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Abstract

Let g be a hyperbolic Kac-Moody algebra of rank 2, and set A := A; — As, where Ay,
Ay are the fundamental weights. Denote by V(\) the extremal weight module of extremal
weight A with vy the extremal weight vector of weight A, and by B(\) the crystal basis of
V(A) with uy the element corresponding to vy. We prove that (i) (the crystal graph of) B(\)
is connected, (ii) the subset B(\), of elements of weight p in B(\) is a finite set for every
integral weight p, and B(A)x = {ux}, (iii) every extremal element in B()) is contained in
the Weyl group orbit of uy. Also, we prove that the crystal B(\) of all Lakshmibai-Seshadri
paths of shape A is connected, and give an explicit description of Lakshmibai-Seshadri paths
of shape A.

1 Introduction.

In this paper, we study the structure of the crystal basis of the extremal weight module V()
of extremal weight A := Ay — Ay over the quantized universal enveloping algebra associated to a
hyperbolic Kac-Moody algebra of rank 2, where A;, Ay are the fundamental weights. Also, we
study the structure of the crystal B(\) of all Lakshmibai-Seshadri (LS for short) paths of shape A,
and give an explicit description of LS paths of shape .

Let us explain the background and motivation. Let g be a symmetrizable Kac-Moody algebra
over C with P the integral weight lattice, U,(g) the quantized universal enveloping algebra over
C(q) associated to g, with E; and F;,i € I, the Chevalley generators corresponding to «a; and
—ay, respectively. And let {o;}ier the set of the simple roots of g. The extremal weight module
V(p) of extremal weight 1 € P is the integrable U,(g)-module generated by a single element
v, with the defining relation that v, is an extremal weight vector of weight p; this module was
introduced by Kashiwara [K2, Proposition 8.2.2] as a natural generalization of integrable highest
(or lowest) weight modules. He also proved that V' (u) has a crystal basis B(p). We know from
[K2, Proposition 8.2.2 (iv) and (v)] that V(u) = V(wu) as U,(g)-modules, and B(u) = B(wu) as
crystals for all p € P and w € W, where W is the Weyl group of g. Also, we know from the
comment at the end of [K2, §8.2] that if 4 € P is dominant (resp., antidominant), then V(u) is
isomorphic to the integrable highest (resp., lowest) weight module of highest (resp., lowest) weight
u, and B(p) is isomorphic to its crystal basis. So, we are interested in those 1 € P such that

any element of Wy is neither dominant nor antidominant. (1.1)

If g is of finite type, then there is no p € P satisfying the condition (1.1); it is well-known that
W i contains a (unique) dominant integral weight for every u € P. Assume that g is of affine type,
and let ¢ be the canonical central element of g. Then, u € P satisfies the condition (1.1) if and
only if p is level-zero, that is, (1 # 0, and) (u,¢) = 0. In [K5] and [BN], they deeply studied the
basic structure of V' (u) and B(u) for level-zero p € P. Using results in [K5] and [BN], Naito and
Sagaki proved in [NS1] and [NS2] that if u is a positive integer multiple of a level-zero fundamental
weight, then the crystal basis B(u) is isomorphic to the crystal B(u) of LS paths of shape p. After
that, in [INS], they introduced semi-infinite LS paths in terms of the semi-infinite Bruhat order
on the affine Weyl group, and proved that for level-zero dominant p € P, the crystal basis B(p) is
isomorphic to the crystal of semi-infinite LS paths of shape pu. Thus, in the finite and affine cases,



we have already finished the basic study of the structures of V' (u) and B(u), and had combinatorial
realization for B(u).

In this paper, we consider the case where g = g(A) is a hyperbolic Kac-Moody algebra of rank
2 with Cartan matrix

2 —a
A= ( 1) , where ay,as € Z~q, ajas > 4.

—Q2 2

In Proposition 3.2, it will be proved that A = A; — Ay satisfies the condition (1.1) if ay,as > 2.
We will prove the following theorems and corollary.

Theorem 1.1 ( = Theorem 3.5). The crystal graph of B(\) is connected.

Corollary 1.2 ( = Corollary 3.6). For every o € P, the subset B()\), of elements of weight p in
B(\) is a finite set. In particular, B(\), = {u,}, where w, is the element of B(\) corresponding to
the extremal weight vector vy € V().

Since B(\) is a normal crystal, B(A) has a canonical action S, (w € W) of the Weyl group W
(see §2.2). Then, uy € B(\) is an extremal element of weight A.

Theorem 1.3 ( = Theorem 3.7). (1) Let x,y € W. Then, S,uy = Syu, if and only if 2\ = yA.
(2) If b € B(\) is extremal, then there exists w € W such that b = S,u,.

Theorem 1.4 ( = Theorem 3.8). The crystal graph of B(\) is connected.

Theorem 1.5 ( = Theorem 3.9). Assume that aj,as > 2. An LS path of shape A\ = A; — Ay is
either of the form (i) or (ii):

(1) (Timgs—1 A, -« oy Tms1 A, TipX; 00, 01, ..., 05), wherem > 0,s > 1l,and 0 =0p <03 < -+ <05, =1
satisfy the condition that p,, s w0, € Z for 1 <u < s— 1.

(i) (Ym—st1 A, -« o s Ym—1 A YmA; 00, 01, - . ., 05), wherem > s—1,s > 1,and 0 =g < 9y < --- < s =1
satisfy the condition that ¢,,_siy110, € Z for 1 <u <s—1.

Here, the elements z,,, y,, € W, m > 0, are defined in (3.2), (3.3), and the sequences {p, }m>0 and
{@m }m>0 are defined in (3.6), (3.7).

As an application of the theorems and corollary above, we prove in [SY, Theorem 3.6] that the
crystal basis B(\) of the extremal weight module V() of extremal weight A is isomorphic to the
crystal B(\) of all LS paths of shape A.

This paper is organized as follows. In Section 2, we fix our notation, and recall the definitions
and basic properties of extremal weight modules and their crystal bases. Also, we recall the
definition of LS paths. In Subsections 3.1 and 3.2, we introduce some extra notation for the case
that g is a hyperbolic Kac-Moody algebra of rank 2, and show that A = A; — A, satisfies the
condition (1.1) if a;,as > 2. In Subsection 3.3, we state our main results (the four theorems and
one corollary above). Subsections 3.4,3.5, 3.6, and 3.7 are devoted to proofs of Theorems 3.5, 3.7,
3.8, and 3.9, respectively. In Appendix, we give an explicit description of the root operators.



2 Preliminaries.

2.1 Kac-Moody algebras.

Let A = (a;;);jer be a symmetrizable generalized Cartan matrix with I the finite index set. Let
g = g(A) be the Kac-Moody algebra associated to A over C. Denote by h the Cartan subalgebra
of g, {o; | i € I} C b* := Home(h,C) the set of simple roots, and {«) | i € I} C b the set of
simple coroots. We set Q1 := >, ., Z>oc;. Denote by W = (r; | i € I) the Weyl group of g, where
r; is the simple reflection in «; for ¢ € I. Let A; € h*,7 € I, be the fundamental weights for g,
ie., (Aj,af) = 0,5 fori,j € I, and set P := P,.; ZA;. Let P* =} ._; Z>oA; the set of dominant
integral weights, and —P* := 3", Z<A; the set of antidominant integral weights.

2.2 Crystal bases and crystals.

For the details on crystal bases and crystals, see [K3] and [HK]. Let B be a crystal, and let é;
and fi, t € I, be the Kashiwara operators for B. For b € B and ¢ € I, we set €"*b := éii(b)b if
g;(b) = max{n > 0 | é'b # 0}, where 0 is an extra element not contained in any crystal. Similarly,
we set fmexp = fPOp if o (b) = max{n >0 | f"b # 0}.

Definition 2.1 (see [K2, page 389] and [K3, page 182]). A crystal B is said to be normal if
it satisfies the following condition (N) for every J C [ such that the Levi subalgebra g; of g
corresponding to J is finite-dimensional:

(N) if we regard B as a crystal for U,(gs) by restriction, then it is isomorphic to the crystal
basis of a finite-dimensional U,(g;)-module.

Remark 2.2. If B is a normal crystal, then &;(b) = max{n > 0 | &b # 0} and ¢;(b) = max{n >
0| ffb#0} forallbe Band i€ 1.

We know from [K2, §7] (see also [K3, Theorem 11.1]) that a normal crystal B has an action of
the Weyl group W as follows. For ¢ € I and b € B, we set

Oy (wi(b), )
Sib = é‘_<Wt(b),ociv> v

Then, for w € W, we set S, := S;, -+ 5,
we W and b € B.
An element b of a normal crystal B is said to be extremal if for each w € W and i € I,

if w=r;---r;,. Notice that wt(S,b) = wwt(b) for

ﬂ&MZOiumwwm&

Now, let B(oo) (resp., B(—oc)) be the crystal basis of the negative part U, (g) (resp., the
positive part U;(g)) of the quantized universal enveloping algebra U,(g) over C(q) associated to
g; for a realization of B(c0), see Appendix B. Let uy, € B(o0) (resp., u_o € B(—00)) be the
element corresponding to 1 € U (g) (resp., 1 € U (g)). Denote by é&; and fi, i € I, the raising

Ei(Sub) = 0 if (wt(Syb), aY) > 0,
<0.



and lowering Kashiwara operators on B(£00), respectively. For i € I, we define ¢;, ¢; : B(o0) — Z
and &;, p; : B(—o0) — Z by

g;(b) :==max{n > 0] el'b # 0}, ¢i(b) := &;(b) + (wt(b), ') for b € B(cx),

@i (b) == max{n > 0| f'b # 0}, &;(b) := ¢;(b) — (wt(b), ) for b € B(—oc),
respectively. Denote by * : B(£o0) — B(400) the x-operator on B(+o0), which is induced from a
C(q)-algebra antiautomorphism * : Uy(g) — U,(g) (see [K1, Theorem 2.1.1] and [K3, §8.3]). We

see that wt(b*) = Wt(b) for all b € B(+o00). The next lemma follows immediately from the fact
that fFu. (resp., ¥u_y) is a unique element of weight —ka; (resp., ka;) in B(co) (resp., B(—o0)).

Lemma 2.3. We have (fFuq)* = fFuy for all k € Zsg and 4 € I. Similarly, we have (Fu_..)* =
e U_o for all k € Z>p and 7 € 1.

For y1 € P, denote by 7, = {t,} the crystal consisting of a single element ¢,, such that
Wt(tﬂ) = K,
éit, = fit, =0 for ie1,

ei(ty) = pi(t,) = —oo for iel.

2.3 Crystal bases of extremal weight modules.

Let ;1 € P be an arbitrary integral weight. The extremal weight module V(1) of extremal weight
p is, by definition, the integrable U,(g)-module generated by a single element v, with the defining
relation that v, is an “extremal weight vector” of weight s; recall from [K5, §3.1] that v, is an
extremal weight vector of weight y if (v, is a weight vector of weight p and) there exists a family
{vw fwew of weight vectors in V' (u) such that viq = v, and such that for every : € [ and w € W
with n := (wu, ) > 0 (resp., < 0), the equalities F; vw = 0 and F Vv = Urao (resp., Fiv, = 0 and
E,L-(_")v = Uy,) hold, where for ¢ € I and m € Z>,, E- ) and F ) are the m-th divided powers of

E; and Fj, respectively. Note that the weight of v,, is wu. We know from [K2, Proposition 8.2.2]
that V' (u) has a crystal basis B(u).

Remark 2.4. We see from [K2, Proposition 8.2.2 (iv) and (v)] that V(u) = V(wp) as U,(g)-
modules, and B(p) = B(wp) as crystals for all 4 € P and w € W. Also, we know from the
comment at the end of [K2, §8.2] that if 4 € P is dominant (resp., antidominant), then V(u) is
isomorphic, as a U,(g)-module, to the integrable highest (resp., lowest) weight module of highest
(resp., lowest) weight u, and B(u) is isomorphic, as a crystal, to its crystal basis. So, we are
interested in those pu € P such that

any element of Wy is neither dominant nor antidominant. (2.1)

Now, the crystal basis B(u) can be realized (as a crystal) as follows. We set

B:=| | B(co) ® T, @ B(—00);

pneP

in fact, B is isomorphic, as a crystal, to the crystal basis B(Uq(g)) of the modified quantized
universal enveloping algebra U, (g) associated to g (see [K2, Theorem 3.1.1]). Denote by * : B — B
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the x-operation on B, which is induced from a C(g)-algebra antiautomorphism  : Uq(g) — Uq(g)
(see [K2, Theorem 4.3.2]); we know from [K2, Corollary 4.3.3] that for b; € B(00), by € B(—00), 11 €
P,

(b1 @ty ® b2)" = b] @ L pwi(vr)—wi(be) ® b3 (2:2)

Because B is a normal crystal by [K2, §2.1 and Theorem 3.1.1], B has the action of the Weyl
group W as mentioned in §2.2. We know the following proposition from [K2, Proposition 8.2.2
(and Theorem 3.1.1)].

Proposition 2.5. For iy € P, the subset
{be B(oo) ® T, ®B(—o0) | b* is extremal} (2.3)

is a subcrystal of B(co) ® 7, ® B(—00), and is isomorphic, as a crystal, to the crystal basis B(1)
of the extremal weight module V(1) of extremal weight p.

In the following, we identify the crystal basis B(p) with the subcrystal (2.3) of B(oco) ® 7, ®
B(—o0). We set

Uy 7= Uoo D, @ U_o € B(o0) ® T, @ B(—00) (2.4)

Then, u, is an extremal element of weight ;o contained in B(s), which corresponds to the extremal
weight vector v, € V(p).

2.4 Lakshmibai-Seshadri paths.

Let us recall the definition of Lakshmibai-Seshadri paths (LS paths for short) from [L2, §4] (see
also [Y, §2.2]). Let u € P be an arbitrary integral weight.

Definition 2.6. For v, v/ € W, we write v > v/ if there exist a sequence v = &g, &, ..., & =1/
of elements in Wy and a sequence 3, ..., 8, of positive real roots such that §, = rg &1 and
(§4-1, B)) < 0 for each ¢ = 1,2, ..., p, where for a positive real root 3, rz3 € W denotes the
reflection in 3, and S denotes the dual root of B. If v > v/, then we define dist(v, ') to be the
maximal length p of all possible such sequences v = &, &, ..., §, =V for (v,/).

Definition 2.7. Let v, v/ € Wy with v > 1/, and let 0 < o < 1 be a rational number. A o-chain
for (v,v') is, by definition, a sequence v = & > & > --- > §, = 1/ of elements in Wy such that
dist(§y-1,&,) = L and o(§,-1, ;) € Zo for all ¢ = 1, 2, ..., p, where f3, is the positive real root
corresponding to &,_; > &, with dist(§,_1,&,) = 1.

Definition 2.8. An LS path of shape u is a pair m = (v; o) of a sequence v : v; > vy > -+ > v
of elements in Wy and a sequence ¢ : 0 = 09 < 01 < --- < 05, = 1 of rational numbers satisfying
the condition that there exists a o,-chain for (v, 1) forallu=1,2, ... s—1.

Denote by B(u) the set of LS paths of shape p. We identify 7 = (v; o) € B(u) (as in Definition
2.8) with the following piecewise-linear continuous map 7 : [0, 1] - R ®z P:
u—1
7(t) = Z(ak — o)+ (t —oy1)vy for o, 1 <t<o,, 1<u<s.
k=1



Remark 2.9. We see from the definition of LS paths that 7, := (v;0,1) € B(u) for every v € Wy,
which corresponds to the straight line 7, (t) = tv for ¢ € [0, 1].

Now, we endow B(u) with a crystal structure as follows. First, we define wt(r) := w(1) for
7 € B(p); we know from [L2, Lemma 4.5] that 7(1) € P. Next, for 7 € B(u) and i € I, we define

HT(t) :== (n(t), o) for t €10,1], m! :=min{H] (t) | t € [0,1]}. (2.5)
We know from [L2, Lemma 4.5] that
all local minimal values of H (t) are integers; (2.6)

in particular, m7 is a nonpositive integer, and H (1) —m[ is a nonnegative integer. We define é;7
as follows: If mI = 0, then we set ;7 := 0. If m] < —1, then we set

ty :=min{t € [0,1] | HT(t) =m[},

2.7
to := max{t € [0,t1] | HT(t) = m] + 1}; 27)
we see by (2.6) that
HT(t) is strictly decreasing on [to, t1]. (2.8)
We define
() if 0 <t <t
(ézﬂ')(t) = Tl(ﬂ(t) - W(to)) + W(to) if to S t S tl,
7(t) + o if t; <t <1;

we know from [L2, §4] that é;m € B(A). Similarly, we define fim as follows: If HF(1) —mF = 0,
then we set fir := 0. If HT(1) —m] > 1, then we set

to := max{t € [0,1] | HF(t) = m]},

2.9
ty := min{t € [to, 1] | H] (t) = m] + 1}; (2:9)
we see by (2.6) that
HT(t) is strictly increasing on [to, t1]. (2.10)
We define
m(t) if0<t<to,
(fzﬂ')(t) = ’I“Z(T('(t) - W(to)) + W(to) if to S t S tl,
() — a if 4, <t <1

we know from [L2, §4] that f;r € B(u). We set &0 = f;0 := 0 for i € I. Finally, for 7 € B(x) and
1 € 1, we set

gi(m) = max{n € Zzo | &1 # 0}, ;(n) := max{n € Zs, | f'm # 0}.



Theorem 2.10 ([L2, §2 and §4]). The set B(u), together with the maps wt : B(i) — P, &, f; :
B(p) U{0} — B(u) U{0},7i € I, and &;, ¢; : B(u) — Zso,i € I, becomes a crystal.

Remark 2.11. We see from the definition of LS paths that B(wu) = B(u) for all w € W and
p € P. Also, we know from [K4] and [J] that if 4 € P is dominant (resp., antidominant), then
B(p) is isomorphic, as a crystal, to the crystal basis of the integrable highest (resp., lowest) weight
module of highest (resp., lowest) u. Hence, also for B(1), we are interested in those u € P satisfying
the condition (2.1).
For m = (11, va, ..., vs; 00, 01, ..., 05) € B(X), we set ¢(7) := vy and k(7) := vs.

Lemma 2.12 ([L1, Proposition 4.2], [L2, Proposition 4.7]). Let 7 € B(A), and i € I. If
(k(m), /) >0, then x(f**r) = ri(m). If (u(7), ) <0, then o(e¥**m) = ().

Since B(u) is a normal crystal, B(u) has the action of the Weyl group W as mentioned in §2.2
(see also [L2, Theorem 8.1]). We can easily show the next lemma by induction on the length of
weW.

Lemma 2.13. For w € W, we have S,7, = m,,. In particular, m, is an extremal element of
weight .

3 Main results.

3.1 Hyperbolic Kac-Moody algebra of rank 2.

Form this section, we assume that

A= ( 2@ _2al> , where ay,as € Z~o and ajay > 4, (3.1)
—ag

with I = {1,2}. Note that W = {x,, ym | m € Z>o}, where

b ifm =2k with k € Z
- (rory) 1 m wi . >0, (3.2)
ri(ror)®  if m =2k + 1 with k € Zx.
) rre)F i mo= 2k with k € Zx,, (3.3)
Ym 7‘2(7‘1’/"2)k 1fm:2k+1 with & S ZZO‘ ‘
Let Af, denote the set of positive real roots. We see that
AL = {szQ, Yipron | 1 € ZevenZO} U {yl@1,$l+1042 RS Zevenzo}, (3.4)

where Zeven>0 denotes the set of even nonnegative integers.

Remark 3.1. In fact, we know from [Kac, Exercise 5.25] that
A;; = {CjOél + dj+10[2 and Cj+10 -+ djOéQ ‘ j Z O},
where the sequences {c;};>o and {d;};>o are defined by

=dy=0, dy =c; =1, and {CjH:alde_cj’

j+2 = 2Cj+1 — dj.

Recall that P = ZA; & ZAQ, Pt = ZZOAI + ZZOAQ C P, and — Pt = Z§0A1 + ZSOAQ C P.
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3.2 An integral weight whose Weyl group orbit does not intersect with
neither P™ nor —P™.

We set
A= A1 - AQ. (35)

Proposition 3.2. Assume that a;,ay > 2. The weight A = A; — A, satisfies that WA N (PT U
(—PT)) =0 (see (2.1)).

Remark 3.3. If a; = 1, then we have y; (A1 — As) = (A — Ay) = Ay € PT. If ay = 1, then we
have $1<A1 — Ag) = 7’1(/\1 — AQ) = —Al € —Pt.

Assume that a;,as > 2. We define {pm fmez-, and {gmfmez-, by:

asPm+1 — Pm  (if m is even),

po=p1 =1and p,,1o = 2Pm ( ' ) (3.6)
a1Pmi1 — Pm (if m is odd),
a1Gm+1 — @m  (if m is even),

qo=q =1and g2 = e (3.7)
2Gm+1 — Gm  (if m is odd).

Then we see that 1 = pg=p1 < pa<p3<---and 1 =gy =q¢ < @2 < g3 < ---; note that p; = ps
if and only if ay = 2, and ¢; = ¢ if and only if a; = 2. Proposition 3.2 follows immediately from
the following lemmas and the fact that W = {z,, Y | m € Z>o} (see (3.2) and (3.3)).

Lemma 3.4. Assume that a;,as > 2. For m € Zx,

2o — P11 — pml\a %f m %s even, (3.9)
—PmA1 + pmr1Ne  if mois odd,

U\ = qmM1 — G112 if m is even, (3.9)
—@mi1 M1+ @ Ao i m is odd.

Proof. We give a proof only for (3.8); the proof for (3.9) is similar. We show (3.8) by induction on
m. If m =0 or m =1, then (3.8) is obvious. Assume that m > 1. If m is even, then

T A = 11(2A) = 11 (Dmr1A1 — Pm2) = =DM + (a2Dmt1 — Pm)Aa.

Since m is even, we have aopy,i1 — Pm = DPma2 Dy the definition (3.6). Therefore, we obtain
Tt A = —Pma1\1 + PmaoNo, as desired. If m is odd, then

$m+1>\ = Tz(xm/\) = Tz(—pmAl +pm+1A2) = (G1Pm+1 - pm)/\1 - pm+1/\2'

Since m is odd, we have a1p,+1 — Pm = Pma2 by the definition (3.7). Therefore, we obtain
Tt A = PmaoN1 — Pma1\s, as desired. O



3.3 Main Theorems and corollary.

Theorem 3.5 (will be proved in §3.4). For each b € B(\), there exist i1,...,4; € I such that
b= fi, -+ fyurorb=¢;, &, uy In particular, the crystal graph of B()) is connected.

The next corollary follows immediately from Theorem 3.5.

Corollary 3.6. For every p € P, the subset B(\),, of elements of weight p in B(A) is a finite set.
In particular, B(A)y = {up}.

Recall from the comment after (2.4) that u, is an extremal element of weight A.

Theorem 3.7 (will be proved in §3.5). (1) Let x,y € W. Then, S,uy = Syu, if and only if
TA = Y.
(2) If b € B(\) is extremal, then there exists w € W such that b = S, u,.

Theorem 3.8 (will be proved in §3.6). The crystal graph of B()\) is connected.

Theorem 3.9 (will be proved in §3.7). Assume that a;,as > 2. An LS path 7 of shape A is either
of the form (i) or (ii):

(1) (Timas—1 A, -« oy Tma1 A, TipX; 00, 01, ..., 05), wherem > 0,s > 1l,and 0 =0p <07 < - <o, =1
satisfy the condition that p,,1s_yoy, € Z for 1 <u <s—1.

(1) (Ym—st1A; -« s Um—1A, YmA; 00, 01, . . ., 0s), wherem > s—1,s > 1,and 0 =6y < §; < -+- < 0y =1
satisfy the condition that ¢, siy110, € Z for 1 <u <s— 1.

3.4 Proof of Theorem 3.5.

Lemma 3.10. Let i € [ and b € B()) be such that é;b # 0. If b is of the form : b = b @)\ @ u_o
with b1 7& Uoo then ézb = ézbl & t)\ X U_o-

Proof. Suppose, for a contradiction, that é;b = by ® t) ® é;u_. By (2.2) and Lemma 2.3, we see
that

(élb)* = b; & tf)\fwt(bl)fai (%9 éiu_oo. (310)

Notice that f;(€;6)* # 0 by the tensor product rule of crystals. Since &b € B()), it follows that
(&;b)* is an extremal element of weight —\. Hence we see that f;(&b)* = 0, which implies that
i = 2, and (E20)" = 0] @ t_x_wi(b1)—as @ E2U_o0. Since (E20)* is an extremal element of weight
—\, we see that é2(é2b)* = €151(€2b)* = 0 and é5(é2b)* = 0. By these equalities and the tensor
product rule of crystals, we have e1(b}) < £1((€20)*) = 1 and e5(b) < 2((€2b)*) = 0. Thus we get
€9(b}) = 0. Moreover, since by # us by assumption, we obtain (b)) = 1. Thus, bj is of the form
. bt = fib| for some ¥, € B(co) such that &b, = 0. Because &2(éxb)* = é.51(é:b)* = 0 as seen
above, we see by the tensor product rule of crystals that

Sl (é2b)* = él(éQb)* = éle & t—)\—wt(bl)—ag ® E2U_oo = bll ® t—)\—wt(bl)—ag ® é?“—oo;

note that f,51(¢;b)* # 0 by the tensor product rule of crystals. However, since S1(€gb)” is an
extremal element of weight —ry\, and since (—m A, o) = —as +1 < 0, we have fo(S1(é20)*) =0,
which is a contradiction. Thus we have proved the lemma. O
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The proof of the next lemma is similar to the proof of Lemma 3.10.

Lemma 3.11. Let i € I and b € B(A) be such that fib # 0. If b is of the form : b= Uy ® ty ® by
with b2 7é U_oo, then flb = Uso X t)\ X flbg

Proposition 3.12. It holds that B(A) C (B(00) ® ty ® t_oo) U (Ueo ® ty @ B(—00)).
Proof. By Lemmas 3.10 and 3.11, the subset
BA) N ((BA) @A ® u_oo) U (oo @ Ty ® B(N))) =: C

is a subcrystal of B(\). Therefore it suffices to show that every element b € B(\) is connected
to an element of C. Write b as b = by ® t\ ® by with b, € B(oo) and by € B(—00). It is known

that there exist 7,...,4; € I such that Nir:ax o [y = u_o. Then we see by the tensor product
rule of crystals that fi‘;lax e fi‘faxb = b @ty ® u_o for some b} € B(co), which implies that
fmax . fmaxp < ¢ Thus we have proved the proposition. O

i i1

Recall that —wt(b1) € Q4 = >_,c; Z>oe; for every by € B(oo); for a =3, kia; € Q4 we set
| + a| = Ziel k; € Zzo.

Proof of Theorem 3.5. By Proposition 3.12, b € B(\) is either of the following forms: b = b; ®t\ ®
U_oo for some by € B(00), or b = Uy ® ty ® by for some by € B(—o0). We show by induction on
lwt(by)| that if b € B()) is the form b = b; @ t) ® u_o for some by € B(co), then b= f;, --- f;, ux
for some iy,...,i, € I. If |wt(by)| = 0, then the assertion is obvious since by = u, and hence
b = uy. Assume that |[wt(b)| > 1. Since by # u, there exists i € I such that é;b; # 0; we see by
the tensor product rule of crystals that ;b # 0. Moreover, we deduce by Lemma 3.10 that

élb = éz<bl & t)\ ® U_)\) = ézbl ® t,\ & U_oo-

Since |wt(é;b1)| = k — 1, it follows by the induction hypothesis that there exist 41, ..., € I such
that €;b = fzk e f,»lu,\. Then we obtain b = f;ﬁk e filu,\.

Similarly, we show by induction on |wt(be)| that if b € B()) is the form b = ue ® £y ® by for
some by € B(—00), then b = é;,_---¢&;uy for some 4y,...,i; € I. Thus we have proved Theorem
3.5. [

3.5 Proof of Theorem 3.7.

First, we show part (1) of Theorem 3.7. The “only if ” part is obvious. To show the “if” part,
assume that 2\ = y\ for z,y € W. Then the weight of the element S,-15,u, is equal to z 7 'y\ = \.
Therefore, by Corollary 3.6, we obtain S,-1S,u) = uy, and hence S,uy = Syu,, as desired.

Next, we show part (2) of Theorem 3.7. Let b € B(\) be an extremal element. By Proposition
3.12, b is either of the following forms: b = by ® t) ® u_, for some by € B(00) or b = Uy @ty & by
for some by € B(—o0). We show by induction on |wt(by)| that if an extremal element b € B(\)
is of the form : b = b; ® t) ® u_o for some by € B(oo), then there exists w € W such that
b = Syuy. If |[wt(by)| = 0, then the assertion is obvious since by = us,, and hence b = u,. Assume
that |[wt(by)] > 0. There exists i € I such that é;b; # 0; notice that é;b # 0 by the tensor
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product rule of crystals. Since b is an extremal element by assumption, we see that ¢;(b) = 0 and
(wt(b), o)) = —&;(b) < —1; we set n := —(wt(b), ;) > 1. We deduce that

Sib=¢'"(b; @ty @ U_o) = & (&b @ty @ U_o) by Lemma 3.10
= (€'b1) @ty @ U_o by the tensor product rule of crystals.

Because S;b is also an extremal element in B(\), and |wt(el'by)| < |wt(by)], it follows from the
induction hypothesis that S;b = S,uy for some w € W. Thus we get b = S;S,ux = Sy,wUn.

Similarly, we can show by induction on |wt(by)| that if an extremal element b € B(\) is of the
form: b = uy ® ty ® by for some by € B(—00), then there exists w € W such that b = S,uy. Thus
we have proved Theorem 3.7.

3.6 Proof of Theorem 3.8.

If a; = 1 or ag = 1, then B(\) is connected by Remark 3.3 and (2.1). So, we assume that a;, as > 2.
In order to prove Theorem 3.8 in this case, we need some lemmas.

Lemma 3.13. Let m € Z>q, and 5 € Af.

(1) Assume that m is even. Then, (z,A, 8Y) € Zo if and only if 8 = zjay or y;41; for some
l S ZevenZO'

(2) Assume that m is odd. Then, (x,,A, 8Y) € Z.o if and only if 5 = y,0q or x4 s for some
l € Zeven>0-

Proof. We give a proof only for part (1); the proof for part (2) is similar. First we show the “if” part
of part (1). Let | € Zeyenso- We have (x,,\, zja5) = (2, 2\, o). Here, if m > 1 (resp., m < 1),
then z; 'z, is equal to z,,_; (resp., yi_,). Therefore, by (3.8), we have (v, \, z103) = —ppm_; € Zg
(resp., = —qi—m+1 € Z<p). Similarly, we can show that (z,,\, y110) < 0.

Next, we show that the “only if ” part of part (1); by (3.4), it suffices to show that if g =
Ti10 or Yo for 1 € Zeyen>o, then (z, A, 5Y) > 0. We have (z,\, z14105) = <a:ljr11:1:m)\,a¥> =
(T, ag). By (3.8), we have (z,\, z13105) = pmaire > 0. Similarly, we can show that
(xmA, yiay) > 0. This completes the proof of the lemma. O

The next lemma can be shown in exactly the same way as Lemma 3.13.

Lemma 3.14. Let m € Z>o and 8 € AL.

(1) Assume that m is even. Then, (y,\, 8Y) € Z.o if and only if 8 = xjas or y; 11y for some
l S ZevenZO'

(2) Assume that m is odd. Then, (y,\, BY) € Zo if and only if 8 = y,aq or z;,19 for some
l € Zeven>0-

Lemma 3.15. (1) For m € Z>,, we have z,A > ,,,_1 A with dist(z,,\, 21 A) = 1. And riz,\ =
Tm—_1\, where ¢ = 2 if m is even, and ¢ = 1 if m is odd.

(2) For m € Z>1, we have y,,_1A > ypu A with dist(ym—1A, ymA) = 1. And 7y A = ym_1A, where
1 =1 if m is even, and i = 2 if m is odd.

Proof. We give a proof only for part (1); the proof for part (2) is similar. We see from Lemma 3.13
that (z,,\, ) < 0. Therefore, we obtain that z,,A > 7,2, A = 1 \. Since (x,, 1A, ) > 0, we
see by [L2, Lemma 4.1] that dist(r;z,\, £ 1 A) = dist(x,, A, 2,1 A)—1. Since dist(r;z, A, £y, 1A) =
dist(@m—1A, Tm-1A) = 0, we obtain dist(z,, A, T,m-1A) = 1, as desired. O
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Proposition 3.16. The Hasse diagram of WA is
. (ﬂ 1’2)\ & Il/\ (2 Jio)\:)\:yo)\ (2 yl/\ & yQ)\ (ﬂ

Proof. Let p,v € WA be such that g > v with dist(u,v) = 1, and let 8§ € Af, be the (unique)
positive real root such that v = rgu; by Lemma 3.15, it suffices to show that 8 = a3 or as. By
Lemma 3.13, if 4 = z,,A and m is even, then § = xjay or Y1104 for some | € Zeyen>o. Assume
that 8 = xay for some | € Zeyen>o; note that rz = (7’27“1)%7“2(7’17’2)%. We see from Lemma 3.15
that there exist a directed path

= Ty PERRIRD QPR &mu:u

of length 20 4+ 1 from p to v in the Hasse diagram of W A. Because dist(u, ) = 1 by assumption,
we obtain | = 0, and hence 5 = ay. Assume that f = y;101 for some | € Zeyen>o; note
that 7’2(7"17“2)%7‘1 (7‘27"1)%7"2. By the same reasoning as above, there exists a direct path of length
2043 > 1 from p to v in the Hasse diagram of W A. However, this contradicts the assumption that
dist(u, v) = 1. Similarly, we can show that if 4 = 2, A and m is odd, then 5 = ;. Also, we can
show the assertion for the case that u = y,,\ in exactly the same way as above. This completes
the proof of the proposition. O

Lemma 3.17. For any rational number 0 < ¢ < 1 and any u,v € WA such that g > v, there
does not exist a o-chain g = pg > -+ > u, = v for (u,v) such that px = A for some 0 < k < r.

Proof. Suppose that pp = A for some 0 < k < r. Note that »r > 1 since p > v. If k < r
(resp., k > 0), then it follows from Proposition 3.16 that ug.; = roA (resp., pr—1 = mA) since
dist(ug, pgr1) = 1 (resp., dist(pug_1, pr;) = 1) by the assumption of the o-chain. Thus, we obtain

o= —o(\ay) € Z (resp., 0 = o(\, ) € Z), which contradicts the assumption 0 < ¢ < 1. If
k=0ork=r,itis clear that 0 = —o(\, ) € Z or 0 = —o(riA\, o) € Z by Proposition 3.16.
This also contradicts the assumption. Thus, the lemma has been proved. O

The next proposition follows immediately from Lemma 3.17 and the definition of LS paths.

Proposition 3.18. Let 7 = (14, ..., vs; 0¢, ..., 05) € B(A). If v, = A for some 1 < u < s,
then s =1and 7= (\; 0, 1).

Proof of Theorem 3.8. We show that every m € B(\) is connected to (A; 0,1) € B()) in the crystal
graph of B(\). Assume first that «(7) = x,, A for some m € Zsy. We show by induction on m that
7 is connected to (A; 0, 1). If m = 0, then the assertion follows immediately from Proposition
3.18. Assume that m > 0. Define

, 2 (if m is even),
Q=
1 (if m is odd);

note that (r,,A\, o)) < 0 and rx, A = @1 A (see Lemma 3.15). By Lemma 2.12, ((e"*7) =

7 is connected to (A ; 0, 1), and hence

Smax

rit(m) = rigm A = ;1A By the induction hypothesis, é}
SO is .

Assume next that ¢(7) = y, A for some m € Zsg. Since r(7) < () by the definition of an LS
path, we see by Proposition 3.16 that x(m) = yxA for some k > m. Hence it suffices to show that
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if 7 € B(\) satisfies that x(7m) = ygA for some k € Zs, then 7 is connected to (A; 0, 1). If k =0,
then the assertion follows immediately from Proposition 3.18. Assume that & > 0. Define

. )1 (if k is even),
I 2 (if k is odd);

note that (ygA, oz}/> > 0 and 7y A = yp—1A. By Lemma 2.12, /i(fjmaxw) = 1;K(T) = TjYpA = Yp—1 .
By the induction hypothesis, f;“axw is connected to (A ; 0, 1), and hence so is m. Thus, we have
proved Theorem 3.8. O

3.7 Proof of Theorem 3.9.

Throughout this subsection, we assume that a;,as # 1 in (3.1). Recall that the sequences
{PmYmez~, and {Gm}mez., are defined in (3.6) and (3.7), respectively.

Lemma 3.19. For each £ > 0, the numbers p; and pg.1 are relatively prime. Also, the numbers
qr and g, are relatively prime.

Proof. We give a proof only for p; and px.1; the proof for g and ¢x; is similar. Suppose that the
assertion is false, and let m be the minimum k£ > 0 such that p; and py,, have a common divisor
greater than 1. Let d € Z-; be a common divisor of p,, and p,,,1. Since

Pmt1 = Q2Dm — Pm—1  (if m is even),
P4l = @1Pm — Pm—1  (if m is odd),

we can deduce that p,, and p,,_; have the same common divisor d, which contradicts the minimality
of m. Thus, we have proved the lemma. O

Lemma 3.20. Let 0 < 0 < 1 be a rational number, and let pu,v € WA be such that g > v. If
o= fo > g > -+ > puy = v is a o-chain for (u,v), then t = 1.

Proof. Suppose that ¢t > 2. Assume first that py = z,,\; by Lemma 3.17, we have m > 3. Since
dist(pg, 1) = dist(p1, o) = 1 by the definition of a o-chain, we see by Proposition 3.16 that
p1 = Tm—1A and pig = x,_oA. Take i,j € {1,2} such that 4 = 7 and po = rjpy. Then, by
Lemma 3.4,

(10,0Y) = @\ @) = =Py {1,05) = (En1X, ) = P,

Since —p,, and —p,,_; are relatively prime (see Lemma 3.19), there does not exist a 0 < o < 1
satisfying the condition that both —op,, and —op,,_1 are integers. This contradicts our assumption
that g = po > pg > -+ > py = v is a o-chain for (u,v). Similarly, we can get a contradiction also
in the case of jiyp = y,, A for some m € Z>,. Thus, we have proved Lemma 3.20. O

Proof of Theorem 3.9. Let m = (v1,...,Vs;00,...,05) € B(A). Assume first that v, = z,A for
some m > 0. Since vy > vy > -+ > v, = x,\ by the definition of an LS path, we see by
Proposition 3.16 that

VI = Ty A, Vo = Thy\, <.y Vs1 = Th, ;A
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for some ky > ky > -+ > ky_ 1 > m. Here we recall that there exists a o5_1-chain for (vs_1,v5) =
(Tg,_ A, i A) by the definition of an LS path. By Lemma 3.20, we see that the length of this o, ;-
chain is equal to 1, which implies that dist(v,_1, vs) = dist(zg, 1\, z,\) = 1. Hence it follows from
Proposition 3.16 that ks_1 = m + 1. Take ¢ € I such that x,,A = r;x,,.1A. Then, by the definition
of a o,_1-chain, we have o5 1(Tp1\, @) € Z. Since (X, 11\, ) = —pma1 by (3.8), we obtain
Pm+10s—1 € Z. By repeating this argument, we deduce that k, = m + s —u and p,,1s_0, € Z for
every 1 <u < s— 1. Hence, 7 is of the form (i).

Assume next that 7 = (v1,...,05d0,...,0s) € B(\) and vg = y,, A for some m > 0. Suppose
that (s > 2 and) there exists 1 < u < s — 1 such that v,; = yxA for some k > 0, but v, = ;A for
some [ > 0. By the definition of an LS path, there exists a d,-chain for (v, vy41) (1 <u <s—1).
Then, by Lemma 3.20, the length of this ,-chain is equal to 1, which implies that dist(r, Vyi1) =
dist(z;\, yxA) = 1. By the Hasse diagram in Proposition 3.16, we see that (I,k) = (1,0) or (0,1)
Since xgA = yoA = A, it follows form Proposition 3.18 that s = 1, which contradicts s > 2.
Therefore, we conclude that

Vlzykl)\7 V2:yk2>\7 ey Vs:yks)\:ym)\7

where 0 < k1 < ky < -+ < ks_1 < ks = m. By the same argument as above, we deduce that
k, =m —s+u and ¢p_siur10, € Z. Hence, 7 is of the form (ii). This completes the proof of
Theorem 3.9. O

Appendices

A Explicit description of the root operators.

As an application of Theorem 3.9, we give an explicit description of the root operators ¢; and f;
for i = 1,2. First, let 7 € B(\) be of the form (i) in Theorem 3.9. We set

m+s—1
0151) = Z (O—m+sfk - O—ersfkfl)(_l)kkarﬁka

k=m+s—u
m-+4s—1

0752) = Z (0m+8—k - O'm+5—k—1>(_1)k+1pk+§k+1a

k=m+s—u
where {pm fmez., is defined as (3.6), and for k € Zxy,

£ = 1 if k is even,
T )0 if ks odd.

Then,
Wt(ﬂ') = Cgl)Al + CS(Q)AQ

Note that £(z, A\, ;) > 0 if and only if F(x, 1A, ) > 0 for each u € Zs¢. Thus we see (cf.
(2.5)) that
m? = min{C" | 0 < u < s}.
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Let us give an explicit description of fyr. We set

Uy = max{0 <u < s|CY =ml};

if ug = s, then f;m = 0. Assume that 0 < ug < s — 1; we see that ou, 18 equal to tg in (2.9). By

fact (2.10), we deduce that ¢; in (2.9) is equal to

1 o
Ouy + iti =1,
, pm+5_u0_1+§m+57u071
Oyy =
1 o
Oy + if 1 =2,
pm+3_uo—1+§m+37u0
. . p ) . e _
which satisfies o,, < 0, < 0y4,11; notice that if o, = 0yeq1, then ug = s — 1, and hence
ro_
0y, = 0s = 1. We have
. / : _ /
(Tints Ay Tmgs—1 A, -« oy TinA; 00, 0, 1,y -+« O) if ug = 0 and o, < 041,
7 (rizmA;0,1) if up = 0 and 0, = Tyy41, (A1)
T = .
¢ . / : /
(Tmgs—1 Ay oo, Tm A 00, -+, Oug—1, Oy Tugt1s - - -5 0s)  if ug > 1 and oy, < 011,
) : ro_
(Tonas—1 Ay -+ o s T 1A, 00, « -, Os_2,05) if up > 1 and o}, = 0yg41-

Similarly, we give an explicit description of é;7 as follows. We set

uy =min{0 < u <s|CY =mr};

(2

if u; = 0, then ;7 = 0. Assume that 1 < u; < s; we see that o, is equal to ¢; in (2.7). By fact

(2.8), we deduce that t; in (2.7) is equal to

1 o
Ouy — iti=1,
pm+5—ul+£m+57u1
1 .
Ouy — iti =2,
pm+S*U1+£m+s—u1+1

. . , ‘ . e _ ;o
which satisfies o, 1 < 07, < 0y,; notice that if o, = 0y, 1, then vy = 1 and hence o}, = g9 = 0.

We have
. / : _ /
(Tonas— 1A, -+ o s T\, T 1A 00, « + ., Os_1, 0%, 0) if uy = s and 0,1 < 0y,
. (rizmA;0,1) if u; = s and 0,1 = 0y, ,
e =
. / 3 /
(Tmgs—1As oo s Tm A 005 o, Ouy—1, 0 Oug s - -5 0s)  ifuy <s =1, 041 <oy, ,
. : _
(Tmts—2A, ..oy T A; 00,09, ..., 0s) if uy <s—1,04-1=o0,,

where we understand x_1 A = y1 A.

Example A.1. Assume that

1 2
™= (7“27"17’27”1/\7 T2, T2 A 0, —, —, 1) € B(/\)v
P4 P3
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which is an element of the form in Theorem 3.9 (i) with m = 2 and s = 3. Let us compute f;r for
i = 1,2, using formula (A.1). If i = 1, then we have ug = 2,0, = p% if a; =2 and up = 0,0, = p%
if a; > 3; note that p% = 1if b = 3. Thus,

( 1
(T27’17’2T1)\, T17’27’1)\; 0, —, 1) lf a; = 2, A9 = 3,
P4
. 3 .
f17'(' = <T27’1T2T1)\,7”17’27’1)\,7’27”1)\; 0,—,—,1) if a; = 2,@2 > 3,
Ps P3
1 1 2 .
(7“17"27’17”27"1)\, TariTari A, T1reT 1A, 1ar A 0, —, —, —, 1) if ay > 3;
\ Ps P4 P3
remark that if a; = 2, then ap > 3. If i = 2, then we have uo = 1,0, = p%. Thus,
~ 2
f27T = (7’27’17”27’1)\, 7’17’27”1)\, T’QTl)\; O, —, 1)
Ps D3

Next, let 7 € B(A) be of the form (ii) in Theorem 3.9. By a similar argument to above, we
have the following explicit descriptions of f;7 and é;7. We set

m—s+v

Dz(;l) = Z (5k—m+s - 5k—m+s—1)(_1)k%+fk+1’
k=m—s+1

m—s+v

DR i= > (Okemts = Ohemrat (=) qrse,,
k=m—s+1

where {¢n }mez., is define as (3.7). Then
Wt(ﬂ') = Dgl)Al + D§2)A2

We have
m? =min{D{ | 0 < v < s}.

Let us give an explicit description of fm. We set
vo :=max{0 < v < s | DY =m};

if vy = s, then ﬁ'ﬂ = 0. Assume that 0 < vy < s—1. we set

1
8oy + ifi=1,
, pm_5+vo+1+€m—s+v0+2
5 = 1
8y, + if i =2.
pm_5+vo+1+§mfs+v0+1
We have
(ym—s)\a ym—s—i-l)\a cee 7ym)\7 50a 5(,)7 517 s 755) if Vo = 0 and 61/;0 < 5U0+17
f (riymA; 0, 1) if v = 0 and d;,, = dyyt1, (A.3)
T = .
' (Ymest1 A - <3 YA G0y - -+ s g1 Ol s a1 - - -5 ) if vo > 1 and 0 < o1,
(ym75+1)\, ce ,ymfl)\; 50, . ,(5572, (55) if Vo > 1 and (5;0 = 5v0+1-
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where we understand y_1\ = z1\.
Similarly, we give an explicit description of é;7 as follows. We set

vy :=min{0 <v <s|DY =mr};

)

if v =0, then ;7 = 0. Assume that 1 < v; < s. We set

Oy — ! if i =1,
5 Om—s+v14+E€m—stv; +1
h 8y, — L if i = 2.
Am—s+v1+Em—stuv,
We have
(Ym—st1 s -« o s UmAs Y1 A; 00y -« 5 051, 0%, Js) if vy = s and §,,_1 <0
riYmA\; 0, 1 if v; = s and 9,
= Eyj_sﬂx, ) YA 00,y B 1, 8 By Os) i ui <s—1, 5U1_11 < (A-4)
(Ym—st2A, -« s YmA; 00, 02, « . ., Os) if v; <51, 61 = 0y,
B Realization of B(0).
Here we recall a realization of B(oco) from [K1, §2.2] and [NZ, §2.4]. We set
7 :=A{(..., k..., x0,21) | 7 € Z and xy = 0 for k> 0};
Also, we fix an infinite sequence of ¢ = (..., i, ..., 42,41) of elements of I such that
i 7# i1 for any k> 1, and #{k | iy = i} = oo for each i € I.
The crystal structure on Z> corresponding to ¢ is defined as follows. Let Z = (..., zk,..., %2, 71) €

Z>=. For k > 1, we set

op(T) = 21 + Z(o%., o )y

>k

since z; = 0 for j > 0, we see that o, (7) is well-defined, and o4 (Z) = 0 for £ > 0. For i € I, set

o(Z) := max{ow(Z) | k > 1,i =14}, and

MY = MO(Z) = {k > 1| iy = i,04(7) = 0P (2)}.

Observe that ¢ (%) > 0, and that M@ = M®(Z) is a finite set if and only if ¢ (%) > 0. Now we

define maps &; : Z>° — Z>* U {0} and f; : Z>° — Z> by

fi@) = (. 2y, .., 2h, 7)), with @ = 2 + 0p innso;
o G, @y, @), with 2 i= 2k — Op e
&(T) = 0
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Also, we define the weight map wt : Z*° — P and ¢;, ¢; : Z*° — Z by

(@) :== o (), 0:i(T) == (wt(T), ) + &;(Z).

Theorem B.1 ([K1, §2.2] and [NZ, §2.4]). The set Z>, together with the maps above, becomes
a crystal; we denote this crystal by Z>. Moreover, the connected component of Z> containing
(...,0,...,0,0) is isomorphic, as a crystal, to B(o0).
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