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Abstract

In this thesis, we study two cases of interior transmission eigenvalue problem on two com-
pact Riemannian manifolds with common smooth boundary. In particular, we focus on the
distribution of the corresponding interior transmission eigenvalues.

First case is a locally anisotropic interior transmission eigenvalue problem. Our first result
is the discreteness of the set of the corresponding eigenvalues. Moreover, we also give the
eigenvalue free region. In order to prove this, we employ the so-called T-coercive method.

Second case is a locally isotropic interior transmission eigenvalue problem. Our second
main result is the set of the corresponding eigenvalues forms a discrete set and the existence of
infinitely many this eigenvalues. We also mention its Weyl type lower bound.

Our results in this thesis appear in [26] and [22].
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Notation

In this thesis, we use the following basic symbols:

Z-o : the set of positive integers
Z-, : the set of non-negative integers
R : the set of real numbers
R., : the set of positive real numbers
R-y : the set of non-negative real numbers
R? : d-dimensional Euclidean space
[a,b] : closed interval {z € R |a <z < b}
(a,b) : openinterval {z € R|a <z < b}
C . the set of complex numbers
C? . d-dimensional complex space
Rez : the real part of z € C
Imz : the imaginary part of z € C
Z : the complex conjugate of z € C
(-,-) : an inner product on C¢

|-| : the norm on C? denoted by |z] = /(z, z) for z € C4

Let © be a domain, i.e., an open connected subset of R%. We consider the space of Lebesgue
measurable functions u on €2 such that

||| Loy = Inf{C > 0 | |u(z)| < C ae., z € Q} < oc0.

This space is denoted by L>(Q2) and || - ||L=(q) is called L>°(§2)-norm. The space L>() is a
Banach space with the norm || - || z=(q). We denote by (L*°(£2))?*¢ the space of d x d-matrix
valued functions with L>(€2) entries. We also consider the space of Lebesgue measurable

functions w on €2 such that
1/2
lullz2) = {/ IU(CU)Ide} < .
Q

This space is denoted by L?(Q) and || - ||12(q) is called L*(Q)-norm. The space L*(M) is a
Hilbert space with the L?(Q)-inner product

(u,v) 2(0) —/ﬂu(x)@dm for u,v € L*(Q).

A d-dimensional vector a = (a, ..., aq) with non-negative integer coordinates is called a
multi-inder. Put |a| = oy + -+ + ag. For 0; = 9/0z; (i = 1,...,d), we write 9% = 07" - - - 05".
Let Q be the closure of 2. We denote by C(2) and C(Q) the space of continuous functions on
Q and Q, respectively. For any non-negative integer k, let C*(2) be the space of functions u
which, together with all their partial derivatives 0“u of orders |o| < k, are continuous on €.
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Let C*(Q) be the space of functions u € C*(2) which, _together with all their partial derivatives
0% of orders |a| < k, have continuous extensions to 2. We denote

() = C(Q), ﬂck . C'(Q) =c@), :ﬂck

We denote the C*(Q)-norm || - lcr @) by

[ull o @y = max max [0%u(z)|  for u € CF(Q).
la[<k zeQ

For any non-negative integer k, if € is bounded, the space C*(Q) is a Banach space with the
norm || - ||ck(§)-

For u € C°(Q), a closure of the set {z € Q | u(z) # 0} in Q is called a support of u. We
denote the support of u by suppu. Let C§°(£2) be a set of functions u € C*(2) such that
supp u is a compact subset of (2.

Now, we define a convergence in the space C§°(£2). A sequence ¢, € C§°(§2) converges to
© € C§°(9) if there exists a compact set K C Q such that

supppn, C K and  [[pn — ¢llor@ — 0 as n— o0

for all k € Z>. We denote by D(Q) the linear space C$°(Q) with such convergence.

A linear functional u on D(Q2) is called a distribution on € if the convergence p,, — ¢ in
D(Q2) implies that (u, p,) — (u, p). We denote the space of distributions by D’(€2).

The derivative D%u of u € D’ (Q) is also a distribution on €2 and defined by

(0%u, p) = (=1)1*N(u, 9%p)  for all ¢ € D(Q).

Let © be a bounded domain of R?. For any non-negative integer m, the Sobolev space
H™(Q) is the space of u € D'(Q) such that D*u € L*(Q) for |a| < m with the H™()-norm

1/2

lullamey = 4 > 107ullF2q) for -m >1, lullzo) = llull 2

|| <m

Let s = m+ o, where m is a non-negative integer and 0 < o < 1. The Sobolev space H*((2)
is the space of functions u € H™(Q2) such that

1/2

_ 0ule) —orulw)
Ho(Q) = ||u||Hm(Q + Z FaG xdy < 00.
QxQ ‘.’E o ‘

laf=m

[[ul

The Sobolev space H*(§2) (s > 0) is a Hilbert space with the H*(2)-norm || - || gs(q)-
For any positive integer m, let Hi*(£2) denote the completion of C§°(€2) by || - || amq)-
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Chapter 1

Non-scattering energy and interior
transmission eigenvalue

In this thesis, we study the interior transmission eigenvalue problem (the ITE problem for short)
on two compact Riemannian manifolds with common smooth boundary. The ITE problem
arises from scattering theory, in particular, from non-scattering phenomena (see e.g., Vesalainen
[31], [32] for quantum and acoustic scattering).

In this chapter, let us recall some basic notions of scattering theory and non-scattering
phenomena in Euclidean space. We also state the I'TE problem on a compact subset of the Eu-
clidean space. Moreover, we introduce some preceding studies corresponding to the distribution
of the eigenvalues for the ITE problem.

We now consider the case of time-harmonic acoustic scattering problem on d-dimensional
Euclidean space R? for d > 2 with compactly supported penetrable inhomogeneous medium.
We assume that there exists a bounded domain D C R? with smooth boundary dD such that
the support of the penetrable inhomogeneous medium is given by D. We denote by v the
outward normal vector to the boundary 0D and by I; the d x d identity matrix. We introduce
two functions in R represented by a d x d matrix valued function A with bounded entries
such that A(x) = I outside D and by a bounded scalar valued function n such that n(z) =1
outside D.

We deal with a stationary acoustic total wave u satisfying the perturbed Helmholtz equation

(=V-AV —k’n)u=0 in R? (1.1)

where k£ > 0 is the wave number, V- and V are the divergence operator and gradient operator
on RY, respectively. In addition, we assume that u satisfies

(Wt =), @u=(0,u)” on ID.
Here, for a generic function ¢ on R¢, we denote

() () := lim ¢(z + hv(x)), h >0, v €0D

h—0

and
Oy, ¢ = (AVo,v), 0,¢:= 8yldgb.
Then we consider that a solution to (1.1) is written in the form

u=u"+u’.



Here, v’ is an incident wave satisfying the free Helmholtz equation
(~A—K)u'=0 in R? (1.2)

and u® is the corresponding scattered wave satisfying

lim 72 (8; - ikus) =0 (1.3)

r—00 T

where (1.3) is assumed to hold uniformly in & = z/|z|. Here, A is the Laplacian on R¢ and
r=lz| = (2?+ -+ 2)Y2 for x = (71,...,24) € R% The condition (1.3) is called the
Sommerfeld radiation condition which guarantees that the scattered wave is outgoing. Now
let u' = u’(z) be a plane wave @) with an incident direction w in the (d — 1)-dimensional
sphere S9! = {z € R? | || = 1} and a fixed positive wave number k (or a fixed positive
energy k?). Using (1.1), (1.2) and the definition of the functions A and n, we can easily show
that the corresponding scattered wave u® satisfies the Helmholtz equation

(-A—kHu*=0 in R*\D.

Such a solution u® satisfying the Sommerfeld radiation condition (1.3) has the asymptotic
behavior of an outgoing spherical wave

u(x) = C(k)—=alk;w,z) 4+ o (%) as r — 00

r2

ra

for some positive constant C'(k) depending on k (see e.g., [11] Theorem 2.6). Here, & is the
scattered direction of u* and the function a(k;w, ) is called the scattering amplitude. Let F'(k)
be the integral operator on the space of square integrable functions on S9! with the integral
kernel a(k;w, %), more precisely

(F(k)o)(@) = / alkiw. 2)0(e)ds"

where ¢ is a square integrable function on S%~! and the symbol dS?~! denotes the surface
element on S9! Then the S-matrix is given by S(k) = 1 — 2miF'(k). If one is an eigenvalue of
S(l{:) for k > 0, then k is called a non-scattering wave number (or k? is called a non-scattering
energy). We denote the set of all non-scattering wave numbers by oyn. For k € oy, the
scattering amplitude of the corresponding scattered wave u® = u*(k; z) vanishes. Then u® also
vanishes outside D from the Rellich type uniqueness theorem (see e.g., [24], [30]). Hence, if
k is a non-scattering wave number, there exists a non-trivial solution of the boundary value
problem for a system of Helmholtz equations for u* and u of the form

(~A—E)u'=0 in R% (1.4)
(-V-AV - E’n)u=0 in D; (1.5)
u'—u=0 on OD; (1.6)

ou' —0,,u=0 on ID. (1.7)

Conversely, we suppose that (1.4)—(1.7) depending on a positive constant k& has a non-trivial
solution. Putting u = u’ outside D, we can extend u as a solution of (1.1). Letting u® = u —u’,
we can show that the scattering amplitude corresponding to u*® identically vanishes. Hence, k
is also a non-scattering wave number. Therefore, k is a non-scattering wave number if and only
if there exists a nontrivial solution of the boundary value problem (1.4)—(1.7).

4



In order to study the spectral properties of non-scattering wave numbers, we consider the
boundary value problem for a system of Helmholtz equations for unknown functions v and w
of the form

(-A—kKHv =0 in D; (1.8)
(-V-AV —k’n)w=0 in D; (1.9)
v—w=0 on OJD; (1.10)
0,v—0,,w=0 on OD. (1.11)

The above boundary value problem is called the interior transmission eigenvalue problem (the
ITE problem for short). If there exists a non-trivial solution of the ITE problem (1.8)-(1.11)
for some k € C, we call such a complex number k an interior transmission eigenvalue (an ITE
for short). We denote the set of all ITEs by o;. We note that the ITE problem (1.8)—(1.11) is
an eigenvalue problem for a non-selfadjoint operator. Therefore, ITEs do not necessarily belong
to R. Also note that from the definition of on and o7, the inclusion relation oy C o7 holds.

We are interested in detailed properties of non-scattering wave numbers. However, it is
difficult to directly deal with the S-matrix having a one eigenvalue or the boundary value
problem (1.4)—(1.7). Currently, there are only a few results in some special case as follows.

Case.1l. Spherically symmetric media. The ITE problem was first studied by Colton
and Monk [12]. In particular, they dealt with the ITE problem on the unit ball. Let B =
{x € R%| |z] < 1} and np be a smooth function on [0, 00) such that ng(r) # 1 on [0,1) and
np(r) = 1on [1,00). They considered the ITE problem on B with A(x) = I; and n(z) = np(r)
of the form

(-A—kHv=0 in B; (1.12)
(=A = k*np(r)w=0 in B; (1.13)
v—w=0 on S (1.14)

ov  ow d—1
a or 0 on S“. (1.15)

In this case, Colton and Monk proved that the relation o = o7 holds. Indeed, we assume that
k is an ITE for the ITE problem (1.12)—(1.15). Let a pair of functions (v, w) be a solution of the
ITE problem (1.12)—(1.15) with k& € o;. Using the spherically harmonics and the spherically
Bessel functions, we can show that the function v = v(k) can be extended outside B as a
solution of (1.4). Hence, we can reduce the ITE problem (1.12)—(1.15) to the boundary value
problem (1.4)—(1.7) with A(z) = I, n(z) = ng(r) and D = B. Therefore, we can conclude
that £ is a non-scattering wave number.

Case.2. Corner scatterer. Blasten, Péivirinta and Sylvester [2] dealt with the ITE
problem on a rectangle. Let R be a d-dimensional rectangle, x be a characteristic function of
R and ¢ be a smooth function on R? such that ¢ # 0 on a corner of R. We put ng = xr¢ + 1.
They considered the ITE problem on R with A(x) = I; and n = ng of the form

(-A—-kHv=0 in R; (1.16)
(-A —k*ng)w=0 in R; (1.17)
v—w=0 on OR, (1.18)
v—0,w=0 on OR. (1.19)

In this case, Blasten, Pédivéarinta and Sylvester proved that o; \ on # ) holds.
From the above, we understand that I'TEs relate to non-scattering wave numbers. Hence,
as the first step, we will focus on the distribution of ITEs.






Chapter 2

Distribution of interior transmission
eigenvalues

The two functions A and n is appeared in the ITE problem (1.8)—(1.11). Now we study the
two particular cases of ITE problems as follows.

Definition 2.0.1. If A is identically equal to I; (resp. is not identically equal to I;), the
boundary value problem (1.8)—(1.11) is called the ITE problem for isotropic media (resp. is
called the ITE problem for anisotropic media).

The purpose of the following section is to provide a survey of the preceding studies of these
ITE problems which employs different type of mathematical techniques.

2.1 The interior transmission eigenvalue problem for
isotropic media

We consider the ITE problem for isotropic media, more precisely we find (v, w) € L*(D)x L*(D)
such that v — w € HZ(D) satisfying

(A -k =0 in D; (2.1)
(-A - k*n)w=0 in D; (2.2)
v—w=0 on J0D; (2.3)
o,v—0,w=0 on O0D. (2.4)

In this section, if there exists a non-trivial solution (v,w) € L*(D) x L*(D) of the ITE problem
(2.1)-(2.4) satisfying v —w € HZ(D) for some k € C, we call such a complex number % an ITE.

For the particular case of a spherically stratified medium, the following result of the distri-
bution of ITEs is well-known (see e.g., Theorem 3.1 in [9]).

Theorem 2.1.2. Assume that ng € C*([0,1]), Im (ng(r)) = 0 and either ng(1) # 1 or

np(l) =1 and fol Vng(p)dp # 1. Then there exists an infinite discrete set of transmission for
the ITE problem (1.12)—~(1.15). Furthermore the set of all transmission eigenvalues is discrete.

The existence of ITEs for non-spherically stratified media remained open problem until
Sylvester and Péivarinta [23]. They proved the existence of at least one ITEs. Since [23], the
existence of ITEs for general case has been widely studied. The existence of infinitely many
ITEs for non-spherically stratified media was proven in [7] under certain assumptions on n as
follows.



Theorem 2.1.3 (Cakoni-Gintides-Haddar [7], Theorem 2.5). Let n € L*>°(D) satisfy either one
of the following assumptions :

(1) 1+ a<infp(n) <n(z) <supp(n) <oco x €D
(2) 0 <infp(n) <n(x) <supp(n)<1—p x€D

for some constant o, 3 > 0. Then there exists an infinite discrete set of real ITEs with only
possible accumulation point at 4+00.

To prove this, they used the variational form method. We assume that Im (n) = 0 and that
n — 1 does not change sign and is bounded away from zero inside D. Put A := k%. Then we
rewrite the ITE problem (2.1)-(2.4) as a forth order equation of the form

(A4 An) (A+Nu=0 for u=w—wv€ HD) (2.5)

n—1

which in variational form, after integration by parts, is formulated as finding a function u €
HZ(D) such that

n —

1
/D . (A 4+ Nu(A+ An)ode =0 for all v € H3(D). (2.6)

Using the Riesz representation theorem, we define the bounded linear self-adjoint operators
A(N\) : H3(D) — HZ(D) and B : H3(D) — HZ(D) by

(AN)u, U)H?(D) = / !

pn—

A+ Nu(A + Node + 22 | uvdx
1(

D

and
(Bu,v) :/(Vu, Vo)dx
D

for all u,v € HZ(D), respectively. Summarizing the above argument, we obtain that & is an
ITE if and only if the kernel of the operator A(\) — AB has non-trivial kernel. In [7], to prove
the existence of an infinite countable set of ITEs, Cakoni, Gintides and Haddar dealt with the
generalized min-max principle for the operators A(\) and B (see e.g. [8], [7]). This argument
does not necessarily need the regularity of the function n. Hence, it is sufficient to assume that
n is in L®(D). These method is called the variational method.

In Theorem 2.1.3, n — 1 is either positive or negative and bounded away form zero inside
D. However, Sylvester [28] proved the discreteness of ITEs under more relaxed assumptions on
n such that n — 1 or 1 — n is positive only in a neighborhood of 0D as follows.

Theorem 2.1.4 (Sylvester [28], Theorem 1.2). Assume that there exist constants 6 € (—mw/2,7/2)
and ny,n* € R with 1 < n, <n* such that

(1) Re (e?(n(z) — 1)) > n. — 1 in some neighborhood of D, or that n(z) is real valued in
all of D, and satisfies n(x) < 2 — n, in some neighborhood of 0D;

(2) |n(x) — 1| <n*—11in all of D;
(3) Re(n(x)) > d > 0in all of D.

Then there ezists a (possibly empty) discrete set of ITEs.
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On the other hand, Lakshtanov and Vainberg [21] proved that there exists an infinite set of
ITEs under assumptions on n only on 0D, more precisely

n(z)—1#0 for ze€dD, (2.7)

or
n(x)—1=0, Jn(x)#0 for z€dID. (2.8)
They also proved a result on the Weyl type lower bound on counting function of ITEs as follows.

Theorem 2.1.5 (Lakshtanov-Vainberg [21], Theorem 1.3 and Theorem 1.4). We assume that
n is real valued in all of D. Let one of the conditions (2.7) or (2.8) holds. There exists a discrete
set of ITEs with only possible accumulation point at infinity. Moreover, the set of positive ITEs
18 infinite and these counting function Nt has the following lower estimate

Np(A) > CAXY2 £ OAN D) g5 N — 0.
Here A\ = k?* and C depend only on n and D.

They characterized an ITE by the Dirichlet-to-Neumann operators for the equations (2.1)
and (2.2) and analyzed these operators by using pseudo-differential calculus. These method
called the Dirichlet-to-Neumann map method. More precisely, we introduce this Dirichlet-to-
Neumann map method in Part IV. We extend this method to the case of ITE problem on
compact manifolds corresponding to the I'TE problem for isotropic media.

2.2 The interior transmission eigenvalue problem for
anisotropic media

In this section, we discuss the ITE problem for anisotropic media, i.e., the ITE problem (1.8)—
(1.11) with A(z) # I;. In the case n(z) = 1, letting N(z) = A(z)™!, we can rewrite the ITE
problem (1.8)—(1.11) as the ITE problem for vector valued functions v = Vv and w = Vw of
the form

V(V-v)+k*=0 in D; (2.9)
V(V-w)+k*Nw=0 in D; (2.10)
(v,v)—(w,v)=0 on 0D; (2.11)
V.-v—-V-w=0 on 0D. (2.12)

(2.9)—(2.12) is similar to the ITE problem for isotropic media. Therefore, using similar approach
to the analysis of the ITE problem for isotropic media, we can obtain similar results of the
distribution of ITEs (see e.g. [6])

In the case n(z) # 1, we employ a different approach from the ITE problem for isotropic
media or for anisotropic media with n(z) = 1. The discreteness of ITEs was proven in [13]
under some assumptions on A and n only on a neighborhood of 0D. They were also given a
result on the location of transmission eigenvalues. V denotes a neighborhood of 9D inside D.
We set

A, = 1inf inf (A(x)£,€) >0, A" :=sup sup (A(z)€) < oo,

z€V (efsd-1 €V ge8d-1
n, = inf n(x) >0, n*:=supn(zr) < oco.
zeV =%



Theorem 2.2.6 (Bonnet-Ben Dhia-Chesnel-Haddar [13], Theorem 4.2 and Theorem 5.1). As-
sume that either

Alx) <A I; <1y and n(z)<n" <1 ae z€V,
or
Alx) > Adyg>1; and n(z)>n.,>1 ae z€V.

Then the set of transmission eigenvalues is discrete in C. Moreover, there exist two positive
constants p and § such that if k € C satisfies |k| > p and |Rek| < 0|Im k|, then k is not an
ITE.

They rewritten the ITE problem (1.8)—(1.11) for anisotropic media as a variational form
which is different from (2.6). However, a sesquilinear form appeared in this variational form
has non-ellipticity. Using an isomorphism 7', we can avoid this difficulty. Such a method is
called the T'-coercivity method. More precisely, we introduce this T-coercivity method in Part
ITI. We extend this method to the case of ITE problem on compact manifolds corresponding
to the ITE problem for anisotropic media.

On the other hand, the existence of ITEs was proven in [10].

Theorem 2.2.7 (Cakoni-Kirsch [10], Theorem 4.8). Assume that either A, > 1 and n* < 1,
or A* <1 and n, > 1. Then there exists an infinite discrete set of real ITEs with only possible
accumulation point at 4+o00.

10



Part 11

Preliminaries
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Chapter 3

Notation of manifold and function
spaces

For d > 2, let M be a d-dimensional compact, connected and oriented Riemannian manifold
endowed with a smooth Riemannian metric g and with a smooth boundary oM.

For a local coordinates x = (z1,...,24) € M and a function f defined on a neighborhood
of x, let

of
al'i

(@) (i=1,...d)

be a directional derivative along z; at z. We define a operator (9;), (i = 1,...,d) by

The vector space spanned by (91),, . .., (9,). is called a tangent space of M at x and is denoted
by T, M. An element of T, M is called a tangent vector of M at x € M. Hence, we write
tangent vectors X, on T,M as X, = Zle Xi(2)(0;),. Here, Xi,..., Xy are smooth functions
on M. We denote the inner product and the norm on 7, M by

(X, Ya)g = Y 9u(@)Xi(@)Y(2), 1 Xalg = /(Xe, Xa)y,

1,j=1

for X,,Y, € T,(M) and smooth functions X;,Y; (i = 1,...,d), respectively. We call TM =
Uzens T M the tangent bundle of M. A vector field X on M is defined by assigning each point
x € M to the tangent vector X, € T, M as

X M3z {X,}oem € TM.

The space of all smooth vector fields is denoted by I'(T'M). We define the vector field 0; (i =
1,...,d) by

Oi M > x v {(0)s}teem € TM.
For a multi-index a = (ay, ..., aq), we write 92 = 9{* --- 994, For £ = (&,...,&) € RY, we
use the similar manner.

For x € M, the dual space 1) M of T,,M is called a cotangent space of M at x € M and its
elements are called cotangent vectors. We call T*"M = U,cpTi M the cotangent bundle on M.
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A differential 1-form w on M is defined by assigning each point z € M to the cotangent vector
wy € TXM as

w: M5>Sz {wsteen € T"M.

The space of all smooth differential 1-forms is denoted by Q'(M). Let (dzy)s.,. .., (dxy), be a
dual basis of (01)s, ..., (04).. We define the differential 1-form dx; (i = 1,...,d) by

dr; : M >z {(dz;)s}eem-
For wy,wy € QY(M), the exterior product of differential forms is defined by
(Wi Awa) (X1, Xo) = w1 (X7 )wa(Xz) — wa( Xy )wi(Xz)

where X, X5 are arbitrary vector fields on M.

We fix local coordinates © = (xq,...,z4) of M. We regard g = g(x) as a positive-definite
symmetric d X d-matrix valued function and we write g(z) = (g;;(z))¢,_,. We denote the inverse
matrix of g(z) by g(z)™' = (¢”(x))¢,_;. The determinant of g(x) and the volume element on
M are denoted by G(z) and dV, := V/Gdx = v/Gdx, A --- A dxg, respectively. A symbol dS
and dS, denote the surface elements on dM induced by dx and dVj, respectively.

The space of all infinitely differentiable functions on M, M and OM are denoted by C=(M),
C°(M) and C>=(OM), repectively. Let A, : C®°(M) — C®(M) and V, : C*(M) — T'(TM)
be the Laplace-Beltrami operator and the gradient operator on M, respectively. In local coor-
dinates on M, those operators are written in the form

d d
Agu =GN 0,(g"G?0u),  (Vgu)e = Y g7 (0u)(9))s
i,j=1 i,j=1

for all w € C(M), respectively. Here, (V,u), denotes the corresponding tangent vector in
T,.M.
For measurable functions u on M and f on OM, we define
||U||LOO(M) = 1nf{C’1 >0 | |U(ZL’)| < 01 a.e., r € M},
| fll zoe(anry = inf{Cy > 0 | | f(x)] < Cy ae., x € OM},
respectively. We define L>(M) and L*(0M) by the space of all measurable functions u on
M such that |[ul|z=) < oo and the space of all measurable functions f on OM such that

| fll Loeonr) < 00, respectively. We denote the L?*(M)-inner product and the L?(M)-norm on
C>(M) and the L*(OM )-inner product and the L?*(OM)-norm on C*(OM) by

(wolar = [ wwdV el = Vawa, wv e (1),
M
(f, g)ous = /8 1745, | flos = V- Do f.9.€ C¥(0M).

respectively. Then the completion of C*°(M) by ||-||as and the completion of C*(9M) by ||-||on
are denoted by L?*(M) and L?(OM), respectively. For a strictly positive function n € L>(M),
we denote the L*(M, n)-inner product and the L*(M,n)-norm on C*(M) by

(u, V) 2(ar) = (MU, ), ull2anyy = A/ (W W) 2ar),  w,v € C(M),
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respectively. Then the completion of C*°(M) by || || z2(as,y) is denoted by L*(M,n). We denote
the L?(TM)-inner product and the L?(T M )-norm on I'(T M) by

XY :/ X,.Y,).dV,,
(X, Y )z M( )s@Vs X,Y € T(TM),

1 X |rar = (X, X) 7w,

respectively. Then the completion of T'(T'M) by || - ||7ar is denoted by L*(T'M). We denote the
H'(M)-inner product and the H'(M)-norm on C°°(M) by

(u, U)HI(M) = (Vgu, VQU)TM + (u, U)M,
u,v € C(M),

||U||H1(M): (U7U)H1(M)a

respectively. Then the completion of C*°(M) by || - ||g1(ar is denoted by H'(M). We denote
the Christoffel symbol ,I'¥. " by

- Z kl agzl ag]l o agz] ‘
8% . Oxy

Z

For u € C*(M), Vgu denotes the 2nd covariant derivative of u and the components of Vzu in
local coordinates are given by

Put

i=1 j=1 k=1 I=1

We denote the H?(M)-norm on C*=(M) by

1/2
lll e onn, = ( [ iwiav, + ||u||%p(M)) .

Then the completion of C*(M) by || - ||g2(ar) is denoted by H?*(M).
Let N be a positive integer For each finite open covering {U;}/L, of OM, there exists
a partition of unity {p;}/_, such that p; € C*(AOM), 0 < p; < 1 'and supp(pj) C U; for
j=1,2,...,N and ijlp] =1londM. Let ¢;:U; 22— @j(z) =9y = (y1,...,Ya-1) € R?
be a diffeomorphism from U; onto V; := p(U;) such that ¢;(U;NOM) C {y = (v, va) | ya = 0}.
For s > 0, let H*(OM) be a Sobolev space of functions u such that, in local coodinates
y=(y1,...,Ya—1), we have p;u € H*(p;(U; NOM)). The norm in H*(OM) is given by

N 1/2
Hs (M) {Z 1p; $(U; maM))} .
j=1

The space H*(OM) is a Hilbert space with the H*(OM )-norm.
We denote the outward normal derivative on M with respect to g by 0,. We define the
trace map

[l

Y0,71 : O (M) — C*(OM)

15



by the formula
You = ulorr, 1w = Oyulom.
Then the trace map 7o, 71 : C°(M) — C>=(OM) extend uniquely to continuous linear maps
Yo : HX (M) — H*(OM), -~ : H*(M) — H'*(0M).

For the sake of simplicity, we often simply write you and y,u as uw and d,u on OM, respectively.
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Part 111

A locally anisotropic interior
transmission eigenvalue problem
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Chapter 4

A locally anisotropic interior
transmission eigenvalue problem

4.1 Our setting and main results 1

To begin with, let us explain our setting in this part. For d > 2, let M; and M5 be d-dimensional
connected and compact smooth oriented manifolds endowed with Riemannian metrics g; and
g2 and with smooth boundaries OM; and dM,, respectively. Throughout this thesis, we assume

that
- My and M, have a common boundary I' := 0M; = 0M,.

-I' is a disjoint union of a finite number of connected and closed compon-

ents I',..., 'y, namely [' = Hj-vlej.
In addition, we assume that

- Let ¥ := M; N M,. Then there exist connected neighborhoods ¥; of
I';(1 <7 < N) such that 3 is written as the disjoint union of ¥y, ..., X,

namely, ¥ = Hé-vlej (see Figure 4.1).
and
g1(x) # g2(x) for some x € X.

Here, we note that we do not necessarily assume that M; and M, are diffeomorphic.

(A)

In this section, we assume (A), (A-1) and (A-2). For functions n, € L*(M,) (I = 1,2) and
¢ € L>(I') and for k € C, we consider a boundary value problem for a system of Helmholtz

equations for unknown functions u; and wuy of the form
(—Agl — anl)ul =0 in M17
(—AQQ — k’zng)UQ =0 in MQ;

U —us =0 on I}

vV G18V71U1 — 1\ GQ&V’QUQ = Cul on I.

1
2
3
4

e

(4.1)
(4.2)
(4.3)
(4.4)

Here, in the above, d,; and 0, 2 denote the outward normal derivatives on I' with respect to gy
and g, respectively. We call the above boundary value problem a locally anisotropic interior

transmaission eigenvalue problem.
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Figure 4.1: Examples of M; and M, with common boundary I' = H§V:1Fj.

Remark 4.1.8. In scattering theory, the above functions n; (I = 1,2) and ( are called a
refractive inder and a conductive boundary parameter, respectively. Usually, we assume that
ny and ny are real valued functions and that ( is a purely imaginary valued function. For the
details, see [5]. However, in this thesis, we allow ny,ny and ¢ to be complex valued functions.

We put
H:= H'(M)) x H'(M,).

Then H is a Hilbert space equipped with the inner product (-, )u = (-, )m ) + () i ()
and the norm || - ||z == (-,-)1°. Now let us go into the definition of an ITE for the locally

anisotropic ITE problem.

Definition 4.1.9. If there exists a non-trivial solution (u;,us) € H of the locally anisotropic
ITE problem (4.1)—(4.4) for some k € C, we call such a complex number k a locally anisotropic
interior transmission eigenvalue.

Definition 4.1.10.
- We denote the set of locally anisotropic ITEs by o, ;.

- A pair of functions (u;,us) € H is called a locally anisotropic interior transmission eigen-
function associated with k € o, 1, if (u1,us) satisfies the locally anisotropic ITE problem
(4.1)-(4.4) corresponding to k.

- The dimension of the space spanned by all locally anisotropic interior transmission eigen-
functions (uq,us) associated with k € o, is called the multiplicity of k.

Our first main result in this chapter is stated as follows.

Theorem 4.1.11. Suppose (A) and (A-1). Let ny € L>®(M;)(l = 1,2) and ¢ € L*(I") be
complex valued functions. We assume that g1 and g satisfy

g2 < g1

VG, ~ VG

for some constant 0 < ¢ < 1. Then there exists a constant (o > 0 such that for ( with
Re( > —(o, the set o, of locally anisotropic ITEs is a discrete subset of C. The point at
infinity is the only possible accumulation point of o, 1. Furthermore, the multiplicity of each
locally anisotropic ITE is finite.

on X (4.5)
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Figure 4.2: An example of N(r,0) (r =1,0 = n/3).

Remark 4.1.12. The condition (4.5) on g; and g, implies that g; and g; satisfy (A-2), namely,
the boundary value problem (4.1)—(4.4) is the locally anisotropic ITE problem.

For r,60 > 0, we put
N(r,0) :=={k € C||k| > r and |Imk| > (tan®)|Rek|}
(see Figure 4.2). Then our second main in this section result is given by the following.

Theorem 4.1.13. Suppose (A) and (A-1). Let ny € L>®(M;)(l = 1,2) and ¢ € L>(I") be
complex valued functions. We assume that Ren, and Rengy are strictly positive functions. We
also assume that g, and gy satisfy (4.5) and ny and ny satisfy

sgp (\/G_I(Re nl)) < ilzlf <\/G_2(Ren2)> : (4.6)

Then there exist positive constants r,0, €y and (y such that there are no locally anisotropic ITFEs
in the region N(r,0) for ny with [Imn,| < €y in ¥ and for ¢ with Re( > —(y on T.

In [13], by using analytic Fredholm theorem (see e.g., Theorem 1 in [3]), Bonnet-Ben Dhia,
Chesnel and Haddar proved the discreteness of o, ;. In our setting, instead of analytic Fredholm
theorem, we use the theory of compact operators to simplify their argument. As a result,
we are able to remove their assumption which is essential to use analytic Fredholm theorem.
Furthermore, we note that in this thesis, we introduce a new function ¢ called a boundary
conductive parameter in the ITE problem (4.1)—(4.4). This parameter ¢ plays an important
role in scattering problem with conductive transmission condition. In this sense, we can say
that our problem is a slightly more generalized version of the original ITE problem.

4.2 T-coercivity method

In order to prove the discreteness of locally anisotropic ITEs, we employ the T-coercivity
method (see for example [13], [14]). Let

Hy = {(u1,u) € H|u; =us on T}

Let V,, and V, be the gradient operators on (M, g1) and on (Ms, g2), respectively. We define
a sesquilinear form Ag[-, -] on Hy x Hy by

Ak[(UhUZ)a (Uhvz)] = (Vg1u17vg1U1)TM1 - (Vg2U2, vggv2)TM2
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— K ((nyuy, v1)ar, — (nouz, v2)a,) — (Cur, vr)r

for all (uq,us), (v1,v2) € Hy. We can easily show that the locally anisotropic ITE problem
(4.1)-(4.4) has a non-trivial solution (uy,us) € H if and only if the variational problem of the
form

Ak[(ul, UQ), (’01, ’02)] =0 fOl" all (Ul, UQ) c Ho
has a non-trivial solution (uy,us) € Hy. We define an operator 7' on Hy by
T(uy,uz) = (ug — 2xug, —us2) (4.7)

for (uy,us) € Hy. Here, x is a smooth cut-off function on M, such that x = 1 in a small
neighborhood of I" with support in ¥ N M, and 0 < y(z) < 1 for all x € M,. Let Iy be the
identity operator on H. Since T? = [g, T is an isomorphism on Hy. By using this isomorphism,
we define a sesquilinear form AY[- -] on Hy x Hy by

A [(u1, up), (v1,02)] = Agl(ug, us), T(v1, v3)]

for all (uy,uz), (vi,vs) € Hy. We can easily show that the above sesquilinear form Al[- -] is
non-degenerate and bounded on Hy x Hy. Hence, applying the first representation theorem (see
e.g., Theorem 2.1 in [18]) or the Riesz representation theorem to the sesquilinear form AZ[-, -],
we find that there exists a bounded linear operator /7 (k) on Hy such that

Al [(ur,u2), (01,09)] = (&7 (k) (u, us), (v1,v2))1

for all (uy,us), (v, v2) € Hyg. Summarizing the above argument, we obtain the following propo-
sition.

Proposition 4.2.14. A point k € C is a locally anisotropic ITE if and only if the operator
T (k) on Hy has a non-trivial kernel. In this case, each element of the kernel of </ (k)
is interior transmission eigenfunction associated with k € o,1. The multiplicity of k € o041
coincides with the dimension of the kernel of T (k).

Now, let us introduce the notion of strictly coercive for a bounded linear operator.

Definition 4.2.15. Let H be a Hilbert space equipped with inner product (-,-)y and norm
|- llz = \/(-,-)u. A bounded linear operator B : H — H is said to be strictly coercive if there
exists a constant C' > 0 such that

Re (Be, )i = Clloll
for all p € H.

The following theorem is well-known as the Lax—Milgram theorem (see e.g., Theorem 13.23
in [19]).

Theorem 4.2.16. In a Hilbert space H, a strictly coercive bounded linear operator B : H — H
has a bounded inverse.

Let k € R\ {0} and ¢, > 0 be constants such that

€ :=sup(v/Gr)e < irzlf(\/GQ)cS =: 0.

by
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We define a sesquilinear form A, 5[+, -] on Hy x Hy by

Aim,e,é[(“la“?)a (U1,U2)] = (Vg1ulavg1vl)TM1 - (VgQU'Q; VgQUQ)TMQ

+ K2 ((eur, v1)ary — (Gus, va)ar,) — (Cur, v1)r

for all (uy,us), (v1,v2) € Hy. In addition, we define a bounded operator .#, 5. on Hy by

(fn,e,a(uh U2), (Ul, UQ))H = Am,e,a[(UL Uz), T(Ub 02)]

for all ('LLl,UQ), (Ul, Ug) S HO-
Now in order to reduce the locally anisotropic ITE problem (4.1)-(4.4) to the eigenvalue
problem for a certain compact operator, we state the following key lemma.

Lemma 4.2.17. Let ny € L>®(M,;) (I = 1,2) and ( € L>(I") be complex valued functions. We
assume that g1 and gy satisfy (4.5). Then there exist a point (o > 0 and a constant C' > 0 such
that for ¢ with Re( > —(o, the inequality

Re (I c.5(ur, ua), (ur, uo))m > Ol (ur, uo) |31, (w1, u2) € Ho (4.8)
holds.

Proof. We have the equality
Re (jfﬂﬁﬁ(ula u2)a (u17 Ug))H
- / Vet 2,V + / W gptial2, 0V, + £ (elltr Py + 82 215)
Ml\E MQ\Z

+/ |V91u1|§1d‘/91 +/ |v92u2|52]2d‘/92+"£2 (6/ |u1|2d‘/;,1 +/5|U2|2d%2>
b X Y P

— 2Re (v91u17 vgl (XU2))TM1 - 2’€2€Re (Uh XUQ)M1 + Re (Cul, UI)F

(4.9)

for all (uy,us) € Hy. Using Young’s inequality and (4.5), we have
2Re (vglulv vgl (XUQ))TM1

<(a+ ) / V2V, + 7! / Va2, dV,,
> >
+51/ Vo X2, [us|*dV,
El g1 |g| 2| g1 (4'10)
S(a+ﬁ)/ |Vglu1|§1d‘/:ql+ca_1/ |V92u2|32d\/g2
> >

_ |G
+5 lsup <|V91X|§1 G_1>/‘u2|2d‘/92
P 2 P

1
VG

and

2r%eRe (ug, Yua) s, < K,QE’)// luy [*dV,, + 52/ vV Grelug)?dV, (4.11)
2 >
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for all «, 8,y > 0. Plugging (4.10) and (4.11) into (4.9), we obtain
Re (Fe.5(ur, u2), (U1, u2))m

> [ BVt [V dV, el + Sluel)
Mi\X Mo\X
+(1_a_ﬁ)/|vg1ul| dv;h—'— /|vg2u2|2 dV
by

+ie(1=7) [ jufdy,
¥

1 i _ /G
*“2/2\/_@(5*_7 L |ug|?dV,, — B 1sgp (IVglel 52) /Elqu%lVgQ

= Golluallz-

Taking v such that €*/d, < v < 1, we have
Re (S e5(ur, ug), (u1, u2))m

> / Vg2, dVy + / Va2,V + K2 (el s + 022 100)
Ml\ MQ\Z
f(l—a-p / Va2, dV,, + (1— ca”! / V2, AV,

el =) [ [PV, + (6.~ 1) = e8™) [ jufdv, - llal}
for some c¢q,co > 0. Using the trace theorem, we obtain
lurllr < eslluallm ) (4.12)
for some c3 > 0. By taking «, 3 such that
c<a<l, 0<f<l—a

and using (4.12), letting |k| > 0 large enough and (, > 0 small enough, more precisely taking
0< (< cy'min{l —a—B,k%(1 —7)},

we can easily show that there exists a constant C' > 0 such that the inequality (4.8) holds. O

Remark 4.2.18. For example, we take

c+1 1—c¢ 0y + €* 1—c
) 3 6_ 4 ) Y= 2(5* ) CO_

2
8c3

f-{j2 — max 25* 1 (5* + e* 1 i 462
B €(0x — €))7 0 c10.(0x — €*) 1—-c/) )

Then the constant C' > 0 appeared in (4.8) is equal to (1 —¢)/8.

and

Remark 4.2.19. As stated above, using the isomorphism 7" given by (4.7), we can avoid the
difficulty arising from the non-ellipticity of the sesquilinear form Ag[-,-]. Such a method is
called the T-coercivity method. This method was first introduced by Bonnet-Ben Dhia, Ciarlet
and Zwolf [14]. Using the idea of T-coercivity, they proved that the electromagnetic wave
transmission problem is well-posed when dielectric constant changes its sign.
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Using the above lemma, we can write 27 (k) as the sum of an isomorphism and a compact
operator as follows.

Proposition 4.2.20. Let n; € L*(M;) (Il = 1,2) and ¢ € L*>®(I") be complex valued functions.
We assume that g, and gy satisfy (4.5). Then there exists a point o > 0 such that for  with
Re( > —(o and for all k € C, the operator T (k) is written in the form o7 (k) = % + A
where . is an isomorphism on Hy and £ is a compact operator on Hy. As a result, o7 (k)
18 a Fredholm operator on Hy for all k € C

Proof. By Lemma 4.2.17, the inequality (4.8) holds. Applying Theorem 4.2.16 to the
bounded linear operator .%, . 5, we find that .7, s is an isomorphism on Hy. Recall that /7 (k)
and %, .5 are written as

(%T(k)(ula U2)7 (Ul, UQ))H
=(Vgu1, Vg v1)ra, + (Vgyta, Vg, v2)rar, — 2(Vgur, Vg, (X02))Tan

— K ((nyuy, vi)a, + (n2U2,U2)M2 - 2(n1u1, XU2)M1) - (CUL v1)r

and

(I es(ur, uz), (v1,02))m
=(Vg,u1, Vg, v1)rar, + (Vgyua, Vo, va)rar, — 2(Vgu1, Vg, (X02)) 78

+ k% ((eur, v1)an + (G, va)ns, — 2(€ur, xv2)ar,) — (Cur, v1)r

for (uy,uz), (v1,v2) € Hy, respectively. We put # = &7 (k) — .7, .s. Then the operator %
satisfies

(%(th), (U17U2))H
=— K ((naur, v1)an + (Raug, va)ar, — 2(naus, XV2) )

— K% ((euy, v1) s, + (Gug, vo)ar, — 2(€ur, Xva)ar,)

for all (uy,us), (v1,v2) € Hy. Therefore, the inequality

[( (1, uz), (v1,v2))Hu| < C||(U1aU2)||L2(M1)xL2(M2)||(UlaU2)||H

holds for some constant C' > 0 depending on k. Here, || -||z2(a,)x22(a1,) 18 @ norm of the Hilbert
space L*(M;) x L*(M,) and denotes

I(ur, w2)ll 2oy 2oy = (lually, + lluzllig,)

for (uy,us) € L*(M;) x L*(M,). The above inequality is equivalent to
[ (ur, uz) [ < Ol (un, w2)l| 22(amy 22 (1) (4.13)

for all (uj,us) € Hy. By the Rellich-Kondrashov theorem (see e.g., Theorem 6.3 in [1]), a
bounded sequence in Hy has a Cauchy subsequence in L?(M;) x L*(Ms). Let {(uin, uon)}o2,
be such a subsequence. Using the inequality (4.13), we have

||J5/(U1m U2n) - %/(Ulm,uzm)HH < CH(U1n,U2n) - (UlmaUzm)HL?(Ml)xLQ(Mly

This means that { (uip, ug,) }22, is a Cauchy sequence in Hy. Thus, /" is a compact operator
on Hy. If we take .# = .#, .5, then we have &7 (k) = . + 2, which proves the assertion. [J
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4.3 Proof of Theorem 4.1.11 and Theorem 4.1.13

First, we prove Theorem 4.1.11.

Proof of Theorem 4.1.11. Let us define two operators .# and ¥, . s on Hy by

(g(UhUQ)a (Ula U2))H = (nmh v1)M1 + (n2U27v2)M2 - 2(”1U1> XU2)M1

and

(gn,e,é(ulaUQ)a (Ula U2>)H = K? ((€U17U1)M1 + (5U2, U2)M2 - 2(€U17 XU2)M1)

for all (u1,us), (v1,v2) € Hy, respectively. By the same argument as in the proof of Proposition
4.2.20, we can show that .# and ¥, . 5 are also compact operators on Hy. Using these operators,
we rewrite /T (k) as

2
jfc,e,é —k g - gn,e,&

Let us take €, § > 0 such that supy,(v/G1)e < infs(1/G2)d. Next, we choose € and § small enough
such that ||f_1’5g,{,e76||H0_>H0 < 1. Here, || - |lm,—mn, denotes the operator norm for bounded

K,€

linear operators on Hy. Then we can easily show that Iy — f;gl 5965 1s a bijection on Hy

and has a bounded inverse. Therefore, a locally anisotropic interior transmission eigenfunction
(u1,u2) € Hy associated with k € o, satisfies

0= j_l,aﬁT(k)(uh us)

K,€

= (]H - j_lyégm@(g)(ul, Ug) - kQﬂ_’éaﬁ(ul, U,Q).

K,€ K

(4.14)

Put # = (Iy — .7} G es) I _76175. Obviously, £ is a bounded operator on Hy and is inde-

K,€,0 K
pendent of k. Thus, A.% is also a compact operator on Hy. Moreover, it follows easily from

(4.14) that
ﬁﬁ(ul,z@) = kiQ(ul,ug)

for all (uy,u2) € Ho \ {(0,0)}. As a conclusion, (u1,us) € Hy is a locally anisotropic interior
transmission eigenfunction associated with k& € o, ;\ {0} if and only if k=2 € C is an eigenvalue
of the compact operator % on Hy and (u;,us) € Hy is the corresponding eigenfunction
associated with £72. As is well-known in the theory of compact operators, 0 is the only possible

accumulation point of eigenvalues of a compact operator. Therefore, we obtain the assertion of
Theorem 4.1.11. O

Next, we prove Theorem 4.1.13.

Proof of Theorem 4.1.15. It is sufficient to prove that there exist constants » > 0 and 6 €
(0,7/2] such that for all £k € N(r,0) and for some constant C' > 0, the inequality

Re (o7 (k) (w1, u2), (ur,u9)) > Cll(ur, uz)llzg, (w1, u2) € Ho (4.15)

holds. Indeed, applying Theorem 4.2.16 to the bounded linear operator <77 (k), we find that for
k€ N(r,0), &7 (k) is an isomorphism on Hy and has a trivial kernel. Hence, such a complex
number £ is not a locally anisotropic ITE.

We put

nj := sup <\/G_1(Ren1)> , Moy = iIEIf <\/G_2(Ren2)> :

2
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We assume that n; satisfies

Imn| <€ in X
for some constant €y > 0. Then we derive the estimate

2Re (nyug, Xu2)

1
SW/Z(RGH1)|U1|2dV91 +/E\/—G—27 "V GiReny ) [uo|*dVy,

G
+€0/ |ur [?dVy, + eo sup (\/—1> / |us[*dV,
b % G2 b

for all v > 0. Let p € R\ {0}. Using (4.5), (4.10) and (4.16), we obtain
Re (o (ip)(u1, u2), (u1, u) )1

Z/ |v91u1|g271dV91 +/ |v92u2|32d‘/92

Mi\ZE Mo\Z
+p’ (A}?\fE(Re nl)HUl“?wl\z + A}S&(Re ”2)”1‘2”?\42\2)
H=a=p) [ Foufdv + (1 =ca™) [ [Tl dv,

e / (1= 7)Rem)us PV, — pPeo / PV,
> >
T / L (130 — ) usldV,, — pegsup [ 1) 2L / s dV),
IRV G2 > G2 »
—1 2 Gl 2 2
— 87 sup | [Vgxly, ren |[ug|“dVy, — Collua |l
> 2 3

for all a, 8, v > 0. Taking ~ such that nj/nq, <y < 1, we have
Re (o7 (ip)(wr, ug), (w1, u2))u

2/ ’Vglulyzldvzh +/ ‘VQQuQ‘zzd%Q
Ml\Z‘ MQ\E
2 ( inf (R 2 inf (R 2
+p <A£1\Z( enl)H“lHMl\er]\g\E( eng)l|uzllars
H1=a=8) [ [Vymfdvy + (1= ea™) [ [V,
» by

i (1= infRen) =) [ fur

(4.16)

+ (6 (ealnes =77 m) = caen) = e28™) [ fualdb, = Golf
X

for some ¢y, ¢o, ¢y > 0. Using the same argument as in the proof of Lemma 4.2.17, for a suitable

choice of constants «, 8,7 and a small constant ¢y > 0 and a large constant r > 0 and letting
|p| > r, we have

Re (277 (ip) (uy, ug), (w1, u) ) u

(4.17)
>Ci(| Vg l7ar, + 1 Veu2llag) + Cop®(luallis, + lluallis) — Colluallf
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for some constants C;, Cy > 0. On the other hand, taking k = ipe’® with 0 < ¢ < 7/2, we find
that there exists a constant C'5 > 0 such that

Re (7 (ip) — " (k) (ur, ua), (u1, uz) )1

l. (4.18)
<Csp*|1 — e*?|(Jualliy, + lluallis,)
for all (uy,us) € Hyg. Combining (4.17) with (4.18), we obtain

Re (&7 (k) (w1, u2), (u1, u2))u
>Ci(IVguallag, + IV gu2ll7as,)
+ (Cy — Cs|1 — ) (JJua |13, + luallis,) — Colluall?

for all (uy,us) € Ho. By choosing ¢, (, > 0 small enough and using (4.12), we have
Re (/T (k) (u1,us), (ur, us) ) > Cl|(ur, us) |7y

for some constant C' > 0. We put 0 := 7/2 — ¢. Then for all k£ € N(r,0), the inequality (4.15)
holds. Therefore, we obtain the assertion of the Theorem 4.1.13. O
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Part 1V

A locally isotropic interior
transmission eigenvalue problem
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Chapter 5

A locally isotropic interior
transmission eigenvalue problem

5.1 QOur setting and main results 11

For d > 2, we consider two d-dimensional connected and compact smooth oriented Riemannian
manifolds (M, g1) and (Ms, g2) which satisfy the assumption (A). In addition, we assume that
g1 and go satisfy

g1=g2 on I (I-1)

We also note that we need our geometric assumptions only in some small neighborhoods of
the boundary I', in particular, we do not assume that M; and M, are diffeomorphic outside of
these neighborhoods.

In this section, we assume (A) and (I-1). For strictly positive functions n; € C®(M;) (I =
1,2) and ¢ € C=(I") and for A € C, we consider a boundary value problem for a system of
Helmholtz equations for unknown functions u; and wuy of the form

(—Ay, —Ang)u; =0 in My (5.1)
(—Ay, —Ang)us =0 in Moy; (5.2)
up—uy =0 on T (5.3)

Op1uy — Oppus = Cuy; on I (5.4)

We call the above boundary value problem a locally isotropic interior transmission eigenvalue
problem. For (, this thesis covers the following two cases : (i) ¢ = 0 on I', or (ii) ( is strictly
positive or strictly negative on every component of I'. Now let us go into the definition of an
interior transmission eigenvalue for the locally isotropic ITE problem.

Definition 5.1.21. If there exists a non-trivial solution (u1,us) € H?(My) x H?(M>) of the
locally isotropic ITE problem (5.1)—(5.4) for some A € C, we call such a complex number A a
locally isotropic interior transmission eigenvalue.

Definition 5.1.22.
- We denote the set of locally isotropic ITEs by o ;.

- A pair of functions (uy,us) € H?*(M;) x H?(M,) is called a locally isotropic interior
transmission eigenfunction associated with A € o 1, if (uy, us) satisfies the locally isotropic
ITE problem (5.1)—(5.4) corresponding to A.
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- The dimension of the space spanned by all locally isotropic interior transmission eigen-
functions (uq,us) associated with A € o; 1 is called the multiplicity of .

We take an arbitrary closed sector Sy centered at the origin such that Sy N Rsg = 0.
Our first main result in this chapter is stated as follows.

Theorem 5.1.23. Suppose (A) and (I-1). We assume that either

0;719117 = 817,’729? for m<2 and ny#ny on T (I-2-1)
or
omg! =gy for m<3 and ny=ng, Opmi #dany on T (1:2:2)

The set of locally isotropic ITEs consists of a discrete subset of C with the only possible accu-
mulation points at 0 and infinity. There exist at most finitely many locally isotropic ITEs in
SonN{AeC||N>1}.

For a small constant o > 0, we define the counting function of locally isotropic ITEs with
multiplicities taken into account by

NT:#{j|a</\]T§)\}

where A < AJ < .- are locally isotropic ITEs included in (o, 00). Let Oy(z) = {{ € R? |
szzl g7 ()&&; < ny(z)} for x € M; and

Vi= <27T>d/Ml /Ol dedv.

Our second main result in this chapter is stated as follows.

Theorem 5.1.24. Suppose (A) and (I-1). We assume that

If  # 0, then — ( do not change its sign on whole of I and this sign is denoted by .

(I-3-0)
If ¢ =0 and suppose (I-2-1), then ny — ny do not change its sign on whole of T
and this sign is denoted by ;. (I-3-1)
If =0 and suppose (I-2-2), then 0,1n1 — Oyana do not change its sign on whole of I'
and this sign is denoted by ~o. (I-3-2)
For each (I-3-n), let v = 7,. If v(Vi — V5) > 0, Np(\) satisfies asymptotically as X\ — oo

Nr(\) > ~v(Vy = Vo)A¥2 4 O(\4-D/2),

5.2 Dirichlet-to-Neumann map

5.2.1 Dirichlet-to-Neumann map

Let (M, g) be a d-dimensional connected and compact | smooth oriented Riemannian manifold

with smooth boundary M. For functions n € C*°(M) and f € H3?(OM), we consider the

following Dirichlet boundary value problem for unknown function u € H*(M) of the form
(—Ay;—An)u=0 in M,

u=f on OM. (55)
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We define the Dirichlet-to-Neumann (the D-N map for short) A(A) by
AN f=0,u on OM, (5.6)

where u is a solution of (5.5).
In the following, we call A a Dirichlet eigenvalue if there exists a non-trivial solution of the
equation

(—Ay—An)u=0 in M,

5.7
u=0 on OJM. (5.7)
In fact, (5.7) is equivalent to
1 .
A, —ANu=0 in M,
u=0 on OJOM,
which is an eigenvalue problem of the second-order self-adjoint elliptic operator L = —n~tA,

in L?(M,n) with the Dirichlet boundary condition. Then its eigenvalues form an increasing
sequence 0 < A\ < Ay < .-+ satisfying the Weyl’s asymptotics which we derive in §5.3. The
corresponding eigenfunctions ¢; (j = 1,2,...) can be chosen so that {¢;}32, is an orthonormal
basis in L*(M,n). We denote the set of Dirichlet eigenvalues by op := {A;}32,. For X ¢
op, the D-N map A()) is well-defined and extends uniquely as a continuous operator A(A) :
H32(OM) — HY*(OM).

Let & C Z such that 132, = Z~o, and 7, and iy belong to the same set & (j = 1,2,...)
it and only if \;, = A,,.

Proposition 5.2.25. A()) is meromorphic with respect to X\ € C and has first order poles at
each A\ € op. Moreover, A(\) has the following representations.

(1) Forx € OM and f € H*?(OM), we have

. a}/x (b x au ¢ Yy
AWy ==Y [ SIS 5 s, (5.9)
‘=1 Jom j
(2) In a neighborhood of an arbitrary fived point \; € op for j =1,2,..., we have
AN = @ + H;(\) (5.10)
Aj— A I

where Q; is the residue of A(X) at A = \; given by

Qf=-Y ( [ o f(y)ng(y)) 0,61, (5.11)
iEgj oM
and Hj(\) : H32(OM) — HY2(OM) is analytic in a neighborhood of ;.
Proof. We follow the argument of §4.1.12 in [17]. Let £ € H?(M) be an extension of f into

M satisfying E‘&M = f and ||E|lz2(0) < C|lf|lgsr2(onr) for some constants C' > 0. Then we
have

(—n'A, = N(u—E) = —(—n"'A, - \E
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where u is a solution of (5.5). Since R(\) := (—n"'A, — A\)™! is a meromorphic operator
valued function with first order poles only at \; € op, u = E — R(\)(—n"'A,; — M) E is also a
meromorphic H?(M)-valued function with first order poles only at A; € op.

Next we prove (5.9). Integrating by parts, we compute the Fourier coefficients of u with
respect to the real-valued eigenfunction ¢; :

(o = = [ 2020 1)05,0), (5.12)

oM

From this formula and the outward normal derivative of u, A(\) satisfies (5.9).
Finally we verify (5.10) and (5.11). Let P; : L*(M,n) — L*(M,n) be the projection to the
eigenspace corresponding to A; € op i.e.,

Pjv = Z(U7¢i)L2(M,n)¢i for ve L2<M7 n).

i€

In view of (5.12), we have

and this implies (5.11). Moreover,

w-pu=— 3 5 ([ o fwism) o.

i€Z>0\gj

is analytic with respect to A in a neighborhood of A;. Putting H;(\)f = 0,((1 — P;)u) on OM,
we obatain the assertion of Proposition. O

Remark 5.2.26. The formula (5.11) means that the range of (), is a finite dimensional subspace
spanned by 0,¢; for i € £;. Note that 0,¢; for all i € &; are linear independent since {¢;}2; is
the orthogonal basis in L?(M, n). Hence dim Ran Q; coincides with the multiplicity of \; € op.
We can see that the integral kernel of @); given by

i€
is smooth in (z,y) € OM x OM by the regularity of Dirichlet eigenfunctions.

Let \; € op. We define E(\;) C H*(M) as the eigenspace associated by \;, and B();) as
the subspace of H3/2(OM) spanned by d,¢; for all i € £. We denote E(\;)° and B()\;)° as
their orthogonal complements in L?(M) and L?*(OM), respectively.

Lemma 5.2.27. Let \; € op. Then the equation (5.5) with A\ = \; and f € H¥?(OM) has a
non trivial solution in H*(M) if and only if f € B(\;)°.

Proof. If f is orthogonal to d,¢; for all i € &;, there exist general solutions in H?(M) of the
equation (5.5) with A = A; of the form

u=— ) y 1_ 3 ( Ou(y) i (y) f(y)ng(y)) ¢+ > b, (5.13)

iEZ>0\5j oM iEEj
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for any ¢; € C (i € &;). Conversely, if u € H*(M) is a non trivial solution of (5.5) with A = \;,
using Green’s formula, we have

M oM
for all ¢ € &;. Since ¢; is an eigenfunction associated with \; for all 7 € &;, the left-hand side is
equal to zero. Then f is orthogonal to d,¢; for all ¢ € &;. m
The above lemma implies a unique solvability in a subspace as follows.

Corollary 5.2.28. Let \; € op. For any f € B()\;)¢, there exists a unique solution u €
E(X\)¢N H?*(M) of the equation (5.5) with A = \; represented by

u=- y 1_ 3 < - D) i(y) f(y)ng(y)) Pi- (5.14)

1€Z>0\&;

Proof. We have only to check the uniqueness. This is trivial since the equation (5.7) with
A = \; has only the trivial solution in E(\;)¢ N H?*(M). O

Let ny € C®°(M;) (I =1,2) and f € H¥?('). For the Dirichlet boundary value problem of
the form

(—Ay, — Ay, =0 in M,

¢ oon T (5.15)

we define the D-N map A;(\) by
Al()\)f = 8,,,lul on I

We also denote the set of corresponding Dirichlet eigenvalues by op, (I = 1,2) and the corre-
sponding Dirichlet eigenfunctions by ¢, (j = 1,2,...), repectively. The residue of Aj(\) (I =
1,2) at A = \;; € op, is denoted by @);; and the corresponding analytic part is given by
H, j(N). For N\ € op; (I =1,2), we use the similar notations & ;, Ej(\;), Bi(\i;), Ei(A;)¢ and
By(\i,j)¢ to the above.

As has been in Propositions 5.2.25, A;(\) — A2 () is also meromorphic with respect to A € C
and has first order poles on op; Uops. We denote the set of poles of Aj(A) — Az(A) by op. In
a neighborhood of an arbitrary fixed point \; € op for j = 1,2, ..., we have

QO]

J

Ai(A) = Ao (A) =

+ Ho j(A), (5.16)

Aj— A

where () ; is the residue of Aj(A\) —Aa(X) at A = \; and H j is the corresponding analytic part.
Qo and Hy;(A) (j = 1,2,...) have same properties of @);; and H;()\) (I = 1,2), respectively.
In the following, we define the kernel of Aj(A) — Aa(A) — ¢ by

ker(Ai(A) — Az2(A) =€)
e BPRM) [ (M) = Ax(N) = O f =0} if A op, (5.17)
- {{f € H*2(D) | Qogf = (Hoj(N\j) = ¢) f =0} if A=) €op.

Now we can state the relation between locally isotropic I'TEs and the D-N map as follows.

Lemma 5.2.29. (1) Suppose \; & op1 Nopa. Then A\; € C is a locally isotropic ITE
if and only if ker(A;(\;) — Ag( ;) —¢) # {0} The multiplicity of \; coincides with
dim(ker(A1(A;) — Az(Aj) = €))-
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(2) Suppose \; € op1 Nops. Then N\; € R is a locally isotropic ITE if and only if
ker(A1(A;) — Az(N;) — €) # {0} or the ranges of Q1 and Q2 have a non trivial in-
tersection. The multiplicity of \; coincides with the sum of dim(ker(A1(A;) —Aa(Xj) —())
and the dimension of the above intersection.

Proof. We first prove the assertion (1). When \; € op1 U opo, this lemma is a direct
consequence of the definition of locally isotropic ITEs. We have only to show for \; € op1\op.
For 0 # f € ker(A;()j) — A2(Aj) — (), we have Q1;f = (H1;(A\;) — A2(N;) — () f = 0. From
Q1;f = 0 and (5.11), we have f € By();)°. By Lemma 5.2.27, the Dirichlet boundary value
problem of the form

(_A!]l — )\jnl)ul =0 in M17

5.18
uy=f on T, ( )

has a non trivial solution. On the other hand, using the equality As(X;)f = (H1;(N;) — Q) f,
we obtain the boundary value problem of the form

(—Ay — Ajng)us =0 in My
ug=f on T (5.19)
81,72’&2 = (Hl,j<)\j> — C)f on TI.

Summarizing (5.18), (5.19) and 0, ,u; = Hy;();)f, we conclude that A; is a locally isotropic
ITE. Conversely, if \; € op ;1 \ op2 is a locally isotropic ITE, the equation (5.15) for [ = 1 and
A = )\; with the condition u; = f # 0 on I' must have a non trivial solution. From Lemma
5.2.27, we have f € B;(\;)°. Inview of (5.11), this implies Q1 ; f = 0. From the definition of @ ;
and H; ;(\), we obtain 0,,u; = Hy ;();)f. Hence, the boundary condition 0, 111 — 0,,2u2 = Cuy
implies that (H; j(\;) — A2(A;) — ) f = 0. Therefore, we obtain f € ker(A;()\;) — Az(A;) — ).
We have proven the assertion (1).

For the assertion (2), we have only to show the latter case. We note that in this case, ( =0
onI'. Let \; € op1Nop2. In fact, if there exists a non trivial solution (uy, ug) € E1(A;) X Ea()))
of the locally isotropic ITE problem of the form

(_Agl — )\jnl)ul =0 1in Ml;
(—AgQ — /\jTLQ)UQ =0 1in MQ,
Uy =upy =0 on I}

0,,,1u1 = 8,,,2u2 on F,

then we have that the ranges of ()1 ; and ()2 ; have a non trivial intersection. Conversely, if the
ranges of ()1 ; and ()2 ; have a non trivial intersection, then there exist numbers i; and 4, such
that the eigenfunctions ¢, ;, associated with \;, € op; with 4; € & ; and ¢4 ;, associated with
iy, € 0po with iy € & ; satisfy that 0,101, = Oy202,, on I'. Therefore, \; = X\, = \;, is a
locally isotropic ITE. O

Remark 5.2.30. Let \; be a locally isotropic ITE. In [21], the authors call \; singular ITE if
A; satisfies the latter condition in the assertion (2) of Lemma 5.2.29.

5.2.2 Local regularizer

Now let us compute the symbol of the D-N map. Here we construct the local regularizer for
the equation (5.5). As in [20], we follow the argument of §2 in [21], slightly modifying it for
our case.
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In the following, we assume that the equation (5.5) is uniquely solvable in H?*(M) or a
suitable subspace of L?(M).

We take a point (9 € M and fix it. Let V C OM be a sufficiently small neighborhood
of 2 in OM. There exists a small open domain U C M such that UNT = V and U is
diffeomorphic to an open domain Q C R% := {y = (y1,...,Ya-1,Ya) | ya > 0}.

We introduce local coordinates y = (y1,. . ., Ya—1,%q) in © with the center (%) € V such that

2@ =0eR7.
- Q) is given by the upper half unit ball {y € Ri | ly] <1, yq > 0}.

- the subset 990 := {y € Q| y4 = 0} is diffeomorphic to V.
-y is the distance between a point y = (y1,...,v4-1,4) €  and 99°.

(5.20)

Therefore, we have

ij=1 "

—~
s
S
—~
<
~—
~—
QU
1
[N
<
—
g~

p(y) ]

ply) 1

fory = (y',ya) = (Y1, - -, ya—1,%a) in U where g(y') = (97 (¢/))i 2, is a smooth, positive-definite
and symmetric (d — 1) x (d — 1)-matrix valued function and p(y) = *(p1(y), ..., Da—1(y)) is a
(d — 1)-dimensional vector valued function satisfying @(y)!ydzo =0

A function F(y',yq4, &, &4) with (v, ya), (€, €4) € R? is homogeneous of the generalized degree
s if F' satisfies

F(t_lylv t_lyd7 té-/? t€d> - tsF(y,7 Yd, 5,7 gd)v (521)
for any ¢ > 0. For F(y4,&’), we define the homogeneity by the similar manner.
For n € C*(M), taking the y-coordinate as above, we can rewrite D := —A, — An as
d ~
D=-9%— ng a—QZpZ )0i0a — Y hi(y)d; — An(y) (5.22)
3,j=1 i=1 =1

in U with 7;(y) = (vVG) ™' S20_, 0;(VG g%).
The symbol of D is given by

D()‘u y/7 Yd, 5/7 éd gd + Z glj 515] +2 sz gzéd —1 Z h - )\’I’L ) (523)

2,j=1

In the following, let N > 0 be a sufficiently large integer. Now we take z = (2/,0) € 9Q°
arbitrarily and fix it. Using the Taylor series of 5 (y'), Pi(y), hi(y) and n(y) with respect to y
centered at z = (2/,0) € 90, we can expand the symbol D(X\;y/,yq,&’,&4) of D as the sum of
following terms :

D0<Z/; 5/7 gd {5 + Z §z€]a (524)
7,7=1
Di(3y = 2\ ya, €. €)= ) (Vyd") (&) - (v — 2)&&s — Z hi(2',0)¢
i’jzldil (5.25)
+2) {(Vyb)(,0)- (¢ = 2) + (Qabi) (', 0)a} Eia
i=1
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DN 25y — 2 ya, €, &a)

d—1
(95'37)(¢") (0, pz 2, 0) ROVIN
= yT( )& +QZ Z (v = )" yg'&ika
ij=1 |/ |=m ' i=1 |aj=m (5.26)

) _
. (aahl) (Z/’ O) ’ o d Z 0) / o ag
+iy AW = )My = Z Ly = )My,

=1 |a|=m—1 |a|=m—2

for 2 < m < N with the remainder term D7y (X, 25y — 2/, y4, &', &) which has zero of order
N—laty =0or (v,ys) = (0,0). Hence, we rewrite the sum of (5.24)—(5.26) and the remainder
term as

D()\a y/a Yd, 5/7 Sd) = DO(Z/; 517 éd) + Dl(zl; y/ - 2/7 Yd, 5/7 gd)

(5.27)
+ Z Dm<)‘a 2,; ?J, - Zlu Yd, gla fd) + D?V—i-l()‘a 2,; y, - Zlu Yd, gla fd)

Then each D,,(\, 25y — 2/, y4, &', €4) is a homogeneous polynomial in 3 — 2/, y4, &', &4 of gener-
alized degree 2 —m. In particular, Dy is the principal symbol of D. Dy, vanishes at (2/,0)
and the order of the zero is N — 1.

In the following, we denote

€ 5s = Zg &L (5.28)

i,7=1

We define the following differential operators :

Dy = Dy(2';:€,i04) = —03 + € [3as (5.29)
Dy = Dy(2';—ider, ya, € ,i0y), (5.30)

and
Dy = Dyn(A, 25 —i0er, ya, €,i04), m > 2. (5.31)

Proposition 5.2.31. Let F(yq,&') be a smooth function and homogeneous of the generalized
degree s with respect to yq and £'. Then we have that D,,F is the homogeneous of the generalized
degree 2 — m + s with respect to yg and &'.

Proof. Note that F(yg, &) = |€'|°F(|€|yg, €'). Then we can easily show that 9;F and O, '
are homogeneous of generalized degree s + 1 and s — 1, respectively. O]
Now let us construct an approximate solution of (5.5).

Lemma 5.2.32. Suppose |¢'|onr # 0. The boundary value problem for a system of second order
ordinary differential equations of the form

> DuEpn(A25ya,) =0, m>0; (5.32)
n=0
Eo\ydzo =1, Em|yd:0 =0, m>1, (5.33)

has a unique solution {Ey,}m—o.1.2... satisfying that each E,, converges to zero as ys — co. In
particular, we have Eo(Z';y4,&") = e l€lomya  Bach solution E,, is smooth and homogeneous
with respect to yg and &' of generalized degree —m. (For m > 2, each E,, depends also on \.
We omit A in the notation.)
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Proof. Since Dy = —0% + [¢/|2,, and EO’yd:O = 0, we have Ey(2';yq,&) = e §lomva,
Obviously, Ej is homogeneous of the generalized degree 0.

We assume that a function p(yg, £’) decays exponentially as y; — oo and is homogeneous
of the generalized degree s. Let us consider a solution v of the boundary value problem with
known function p(yg,&’) of the form

(=03 + 1€ 5s)v=p on (0,00); (5.34)
v(0,¢') =0,

satisfying that v(yq,&’) converges to zero as y; — 0o. Extending v and p to be zero in —oo <
yq < 0, we have

B 1
21&omr

Then, putting 7 = tn, we have
U(tilych tfl)

2 i e
(/ e l€ \aM(er)p(T’ E')dT + / e~ l€ IaM(T*yaz)p@-7 5’)d7’>
0

21 oM v
= t872v<yd7 g/)a

which shows that v is homogeneous of the generalized degree s — 2 with respect to y; and
&, In view of Proposition 5.2.31, we have D;Ej is homogeneous of the generalized degree 1.
Therefore, we obtain E; is homogeneous of the generalized degree —1. Repeating the similar
argument inductively, we can easily show that F),, is homogeneous of the generalized degree
—m. [

Let B(£') € C*°(R41) vanish in a small neighborhood of ¢ = 0, and be equal to one outside
a large neighborhood of ¢ = 0. Taking v € H3?(9Q") with a compact support in 9Q°, we
define for ' € 9Q°

Yd oo
</ e~ l€ \aM(yrn)p(n, £dn + / e~ l€ \aM(nfyd)p(n, fl)dn) _
0

Yd

U(be 5/)

(@u) (259 ya) = (2m) / eV EBE) Bl a0, €) / e (') dw' de’ (5.35)

and we put
N
Ry =) Qm. (5.36)
m=0
Letting
(239 ya) = (2m) 7Y / eV B ) B2y ya, €)dE | (5.37)
N
rn(Zsy —w'ya) = Y am(Z5y — ')
m=0

we have that ¢, and ry are distributions in &', and
Q) (2" Y ya) = /qm(Z';y’ —w', ya)y(w')duw', (5.38)
(Rn) (259, ya) = /TN(Z’;y’ — w',ya)(w')dw'. (5.39)
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We represent D appeared in (5.22) in the form

D = Dy(2';i0y,104) + D1(2";y — ', Y4, 10y, 104)

N
+ Z Dm()\a Z/; y/ - Zlv Yd, Z.ay’v Zad) + D?\/’-‘,—l()\a Z/; y/ - Zlv Yd, Z.ay’a Zad)
m=2

In the following, we consider

N 2N
Drx=Y_ Y Dgm+ > > Dign+Dy,ry. (5.40)

J=0 l+m=J J=N+11;m<N,l+m=J

Lemma 5.2.33. Let I, m and N be sufficiently large. We have Dyq,, € H?(2) and Dy vy €
HY(Q) where v = O(l +m) and 7' = O(N).

Proof. Note that D;(A, 2';y'—2', ya, 10y, 104) and D'y (X, 25y =2, y4, 10y, 104) are operators
which are given by sums of terms like (y' — 2’ )a’ygdaffagd up to a smooth function with —|a/| —
ag+ 8+ Bs=2—1or2—(N+1)and |#|+ B4 < 2. In view of Proposition 5.2.31, it is
sufficient to show

W) Y3 am(2; v/, ya) € HY (), (5.41)

/
since the derivative 85, 8§d is order zero, one or two.
Now we have

W) Y5 (29 ya) = i1 (2m) @D /eiy/'g@?/ (Y54 BENE ™™ Enn(25 1€ ya, €)) dE .

Since y5|&' |7 Ewn (25 € |Yas €') is homogeneous of the generalized degree —m —ay, using Propo-
sition 5.2.31, we have

9 (y3B(E") Em (25 ya, 5’))‘ < Ca(1+ [€]) "l I=0a
which implies (5.41). -

Theorem 5.2.34. Let N > 1 be sufficiently large. We have that Ry s local regularizer for
(5.5), i.e.,

DRy € H*(Q), Ryv| _ —v¢ e C™(00°), (5.42)

ya=0
for ¢ € H??(00°) which has a compact support in 0Q° and s = O(N).
Proof. Note that

Dl()\7 Z5 y/ - 2/7 Yd, iay’a Zad)Qm(z/’ y/ - U)/, yd)

= )0 [ B (5 B ) (543)
Using (5.32), we have
N
>N DiEn(y4.6) =0. (5.44)
J=0l4+m=J
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In view of Lemma 5.2.33 and (5.40), we have that (5.43) and (5.44) imply DRy € H*(2) for
s = O(N).
We obatin that

Ry (Y, ya) — ¥ (y')
= (2my o [ [ (Zﬁ ('3, €) 1) (') de'du’
S (2m) @Y / / 0 (B(E) 1) p(ul)dE du,

as yq — 0. Since 5(¢') — 1 € C(RT!), we have RN¢’yd:0 —1p € C(00°). O

Remark 5.2.35. The formal sum
(R)(='3 /. va) / qu ' — ', g,

is a singular integro-differential operator (see [29]). In general, a linear operator P on a d-
dimensional compact manifold M is a singular integro-differential operator of order [ if there
exist homogeneous functions p;(z,&) € C*°(M,R*\ {0}) in & with homogeneous degree | — j
such that for a function v with support in a local coordinate neighborhood U C M,

N
Puta) = (2)* [ [ €06(6) S py (o ulwdyde + Tyu for v e U
j=0

where 3 € C*(RY) is an arbitrary function which satisfies 3(¢) = 0 for [£] < 1 and 3(¢) = 1 for
€] > 2, and Ty is an operator which increases the smoothness i.e. H*(M) — H*TOWN) (M)
for any s € R. The principal symbol of P is po(z, ) and the full symbol of P is the formal sum
> 2o Pj(x,§). Then the ellipticity of P is defined by po(z,€) # 0 for all £ # 0. This implies
that we can construct the parametrix of P (see [16]). Therefore, if P is an elliptic singular
integro-differential operator, P is Fredholm.

Since we have 0, = —0J, in y-coordinates, we can easily show the following fact. As a
consequence of Corollary 5.2.28 and Theorem 5.2.34. See also Lemma 11 and Theorem 14 in
[29].

Corollary 5.2.36. (1) When A\ & op, A(XN) is a singular integro-differential operator on
H32(OM) with the full symbol given by the asymptotic series of the form

AN Y ED ZadE 4,8 for ' € 90°. (5.45)

Ya=

(2) When X\; € op, the reqular part H;(X) of A(X) at \; is a singular integro-differential
operator on B(\;)¢ with the full symbol given by (5.45).

5.2.3 Principal symbol of the D-N map

On the Riemannian manifolds (M, g1) and (Ms, g2), we consider the similar argument to the
above. We take a point () € T' and fix it. Let V C T and U; C M;(l = 1,2) be a suf-
ficiently small neighborhood of z(® in I' and a small open domain such that U; N T = V
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and U; is diffeomorphic to an open domain Q C H? respcetively. We take the similar lo-
cal coordinates y = (y',%a) = (Y1, --,¥Ya-1,¥a) in Q to (5.20). We use the similar notations
aly) = (g’ (y’))gj’.il,ﬁl(y) = "P1a(y),. ., Dra-1(y)). In view of the assumption (I-1), we have
in y-coordinates that 37 (1) = 52 (3'), 71.4(1)lyuo = Fos(®)laco = 0.

For ny € C>(M,) (I = 1,2), the symbol of D; = —A,, — An; is denoted by Dy(A\;y/, ya, &', €a)-
Using the Taylor series of the coefficients of the polynomial D;(X\; v/, y4,&', &) in € = (€/,&,) of
degree 2 with respect to y centered at 2/ = (2/,0) € 0, we can expand D;(\, 25y, ya, &', )
as the sum of the form

N
Dl()\a ZI; Z//> Yd, 6/7 £d) = Z Dl,m<)\7 ZI; Z// - 2/7 Yd, 5/7 gd) + D§V+1<)\7 ZI; Z/I - 2/7 Yd, é-/a gd)
m=0

for large integer N. Here, each Dj (X, 25y, ya, &', &) (I = 1,2) is a homogeneous polynomial
in y',ya, &', €a of generalized degree 2 —m and the remainder term Dj y (A, 25y — 2, ya, £, €a)
has zero of order N — 1 at ¥/ = 0 or (v/,v4) = (0,0).

Let |¢'|2 = Zf;l 9 (y')&&;. We also define the operators Dy, (m =0,1,2,...) by

ﬁl,m = Dl,m(/\7 Z,; —2'85/, Yd, gl, Zad)

In particular, 5170 is represented as —93 + |¢'|3 and ﬁl,l is independent of X\. The sequence
{Eim}m=012.. is defined by the solution of the boundary value problems of the form

Z lﬂjl,nEl,mfn()V Z/;ydagl) = 07 m > O,

n=0

Ez,o‘

(5.46)

ya=0 - 1’ El,m’yd=0 = 07 m > 17

with the additional condition such that £j,, converges to zero as y; — oo for m > 0.

We compute the principal symbol of A;(A)—Ag(A). In y-coordinates, we can locally represent
oy = (=1)m97 (I = 1,2). Under the assumptions (A) and (I-1), we additionally assume on I
that the metrics g1, g and the functions nq, ny satisfy either

-For all x € F,@,Tlgij(x) = 8":‘Qg§j(:z:) form<2andi,j=1,...,d

-ny(x) # no(x). (-2-1)

or

- For all z € F,@;’?lgij(:c) = 8”&9?(1‘) form <3,andi,j=1,...,d.

1%

‘ny(x) = no(z), Op1ny(x) # Oy ana(x).

Note that, under the assumptions (I-1) with (I-2-1) or (I-2-2), we can see lN)Lm = lN)gm for
m < 1 or m < 2, respectively. _ _
When A = \; € op, we define a subspace By(\;) of H¥2(T') by By()\;) = Bi()\;) U By(\;)
where El(/\j) = Bi(\;) if \; € opy, and El()\j) = () if otherwise. We denote By();)¢ as the
orthogonal complement of By();) in L*(T).
When A = A; € op, we call Aj(\) — Ay(\) Fredholm if its regular part Hy ;();) is Fredholm.

(1-2-2)

Lemma 5.2.37. In the following, we suppose X # 0.

(1) Let A\ & op. For the case (I-2-1), we have Ai(\) — Ay(N) = H¥?(I') — H?(T) is an
elliptic singular integro-differential operator with the principal symbol of the form
A(na(x) — na(x))

_ T for zel, ¢ ecR¥L (5.47)
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(2) Let A & op. For the case (1-2-2), we have Ai(\) — Ay(N) : H3(T) — H*(T) is an
elliptic singular integro-differential operator with the principal symbol of the form

)\(8,,71711 (1’) — 8,,,2712 (l’))
41¢1?

for zeT, ¢ ecR¥ (5.48)

(3) When X € op, the reqular part of Ai(X) — As(X\) is singular integro-differential operator
on Bo(\)¢ with order —1 for (1-2-1) or —2 for (1-2-2). Its principal symbol is given by
(5.47) or (5.48), respectively.

(4) For both of (1-2-1) or (1-2-2), A1 (X)) — As(N) is Fredholm for A € C\ {0}.

Proof. Let 91: 92 and nq,ny satisfy (I-2-1). In y-coordinates, we have 51,]- = 1327]- for
j7=0,1and Dyy— Dyy = —A(ny(y,0) —ny(y/, 0)). From (5.46), E;; for j = 0,1, 2 satisfy that
El,O = E270 =€ ~1€'lrya E171 E271 and

(=02 4 |€)2)(Era — Eys) = Mni(y/,0) — ny(y', 0))e€lrva,
E12|

“lyg=0

(5.49)
— E2’2‘yd:0 =0, El,g — E272 — 0 as Yd — OO

respectively. A particular solution of (5.49) is given by

A(ni(y',0) — na(y', 0 /
(m1(y',0) , 2(y,0), i€
21¢'|r

which vanishes at y; = 0 and y; — 0o. Then we can take it as £y 5 — Ey 9, and —04(F1 9 — Fa)
at yg = 0 is the principal symbol of A;(A) — A2(A). In view of the assertion (1) in Corollary
5.2.36, we have the assertion (1).

Next we assume that 91,92 and ny,ny satisfy (I-2-2). As above, we have lﬁjl,j = 527]4
for j = 0,1,2, and D13 — Dgg = —A(0an1(y',0) — Oan2(y’,0))ys. Then we also obtain that
ELQ = EQ,Q and

>\ / 1 et
Ei3— Ey3==(0qn1(y',0) — Ogna(y/, O)) . Yi+ = e 1€ Irva
4 € r €]

Hence we obtain the assertion (2).

In view of Corollary 5.2.28 and the assertion (2) in Corollary 5.2.36, we can show the
assertion (3) by the similar way.

The ellipticity of Aj(A\) — A2(A) implies that A;(A) — Aa(\) is Fredholm for A € C\ {0}. O

5.3 Interior transmission eigenvalues

5.3.1 Discreteness of the set of ITEs

For the proof of discreteness, we need to use the analytic Fredholm theory which was generalized
by [4]. See also Appendix A in [27]. Let H; and H, are Hilbert spaces. We take a connected
open domain G C C. An operator valued function A(z) : Hy — Hj for z € G is finitely
meromorphic if the principal part of the Laurent series at a pole of A(z) is a finite rank
operator. In particular, A;(\) : H¥2(I') — HY2(T") (I = 1,2) is finitely meromorphic in C\ {0}
as has been seen in Proposition 5.2.25.
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Theorem 5.3.38. Suppose an operator valued function A(z) : Hy — Hy for z € G is finitely
meromorphic and Fredholm. If there exists its bounded inverse A(zo)™' : Hy — Hy at a point
20 € G, then z — A(2)7! is finitely meromorphic and Fredholm in G.

From the above theorem, if there exists a point A\g € C\ {0} such that A;(A\g) — As(No) is
invertible, A;(A) — As(A) is invertible for all A € C\ ({0} U S’) where S’ is a discrete subset
of C. Therefore, for the proof of the discreteness, we have only to show that Aj(A) — Ay()) is
invertible for some A € C\ {0}.

We expand the symbol of D; (I = 1,2) centered at (2/,0) € 9Q° by the same manner
in subsection 5.2.2. However, here we change the definition of homogeneous functions with
generalized degree s by

F(trst™ Yy t7yg, t€, &) = ' F (k9 ya, €, &) >0, k= VA (5.50)

for A € C\ {0}, taking a suitable branch of x = v/A. We gather terms of the same generalized
degree in the sense (5.50), and we denote the symbol in y-coordinates as

N
Dl('%; y/7 Yd, 6/7 Sd) = Z Dl,m(’% Z/; y/ - 2/7 Yd, 5/7 gd)

up to the remainder term where Dy ,,, (k, 2'; ' —2', y4, &', €4) homogeneous functions of generalized

degree 2 — m. In particular, putting D( ) = Dym(K, 2'; —i0¢, ya, ', 104), we have

Dfy = =03 + €} — M (2, 0), (5.51)
Dy) = Dia + AByY (5.52)
where D5 is defined by (5.30) and

Bl(,Al) = Z>v1/’7ll(zla O) : Vg’ - yd(?dm(z’, 0).

We denote by {E }m>0 the solution of

Zﬁz(j@)Ez(,X_n(Z’; Ya, &) =0, m=>0,
=0

)
EZ,O

(5.53)

_ &Y _
va=0 = 1, El,m =0 = 0, m>1

with the additional condition such that E;ﬁ — 0 converges to zero as y; — oo for m > 0.

In order to apply the theory of parameter-dependent pseudo-differential operators to A;(\)—
As(N), we recall its definition. Let N be a d-dimensional compact manifold without boundary.
We call p(z,&,7) € C°(N x R x Rxg) a uniformly estimated polyhomogeneous symbol of order
s and reqularity r if p(x, &, T) satisfies

050 02p(. €, 7)|

_ (5.54)
< Copi ()P 4 (|€] 4 72 4 1) 18072 (€2 4 72 4 1) (7 —0)/2
on N x R? x Rxg for constants C,g; > 0, and p(x, &, 7) has the asymptotic expansion
p(@,&,7) ZPS (7,8, 7) (5.55)
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where ps_;(z, £, 7) is homogeneous with generalized degree s — [ with respect to &, 7 in the sense
of
psfl<x7 tg? tT) = t87lpsfl<x7 57 T) for ¢>0. (556)

A pseudo-differential operator P(7) on N with a uniformly estimated polyhomogeneous symbol
p(z, &, 7) is said to be uniformly parameter elliptic if the principal symbol py(z,£7) does not
vanish when || + 7 # 0. For more information and general theory on parameter-dependent
operators, one can refer Chapters 2 and 3 in [15].

Let us turn to A;(A) — Ay(A). For A € C\ R, we put VA = 7¢? with 7 > 0 and § € R
such that 8 # 0 modulo 7. In the following, we fix a suitable # and put

R(1) = 172720 (A (7%e*) — Ny(T%e*7)). (5.57)
Lemma 5.3.39. Let A = 72¢%% € C\ Rxo.

(1) We assume that (I-2-1) holds. Then R(7) is uniformly parameter elliptic with order —1
and regularity oo. Its principal symbol is

—(m(2) — na() e
VT = rm () + VIR —rerm( 1 Sl SER oY

(2) We assume that (I-2-2) holds. Then R(T) is uniformly parameter elliptic with order —2
and regularity oo. Its principal symbol is

(a’/lnl (ZL’) - aV2n2 (ZE))

/ d—
(€D = 72eBin(r)) for zel, ¢ eR¥ (5.59)

where n(x) := ny(z) = na(x).

Proof. We fix an arbitrary point (2/,0) € 9Q°. Suppose that (I-2-1) holds. Obviously we
have

El%)(Z/? £, ya) = exp (_\/‘5'@ — Ay (2, O)yd> . (5.60)

Under the assumption, we also have E?O) # j&’\g so that Ef’\o) # Eé’\) Then the principal
symbol —Gd(Efg — Eéo))‘ _o Of Ai(A) — Az(A) is given by

Yd

— A (x) = no(x))

VIER =i (@) + V€2 = Ana(z)

(5.61)

This shows (5.58).
Let us consider the case (I-2-2). In view of ny = ny(=n) on I', we have Aﬁfg = Ag’}g so that

ES9 (3¢ ya) = E5g (26 ya) = exp (—J €} = An(=!, om) .
Since we have assumed (I-1) and (I-2-2), we have

AP = AR = —\(@an1(2',0) — 8ana(2',0))ya. (5.62)
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Then Efj\l) = Eéj\l) satisfies the equation
A
(=07 + €'t = Mn(', (B} — B3Y)

= A\0gn1(Z',0) — Igna (2, 0))yq exp <—\/]§’|% — An(2/, O)yd) .

Precisely, we obtain

A
EY) (256 ya) = By (256 ya) = =7 (00 (2,0) — Dana(<',0))

Vi Yd 2 ,
) (m% 30 | = An(zxo)) o (= =m0

_o of A1(A) = Ax() is given by

Then the principal symbol —ad(Efff — Eéj\l)) ‘yd

/\<8V1n1(1‘) B al/an(x))
(€7 — An(z))

This shows (5.59). O

In view of Lemma 5.3.39, we can obtain a uniform estimate in 7 of R(7) and its inverse. In
the following, we define the Hilbert space H™!(T") for ¢ > 1 by the norm

1 Eme ey = 11 1 Em ey + 252m||f||%2(r)-

Lemma 5.3.40. For sufficiently large T > 0, there exists R(t)™' : H™™(I') — H™*7(T) for
any m € R where s =1 for (I-2-1) or s =2 for (I-2-2).

Proof. In view of Lemma 5.3.39, we can construct the parametrix of R(7). The lemma is a
direct consequence of Theorem 3.2.11 in [15]. O

Let us turn to the case ¢ # 0. In view of
AL(A) = Aa(N) = ¢ = ¢V (AL(A) = Ao (N)¢TH2 = 1)¢H2,
we put
K(A) = V2 (M) = As(N) Y2 (5.63)

Since ¢ € C*°(I") is strictly positive or strictly negative and A;(A) — A3(\) has a negative order,
the operator K (\) is compact in L?*(T") when A is not a pole. Since K()) is meromorphic with
respect to A, we have the following lemma. The proof is completely same of and 2.4 in [21].
Note that we will refer the above lemma again later.

Lemma 5.3.41. Let {x;(\)} be the set of eigenvalues of K(X). Then every k;(X) is meromor-
phic with respect to X. If Ay is a pole of K(\) and p is the rank of the residue of K(\) at A,
p eigenvalues and its eigenfunctions have a pole at Ng. Moreover, resy—y,k;(\) are eigenvalues

of resy=x, K (A).
As a consequence, we have the following lemma.

Lemma 5.3.42. There exist A € C\ Rxg such that 1 & {x;(\)}. In particular, K(\) — 1 has
the bounded inverse for some A € C\ {0}.
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Proof. Note that the set A = {\A € C\ {0} ; A is not a pole of K()\)} is a connected domain
in C\ {0}. Since K () is compact, {r;(\)} is the set of eigenvalues of finite multiplicities with
the only possible accumulation point at 0.

We take a point \; € C\ R such that x;(A) = -+ = k;4—1(A1) = 1. In view of the
discreteness of eigenvalues, there exists a small constant €y > 0 such that |k,,(A;) — 1| > ¢ for
m & {j,7+1,...,7+1—1}. Taking a sufficiently small § > 0, we also have |k,,(A) — 1| > €
for |A — A\i| < 9.

Suppose that there exists an eigenvalue x;(\) with j' € {j,7 +1,...,j 4+ 1 — 1} such that
ky(A) =1in {A € C||X—X\| < d}. Since k;j(A) is analytic in A, we have k;(A) = 1 in A.
We take a pole Ay of k;/(A). In a small neighborhood of Ay, k() can be written by

resy—xo K (M)

/{j/(}\) = )\0 _ )\

+ RN,

where k; () is analytic in this neighborhood. However, we obtain
I‘eS)\:)\Olij/(/\) = (/\0 — /\)(1 — Eﬂ(/\)) — 0,

as A — Ag. This is a contradiction. O

Now we have our first main theorem as a corollary of Theorem 5.3.38, Lemma 5.3.40 and
Lemma 5.3.42. We take an arbitrary closed sector Sy centered at the origin such that SgNR~y =
). We put S§:=Son{AeC ||\ >1}.

Theorem 5.3.43. Suppose (A) and (I-1). We assume that either (I-2-1) or (I-2-2). The set
of locally isotropic ITEs consists of a discrete subset of C with the only possible accumulation
points at 0 and infinity. There exist at most finitely many ITEs in S§.

Proof. Note that Aj(A) — A2(A) — ¢ is finitely meromorphic and Fredholm for A € C\ {0}.
Lemma 5.3.40 implies that the bounded inverse (A;(A\) — Ay(\))™! exists for A € S§ with
sufficiently large |\|. Lemma 5.3.42 implies that the bounded inverse (A;(\) — Ay(A\) — ¢)7?
exists for some A € C\ Rx¢. In view of Theorem 5.3.38, we obtain the theorem for both of the
cases ( =0 and ¢ # 0. O

5.3.2 Weyl type estimate for interior transmission eigenvalues

In the following, we use Weyl’s asymptotic behavior for Dirichlet eigenvalues of —n; 'A,, (I =
1,2) on M,;. The following fact is a direct consequence of Theorem 1.2.1 in [25].

Theorem 5.3.44. Let O)(z) = {£ € RY | ijzl g7 (2)&& < ()} for each x € M, and

v(O1(z)) = /@ X

be the volume of O)(x) associated by the Euclidean measure. Then Nj(A) := #{j | M; < A}
satisfies as X\ — 0o

N(\) = VIAY2 £ o\4-D/2) -y = (27) 74 / v(Oy(x))dV. (5.64)
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Taking an arbitrary point z(®) € T', we take a small neighborhood V' C T of (¥ and
a sufficiently small open domain € which is diffeomorphic to Uy = U, such that Uy N T =
U, NT = V as has been defend in the beginning of §2.2. Then, identifying € V with the
corresponding point on 9Q°, we have that

Ye(x) == —sgn(((y)) for (#0, (5.65)
and

o) = {sgn(ng(y) —ni(y)) for (I-2-1), (5.66)

SEn(Om(y) — Oymaly) for (1-2:2),
for y € Q are well-defined constant functions yy(z) =1 or —1 and y¢(z) =1 or —1 for z € V,

respectively. The functions yy(z) = 1 or —1 and () = 1 or —1 can be naturally extended on
every connected component of I, respectively. We also define the function v on I' by

{% for ¢ #0,
v=

5.67
v for (¢ =0. ( )

Generally, the function v can change its value for each connected component. However, let
us impose the following third assumption for the proof of Theorem 5.3.51. In the following, we
suppose (I-3) for all lemmas.

If ¢ # 0, then ¢ does not change its sign on whole of I'.
If ( =0, then ne(x) — ny(x) or d,,n1(z) — dy,na(x) do not change its sign on whole of I
(I-3)

In particular, the function « is constant 1 or —1 on I'. In the following, we use an auxiliary
operator defined by
B() =D (M) = As(N) = (DR (5.68)

where s = 0 for ( # 0 or s = 1 for (I-2-1) or s = 2 for (I-2-2). Here Dr is given by Dr = —Ar+1
where Ar is the Laplace-Beltrami operator on I". Then B() is a first order singular integro-
differential operator when \ is not a pole of Aj(A) — Ay(N).

Lemma 5.3.45. (1) Suppose \; € op1Nops. Then \; € C is a locally isotropic ITE if and
only if ker B(\;) # {0}. The multiplicity of \; coincides with dimker B(\;).

(2) Suppose \j € op1Nopa. Then A\; € R is a locally isotropic ITE if and only if ker B(\;) #
{0} or the ranges of yDI* Q1 ;DI and yDU4Qy ;DI have a non trivial
intersection. The multiplicity of \; coincides with the sum of dimker B(\;) and the
dimension of the above intersection.

Proof. Since —Ar + 1 is invertible, the lemma is a direct consequence of Lemma 5.2.29. [

Lemma 5.3.46. Let A & op.

(1) For ¢ #0, B(A) is a first order, symmetric and elliptic singular integro-differential oper-
ator. Its principal symbol is

—C(2)|€|r for xzel, € eRTL (5.69)
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(2) For ¢ =0, B(\) is a first order, symmetric and elliptic singular integro-differential oper-
ator. Its principal symbol is

Ay(na(z) — m(z))

; €lr for zeT ¢ eR™ (5.70)

for (A-2-1), or
A (0 (x) = Opyna(z))

I &|r for zel, ¢ eR¥! (5.71)
for (A-2-2).
(3) For A € Ry, the spectrum of B(\) is discrete and consists of the set of real eigenvalues
{m;(N)352,
Proof. We have the first assertion by direct computation using Lemma 5.2.37. From the
first assertion, we also see the second assertion. O

Since B(A) has a positive principal symbol and B(\) is meromorphic with respect to A, we
also have the following lemma. For the proof, see Lemmas 2.3 and 2.4 in [21]. Note that, in
view of (5.10), we define the residue resy—y,z;(A) of p;(A) at a pole Ay by the expansion

resy—xo /i (A
() = "t

where 7z;(\) is analytic in a small neighborhood of Ag.

7, (5.72)

Lemma 5.3.47. (1) For each compact interval I C Rsq such that any pole of B(\) are not
included in I, there exists a constant C(I) > 0 such that pj(\) > —C(I) for X € I,
j=1,2,....

(2) If B(\) is analytic in a neighborhood of Ao, all eigenvalues i;(X) are analytic in this
neighborhood. If Ao is a pole of B(\) and p is the rank of the residue of B(\) at Ao, p
eigenvalues p;j(X) and its eigenfunctions have a pole at Ag. Moreover, resy—y,j;(\) are
eigenvalues of resy—x, B(\).

We choose a small constant o € (0, min{A;1,A21}). We define counting function with
multiplicities taken into account :

Nr(A) =#{j | < AT <A} (5.73)

where AXI' < \I' < ... are ITEs included in (o, 00).

Now we consider the relation between {7} and {4;(\)} for A € (o, 00). Roughly speaking,
we can evaluate Np(\) by the number of the singular ITEs and the number of A\ satisfying
pi(A) = 0. We put

N-(A) = #{j [ 1;(\) <0} for A& {ATHU {Az} U { Aoy} (5.74)

Assume that A moves from a to co. Since p;()\’) is meromorphic with respect to X', N_(\)
changes only when some p;(\) pass through 0 or A’ passes through a pole of B(\'). When X
moves from a to A > a, we denote by Ny(\) the change of N_(\) — N_(«) due to the first case,
and N_,(A) as the change due to the second case, i.e.,

N_(A\) = N_(a) = No(A) + N_oe(N). (5.75)
For a pole Ay of B(A), we put
ON_co(Xo) = N_(Mg+€) — N_(Ng —€) (5.76)

for any € > 0.
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Lemma 5.3.48. Let \g € R+ be a pole of B(\). We have ON_(Xo) = s+ (Xo) — s_(X) for
s+(Ao) = #{J | Fresaonop;(A) > 0}

Proof. In view of Lemma 5.3.47, some eigenvalues yi;(\) have a pole at Ag. If £resy—y,u;(A) >
0, we have 1;(A) = Foo as A = Ao+ 0 and p;(\) = £o0 as A = Ao — 0, respectively. Then the
number of negative eigenvalues decreases for resy—y,;(A) < 0 and increases for resy_,z;(A) > 0
when A passes through Ay from «. This implies the lemma. O

Lemma 5.3.49. If \; € Rq is a pole of Aj(\;) (I = 1,2), the residue Q) ; is negative.

Proof. Recall that Bj(};) is the subspace of L*(T") spanned by 9,,¢,; for i € & ;. In view
of (5.11), we have for 0 # f € By(\o)

(Ql]f f L2(T) — Z‘ ul(bl'm L2(r |

€& g

Then we have @ ; < 0. O

For A\; € op; (I = 1,2), we put my();) = dimRan@;;. For \; € op1 Nopa, m(N;) =
dim(Ran Q1,; N Ran Qs ;).

Lemma 5.3.50. Let Ao € R be a pole of B(\).
(1) If \o € op1 Nopa, we have IN_o(Aog) + v(mi(Ag) — ma(Ag)) = 0.
(2) [f )\0 (- 0D, N 0D,2, we have ’é‘Nfoo()\(]) + ")/(ml()\o) — mg()\o))’ S m()\o)

Proof. First we prove the assertion (1). Suppose A\; € op1 \ op2. We can expand B();) in
a small neighborhood of A; as
D§1+S)/4Q17jD§1+S)/4

~
B(\) = SV
J

+ Hy (),

where Hy ;(\) := fyD(FHS)M(HLj()\) — Ay(N) = DY is analytic. From Lemma 5.3.49, we
have @)1, < 0 and also D 1+s)/4Q Dy, (1+9)/% — 0 50 that D (1) /4Q ,jD%Hs)/4 has exactly mq ()
strictly negative eigenvalues. Hence we have sgn(resy—y; ,ul( )) = —v. In view of the assertion
(2) in Lemma 5.3.47, this means sy (A;) = 0 and s_()\;) = my(\;) for v =1, or s;(\;) = m1(A))
and s_(\;) = 0 for v = —1. Lemma 5.3.48 implies 5]\/ o(Aj) = fy(mQ()\ ) — ma(A;)) with
ma(A;) = 0. For the case \; € ops\ 0p 1, we can see the same formula with m;(\;) = 0 by the
similar way. Plugging these two cases, we obtain the assertion (1).

Let us prove the assertion (2). Suppose A; = Aiju,) = Aoy for Aiju) € opa and
A2j(is) € 0p,2. Then we have the following representation in a small neighborhood of A;

7@0,3'
Aj— A

B()\) = + Hy ()

~—

where Qo = D™ (Qu ) = Qagan) DE T and Hoj(A) = DI (Hy (M) — Has(V) —
C)D(HS)/4 We see that QOJ < 0 on Bi(A1jgy)) N Ba(Az s ) and QOJ > 0 on Bi(A1jgy))
By(Aojiipy)- If v = 1, we have ma(A;) — m(};) < s+()\<) < mg(A;) and my(A;) — m(A;)
s_(Aj) <mi(N)). If v = =1, we have my(\;) —m(};) < s1(A;) < my(N;) and ma(X;) —m(A))
s_(Aj) < ma(A;). These 1nequaht1es and Lemma 5.3.48 imply the assertion (2).

'_

LIININ D

Now we have arrived at our main result on the Weyl type lower bound for Nz (\).
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Theorem 5.3.51. Suppose (A) and (I-1). We assume that either (I-2-1) or (I-2-2), and (I-3).
For large A € R+, we have

Np(N) =75 Y (m(N) = ma(X)) = N-(a) (5.77)

a<AN <A

where the summation is taken over poles X' € (v, A] of A1 (X\)—Az(N). Moreover, if v(Vi—Va) > 0
where Vi,V > 0 are defined in (5.64), Nr(X\) satisfies asymptotically as A — oo

Np(X\) > y(Vi = Vo)AY2 £ O(\4-D/2), (5.78)

Proof. We prove for the case op; Nops # 0. For op1 Nop2 =0, the proof is similar and
can be slightly simplified. Letting us recall that we call A is a singular I'TE when A satisfies the
latter condition of the assertion (2) of Lemma 5.2.29, we put

Ngng(A) = #{singular ITEs € (o, \] C R}

Here Ng,4(\) counts the number of singular ITEs with multiplicities taken into account. Note
that Ny(A) + Ngng(A) < Np(A) by the definition of Ny(A\) and Lemma 5.3.45. We take the
summation of [ON_ o (N) + v(mi(N) — ma(N))] < m(N) in (a, A]. Then we have

NooeW) +7 Y (mu(N) = mz(X))| < Nogg(N).

See also Remark of Proposition 5.2.25. Plugging this inequality and (5.75), we have

N-(A) = No(@) +7 D> (mi(N) = ma(N)) < No(N) + Nong(A) < Np(X).

a< N <A

Since N_(A) > 0, we obtain (5.77).
The inequality (5.77) implies

Nr(3) 2 (M) = Na(V)) — N ().

The asymptotic estimate (5.78) is a direct consequence of this inequality and Theorem 5.3.44.
O
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