicit description of ẽiπ as follows. We set

v1 := min{0 ≤ v ≤ s | D(i)
v = mπ

i };

if v1 = 0, then ẽiπ = 0. Assume that 1 ≤ v1 ≤ s. We set

δ′v1 :=


δv1 −

1

qm−s+v1+ξm−s+v1+1

if i = 1,

δv1 −
1

qm−s+v1+ξm−s+v1

if i = 2.

We have

ẽiπ =


(ym−s+1λ, . . . , ymλ, ym+1λ; δ0, . . . , δs−1, δ

′
s, δs) if v1 = s and δv1−1 < δ′v1 ,

(riymλ; 0, 1) if v1 = s and δv1−1 = δ′v1 ,

(ym−s+1λ, . . . , ymλ; δ0, . . . , δv1−1, δ
′
v1
, δv1+1, . . . , δs) if v1 ≤ s− 1, δv1−1 < δ′v1 ,

(ym−s+2λ, . . . , ymλ; δ0, δ2, . . . , δs) if v1 ≤ s− 1, δv1−1 = δ′v1 .

(A.4)

B Realization of B(∞).

Here we recall a realization of B(∞) from [K1, §2.2] and [NZ, §2.4]. We set

Z∞ := {(. . . , xk, . . . , x2, x1) | xk ∈ Z and xk = 0 for k ≫ 0};

Also, we fix an infinite sequence of ι = (. . . , ik, . . . , i2, i1) of elements of I such that

ik ̸= ik+1 for any k ≥ 1, and ♯{k | ik = i} =∞ for each i ∈ I.

The crystal structure on Z∞ corresponding to ι is defined as follows. Let x⃗ = (. . . , xk, . . . , x2, x1) ∈
Z∞. For k ≥ 1, we set

σk(x⃗) := xk +
∑
j>k

⟨αij , α
∨
ik
⟩xj;

since xj = 0 for j ≫ 0, we see that σk(x⃗) is well-defined, and σk(x⃗) = 0 for k ≫ 0. For i ∈ I, set
σ(i)(x⃗) := max{σk(x⃗) | k ≥ 1, ik = i}, and

M (i) = M (i)(x⃗) := {k ≥ 1 | ik = i, σk(x⃗) = σ(i)(x⃗)}.

Observe that σ(i)(x⃗) ≥ 0, and that M (i) = M (i)(x⃗) is a finite set if and only if σ(i)(x⃗) > 0. Now we
define maps ẽi : Z∞ → Z∞ ⊔ {0} and f̃i : Z∞ → Z∞ by

f̃i(x⃗) := (. . . , x′
k, . . . , x

′
2, x

′
1), with x′

k := xk + δk,minM(i) ;

ẽi(x⃗) :=

{
(. . . , x′

k, . . . , x
′
2, x

′
1), with x′

k := xk − δk,maxM(i) if σ(i)(x⃗) > 0,

0 if σ(i)(x⃗) ≤ 0.
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Also, we define the weight map wt : Z∞ → P and εi, φi : Z∞ → Z by

wt(x⃗) := −
∞∑
i=1

xjαij ,

εi(x⃗) := σ(i)(x⃗), φi(x⃗) := ⟨wt(x⃗), α∨
i ⟩+ εi(x⃗).

Theorem B.1 ([K1, §2.2] and [NZ, §2.4]). The set Z∞, together with the maps above, becomes
a crystal; we denote this crystal by Z∞

ι . Moreover, the connected component of Z∞
ι containing

(. . . , 0, . . . , 0, 0) is isomorphic, as a crystal, to B(∞).
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