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Abstract

In this thesis, we study two cases of interior transmission eigenvalue problem on two com-
pact Riemannian manifolds with common smooth boundary. In particular, we focus on the
distribution of the corresponding interior transmission eigenvalues.

First case is a locally anisotropic interior transmission eigenvalue problem. Our first result
is the discreteness of the set of the corresponding eigenvalues. Moreover, we also give the
eigenvalue free region. In order to prove this, we employ the so-called T -coercive method.

Second case is a locally isotropic interior transmission eigenvalue problem. Our second
main result is the set of the corresponding eigenvalues forms a discrete set and the existence of
infinitely many this eigenvalues. We also mention its Weyl type lower bound.

Our results in this thesis appear in [26] and [22].
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Notation

In this thesis, we use the following basic symbols:

Z>0 : the set of positive integers
Z≥0 : the set of non-negative integers
R : the set of real numbers
R>0 : the set of positive real numbers
R≥0 : the set of non-negative real numbers
Rd : d-dimensional Euclidean space
[a, b] : closed interval {x ∈ R | a ≤ x ≤ b}
(a, b) : open interval {x ∈ R | a < x < b}
C : the set of complex numbers
Cd : d-dimensional complex space
Re z : the real part of z ∈ C
Im z : the imaginary part of z ∈ C
z : the complex conjugate of z ∈ C

(·, ·) : an inner product on Cd

| · | : the norm on Cd denoted by |z| =
√
(z, z) for z ∈ Cd

Let Ω be a domain, i.e., an open connected subset of Rd. We consider the space of Lebesgue
measurable functions u on Ω such that

∥u∥L∞(Ω) = inf{C ≥ 0 | |u(x)| ≤ C a.e., x ∈ Ω} <∞.

This space is denoted by L∞(Ω) and ∥ · ∥L∞(Ω) is called L∞(Ω)-norm. The space L∞(Ω) is a
Banach space with the norm ∥ · ∥L∞(Ω). We denote by (L∞(Ω))d×d the space of d × d-matrix
valued functions with L∞(Ω) entries. We also consider the space of Lebesgue measurable
functions u on Ω such that

∥u∥L2(Ω) =

{∫
Ω

|u(x)|2dx
}1/2

<∞.

This space is denoted by L2(Ω) and ∥ · ∥L2(Ω) is called L2(Ω)-norm. The space L2(M) is a
Hilbert space with the L2(Ω)-inner product

(u, v)L2(Ω) =

∫
Ω

u(x)v(x)dx for u, v ∈ L2(Ω).

A d-dimensional vector α = (α1, . . . , αd) with non-negative integer coordinates is called a
multi-index. Put |α| = α1 + · · · + αd. For ∂i = ∂/∂xi (i = 1, . . . , d), we write ∂α = ∂α1

1 · · · ∂αd
d .

Let Ω be the closure of Ω. We denote by C(Ω) and C(Ω) the space of continuous functions on
Ω and Ω, respectively. For any non-negative integer k, let Ck(Ω) be the space of functions u
which, together with all their partial derivatives ∂αu of orders |α| ≤ k, are continuous on Ω.
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Let Ck(Ω) be the space of functions u ∈ Ck(Ω) which, together with all their partial derivatives
∂αu of orders |α| ≤ k, have continuous extensions to Ω. We denote

C0(Ω) = C(Ω), C∞(Ω) =
∞∩
k=0

Ck(Ω), C0(Ω) = C(Ω), C∞(Ω) =
∞∩
k=0

Ck(Ω).

We denote the Ck(Ω)-norm ∥ · ∥Ck(Ω) by

∥u∥Ck(Ω) = max
|α|≤k

max
x∈Ω

|∂αu(x)| for u ∈ Ck(Ω).

For any non-negative integer k, if Ω is bounded, the space Ck(Ω) is a Banach space with the
norm ∥ · ∥Ck(Ω).

For u ∈ C0(Ω), a closure of the set {x ∈ Ω | u(x) ̸= 0} in Ω is called a support of u. We
denote the support of u by suppu. Let C∞

0 (Ω) be a set of functions u ∈ C∞(Ω) such that
suppu is a compact subset of Ω.

Now, we define a convergence in the space C∞
0 (Ω). A sequence φn ∈ C∞

0 (Ω) converges to
φ ∈ C∞

0 (Ω) if there exists a compact set K ⊂ Ω such that

suppφn ⊂ K and ∥φn − φ∥Ck(Ω) → 0 as n→ ∞

for all k ∈ Z≥0. We denote by D(Ω) the linear space C∞
0 (Ω) with such convergence.

A linear functional u on D(Ω) is called a distribution on Ω if the convergence φn → φ in
D(Ω) implies that ⟨u, φn⟩ → ⟨u, φ⟩. We denote the space of distributions by D′(Ω).

The derivative Dαu of u ∈ D′(Ω) is also a distribution on Ω and defined by

⟨∂αu, φ⟩ = (−1)|α|⟨u, ∂αφ⟩ for all φ ∈ D(Ω).

Let Ω be a bounded domain of Rd. For any non-negative integer m, the Sobolev space
Hm(Ω) is the space of u ∈ D′(Ω) such that Dαu ∈ L2(Ω) for |α| ≤ m with the Hm(Ω)-norm

∥u∥Hm(Ω) =

∑
|α|≤m

∥∂αu∥2L2(Ω)


1/2

for m ≥ 1, ∥u∥H0(Ω) = ∥u∥L2(Ω).

Let s = m+σ, where m is a non-negative integer and 0 < σ < 1. The Sobolev space Hs(Ω)
is the space of functions u ∈ Hm(Ω) such that

∥u∥Hs(Ω) =

∥u∥2Hm(Ω) +
∑
|α|=m

∫∫
Ω×Ω

|∂αu(x)− ∂αu(y)|2

|x− y|d+2σ
dxdy


1/2

<∞.

The Sobolev space Hs(Ω) (s ≥ 0) is a Hilbert space with the Hs(Ω)-norm ∥ · ∥Hs(Ω).
For any positive integer m, let Hm

0 (Ω) denote the completion of C∞
0 (Ω) by ∥ · ∥Hm(Ω).
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Chapter 1

Non-scattering energy and interior
transmission eigenvalue

In this thesis, we study the interior transmission eigenvalue problem (the ITE problem for short)
on two compact Riemannian manifolds with common smooth boundary. The ITE problem
arises from scattering theory, in particular, from non-scattering phenomena (see e.g., Vesalainen
[31], [32] for quantum and acoustic scattering).

In this chapter, let us recall some basic notions of scattering theory and non-scattering
phenomena in Euclidean space. We also state the ITE problem on a compact subset of the Eu-
clidean space. Moreover, we introduce some preceding studies corresponding to the distribution
of the eigenvalues for the ITE problem.

We now consider the case of time-harmonic acoustic scattering problem on d-dimensional
Euclidean space Rd for d ≥ 2 with compactly supported penetrable inhomogeneous medium.
We assume that there exists a bounded domain D ⊂ Rd with smooth boundary ∂D such that
the support of the penetrable inhomogeneous medium is given by D. We denote by ν the
outward normal vector to the boundary ∂D and by Id the d× d identity matrix. We introduce
two functions in Rd represented by a d × d matrix valued function A with bounded entries
such that A(x) ≡ Id outside D and by a bounded scalar valued function n such that n(x) ≡ 1
outside D.

We deal with a stationary acoustic total wave u satisfying the perturbed Helmholtz equation

(−∇ · A∇− k2n)u = 0 in Rd (1.1)

where k > 0 is the wave number, ∇· and ∇ are the divergence operator and gradient operator
on Rd, respectively. In addition, we assume that u satisfies

(u)+ = (u)−, (∂νu)
+ = (∂νAu)

− on ∂D.

Here, for a generic function ϕ on Rd, we denote

(ϕ)±(x) := lim
h→0

ϕ(x± hν(x)), h > 0, x ∈ ∂D

and

∂νAϕ := (A∇ϕ, ν), ∂νϕ := ∂νIdϕ.

Then we consider that a solution to (1.1) is written in the form

u = ui + us.
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Here, ui is an incident wave satisfying the free Helmholtz equation

(−∆− k2)ui = 0 in Rd (1.2)

and us is the corresponding scattered wave satisfying

lim
r→∞

r
d−1
2

(
∂us

∂r
− ikus

)
= 0 (1.3)

where (1.3) is assumed to hold uniformly in x̂ = x/|x|. Here, ∆ is the Laplacian on Rd and
r = |x| := (x21 + · · · + x2d)

1/2 for x = (x1, . . . , xd) ∈ Rd. The condition (1.3) is called the
Sommerfeld radiation condition which guarantees that the scattered wave is outgoing. Now
let ui = ui(x) be a plane wave eik(x,ω) with an incident direction ω in the (d − 1)-dimensional
sphere Sd−1 = {x ∈ Rd | |x| = 1} and a fixed positive wave number k (or a fixed positive
energy k2). Using (1.1), (1.2) and the definition of the functions A and n, we can easily show
that the corresponding scattered wave us satisfies the Helmholtz equation

(−∆− k2)us = 0 in R3 \D.

Such a solution us satisfying the Sommerfeld radiation condition (1.3) has the asymptotic
behavior of an outgoing spherical wave

us(x) = C(k)
eikr

r
d−1
2

a(k;ω, x̂) + o

(
1

r
d−1
2

)
as r → ∞

for some positive constant C(k) depending on k (see e.g., [11] Theorem 2.6). Here, x̂ is the
scattered direction of us and the function a(k;ω, x̂) is called the scattering amplitude. Let F̂ (k)
be the integral operator on the space of square integrable functions on Sd−1 with the integral
kernel a(k;ω, x̂), more precisely

(F̂ (k)ϕ)(x̂) =

∫
Sd−1

a(k;ω, x̂)ϕ(ω)dSd−1

where ϕ is a square integrable function on Sd−1 and the symbol dSd−1 denotes the surface
element on Sd−1. Then the S-matrix is given by Ŝ(k) = 1− 2πiF̂ (k). If one is an eigenvalue of
Ŝ(k) for k > 0, then k is called a non-scattering wave number (or k2 is called a non-scattering
energy). We denote the set of all non-scattering wave numbers by σN . For k ∈ σN , the
scattering amplitude of the corresponding scattered wave us = us(k;x) vanishes. Then us also
vanishes outside D from the Rellich type uniqueness theorem (see e.g., [24], [30]). Hence, if
k is a non-scattering wave number, there exists a non-trivial solution of the boundary value
problem for a system of Helmholtz equations for ui and u of the form

(−∆− k2)ui = 0 in Rd; (1.4)

(−∇ · A∇− k2n)u = 0 in D; (1.5)

ui − u = 0 on ∂D; (1.6)

∂νu
i − ∂νAu = 0 on ∂D. (1.7)

Conversely, we suppose that (1.4)–(1.7) depending on a positive constant k has a non-trivial
solution. Putting u = ui outside D, we can extend u as a solution of (1.1). Letting us = u−ui,
we can show that the scattering amplitude corresponding to us identically vanishes. Hence, k
is also a non-scattering wave number. Therefore, k is a non-scattering wave number if and only
if there exists a nontrivial solution of the boundary value problem (1.4)–(1.7).
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In order to study the spectral properties of non-scattering wave numbers, we consider the
boundary value problem for a system of Helmholtz equations for unknown functions v and w
of the form

(−∆− k2)v = 0 in D; (1.8)

(−∇ · A∇− k2n)w = 0 in D; (1.9)

v − w = 0 on ∂D; (1.10)

∂νv − ∂νAw = 0 on ∂D. (1.11)

The above boundary value problem is called the interior transmission eigenvalue problem (the
ITE problem for short). If there exists a non-trivial solution of the ITE problem (1.8)–(1.11)
for some k ∈ C, we call such a complex number k an interior transmission eigenvalue (an ITE
for short). We denote the set of all ITEs by σI . We note that the ITE problem (1.8)–(1.11) is
an eigenvalue problem for a non-selfadjoint operator. Therefore, ITEs do not necessarily belong
to R. Also note that from the definition of σN and σI , the inclusion relation σN ⊂ σI holds.

We are interested in detailed properties of non-scattering wave numbers. However, it is
difficult to directly deal with the S-matrix having a one eigenvalue or the boundary value
problem (1.4)–(1.7). Currently, there are only a few results in some special case as follows.

Case.1. Spherically symmetric media. The ITE problem was first studied by Colton
and Monk [12]. In particular, they dealt with the ITE problem on the unit ball. Let B =
{x ∈ Rd | |x| < 1} and nB be a smooth function on [0,∞) such that nB(r) ̸≡ 1 on [0, 1) and
nB(r) ≡ 1 on [1,∞). They considered the ITE problem on B with A(x) ≡ Id and n(x) = nB(r)
of the form

(−∆− k2)v = 0 in B; (1.12)

(−∆− k2nB(r))w = 0 in B; (1.13)

v − w = 0 on Sd−1; (1.14)

∂v

∂r
− ∂w

∂r
= 0 on Sd−1. (1.15)

In this case, Colton and Monk proved that the relation σN = σI holds. Indeed, we assume that
k is an ITE for the ITE problem (1.12)–(1.15). Let a pair of functions (v, w) be a solution of the
ITE problem (1.12)–(1.15) with k ∈ σI . Using the spherically harmonics and the spherically
Bessel functions, we can show that the function v = v(k) can be extended outside B as a
solution of (1.4). Hence, we can reduce the ITE problem (1.12)–(1.15) to the boundary value
problem (1.4)–(1.7) with A(x) ≡ Id, n(x) = nB(r) and D = B. Therefore, we can conclude
that k is a non-scattering wave number.

Case.2. Corner scatterer. Bl̊asten, Päivärinta and Sylvester [2] dealt with the ITE
problem on a rectangle. Let R be a d-dimensional rectangle, χ be a characteristic function of
R and ϕ be a smooth function on Rd such that ϕ ̸= 0 on a corner of R. We put nR = χRϕ+1.
They considered the ITE problem on R with A(x) ≡ Id and n = nR of the form

(−∆− k2)v = 0 in R; (1.16)

(−∆− k2nR)w = 0 in R; (1.17)

v − w = 0 on ∂R; (1.18)

∂νv − ∂νw = 0 on ∂R. (1.19)

In this case, Bl̊asten, Päivärinta and Sylvester proved that σI \ σN ̸= ∅ holds.
From the above, we understand that ITEs relate to non-scattering wave numbers. Hence,

as the first step, we will focus on the distribution of ITEs.
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Chapter 2

Distribution of interior transmission
eigenvalues

The two functions A and n is appeared in the ITE problem (1.8)–(1.11). Now we study the
two particular cases of ITE problems as follows.

Definition 2.0.1. If A is identically equal to Id (resp. is not identically equal to Id), the
boundary value problem (1.8)–(1.11) is called the ITE problem for isotropic media (resp. is
called the ITE problem for anisotropic media).

The purpose of the following section is to provide a survey of the preceding studies of these
ITE problems which employs different type of mathematical techniques.

2.1 The interior transmission eigenvalue problem for

isotropic media

We consider the ITE problem for isotropic media, more precisely we find (v, w) ∈ L2(D)×L2(D)
such that v − w ∈ H2

0 (D) satisfying

(−∆− k2)v = 0 in D; (2.1)

(−∆− k2n)w = 0 in D; (2.2)

v − w = 0 on ∂D; (2.3)

∂νv − ∂νw = 0 on ∂D. (2.4)

In this section, if there exists a non-trivial solution (v, w) ∈ L2(D)×L2(D) of the ITE problem
(2.1)–(2.4) satisfying v−w ∈ H2

0 (D) for some k ∈ C, we call such a complex number k an ITE.
For the particular case of a spherically stratified medium, the following result of the distri-

bution of ITEs is well-known (see e.g., Theorem 3.1 in [9]).

Theorem 2.1.2. Assume that nB ∈ C2([0, 1]), Im (nB(r)) = 0 and either nB(1) ̸= 1 or

nB(1) = 1 and
∫ 1

0

√
nB(ρ)dρ ̸= 1. Then there exists an infinite discrete set of transmission for

the ITE problem (1.12)–(1.15). Furthermore the set of all transmission eigenvalues is discrete.

The existence of ITEs for non-spherically stratified media remained open problem until
Sylvester and Päivärinta [23]. They proved the existence of at least one ITEs. Since [23], the
existence of ITEs for general case has been widely studied. The existence of infinitely many
ITEs for non-spherically stratified media was proven in [7] under certain assumptions on n as
follows.
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Theorem 2.1.3 (Cakoni-Gintides-Haddar [7], Theorem 2.5). Let n ∈ L∞(D) satisfy either one
of the following assumptions :

(1) 1 + α ≤ infD(n) ≤ n(x) ≤ supD(n) <∞ x ∈ D

(2) 0 < infD(n) ≤ n(x) ≤ supD(n) < 1− β x ∈ D

for some constant α, β > 0. Then there exists an infinite discrete set of real ITEs with only
possible accumulation point at +∞.

To prove this, they used the variational form method. We assume that Im (n) = 0 and that
n − 1 does not change sign and is bounded away from zero inside D. Put λ := k2. Then we
rewrite the ITE problem (2.1)–(2.4) as a forth order equation of the form

(∆ + λn)
1

n− 1
(∆ + λ)u = 0 for u = w − v ∈ H2

0 (D) (2.5)

which in variational form, after integration by parts, is formulated as finding a function u ∈
H2

0 (D) such that ∫
D

1

n− 1
(∆ + λ)u(∆ + λn)vdx = 0 for all v ∈ H2

0 (D). (2.6)

Using the Riesz representation theorem, we define the bounded linear self-adjoint operators
A(λ) : H2

0 (D) → H2
0 (D) and B : H2

0 (D) → H2
0 (D) by

(A(λ)u, v)H2(D) =

∫
D

1

n− 1
(∆ + λ)u(∆ + λ)vdx+ λ2

∫
D

uvdx

and

(Bu, v) =
∫
D

(∇u,∇v)dx

for all u, v ∈ H2
0 (D), respectively. Summarizing the above argument, we obtain that k is an

ITE if and only if the kernel of the operator A(λ)− λB has non-trivial kernel. In [7], to prove
the existence of an infinite countable set of ITEs, Cakoni, Gintides and Haddar dealt with the
generalized min-max principle for the operators A(λ) and B (see e.g. [8], [7]). This argument
does not necessarily need the regularity of the function n. Hence, it is sufficient to assume that
n is in L∞(D). These method is called the variational method.

In Theorem 2.1.3, n − 1 is either positive or negative and bounded away form zero inside
D. However, Sylvester [28] proved the discreteness of ITEs under more relaxed assumptions on
n such that n− 1 or 1− n is positive only in a neighborhood of ∂D as follows.

Theorem 2.1.4 (Sylvester [28], Theorem 1.2). Assume that there exist constants θ ∈ (−π/2, π/2)
and n∗, n

∗ ∈ R with 1 < n∗ ≤ n∗ such that

(1) Re
(
eiθ(n(x)− 1)

)
> n∗ − 1 in some neighborhood of ∂D, or that n(x) is real valued in

all of D, and satisfies n(x) ≤ 2− n∗ in some neighborhood of ∂D;

(2) |n(x)− 1| < n∗ − 1 in all of D;

(3) Re (n(x)) ≥ δ > 0 in all of D.

Then there exists a (possibly empty) discrete set of ITEs.
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On the other hand, Lakshtanov and Vainberg [21] proved that there exists an infinite set of
ITEs under assumptions on n only on ∂D, more precisely

n(x)− 1 ̸≡ 0 for x ∈ ∂D, (2.7)

or

n(x)− 1 ≡ 0, ∂νn(x) ̸≡ 0 for x ∈ ∂D. (2.8)

They also proved a result on the Weyl type lower bound on counting function of ITEs as follows.

Theorem 2.1.5 (Lakshtanov-Vainberg [21], Theorem 1.3 and Theorem 1.4). We assume that
n is real valued in all of D. Let one of the conditions (2.7) or (2.8) holds. There exists a discrete
set of ITEs with only possible accumulation point at infinity. Moreover, the set of positive ITEs
is infinite and these counting function NT has the following lower estimate

NT (λ) ≥ Cλd/2 +O(λ(d−1)/2) as λ→ ∞.

Here λ = k2 and C depend only on n and D.

They characterized an ITE by the Dirichlet-to-Neumann operators for the equations (2.1)
and (2.2) and analyzed these operators by using pseudo-differential calculus. These method
called the Dirichlet-to-Neumann map method. More precisely, we introduce this Dirichlet-to-
Neumann map method in Part IV. We extend this method to the case of ITE problem on
compact manifolds corresponding to the ITE problem for isotropic media.

2.2 The interior transmission eigenvalue problem for

anisotropic media

In this section, we discuss the ITE problem for anisotropic media, i.e., the ITE problem (1.8)–
(1.11) with A(x) ̸≡ Id. In the case n(x) ≡ 1, letting N(x) = A(x)−1, we can rewrite the ITE
problem (1.8)–(1.11) as the ITE problem for vector valued functions v = ∇v and w = ∇w of
the form

∇(∇ · v) + k2v = 0 in D; (2.9)

∇(∇ ·w) + k2Nw = 0 in D; (2.10)

(v, ν)− (w, ν) = 0 on ∂D; (2.11)

∇ · v −∇ ·w = 0 on ∂D. (2.12)

(2.9)–(2.12) is similar to the ITE problem for isotropic media. Therefore, using similar approach
to the analysis of the ITE problem for isotropic media, we can obtain similar results of the
distribution of ITEs (see e.g. [6])

In the case n(x) ̸≡ 1, we employ a different approach from the ITE problem for isotropic
media or for anisotropic media with n(x) ≡ 1. The discreteness of ITEs was proven in [13]
under some assumptions on A and n only on a neighborhood of ∂D. They were also given a
result on the location of transmission eigenvalues. V denotes a neighborhood of ∂D inside D.
We set

A∗ := inf
x∈V

inf
ξ∈Sd−1

(A(x)ξ, ξ) > 0, A∗ := sup
x∈V

sup
ξ∈Sd−1

(A(x)ξ, ξ) <∞,

n∗ := inf
x∈V

n(x) > 0, n∗ := sup
x∈V

n(x) <∞.

9



Theorem 2.2.6 (Bonnet-Ben Dhia-Chesnel-Haddar [13], Theorem 4.2 and Theorem 5.1). As-
sume that either

A(x) ≤ A∗Id < Id and n(x) ≤ n∗ < 1 a.e. x ∈ V ,

or

A(x) ≥ A∗Id > Id and n(x) ≥ n∗ > 1 a.e. x ∈ V .

Then the set of transmission eigenvalues is discrete in C. Moreover, there exist two positive
constants ρ and δ such that if k ∈ C satisfies |k| > ρ and |Re k| < δ|Im k|, then k is not an
ITE.

They rewritten the ITE problem (1.8)–(1.11) for anisotropic media as a variational form
which is different from (2.6). However, a sesquilinear form appeared in this variational form
has non-ellipticity. Using an isomorphism T , we can avoid this difficulty. Such a method is
called the T -coercivity method. More precisely, we introduce this T -coercivity method in Part
III. We extend this method to the case of ITE problem on compact manifolds corresponding
to the ITE problem for anisotropic media.

On the other hand, the existence of ITEs was proven in [10].

Theorem 2.2.7 (Cakoni-Kirsch [10], Theorem 4.8). Assume that either A∗ > 1 and n∗ < 1,
or A∗ < 1 and n∗ > 1. Then there exists an infinite discrete set of real ITEs with only possible
accumulation point at +∞.
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Chapter 3

Notation of manifold and function
spaces

For d ≥ 2, let M be a d-dimensional compact, connected and oriented Riemannian manifold
endowed with a smooth Riemannian metric g and with a smooth boundary ∂M .

For a local coordinates x = (x1, . . . , xd) ∈ M and a function f defined on a neighborhood
of x, let

∂f

∂xi
(x) (i = 1, . . . d)

be a directional derivative along xi at x. We define a operator (∂i)x (i = 1, . . . , d) by

(∂i)x : f 7→ ∂f

∂xi
(x).

The vector space spanned by (∂1)x, . . . , (∂d)x is called a tangent space ofM at x and is denoted
by TxM . An element of TxM is called a tangent vector of M at x ∈ M . Hence, we write
tangent vectors Xx on TxM as Xx =

∑d
i=1Xi(x)(∂i)x. Here, X1, . . . , Xd are smooth functions

on M . We denote the inner product and the norm on TxM by

(Xx, Yx)g =
d∑

i,j=1

gij(x)Xi(x)Yj(x), |Xx|g =
√

(Xx, Xx)g,

for Xx, Yx ∈ Tx(M) and smooth functions Xi, Yi (i = 1, . . . , d), respectively. We call TM =
∪x∈MTxM the tangent bundle of M . A vector field X on M is defined by assigning each point
x ∈M to the tangent vector Xx ∈ TxM as

X :M ∋ x 7→ {Xx}x∈M ∈ TM.

The space of all smooth vector fields is denoted by Γ(TM). We define the vector field ∂i (i =
1, . . . , d) by

∂i :M ∋ x 7→ {(∂i)x}x∈M ∈ TM.

For a multi-index α = (α1, . . . , αd), we write ∂αx = ∂α1
1 · · · ∂αd

d . For ξ = (ξ1, . . . , ξd) ∈ Rd, we
use the similar manner.

For x ∈M , the dual space T ∗
xM of TxM is called a cotangent space of M at x ∈M and its

elements are called cotangent vectors. We call T ∗M = ∪x∈MT
∗
xM the cotangent bundle on M .
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A differential 1-form ω on M is defined by assigning each point x ∈M to the cotangent vector
ωx ∈ T ∗

xM as

ω :M ∋ x 7→ {ωx}x∈M ∈ T ∗M.

The space of all smooth differential 1-forms is denoted by Ω1(M). Let (dx1)x, . . . , (dxd)x be a
dual basis of (∂1)x, . . . , (∂d)x. We define the differential 1-form dxi (i = 1, . . . , d) by

dxi :M ∋ x 7→ {(dxi)x}x∈M .

For ω1, ω2 ∈ Ω1(M), the exterior product of differential forms is defined by

(ω1 ∧ ω2)(X1, X2) = ω1(X1)ω2(X2)− ω2(X1)ω1(X2)

where X1, X2 are arbitrary vector fields on M .
We fix local coordinates x = (x1, . . . , xd) of M . We regard g = g(x) as a positive-definite

symmetric d×d-matrix valued function and we write g(x) = (gij(x))
d
i,j=1. We denote the inverse

matrix of g(x) by g(x)−1 = (gij(x))di,j=1. The determinant of g(x) and the volume element on

M are denoted by G(x) and dVg :=
√
Gdx =

√
Gdx1 ∧ · · · ∧ dxd, respectively. A symbol dS

and dSg denote the surface elements on ∂M induced by dx and dVg, respectively.
The space of all infinitely differentiable functions onM ,M and ∂M are denoted by C∞(M),

C∞(M) and C∞(∂M), repectively. Let ∆g : C∞(M) → C∞(M) and ∇g : C∞(M) → Γ(TM)
be the Laplace-Beltrami operator and the gradient operator on M , respectively. In local coor-
dinates on M , those operators are written in the form

∆gu = G−1/2

d∑
i,j=1

∂i(g
ijG1/2∂ju), (∇gu)x =

d∑
i,j=1

gij(∂iu)(∂j)x

for all u ∈ C∞(M), respectively. Here, (∇gu)x denotes the corresponding tangent vector in
TxM .

For measurable functions u on M and f on ∂M , we define

∥u∥L∞(M) = inf{C1 ≥ 0 | |u(x)| ≤ C1 a.e., x ∈M},
∥f∥L∞(∂M) = inf{C2 ≥ 0 | |f(x)| ≤ C2 a.e., x ∈ ∂M},

respectively. We define L∞(M) and L∞(∂M) by the space of all measurable functions u on
M such that ∥u∥L∞(M) < ∞ and the space of all measurable functions f on ∂M such that
∥f∥L∞(∂M) < ∞, respectively. We denote the L2(M)-inner product and the L2(M)-norm on
C∞(M) and the L2(∂M)-inner product and the L2(∂M)-norm on C∞(∂M) by

(u, v)M =

∫
M

uvdVg, ∥u∥M =
√

(u, u)M , u, v ∈ C∞(M),

(f, g)∂M =

∫
∂M

fgdS, ∥f∥∂M =
√

(f, f)∂M , f, g ∈ C∞(∂M),

respectively. Then the completion of C∞(M) by ∥·∥M and the completion of C∞(∂M) by ∥·∥∂M
are denoted by L2(M) and L2(∂M), respectively. For a strictly positive function η ∈ L∞(M),
we denote the L2(M, η)-inner product and the L2(M, η)-norm on C∞(M) by

(u, v)L2(M,η) = (ηu, v)M , ∥u∥L2(M,η) =
√
(u, u)L2(M,η), u, v ∈ C∞(M),
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respectively. Then the completion of C∞(M) by ∥ · ∥L2(M,η) is denoted by L2(M, η). We denote
the L2(TM)-inner product and the L2(TM)-norm on Γ(TM) by

(X,Y )TM =

∫
M

(Xx, Yx)gdVg,

∥X∥TM =
√

(X,X)TM ,

X, Y ∈ Γ(TM),

respectively. Then the completion of Γ(TM) by ∥ · ∥TM is denoted by L2(TM). We denote the
H1(M)-inner product and the H1(M)-norm on C∞(M) by

(u, v)H1(M) = (∇gu,∇gv)TM + (u, v)M ,

∥u∥H1(M) =
√

(u, u)H1(M),
u, v ∈ C∞(M),

respectively. Then the completion of C∞(M) by ∥ · ∥H1(M) is denoted by H1(M). We denote
the Christoffel symbol gΓ

k
ij by

gΓ
k
ij =

1

2

d∑
l=1

gkl
(
∂gil
∂xj

+
∂gjl
∂xi

− ∂gij
∂xl

)
.

For u ∈ C∞(M), ∇2
gu denotes the 2nd covariant derivative of u and the components of ∇2

gu in
local coordinates are given by

(∇2
gu)ij = ∂i∂ju−

d∑
k=1

gΓ
k
ij∂ku.

Put

|∇2
gu|2 =

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

gijgkl(∇2
gu)ik(∇2

gu)jl.

We denote the H2(M)-norm on C∞(M) by

∥u∥H2(M) =

(∫
M

|∇2
gu|2dVg + ∥u∥2H1(M)

)1/2

.

Then the completion of C∞(M) by ∥ · ∥H2(M) is denoted by H2(M).
Let N be a positive integer. For each finite open covering {Uj}Nj=1 of ∂M , there exists

a partition of unity {ρj}Nj=1 such that ρj ∈ C∞(∂M), 0 ≤ ρj ≤ 1 and supp(ρj) ⊂ Uj for

j = 1, 2, . . . , N and
∑N

j=1 ρj ≡ 1 on ∂M . Let φj : Uj ∋ x 7→ φj(x) = y′ = (y1, . . . , yd−1) ∈ Rd−1

be a diffeomorphism from Uj onto Vj := φ(Uj) such that φj(Uj ∩∂M) ⊂ {y = (y′, yd) | yd = 0}.
For s ≥ 0, let Hs(∂M) be a Sobolev space of functions u such that, in local coodinates

y = (y1, . . . , yd−1), we have ρju ∈ Hs(φj(Uj ∩ ∂M)). The norm in Hs(∂M) is given by

∥u∥Hs(∂M) =

{
N∑
j=1

∥ρju∥2Hs(φj(Uj∩∂M))

}1/2

.

The space Hs(∂M) is a Hilbert space with the Hs(∂M)-norm.
We denote the outward normal derivative on ∂M with respect to g by ∂ν . We define the

trace map

γ0, γ1 : C
∞(M) → C∞(∂M)
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by the formula

γ0u = u|∂M , γ1u = ∂νu|∂M .

Then the trace map γ0, γ1 : C
∞(M) → C∞(∂M) extend uniquely to continuous linear maps

γ0 : H
2(M) → H3/2(∂M), γ1 : H

2(M) → H1/2(∂M).

For the sake of simplicity, we often simply write γ0u and γ1u as u and ∂νu on ∂M , respectively.
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Part III

A locally anisotropic interior
transmission eigenvalue problem
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Chapter 4

A locally anisotropic interior
transmission eigenvalue problem

4.1 Our setting and main results I

To begin with, let us explain our setting in this part. For d ≥ 2, letM1 andM2 be d-dimensional
connected and compact smooth oriented manifolds endowed with Riemannian metrics g1 and
g2 and with smooth boundaries ∂M1 and ∂M2, respectively. Throughout this thesis, we assume
that

·M1 and M2 have a common boundary Γ := ∂M1 = ∂M2.

· Γ is a disjoint union of a finite number of connected and closed compon-

ents Γ1, . . . ,ΓN , namely Γ = ⨿N
j=1Γj.

(A)

In addition, we assume that

· Let Σ :=M1 ∩M2. Then there exist connected neighborhoods Σj of

Γj(1 ≤ j ≤ N) such that Σ is written as the disjoint union of Σ1, . . . ,ΣN ,

namely, Σ = ⨿N
j=1Σj (see Figure 4.1).

(A-1)

and

g1(x) ̸= g2(x) for some x ∈ Σ. (A-2)

Here, we note that we do not necessarily assume that M1 and M2 are diffeomorphic.
In this section, we assume (A), (A-1) and (A-2). For functions nl ∈ L∞(Ml) (l = 1, 2) and

ζ ∈ L∞(Γ) and for k ∈ C, we consider a boundary value problem for a system of Helmholtz
equations for unknown functions u1 and u2 of the form

(−∆g1 − k2n1)u1 = 0 in M1; (4.1)

(−∆g2 − k2n2)u2 = 0 in M2; (4.2)

u1 − u2 = 0 on Γ; (4.3)√
G1∂ν,1u1 −

√
G2∂ν,2u2 = ζu1 on Γ. (4.4)

Here, in the above, ∂ν,1 and ∂ν,2 denote the outward normal derivatives on Γ with respect to g1
and g2, respectively. We call the above boundary value problem a locally anisotropic interior
transmission eigenvalue problem.

19



Figure 4.1: Examples of M1 and M2 with common boundary Γ = ⨿N
j=1Γj.

Remark 4.1.8. In scattering theory, the above functions nl (l = 1, 2) and ζ are called a
refractive index and a conductive boundary parameter, respectively. Usually, we assume that
n1 and n2 are real valued functions and that ζ is a purely imaginary valued function. For the
details, see [5]. However, in this thesis, we allow n1, n2 and ζ to be complex valued functions.

We put

H := H1(M1)×H1(M2).

Then H is a Hilbert space equipped with the inner product (·, ·)H := (·, ·)H1(M1) + (·, ·)H1(M2)

and the norm ∥ · ∥H := (·, ·)1/2H . Now let us go into the definition of an ITE for the locally
anisotropic ITE problem.

Definition 4.1.9. If there exists a non-trivial solution (u1, u2) ∈ H of the locally anisotropic
ITE problem (4.1)–(4.4) for some k ∈ C, we call such a complex number k a locally anisotropic
interior transmission eigenvalue.

Definition 4.1.10.

· We denote the set of locally anisotropic ITEs by σa,I .

· A pair of functions (u1, u2) ∈ H is called a locally anisotropic interior transmission eigen-
function associated with k ∈ σa,I , if (u1, u2) satisfies the locally anisotropic ITE problem
(4.1)-(4.4) corresponding to k.

· The dimension of the space spanned by all locally anisotropic interior transmission eigen-
functions (u1, u2) associated with k ∈ σa,I is called the multiplicity of k.

Our first main result in this chapter is stated as follows.

Theorem 4.1.11. Suppose (A) and (A-1). Let nl ∈ L∞(Ml) (l = 1, 2) and ζ ∈ L∞(Γ) be
complex valued functions. We assume that g1 and g2 satisfy

g2√
G2

≤ c
g1√
G1

on Σ (4.5)

for some constant 0 < c < 1. Then there exists a constant ζ0 > 0 such that for ζ with
Re ζ ≥ −ζ0, the set σa,I of locally anisotropic ITEs is a discrete subset of C. The point at
infinity is the only possible accumulation point of σa,I . Furthermore, the multiplicity of each
locally anisotropic ITE is finite.
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Figure 4.2: An example of N(r, θ) (r = 1, θ = π/3).

Remark 4.1.12. The condition (4.5) on g1 and g2 implies that g1 and g1 satisfy (A-2), namely,
the boundary value problem (4.1)–(4.4) is the locally anisotropic ITE problem.

For r, θ > 0, we put

N(r, θ) := {k ∈ C | |k| > r and |Im k| > (tan θ)|Re k|}

(see Figure 4.2). Then our second main in this section result is given by the following.

Theorem 4.1.13. Suppose (A) and (A-1). Let nl ∈ L∞(Ml) (l = 1, 2) and ζ ∈ L∞(Γ) be
complex valued functions. We assume that Ren1 and Ren2 are strictly positive functions. We
also assume that g1 and g2 satisfy (4.5) and n1 and n2 satisfy

sup
Σ

(√
G1(Ren1)

)
< inf

Σ

(√
G2(Ren2)

)
. (4.6)

Then there exist positive constants r, θ, ϵ0 and ζ0 such that there are no locally anisotropic ITEs
in the region N(r, θ) for n1 with |Imn1| < ϵ0 in Σ and for ζ with Re ζ ≥ −ζ0 on Γ.

In [13], by using analytic Fredholm theorem (see e.g., Theorem 1 in [3]), Bonnet-Ben Dhia,
Chesnel and Haddar proved the discreteness of σa,I . In our setting, instead of analytic Fredholm
theorem, we use the theory of compact operators to simplify their argument. As a result,
we are able to remove their assumption which is essential to use analytic Fredholm theorem.
Furthermore, we note that in this thesis, we introduce a new function ζ called a boundary
conductive parameter in the ITE problem (4.1)–(4.4). This parameter ζ plays an important
role in scattering problem with conductive transmission condition. In this sense, we can say
that our problem is a slightly more generalized version of the original ITE problem.

4.2 T -coercivity method

In order to prove the discreteness of locally anisotropic ITEs, we employ the T -coercivity
method (see for example [13], [14]). Let

H0 := {(u1, u2) ∈ H | u1 = u2 on Γ}.

Let ∇g1 and ∇g2 be the gradient operators on (M1, g1) and on (M2, g2), respectively. We define
a sesquilinear form Ak[·, ·] on H0 ×H0 by

Ak[(u1, u2), (v1, v2)] := (∇g1u1,∇g1v1)TM1 − (∇g2u2,∇g2v2)TM2
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− k2 ((n1u1, v1)M1 − (n2u2, v2)M2)− (ζu1, v1)Γ

for all (u1, u2), (v1, v2) ∈ H0. We can easily show that the locally anisotropic ITE problem
(4.1)–(4.4) has a non-trivial solution (u1, u2) ∈ H if and only if the variational problem of the
form

Ak[(u1, u2), (v1, v2)] = 0 for all (v1, v2) ∈ H0

has a non-trivial solution (u1, u2) ∈ H0. We define an operator T on H0 by

T (u1, u2) = (u1 − 2χu2,−u2) (4.7)

for (u1, u2) ∈ H0. Here, χ is a smooth cut-off function on M2 such that χ = 1 in a small
neighborhood of Γ with support in Σ ∩M2 and 0 ≤ χ(x) ≤ 1 for all x ∈ M2. Let IH be the
identity operator on H. Since T 2 = IH, T is an isomorphism on H0. By using this isomorphism,
we define a sesquilinear form AT

k [·, ·] on H0 ×H0 by

AT
k [(u1, u2), (v1, v2)] := Ak[(u1, u2), T (v1, v2)]

for all (u1, u2), (v1, v2) ∈ H0. We can easily show that the above sesquilinear form AT
k [·, ·] is

non-degenerate and bounded on H0×H0. Hence, applying the first representation theorem (see
e.g., Theorem 2.1 in [18]) or the Riesz representation theorem to the sesquilinear form AT

k [·, ·],
we find that there exists a bounded linear operator A T (k) on H0 such that

AT
k [(u1, u2), (v1, v2)] = (A T (k)(u1, u2), (v1, v2))H

for all (u1, u2), (v1, v2) ∈ H0. Summarizing the above argument, we obtain the following propo-
sition.

Proposition 4.2.14. A point k ∈ C is a locally anisotropic ITE if and only if the operator
A T (k) on H0 has a non-trivial kernel. In this case, each element of the kernel of A T (k)
is interior transmission eigenfunction associated with k ∈ σa,I . The multiplicity of k ∈ σa,I
coincides with the dimension of the kernel of A T (k).

Now, let us introduce the notion of strictly coercive for a bounded linear operator.

Definition 4.2.15. Let H be a Hilbert space equipped with inner product (·, ·)H and norm
∥ · ∥H =

√
(·, ·)H . A bounded linear operator B : H → H is said to be strictly coercive if there

exists a constant C > 0 such that

Re (Bφ,φ)H ≥ C∥φ∥2H

for all φ ∈ H.

The following theorem is well-known as the Lax–Milgram theorem (see e.g., Theorem 13.23
in [19]).

Theorem 4.2.16. In a Hilbert space H, a strictly coercive bounded linear operator B : H → H
has a bounded inverse.

Let κ ∈ R \ {0} and ϵ, δ > 0 be constants such that

ϵ∗ := sup
Σ
(
√
G1)ϵ < inf

Σ
(
√
G2)δ =: δ∗.
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We define a sesquilinear form Aiκ,ϵ,δ[·, ·] on H0 ×H0 by

Aiκ,ϵ,δ[(u1, u2), (v1, v2)] := (∇g1u1,∇g1v1)TM1 − (∇g2u2,∇g2v2)TM2

+ κ2 ((ϵu1, v1)M1 − (δu2, v2)M2)− (ζu1, v1)Γ

for all (u1, u2), (v1, v2) ∈ H0. In addition, we define a bounded operator Iκ,δ,ϵ on H0 by

(Iκ,ϵ,δ(u1, u2), (v1, v2))H := Aiκ,ϵ,δ[(u1, u2), T (v1, v2)]

for all (u1, u2), (v1, v2) ∈ H0.
Now in order to reduce the locally anisotropic ITE problem (4.1)–(4.4) to the eigenvalue

problem for a certain compact operator, we state the following key lemma.

Lemma 4.2.17. Let nl ∈ L∞(Ml) (l = 1, 2) and ζ ∈ L∞(Γ) be complex valued functions. We
assume that g1 and g2 satisfy (4.5). Then there exist a point ζ0 > 0 and a constant C > 0 such
that for ζ with Re ζ ≥ −ζ0, the inequality

Re (Iκ,ϵ,δ(u1, u2), (u1, u2))H ≥ C∥(u1, u2)∥2H, (u1, u2) ∈ H0 (4.8)

holds.

Proof. We have the equality

Re (Iκ,ϵ,δ(u1, u2), (u1, u2))H

=

∫
M1\Σ

|∇g1u1|2g1dVg1 +
∫
M2\Σ

|∇g2u2|2g2dVg2 + κ2(ϵ∥u1∥2M1\Σ + δ∥u2∥2M2\Σ)

+

∫
Σ

|∇g1u1|2g1dVg1 +
∫
Σ

|∇g2u2|2g2dVg2 + κ2
(
ϵ

∫
Σ

|u1|2dVg1 +
∫
Σ

δ|u2|2dVg2
)

− 2Re (∇g1u1,∇g1(χu2))TM1 − 2κ2ϵRe (u1, χu2)M1 +Re (ζu1, u1)Γ

(4.9)

for all (u1, u2) ∈ H0. Using Young’s inequality and (4.5), we have

2Re (∇g1u1,∇g1(χu2))TM1

≤(α + β)

∫
Σ

|∇g1u1|2g1dVg1 + α−1

∫
Σ

|∇g1u2|2g1dVg1

+ β−1

∫
Σ

|∇g1χ|2g1 |u2|
2dVg1

≤(α + β)

∫
Σ

|∇g1u1|2g1dVg1 + cα−1

∫
Σ

|∇g2u2|2g2dVg2

+ β−1 sup
Σ

(
|∇g1χ|2g1

√
G1

G2

)∫
Σ

|u2|2dVg2

(4.10)

and

2κ2ϵRe (u1, χu2)M1 ≤ κ2ϵγ

∫
Σ

|u1|2dVg1 + κ2
∫
Σ

1√
G2

γ−1
√
G1ϵ|u2|2dVg2 (4.11)
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for all α, β, γ > 0. Plugging (4.10) and (4.11) into (4.9), we obtain

Re (Iκ,ϵ,δ(u1, u2), (u1, u2))H

≥
∫
M1\Σ

|∇g1u1|2g1dVg1 +
∫
M2\Σ

|∇g2u2|2g2dVg2 + κ2(ϵ∥u1∥2M1\Σ + δ∥u2∥2M2\Σ)

+ (1− α− β)

∫
Σ

|∇g1u1|2g1dVg1 + (1− cα−1)

∫
Σ

|∇g2u2|2g2dVg2

+ κ2ϵ(1− γ)

∫
Σ

|u1|2dVg1

+ κ2
∫
Σ

1√
G2

(δ∗ − γ−1ϵ∗)|u2|2dVg2 − β−1 sup
Σ

(
|∇g1χ|2g1

√
G1

G2

)∫
Σ

|u2|2dVg2

− ζ0∥u1∥2Γ.

Taking γ such that ϵ∗/δ∗ < γ < 1, we have

Re (Iκ,ϵ,δ(u1, u2), (u1, u2))H

≥
∫
M1\Σ

|∇g1u1|2g1dVg1 +
∫
M2\Σ

|∇g2u2|2g2dVg2 + κ2(ϵ∥u1∥2M1\Σ + δ∥u2∥2M2\Σ)

+ (1− α− β)

∫
Σ

|∇g1u1|2g1dVg1 + (1− cα−1)

∫
Σ

|∇g2u2|2g2dVg2

+ κ2ϵ(1− γ)

∫
Σ

|u1|2dVg1 +
(
κ2c1(δ∗ − γ−1ϵ∗)− c2β

−1
) ∫

Σ

|u2|2dVg2 − ζ0∥u1∥2Γ

for some c1, c2 > 0. Using the trace theorem, we obtain

∥u1∥Γ ≤ c3∥u1∥H1(M1) (4.12)

for some c3 > 0. By taking α, β such that

c < α < 1, 0 < β < 1− α

and using (4.12), letting |κ| > 0 large enough and ζ0 > 0 small enough, more precisely taking

κ2 >
c2β

−1

c1(δ∗ − γ−1ϵ∗)
, 0 < ζ0 < c−1

3 min{1− α− β, κ2ϵ(1− γ)},

we can easily show that there exists a constant C > 0 such that the inequality (4.8) holds.

Remark 4.2.18. For example, we take

α =
c+ 1

2
, β =

1− c

4
, γ =

δ∗ + ϵ∗

2δ∗
, ζ0 =

1− c

8c23

and

κ2 = max

{
2δ∗

ϵ(δ∗ − ϵ∗)
,
1

δ
,

δ∗ + ϵ∗

c1δ∗(δ∗ − ϵ∗)

(
1 +

4c2
1− c

)}
.

Then the constant C > 0 appeared in (4.8) is equal to (1− c)/8.

Remark 4.2.19. As stated above, using the isomorphism T given by (4.7), we can avoid the
difficulty arising from the non-ellipticity of the sesquilinear form Ak[·, ·]. Such a method is
called the T -coercivity method. This method was first introduced by Bonnet-Ben Dhia, Ciarlet
and Zwölf [14]. Using the idea of T -coercivity, they proved that the electromagnetic wave
transmission problem is well-posed when dielectric constant changes its sign.
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Using the above lemma, we can write A T (k) as the sum of an isomorphism and a compact
operator as follows.

Proposition 4.2.20. Let nl ∈ L∞(Ml) (l = 1, 2) and ζ ∈ L∞(Γ) be complex valued functions.
We assume that g1 and g2 satisfy (4.5). Then there exists a point ζ0 > 0 such that for ζ with
Re ζ ≥ −ζ0 and for all k ∈ C, the operator A T (k) is written in the form A T (k) = I + K
where I is an isomorphism on H0 and K is a compact operator on H0. As a result, A T (k)
is a Fredholm operator on H0 for all k ∈ C

Proof. By Lemma 4.2.17, the inequality (4.8) holds. Applying Theorem 4.2.16 to the
bounded linear operator Iκ,ϵ,δ, we find that Iκ,ϵ,δ is an isomorphism on H0. Recall that A T (k)
and Iκ,ϵ,δ are written as

(A T (k)(u1, u2), (v1, v2))H

=(∇g1u1,∇g1v1)TM1 + (∇g2u2,∇g2v2)TM2 − 2(∇g1u1,∇g1(χv2))TM1

− k2 ((n1u1, v1)M1 + (n2u2, v2)M2 − 2(n1u1, χv2)M1)− (ζu1, v1)Γ

and

(Iκ,ϵ,δ(u1, u2), (v1, v2))H

=(∇g1u1,∇g1v1)TM1 + (∇g2u2,∇g2v2)TM2 − 2(∇g1u1,∇g1(χv2))TM1

+ κ2 ((ϵu1, v1)M1 + (δu2, v2)M2 − 2(ϵu1, χv2)M1)− (ζu1, v1)Γ

for (u1, u2), (v1, v2) ∈ H0, respectively. We put K := A T (k) − Iκ,ϵ,δ. Then the operator K
satisfies

(K (u1, u2), (v1, v2))H

=− k2 ((n1u1, v1)M1 + (n2u2, v2)M2 − 2(n1u1, χv2)M1)

− κ2 ((ϵu1, v1)M1 + (δu2, v2)M2 − 2(ϵu1, χv2)M1)

for all (u1, u2), (v1, v2) ∈ H0. Therefore, the inequality

|(K (u1, u2), (v1, v2))H| ≤ C∥(u1, u2)∥L2(M1)×L2(M2)∥(v1, v2)∥H

holds for some constant C > 0 depending on k. Here, ∥ · ∥L2(M1)×L2(M2) is a norm of the Hilbert
space L2(M1)× L2(M2) and denotes

∥(u1, u2)∥L2(M1)×L2(M2) = (∥u1∥2M1
+ ∥u2∥2M2

)1/2

for (u1, u2) ∈ L2(M1)× L2(M2). The above inequality is equivalent to

∥K (u1, u2)∥H ≤ C∥(u1, u2)∥L2(M1)×L2(M2) (4.13)

for all (u1, u2) ∈ H0. By the Rellich–Kondrashov theorem (see e.g., Theorem 6.3 in [1]), a
bounded sequence in H0 has a Cauchy subsequence in L2(M1) × L2(M2). Let {(u1n, u2n)}∞n=1

be such a subsequence. Using the inequality (4.13), we have

∥K (u1n, u2n)− K (u1m, u2m)∥H ≤ C∥(u1n, u2n)− (u1m, u2m)∥L2(M1)×L2(M1).

This means that {K (u1n, u2n)}∞n=1 is a Cauchy sequence in H0. Thus, K is a compact operator
on H0. If we take I = Iκ,ϵ,δ, then we have A T (k) = I +K , which proves the assertion.
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4.3 Proof of Theorem 4.1.11 and Theorem 4.1.13

First, we prove Theorem 4.1.11.

Proof of Theorem 4.1.11. Let us define two operators F and Gκ,ϵ,δ on H0 by

(F (u1, u2), (v1, v2))H = (n1u1, v1)M1 + (n2u2, v2)M2 − 2(n1u1, χv2)M1

and

(Gκ,ϵ,δ(u1, u2), (v1, v2))H = κ2 ((ϵu1, v1)M1 + (δu2, v2)M2 − 2(ϵu1, χv2)M1)

for all (u1, u2), (v1, v2) ∈ H0, respectively. By the same argument as in the proof of Proposition
4.2.20, we can show that F and Gκ,ϵ,δ are also compact operators on H0. Using these operators,
we rewrite A T (k) as

Iκ,ϵ,δ − k2F − Gκ,ϵ,δ.

Let us take ϵ, δ > 0 such that supΣ(
√
G1)ϵ < infΣ(

√
G2)δ. Next, we choose ϵ and δ small enough

such that ∥I −1
κ,ϵ,δGκ,ϵ,δ∥H0→H0 < 1. Here, ∥ · ∥H0→H0 denotes the operator norm for bounded

linear operators on H0. Then we can easily show that IH − I −1
κ,ϵ,δGκ,ϵ,δ is a bijection on H0

and has a bounded inverse. Therefore, a locally anisotropic interior transmission eigenfunction
(u1, u2) ∈ H0 associated with k ∈ σa,I satisfies

0 = I −1
κ,ϵ,δA

T (k)(u1, u2)

= (IH − I −1
κ,ϵ,δGκ,ϵ,δ)(u1, u2)− k2I −1

κ,ϵ,δF (u1, u2).
(4.14)

Put B = (IH − I −1
κ,ϵ,δGκ,ϵ,δ)

−1I −1
κ,ϵ,δ. Obviously, B is a bounded operator on H0 and is inde-

pendent of k. Thus, BF is also a compact operator on H0. Moreover, it follows easily from
(4.14) that

BF (u1, u2) = k−2(u1, u2)

for all (u1, u2) ∈ H0 \ {(0, 0)}. As a conclusion, (u1, u2) ∈ H0 is a locally anisotropic interior
transmission eigenfunction associated with k ∈ σa,I \{0} if and only if k−2 ∈ C is an eigenvalue
of the compact operator BF on H0 and (u1, u2) ∈ H0 is the corresponding eigenfunction
associated with k−2. As is well-known in the theory of compact operators, 0 is the only possible
accumulation point of eigenvalues of a compact operator. Therefore, we obtain the assertion of
Theorem 4.1.11.

Next, we prove Theorem 4.1.13.

Proof of Theorem 4.1.13. It is sufficient to prove that there exist constants r > 0 and θ ∈
(0, π/2] such that for all k ∈ N(r, θ) and for some constant C > 0, the inequality

Re (A T (k)(u1, u2), (u1, u2)) ≥ C∥(u1, u2)∥2H, (u1, u2) ∈ H0 (4.15)

holds. Indeed, applying Theorem 4.2.16 to the bounded linear operator A T (k), we find that for
k ∈ N(r, θ), A T (k) is an isomorphism on H0 and has a trivial kernel. Hence, such a complex
number k is not a locally anisotropic ITE.

We put

n∗
1 := sup

Σ

(√
G1(Ren1)

)
, n2∗ := inf

Σ

(√
G2(Ren2)

)
.
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We assume that n1 satisfies

|Imn1| < ϵ0 in Σ

for some constant ϵ0 > 0. Then we derive the estimate

2Re (n1u1, χu2)M1

≤γ
∫
Σ

(Ren1)|u1|2dVg1 +
∫
Σ

1√
G2

γ−1(
√
G1Ren1)|u2|2dVg2

+ ϵ0

∫
Σ

|u1|2dVg1 + ϵ0 sup
Σ

(√
G1

G2

)∫
Σ

|u2|2dVg2

(4.16)

for all γ > 0. Let ρ ∈ R \ {0}. Using (4.5), (4.10) and (4.16), we obtain

Re (A T (iρ)(u1, u2), (u1, u2))H

≥
∫
M1\Σ

|∇g1u1|2g1dVg1 +
∫
M2\Σ

|∇g2u2|2g2dVg2

+ ρ2
(

inf
M1\Σ

(Ren1)∥u1∥2M1\Σ + inf
M2\Σ

(Ren2)∥u2∥2M2\Σ

)
+ (1− α− β)

∫
Σ

|∇g1u1|2g1dVg1 + (1− cα−1)

∫
Σ

|∇g2u2|2g2dVg2

+ ρ2
∫
Σ

(1− γ)(Ren1)|u1|2dVg1 − ρ2ϵ0

∫
Σ

|u1|2dVg1

+ ρ2
∫
Σ

1√
G2

(n2∗ − γ−1n∗
1)|u2|2dVg2 − ρ2ϵ0 sup

Σ

(√
G1

G2

)∫
Σ

|u2|2dVg2

− β−1 sup
Σ

(
|∇g1χ|2g1

√
G1

G2

)∫
Σ

|u2|2dVg2 − ζ0∥u1∥2Γ.

for all α, β, γ > 0. Taking γ such that n∗
1/n2∗ < γ < 1, we have

Re (A T (iρ)(u1, u2), (u1, u2))H

≥
∫
M1\Σ

|∇g1u1|2g1dVg1 +
∫
M2\Σ

|∇g2u2|2g2dVg2

+ ρ2
(

inf
M1\Σ

(Ren1)∥u1∥2M1\Σ + inf
M2\Σ

(Ren2)∥u2∥2M2\Σ

)
+ (1− α− β)

∫
Σ

|∇g1u1|2g1dVg1 + (1− cα−1)

∫
Σ

|∇g2u2|2g2dVg2

+ ρ2
(
(1− γ) inf

Σ
(Ren1)− ϵ0

)∫
Σ

|u1|2dVg1

+
(
ρ2
(
c1(n2∗ − γ−1n∗

1)− c4ϵ0
)
− c2β

−1
) ∫

Σ

|u2|2dVg2 − ζ0∥u1∥2Γ

for some c1, c2, c4 > 0. Using the same argument as in the proof of Lemma 4.2.17, for a suitable
choice of constants α, β, γ and a small constant ϵ0 > 0 and a large constant r > 0 and letting
|ρ| > r, we have

Re (A T (iρ)(u1, u2), (u1, u2))H

≥C1(∥∇g1u1∥2TM1
+ ∥∇g2u2∥2TM2

) + C2ρ
2(∥u1∥2M1

+ ∥u2∥2M2
)− ζ0∥u1∥2Γ

(4.17)
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for some constants C1, C2 > 0. On the other hand, taking k = iρeiφ with 0 ≤ φ < π/2, we find
that there exists a constant C3 > 0 such that

Re ((A T (iρ)− A T (k))(u1, u2), (u1, u2))H

≤C3ρ
2|1− e2iφ|(∥u1∥2M1

+ ∥u2∥2M2
)

(4.18)

for all (u1, u2) ∈ H0. Combining (4.17) with (4.18), we obtain

Re (A T (k)(u1, u2), (u1, u2))H

≥C1(∥∇g1u1∥2TM1
+ ∥∇g2u2∥2TM2

)

+ (C2 − C3|1− e2iφ|)ρ2(∥u1∥2M1
+ ∥u2∥2M2

)− ζ0∥u1∥2Γ

for all (u1, u2) ∈ H0. By choosing φ, ζ0 > 0 small enough and using (4.12), we have

Re (A T (k)(u1, u2), (u1, u2))H ≥ C∥(u1, u2)∥2H

for some constant C > 0. We put θ := π/2− φ. Then for all k ∈ N(r, θ), the inequality (4.15)
holds. Therefore, we obtain the assertion of the Theorem 4.1.13.
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Part IV

A locally isotropic interior
transmission eigenvalue problem
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Chapter 5

A locally isotropic interior
transmission eigenvalue problem

5.1 Our setting and main results II

For d ≥ 2, we consider two d-dimensional connected and compact smooth oriented Riemannian
manifolds (M1, g1) and (M2, g2) which satisfy the assumption (A). In addition, we assume that
g1 and g2 satisfy

g1 = g2 on Γ. (I-1)

We also note that we need our geometric assumptions only in some small neighborhoods of
the boundary Γ, in particular, we do not assume that M1 and M2 are diffeomorphic outside of
these neighborhoods.

In this section, we assume (A) and (I-1). For strictly positive functions nl ∈ C∞(Ml) (l =
1, 2) and ζ ∈ C∞(Γ) and for λ ∈ C, we consider a boundary value problem for a system of
Helmholtz equations for unknown functions u1 and u2 of the form

(−∆g1 − λn1)u1 = 0 in M1; (5.1)

(−∆g2 − λn2)u2 = 0 in M2; (5.2)

u1 − u2 = 0 on Γ; (5.3)

∂ν,1u1 − ∂ν,2u2 = ζu1 on Γ. (5.4)

We call the above boundary value problem a locally isotropic interior transmission eigenvalue
problem. For ζ, this thesis covers the following two cases : (i) ζ = 0 on Γ, or (ii) ζ is strictly
positive or strictly negative on every component of Γ. Now let us go into the definition of an
interior transmission eigenvalue for the locally isotropic ITE problem.

Definition 5.1.21. If there exists a non-trivial solution (u1, u2) ∈ H2(M1) × H2(M2) of the
locally isotropic ITE problem (5.1)–(5.4) for some λ ∈ C, we call such a complex number λ a
locally isotropic interior transmission eigenvalue.

Definition 5.1.22.

· We denote the set of locally isotropic ITEs by σi,I .

· A pair of functions (u1, u2) ∈ H2(M1) × H2(M2) is called a locally isotropic interior
transmission eigenfunction associated with λ ∈ σi,I , if (u1, u2) satisfies the locally isotropic
ITE problem (5.1)–(5.4) corresponding to λ.
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· The dimension of the space spanned by all locally isotropic interior transmission eigen-
functions (u1, u2) associated with λ ∈ σi,I is called the multiplicity of λ.

We take an arbitrary closed sector S0 centered at the origin such that S0 ∩R>0 = ∅.
Our first main result in this chapter is stated as follows.

Theorem 5.1.23. Suppose (A) and (I-1). We assume that either

∂mν,1g
ij
1 = ∂mν,2g

ij
2 for m ≤ 2 and n1 ̸= n2 on Γ (I-2-1)

or

∂mν,1g
ij
1 = ∂mν,2g

ij
2 for m ≤ 3 and n1 = n2, ∂ν,1n1 ̸= ∂ν,2n2 on Γ. (I-2-2)

The set of locally isotropic ITEs consists of a discrete subset of C with the only possible accu-
mulation points at 0 and infinity. There exist at most finitely many locally isotropic ITEs in
S0 ∩ {λ ∈ C | |λ| ≥ 1}.

For a small constant α > 0, we define the counting function of locally isotropic ITEs with
multiplicities taken into account by

NT = #{j | α < λTj ≤ λ}

where λT1 ≤ λT2 ≤ · · · are locally isotropic ITEs included in (α,∞). Let Ol(x) = {ξ ∈ Rd |∑d
i,j=1 g

ij
l (x)ξiξj ≤ nl(x)} for x ∈Ml and

Vl = (2π)−d

∫
Ml

∫
Ol

dξdVl.

Our second main result in this chapter is stated as follows.

Theorem 5.1.24. Suppose (A) and (I-1). We assume that

If ζ ̸= 0, then − ζ do not change its sign on whole of Γ and this sign is denoted by γ0.

(I-3-0)

If ζ = 0 and suppose (I-2-1), then n2 − n1 do not change its sign on whole of Γ

and this sign is denoted by γ1. (I-3-1)

If ζ = 0 and suppose (I-2-2), then ∂ν,1n1 − ∂ν,2n2 do not change its sign on whole of Γ

and this sign is denoted by γ2. (I-3-2)

For each (I-3-n), let γ = γn. If γ(V1 − V2) > 0, NT (λ) satisfies asymptotically as λ→ ∞

NT (λ) ≥ γ(V1 − V2)λ
d/2 +O(λ(d−1)/2).

5.2 Dirichlet-to-Neumann map

5.2.1 Dirichlet-to-Neumann map

Let (M, g) be a d-dimensional connected and compact smooth oriented Riemannian manifold
with smooth boundary ∂M . For functions n ∈ C∞(M) and f ∈ H3/2(∂M), we consider the
following Dirichlet boundary value problem for unknown function u ∈ H2(M) of the form

(−∆g − λn)u = 0 in M ;

u = f on ∂M.
(5.5)
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We define the Dirichlet-to-Neumann (the D-N map for short) Λ(λ) by

Λ(λ)f = ∂νu on ∂M, (5.6)

where u is a solution of (5.5).
In the following, we call λ a Dirichlet eigenvalue if there exists a non-trivial solution of the

equation

(−∆g − λn)u = 0 in M ;

u = 0 on ∂M.
(5.7)

In fact, (5.7) is equivalent to

(−n−1∆g − λ)u = 0 in M ;

u = 0 on ∂M,
(5.8)

which is an eigenvalue problem of the second-order self-adjoint elliptic operator L = −n−1∆g

in L2(M,n) with the Dirichlet boundary condition. Then its eigenvalues form an increasing
sequence 0 < λ1 ≤ λ2 ≤ · · · , satisfying the Weyl’s asymptotics which we derive in §5.3. The
corresponding eigenfunctions ϕj (j = 1, 2, . . .) can be chosen so that {ϕj}∞j=1 is an orthonormal
basis in L2(M,n). We denote the set of Dirichlet eigenvalues by σD := {λj}∞j=1. For λ ̸∈
σD, the D-N map Λ(λ) is well-defined and extends uniquely as a continuous operator Λ(λ) :
H3/2(∂M) → H1/2(∂M).

Let Ej ⊂ Z>0 such that ⨿∞
j=1Ej = Z>0, and i1 and i2 belong to the same set Ej (j = 1, 2, . . .)

if and only if λi1 = λi2 .

Proposition 5.2.25. Λ(λ) is meromorphic with respect to λ ∈ C and has first order poles at
each λ ∈ σD. Moreover, Λ(λ) has the following representations.

(1) For x ∈ ∂M and f ∈ H3/2(∂M), we have

Λ(λ)f(x) = −
∞∑
j=1

∫
∂M

∂ν(x)ϕj(x) ∂ν(y)ϕj(y)

λj − λ
f(y)dSg(y). (5.9)

(2) In a neighborhood of an arbitrary fixed point λj ∈ σD for j = 1, 2, . . ., we have

Λ(λ) =
Qj

λj − λ
+Hj(λ), (5.10)

where Qj is the residue of Λ(λ) at λ = λj given by

Qjf = −
∑
i∈Ej

(∫
∂M

∂ν(y)ϕi(y) f(y)dSg(y)

)
∂νϕi, (5.11)

and Hj(λ) : H
3/2(∂M) → H1/2(∂M) is analytic in a neighborhood of λj.

Proof. We follow the argument of §4.1.12 in [17]. Let E ∈ H2(M) be an extension of f into
M satisfying E

∣∣
∂M

= f and ∥E∥H2(M) ≤ C∥f∥H3/2(∂M) for some constants C > 0. Then we
have

(−n−1∆g − λ)(u− E) = −(−n−1∆g − λ)E
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where u is a solution of (5.5). Since R(λ) := (−n−1∆g − λ)−1 is a meromorphic operator
valued function with first order poles only at λj ∈ σD, u = E − R(λ)(−n−1∆g − λ)E is also a
meromorphic H2(M)-valued function with first order poles only at λj ∈ σD.

Next we prove (5.9). Integrating by parts, we compute the Fourier coefficients of u with
respect to the real-valued eigenfunction ϕj :

(u, ϕi)L2(M,n) = −
∫
∂M

∂ν(y)ϕi(y)

λi − λ
f(y)dSg(y). (5.12)

From this formula and the outward normal derivative of u, Λ(λ) satisfies (5.9).
Finally we verify (5.10) and (5.11). Let Pj : L

2(M,n) → L2(M,n) be the projection to the
eigenspace corresponding to λj ∈ σD i.e.,

Pjv =
∑
i∈Ej

(v, ϕi)L2(M,n)ϕi for v ∈ L2(M,n).

In view of (5.12), we have

Pju = − 1

λj − λ

∑
i∈Ej

(∫
∂M

∂ν(y)ϕi(y) f(y)dSg(y)

)
ϕi,

and this implies (5.11). Moreover,

(1− Pj)u = −
∑

i∈Z>0\Ej

1

λi − λ

(∫
∂M

∂ν(y)ϕi(y) f(y)dSg(y)

)
ϕi,

is analytic with respect to λ in a neighborhood of λj. Putting Hj(λ)f = ∂ν((1−Pj)u) on ∂M ,
we obatain the assertion of Proposition.

Remark 5.2.26. The formula (5.11) means that the range ofQj is a finite dimensional subspace
spanned by ∂νϕi for i ∈ Ej. Note that ∂νϕi for all i ∈ Ej are linear independent since {ϕi}∞i=1 is
the orthogonal basis in L2(M,n). Hence dimRanQj coincides with the multiplicity of λj ∈ σD.
We can see that the integral kernel of Qj given by

−
∑
i∈Ej

∂ν(x)ϕi(x) ∂ν(y)ϕi(y)

is smooth in (x, y) ∈ ∂M × ∂M by the regularity of Dirichlet eigenfunctions.

Let λj ∈ σD. We define E(λj) ⊂ H2(M) as the eigenspace associated by λj, and B(λj) as
the subspace of H3/2(∂M) spanned by ∂νϕi for all i ∈ Ej. We denote E(λj)

c and B(λj)
c as

their orthogonal complements in L2(M) and L2(∂M), respectively.

Lemma 5.2.27. Let λj ∈ σD. Then the equation (5.5) with λ = λj and f ∈ H3/2(∂M) has a
non trivial solution in H2(M) if and only if f ∈ B(λj)

c.

Proof. If f is orthogonal to ∂νϕi for all i ∈ Ej, there exist general solutions in H2(M) of the
equation (5.5) with λ = λj of the form

u = −
∑

i∈Z>0\Ej

1

λi − λ

(∫
∂M

∂ν(y)ϕi(y) f(y)dSg(y)

)
ϕi +

∑
i∈Ej

ciϕi, (5.13)
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for any ci ∈ C (i ∈ Ej). Conversely, if u ∈ H2(M) is a non trivial solution of (5.5) with λ = λj,
using Green’s formula, we have∫

M

(∆guϕi − u∆gϕi) dVg = −
∫
∂M

f ∂νϕidSg,

for all i ∈ Ej. Since ϕi is an eigenfunction associated with λi for all i ∈ Ej, the left-hand side is
equal to zero. Then f is orthogonal to ∂νϕi for all i ∈ Ej.

The above lemma implies a unique solvability in a subspace as follows.

Corollary 5.2.28. Let λj ∈ σD. For any f ∈ B(λj)
c, there exists a unique solution u ∈

E(λj)
c ∩H2(M) of the equation (5.5) with λ = λj represented by

u = −
∑

i∈Z>0\Ej

1

λi − λ

(∫
∂M

∂ν(y)ϕi(y) f(y)dSg(y)

)
ϕi. (5.14)

Proof. We have only to check the uniqueness. This is trivial since the equation (5.7) with
λ = λj has only the trivial solution in E(λj)

c ∩H2(M).
Let nl ∈ C∞(Ml) (l = 1, 2) and f ∈ H3/2(Γ). For the Dirichlet boundary value problem of

the form

(−∆gl − λnl)ul = 0 in Ml;

ul = f on Γ,
(5.15)

we define the D-N map Λl(λ) by

Λl(λ)f = ∂ν,lul on Γ.

We also denote the set of corresponding Dirichlet eigenvalues by σD,l (l = 1, 2) and the corre-
sponding Dirichlet eigenfunctions by ϕl,j (j = 1, 2, . . .), repectively. The residue of Λl(λ) (l =
1, 2) at λ = λl,j ∈ σD,l is denoted by Ql,j and the corresponding analytic part is given by
Hl,j(λ). For λl,j ∈ σD,l (l = 1, 2), we use the similar notations El,j, El(λl,j), Bl(λl,j), El(λl,j)

c and
Bl(λl,j)

c to the above.
As has been in Propositions 5.2.25, Λ1(λ)−Λ2(λ) is also meromorphic with respect to λ ∈ C

and has first order poles on σD,1 ∪ σD,2. We denote the set of poles of Λ1(λ)−Λ2(λ) by σP . In
a neighborhood of an arbitrary fixed point λj ∈ σP for j = 1, 2, . . ., we have

Λ1(λ)− Λ2(λ) =
Q0,j

λj − λ
+H0,j(λ), (5.16)

where Q0,j is the residue of Λ1(λ)−Λ2(λ) at λ = λj and H0,j is the corresponding analytic part.
Q0,j and H0,j(λ) (j = 1, 2, . . .) have same properties of Ql,j and Hl(λ) (l = 1, 2), respectively.
In the following, we define the kernel of Λ1(λ)− Λ2(λ)− ζ by

ker(Λ1(λ)− Λ2(λ)− ζ)

=

{
{f ∈ H3/2(Γ) | (Λ1(λ)− Λ2(λ)− ζ)f = 0} if λ ̸∈ σP ,

{f ∈ H3/2(Γ) | Q0,jf = (H0,j(λj)− ζ) f = 0} if λ = λj ∈ σP .

(5.17)

Now we can state the relation between locally isotropic ITEs and the D-N map as follows.

Lemma 5.2.29. (1) Suppose λj ̸∈ σD,1 ∩ σD,2. Then λj ∈ C is a locally isotropic ITE
if and only if ker(Λ1(λj) − Λ2(λj) − ζ) ̸= {0}. The multiplicity of λj coincides with
dim(ker(Λ1(λj)− Λ2(λj)− ζ)).
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(2) Suppose λj ∈ σD,1 ∩ σD,2. Then λj ∈ R is a locally isotropic ITE if and only if
ker(Λ1(λj) − Λ2(λj) − ζ) ̸= {0} or the ranges of Q1,j and Q2,j have a non trivial in-
tersection. The multiplicity of λj coincides with the sum of dim(ker(Λ1(λj)−Λ2(λj)− ζ))
and the dimension of the above intersection.

Proof. We first prove the assertion (1). When λj ̸∈ σD,1 ∪ σD,2, this lemma is a direct
consequence of the definition of locally isotropic ITEs. We have only to show for λj ∈ σD,1\σD,2.
For 0 ̸= f ∈ ker(Λ1(λj) − Λ2(λj) − ζ), we have Q1,jf = (H1,j(λj) − Λ2(λj) − ζ)f = 0. From
Q1,jf = 0 and (5.11), we have f ∈ B1(λj)

c. By Lemma 5.2.27, the Dirichlet boundary value
problem of the form

(−∆g1 − λjn1)u1 = 0 in M1;

u1 = f on Γ,
(5.18)

has a non trivial solution. On the other hand, using the equality Λ2(λj)f = (H1,j(λj) − ζ)f ,
we obtain the boundary value problem of the form

(−∆g2 − λjn2)u2 = 0 in M2;

u2 = f on Γ;

∂ν,2u2 = (H1,j(λj)− ζ)f on Γ.

(5.19)

Summarizing (5.18), (5.19) and ∂ν,1u1 = H1,j(λj)f , we conclude that λj is a locally isotropic
ITE. Conversely, if λj ∈ σD,1 \ σD,2 is a locally isotropic ITE, the equation (5.15) for l = 1 and
λ = λj with the condition u1 = f ̸= 0 on Γ must have a non trivial solution. From Lemma
5.2.27, we have f ∈ B1(λj)

c. In view of (5.11), this impliesQ1,jf = 0. From the definition ofQ1,j

and H1,j(λ), we obtain ∂ν,1u1 = H1,j(λj)f . Hence, the boundary condition ∂ν,1u1−∂ν,2u2 = ζu1
implies that (H1,j(λj)− Λ2(λj)− ζ)f = 0. Therefore, we obtain f ∈ ker(Λ1(λj)− Λ2(λj)− ζ).
We have proven the assertion (1).

For the assertion (2), we have only to show the latter case. We note that in this case, ζ = 0
on Γ. Let λj ∈ σD,1∩σD,2. In fact, if there exists a non trivial solution (u1, u2) ∈ E1(λj)×E2(λj)
of the locally isotropic ITE problem of the form

(−∆g1 − λjn1)u1 = 0 in M1;

(−∆g2 − λjn2)u2 = 0 in M2;

u1 = u2 = 0 on Γ;

∂ν,1u1 = ∂ν,2u2 on Γ,

then we have that the ranges of Q1,j and Q2,j have a non trivial intersection. Conversely, if the
ranges of Q1,j and Q2,j have a non trivial intersection, then there exist numbers i1 and i2 such
that the eigenfunctions ϕ1,i1 associated with λi1 ∈ σD,1 with i1 ∈ E1,j and ϕ2,i2 associated with
λi2 ∈ σD,2 with i2 ∈ E2,j satisfy that ∂ν,1ϕ1,i1 = ∂ν,2ϕ2,i2 on Γ. Therefore, λj = λi1 = λi2 is a
locally isotropic ITE.

Remark 5.2.30. Let λj be a locally isotropic ITE. In [21], the authors call λj singular ITE if
λj satisfies the latter condition in the assertion (2) of Lemma 5.2.29.

5.2.2 Local regularizer

Now let us compute the symbol of the D-N map. Here we construct the local regularizer for
the equation (5.5). As in [20], we follow the argument of §2 in [21], slightly modifying it for
our case.
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In the following, we assume that the equation (5.5) is uniquely solvable in H2(M) or a
suitable subspace of L2(M).

We take a point x(0) ∈ ∂M and fix it. Let V ⊂ ∂M be a sufficiently small neighborhood
of x(0) in ∂M . There exists a small open domain U ⊂ M such that U ∩ Γ = V and U is
diffeomorphic to an open domain Ω ⊂ Rd

+ := {y = (y1, . . . , yd−1, yd) | yd ≥ 0}.
We introduce local coordinates y = (y1, . . . , yd−1, yd) in Ω with the center x(0) ∈ V such that

· x(0) = 0 ∈ Rd
+.

· Ω is given by the upper half unit ball {y ∈ Rd
+ | |y| < 1, yd > 0}.

· the subset ∂Ω0 := {y ∈ Ω | yd = 0} is diffeomorphic to V.

· yd is the distance between a point y = (y1, . . . , yd−1, yd) ∈ Ω and ∂Ω0.

(5.20)

Therefore, we have

(gij(y))di,j=1 =

[
g̃(y′) p̃(y)
tp̃(y) 1

]
for y = (y′, yd) = (y1, . . . , yd−1, yd) in U where g̃(y′) = (g̃ij(y′))d−1

i,j=1 is a smooth, positive-definite
and symmetric (d − 1) × (d − 1)-matrix valued function and p̃(y) = t(p̃1(y), . . . , p̃d−1(y)) is a
(d− 1)-dimensional vector valued function satisfying p̃i(y)

∣∣
yd=0

= 0.

A function F (y′, yd, ξ
′, ξd) with (y′, yd), (ξ

′, ξd) ∈ Rd is homogeneous of the generalized degree
s if F satisfies

F (t−1y′, t−1yd, tξ
′, tξd) = tsF (y′, yd, ξ

′, ξd), (5.21)

for any t > 0. For F (yd, ξ
′), we define the homogeneity by the similar manner.

For n ∈ C∞(M), taking the y-coordinate as above, we can rewrite D := −∆g − λn as

D = −∂2d −
d−1∑
i,j=1

g̃ij(y′)∂i∂j − 2
d∑

i=1

p̃i(y)∂i∂d −
d∑

i=1

h̃i(y)∂i − λn(y) (5.22)

in U with h̃i(y) = (
√
G)−1

∑d
j=1 ∂j(

√
Ggij).

The symbol of D is given by

D(λ; y′, yd, ξ
′, ξd) = ξ2d +

d−1∑
i,j=1

g̃ij(y′)ξiξj + 2
d∑

i=1

p̃i(y)ξiξd − i
d−1∑
i=1

h̃i(y)ξi − λn(y). (5.23)

In the following, let N > 0 be a sufficiently large integer. Now we take z = (z′, 0) ∈ ∂Ω0

arbitrarily and fix it. Using the Taylor series of g̃ij(y′), p̃i(y), h̃i(y) and n(y) with respect to y
centered at z = (z′, 0) ∈ ∂Ω0, we can expand the symbol D(λ; y′, yd, ξ

′, ξd) of D as the sum of
following terms :

D0(z
′; ξ′, ξd) = ξ2d +

d−1∑
i,j=1

g̃ij(z′)ξiξj, (5.24)

D1(z
′; y′ − z′, yd, ξ

′, ξd) =
d−1∑
i,j=1

(∇y′ g̃
ij)(z′) · (y′ − z′)ξiξj − i

d∑
i=1

h̃i(z
′, 0)ξi

+ 2
d−1∑
i=1

{(∇y′ p̃i)(z
′, 0) · (y′ − z′) + (∂dp̃i)(z

′, 0)yd} ξiξd,

(5.25)
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and

Dm(λ, z
′; y′ − z′, yd, ξ

′, ξd)

=
d−1∑
i,j=1

∑
|α′|=m

(∂α
′

y′ g̃
ij)(z′)

α′!
(y′ − z′)α

′
ξiξj + 2

d∑
i=1

∑
|α|=m

(∂αy p̃i)(z
′, 0)

α!
(y′ − z′)α

′
yαd
d ξiξd

+ i
d∑

i=1

∑
|α|=m−1

(∂αy h̃i)(z
′, 0)

α!
(y′ − z′)α

′
yαd
d ξi − λ

∑
|α|=m−2

(∂αy n)(z
′, 0)

α!
(y′ − z′)α

′
yαd
d ,

(5.26)

for 2 ≤ m ≤ N with the remainder term D′
N+1(λ, z

′; y′ − z′, yd, ξ
′, ξd) which has zero of order

N−1 at y′ = 0 or (y′, yd) = (0, 0). Hence, we rewrite the sum of (5.24)–(5.26) and the remainder
term as

D(λ; y′, yd, ξ
′, ξd) = D0(z

′; ξ′, ξd) +D1(z
′; y′ − z′, yd, ξ

′, ξd)

+
N∑

m=2

Dm(λ, z
′; y′ − z′, yd, ξ

′, ξd) +D′
N+1(λ, z

′; y′ − z′, yd, ξ
′, ξd).

(5.27)

Then each Dm(λ, z
′; y′ − z′, yd, ξ

′, ξd) is a homogeneous polynomial in y′ − z′, yd, ξ
′, ξd of gener-

alized degree 2 −m. In particular, D0 is the principal symbol of D. D′
N+1 vanishes at (z′, 0)

and the order of the zero is N − 1.
In the following, we denote

|ξ′|2∂M :=
d−1∑
i,j=1

g̃ij(y′)ξiξj. (5.28)

We define the following differential operators :

D̃0 = D0(z
′; ξ′, i∂d) = −∂2d + |ξ′|2∂M , (5.29)

D̃1 = D1(z
′;−i∂ξ′ , yd, ξ′, i∂d), (5.30)

and

D̃m = Dm(λ, z
′;−i∂ξ′ , yd, ξ′, i∂d), m ≥ 2. (5.31)

Proposition 5.2.31. Let F (yd, ξ
′) be a smooth function and homogeneous of the generalized

degree s with respect to yd and ξ
′. Then we have that D̃mF is the homogeneous of the generalized

degree 2−m+ s with respect to yd and ξ′.

Proof. Note that F (yd, ξ
′) = |ξ′|sF (|ξ′|yd, ξ̂′). Then we can easily show that ∂dF and ∂ξjF

are homogeneous of generalized degree s+ 1 and s− 1, respectively.
Now let us construct an approximate solution of (5.5).

Lemma 5.2.32. Suppose |ξ′|∂M ̸= 0. The boundary value problem for a system of second order
ordinary differential equations of the form

m∑
n=0

D̃nEm−n(λ, z
′; yd, ξ

′) = 0, m ≥ 0; (5.32)

E0

∣∣
yd=0

= 1, Em

∣∣
yd=0

= 0, m ≥ 1, (5.33)

has a unique solution {Em}m=0,1,2,... satisfying that each Em converges to zero as yd → ∞. In
particular, we have E0(z

′; yd, ξ
′) = e−|ξ′|∂Myd. Each solution Em is smooth and homogeneous

with respect to yd and ξ′ of generalized degree −m. (For m ≥ 2, each Em depends also on λ.
We omit λ in the notation.)
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Proof. Since D̃0 = −∂2d + |ξ′|2∂M and E0

∣∣
yd=0

= 0, we have E0(z
′; yd, ξ

′) = e−|ξ′|∂Myd .

Obviously, E0 is homogeneous of the generalized degree 0.
We assume that a function p(yd, ξ

′) decays exponentially as yd → ∞ and is homogeneous
of the generalized degree s. Let us consider a solution v of the boundary value problem with
known function p(yd, ξ

′) of the form

(−∂2d + |ξ′|2∂M)v = p on (0,∞); (5.34)

v(0, ξ′) = 0,

satisfying that v(yd, ξ
′) converges to zero as yd → ∞. Extending v and p to be zero in −∞ <

yd < 0, we have

v(yd, ξ
′) =

1

2|ξ′|∂M

(∫ yd

0

e−|ξ′|∂M (yd−η)p(η, ξ′)dη +

∫ ∞

yd

e−|ξ′|∂M (η−yd)p(η, ξ′)dη

)
.

Then, putting τ = tη, we have

v(t−1yd, tξ
′)

=
ts−2

2|ξ′|∂M

(∫ yd

0

e−|ξ′|∂M (yd−τ)p(τ, ξ′)dτ +

∫ ∞

yd

e−|ξ′|∂M (τ−yd)p(τ, ξ′)dτ

)
= ts−2v(yd, ξ

′),

which shows that v is homogeneous of the generalized degree s − 2 with respect to yd and
ξ′. In view of Proposition 5.2.31, we have D̃1E0 is homogeneous of the generalized degree 1.
Therefore, we obtain E1 is homogeneous of the generalized degree −1. Repeating the similar
argument inductively, we can easily show that Em is homogeneous of the generalized degree
−m.

Let β(ξ′) ∈ C∞(Rd−1) vanish in a small neighborhood of ξ′ = 0, and be equal to one outside
a large neighborhood of ξ′ = 0. Taking ψ ∈ H3/2(∂Ω0) with a compact support in ∂Ω0, we
define for y′ ∈ ∂Ω0

(Qmψ)(z
′; y′, yd) = (2π)−(d−1)

∫
eiy

′·ξ′β(ξ′)Em(z
′; yd, ξ

′)

∫
e−iw′·ξ′ψ(w′)dw′dξ′ (5.35)

and we put

RN =
N∑

m=0

Qm. (5.36)

Letting

qm(z
′; y′, yd) = (2π)−(d−1)

∫
eiy

′·ξ′β(ξ′)Em(z
′; yd, ξ

′)dξ′, (5.37)

rN(z
′; y′ − w′, yd) =

N∑
m=0

qm(z
′; y′ − w′, yd)

we have that qm and rN are distributions in S ′, and

(Qmψ)(z
′; y′, yd) =

∫
qm(z

′; y′ − w′, yd)ψ(w
′)dw′, (5.38)

(RNψ)(z
′; y′, yd) =

∫
rN(z

′; y′ − w′, yd)ψ(w
′)dw′. (5.39)
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We represent D appeared in (5.22) in the form

D =D0(z
′; i∂y′ , i∂d) +D1(z

′; y′ − z′, yd, i∂y′ , i∂d)

+
N∑

m=2

Dm(λ, z
′; y′ − z′, yd, i∂y′ , i∂d) +D′

N+1(λ, z
′; y′ − z′, yd, i∂y′ , i∂d).

In the following, we consider

DrN =
N∑

J=0

∑
l+m=J

Dlqm +
2N∑

J=N+1

∑
l,m≤N,l+m=J

Dlqm +D′
N+1rN . (5.40)

Lemma 5.2.33. Let l, m and N be sufficiently large. We have Dlqm ∈ Hγ(Ω) and D′
N+1rN ∈

Hγ′
(Ω) where γ = O(l +m) and γ′ = O(N).

Proof. Note thatDl(λ, z
′; y′−z′, yd, i∂y′ , i∂d) andD′

N+1(λ, z
′; y′−z′, yd, i∂y′ , i∂d) are operators

which are given by sums of terms like (y′− z′)α
′
yαd
d ∂β

′

y′ ∂
βd

d up to a smooth function with −|α′|−
αd + |β′| + βd = 2 − l or 2 − (N + 1) and |β′| + βd ≤ 2. In view of Proposition 5.2.31, it is
sufficient to show

(y′)α
′
yαd
d qm(z; y

′, yd) ∈ Hγ(Ω), (5.41)

since the derivative ∂β
′

y′ ∂
βd

d is order zero, one or two.
Now we have

(y′)α
′
yαd
d qm(z; y

′, yd) = i|α
′|(2π)−(d−1)

∫
eiy

′·ξ′∂α
′

ξ′

(
yαd
d β(ξ′)|ξ′|−mEm(z

′; |ξ′|yd, ξ̂′)
)
dξ′.

Since yαd
d |ξ′|−mEm(z

′; |ξ′|yd, ξ̂′) is homogeneous of the generalized degree −m−αd, using Propo-
sition 5.2.31, we have∣∣∣∂α′

ξ′

(
yαd
d β(ξ′)Em(z

′; yd, ξ
′)
)∣∣∣ ≤ Cm,α(1 + |ξ′|)−m−|α′|−αd ,

which implies (5.41).

Theorem 5.2.34. Let N > 1 be sufficiently large. We have that RN is local regularizer for
(5.5), i.e.,

DRNψ ∈ Hs(Ω), RNψ
∣∣
yd=0

− ψ ∈ C∞(∂Ω0), (5.42)

for ψ ∈ H3/2(∂Ω0) which has a compact support in ∂Ω0 and s = O(N).

Proof. Note that

Dl(λ, z; y
′ − z′, yd, i∂y′ , i∂d)qm(z

′; y′ − w′, yd)

= (2π)−(d−1)

∫
ei(y

′−w′)·ξ′D̃l

(
β(ξ′)Em(z

′; yd, ξ
′)
)
dξ′.

(5.43)

Using (5.32), we have

N∑
J=0

∑
l+m=J

D̃lEm(z
′; yd, ξ

′) = 0. (5.44)
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In view of Lemma 5.2.33 and (5.40), we have that (5.43) and (5.44) imply DRNψ ∈ Hs(Ω) for
s = O(N).

We obatin that

RNψ(y
′, yd)− ψ(y′)

= (2π)−(d−1)

∫∫
ei(y

′−w′)·ξ′
(

N∑
m=0

β(ξ′)Em(z
′; yd, ξ

′)− 1

)
ψ(w′)dξ′dw′

→ (2π)−(d−1)

∫∫
ei(y

′−w′)·ξ′ (β(ξ′)− 1)ψ(w′)dξ′dw′,

as yd → 0. Since β(ξ′)− 1 ∈ C∞
0 (Rd−1), we have RNψ

∣∣
yd=0

− ψ ∈ C∞(∂Ω0).

Remark 5.2.35. The formal sum

(Rψ)(z′; y′, yd) :=

∫ ∞∑
m=0

qm(z
′; y′ − w′, yd)ψ(w

′)dw′,

is a singular integro-differential operator (see [29]). In general, a linear operator P on a d-
dimensional compact manifold M is a singular integro-differential operator of order l if there
exist homogeneous functions pj(x, ξ) ∈ C∞(M,Rd \ {0}) in ξ with homogeneous degree l − j
such that for a function u with support in a local coordinate neighborhood U ⊂M ,

Pu(x) = (2π)−d

∫∫
ei(x−y)·ξβ(ξ)

N∑
j=0

pj(x, ξ)u(y)dydξ + TN+1u for x ∈ U

where β ∈ C∞(Rd) is an arbitrary function which satisfies β(ξ) = 0 for |ξ| ≤ 1 and β(ξ) = 1 for
|ξ| ≥ 2, and TN+1 is an operator which increases the smoothness i.e. Hs(M) → Hs+O(N)(M)
for any s ∈ R. The principal symbol of P is p0(x, ξ) and the full symbol of P is the formal sum∑∞

j=0 pj(x, ξ). Then the ellipticity of P is defined by p0(x, ξ) ̸= 0 for all ξ ̸= 0. This implies
that we can construct the parametrix of P (see [16]). Therefore, if P is an elliptic singular
integro-differential operator, P is Fredholm.

Since we have ∂ν = −∂d in y-coordinates, we can easily show the following fact. As a
consequence of Corollary 5.2.28 and Theorem 5.2.34. See also Lemma 11 and Theorem 14 in
[29].

Corollary 5.2.36. (1) When λ ̸∈ σD, Λ(λ) is a singular integro-differential operator on
H3/2(∂M) with the full symbol given by the asymptotic series of the form

Λ(λ; y′, ξ′) = −
∞∑

m=0

∂dEm(y
′; yd, ξ

′)
∣∣∣
yd=0

for y′ ∈ ∂Ω0. (5.45)

(2) When λj ∈ σD, the regular part Hj(λ) of Λ(λ) at λj is a singular integro-differential
operator on B(λj)

c with the full symbol given by (5.45).

5.2.3 Principal symbol of the D-N map

On the Riemannian manifolds (M1, g1) and (M2, g2), we consider the similar argument to the
above. We take a point x(0) ∈ Γ and fix it. Let V ⊂ Γ and Ul ⊂ Ml (l = 1, 2) be a suf-
ficiently small neighborhood of x(0) in Γ and a small open domain such that Ul ∩ Γ = V
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and Ul is diffeomorphic to an open domain Ω ⊂ Hd, respcetively. We take the similar lo-
cal coordinates y = (y′, yd) = (y1, . . . , yd−1, yd) in Ω to (5.20). We use the similar notations
g̃l(y

′) = (g̃ijl (y
′))d−1

i,j=1, p̃l(y) =
t(p̃l,1(y), . . . , p̃l,d−1(y)). In view of the assumption (I-1), we have

in y-coordinates that g̃ij1 (y
′) = g̃ij2 (y

′), p̃1,i(y)|yd=0 = p̃2,i(y)|yd=0 = 0.
For nl ∈ C∞(Ml) (l = 1, 2), the symbol of Dl = −∆gl −λnl is denoted by Dl(λ; y

′, yd, ξ
′, ξd).

Using the Taylor series of the coefficients of the polynomial Dl(λ; y
′, yd, ξ

′, ξd) in ξ = (ξ′, ξd) of
degree 2 with respect to y centered at z′ = (z′, 0) ∈ ∂Ω0, we can expand Dl(λ, z

′; y′, yd, ξ
′, ξd)

as the sum of the form

Dl(λ, z
′; y′, yd, ξ

′, ξd) =
N∑

m=0

Dl,m(λ, z
′; y′ − z′, yd, ξ

′, ξd) +D′
N+1(λ, z

′; y′ − z′, yd, ξ
′, ξd)

for large integer N . Here, each Dl,m(λ, z
′; y′, yd, ξ

′, ξd) (l = 1, 2) is a homogeneous polynomial
in y′, yd, ξ

′, ξd of generalized degree 2−m and the remainder term D′
l,N+1(λ, z

′; y′− z′, yd, ξ
′, ξd)

has zero of order N − 1 at y′ = 0 or (y′, yd) = (0, 0).

Let |ξ′|2Γ :=
∑d−1

i,j=1 g̃
ij(y′)ξiξj. We also define the operators D̃l,m (m = 0, 1, 2, . . .) by

D̃l,m = Dl,m(λ, z
′;−i∂ξ′ , yd, ξ′, i∂d)

In particular, D̃l,0 is represented as −∂2d + |ξ′|2Γ and D̃l,1 is independent of λ. The sequence
{El,m}m=0,1,2,... is defined by the solution of the boundary value problems of the form

m∑
n=0

D̃l,nEl,m−n(λ, z
′; yd, ξ

′) = 0, m ≥ 0;

El,0

∣∣
yd=0

= 1, El,m|yd=0 = 0, m ≥ 1,

(5.46)

with the additional condition such that El,m converges to zero as yd → ∞ for m ≥ 0.
We compute the principal symbol of Λ1(λ)−Λ2(λ). In y-coordinates, we can locally represent

∂mν,l = (−1)m∂md (l = 1, 2). Under the assumptions (A) and (I-1), we additionally assume on Γ
that the metrics g1, g2 and the functions n1, n2 satisfy either

· For all x ∈ Γ, ∂mν,1g
ij
1 (x) = ∂mν,2g

ij
2 (x) for m ≤ 2 and i, j = 1, . . . , d.

· n1(x) ̸= n2(x).
(I-2-1)

or

· For all x ∈ Γ, ∂mν,1g
ij
1 (x) = ∂mν,2g

ij
2 (x) for m ≤ 3, and i, j = 1, . . . , d.

· n1(x) = n2(x), ∂ν,1n1(x) ̸= ∂ν,2n2(x).
(I-2-2)

Note that, under the assumptions (I-1) with (I-2-1) or (I-2-2), we can see D̃1,m = D̃2,m for
m ≤ 1 or m ≤ 2, respectively.

When λ = λj ∈ σP , we define a subspace B0(λj) of H
3/2(Γ) by B0(λj) = B̃1(λj) ∪ B̃2(λj)

where B̃l(λj) = Bl(λj) if λj ∈ σD,l, and B̃l(λj) = ∅ if otherwise. We denote B0(λj)
c as the

orthogonal complement of B0(λj) in L
2(Γ).

When λ = λj ∈ σP , we call Λ1(λ)−Λ2(λ) Fredholm if its regular part H0,j(λj) is Fredholm.

Lemma 5.2.37. In the following, we suppose λ ̸= 0.

(1) Let λ ̸∈ σP . For the case (I-2-1), we have Λ1(λ) − Λ2(λ) : H3/2(Γ) → H5/2(Γ) is an
elliptic singular integro-differential operator with the principal symbol of the form

−λ(n1(x)− n2(x))

2|ξ′|Γ
for x ∈ Γ, ξ′ ∈ Rd−1. (5.47)
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(2) Let λ ̸∈ σP . For the case (I-2-2), we have Λ1(λ) − Λ2(λ) : H3/2(Γ) → H7/2(Γ) is an
elliptic singular integro-differential operator with the principal symbol of the form

λ(∂ν,1n1(x)− ∂ν,2n2(x))

4|ξ′|2Γ
for x ∈ Γ, ξ′ ∈ Rd−1. (5.48)

(3) When λ ∈ σP , the regular part of Λ1(λ) − Λ2(λ) is singular integro-differential operator
on B0(λ)

c with order −1 for (I-2-1) or −2 for (I-2-2). Its principal symbol is given by
(5.47) or (5.48), respectively.

(4) For both of (I-2-1) or (I-2-2), Λ1(λ)− Λ2(λ) is Fredholm for λ ∈ C \ {0}.

Proof. Let g1, g2 and n1, n2 satisfy (I-2-1). In y-coordinates, we have D̃1,j = D̃2,j for

j = 0, 1 and D̃1,2 − D̃2,2 = −λ(n1(y
′, 0)− n2(y

′, 0)). From (5.46), El,j for j = 0, 1, 2 satisfy that
E1,0 = E2,0 = e−|ξ′|Γyd , E1,1 = E2,1 and

(−∂2d + |ξ′|2Γ)(E1,2 − E2,2) = λ(n1(y
′, 0)− n2(y

′, 0))e−|ξ′|Γyd ,

E1,2

∣∣
yd=0

− E2,2

∣∣
yd=0

= 0, E1,2 − E2,2 → 0 as yd → ∞
(5.49)

respectively. A particular solution of (5.49) is given by

λ(n1(y
′, 0)− n2(y

′, 0))

2|ξ′|Γ
yde

−|ξ′|Γyd ,

which vanishes at yd = 0 and yd → ∞. Then we can take it as E1,2−E2,2, and −∂d(E1,2−E2,2)
at yd = 0 is the principal symbol of Λ1(λ) − Λ2(λ). In view of the assertion (1) in Corollary
5.2.36, we have the assertion (1).

Next we assume that g1, g2 and n1, n2 satisfy (I-2-2). As above, we have D̃1,j = D̃2,j

for j = 0, 1, 2, and D̃1,3 − D̃2,3 = −λ(∂dn1(y
′, 0) − ∂dn2(y

′, 0))yd. Then we also obtain that
E1,2 = E2,2 and

E1,3 − E2,3 =
λ

4
(∂dn1(y

′, 0)− ∂dn2(y
′, 0))

yd
|ξ′|Γ

(
yd +

1

|ξ′|Γ

)
e−|ξ′|Γyd .

Hence we obtain the assertion (2).
In view of Corollary 5.2.28 and the assertion (2) in Corollary 5.2.36, we can show the

assertion (3) by the similar way.
The ellipticity of Λ1(λ)−Λ2(λ) implies that Λ1(λ)−Λ2(λ) is Fredholm for λ ∈ C \ {0}.

5.3 Interior transmission eigenvalues

5.3.1 Discreteness of the set of ITEs

For the proof of discreteness, we need to use the analytic Fredholm theory which was generalized
by [4]. See also Appendix A in [27]. Let H1 and H2 are Hilbert spaces. We take a connected
open domain G ⊂ C. An operator valued function A(z) : H1 → H2 for z ∈ G is finitely
meromorphic if the principal part of the Laurent series at a pole of A(z) is a finite rank
operator. In particular, Λl(λ) : H

3/2(Γ) → H1/2(Γ) (l = 1, 2) is finitely meromorphic in C \ {0}
as has been seen in Proposition 5.2.25.
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Theorem 5.3.38. Suppose an operator valued function A(z) : H1 → H2 for z ∈ G is finitely
meromorphic and Fredholm. If there exists its bounded inverse A(z0)

−1 : H2 → H1 at a point
z0 ∈ G, then z 7→ A(z)−1 is finitely meromorphic and Fredholm in G.

From the above theorem, if there exists a point λ0 ∈ C \ {0} such that Λ1(λ0) − Λ2(λ0) is
invertible, Λ1(λ) − Λ2(λ) is invertible for all λ ∈ C \ ({0} ∪ S ′) where S ′ is a discrete subset
of C. Therefore, for the proof of the discreteness, we have only to show that Λ1(λ)− Λ2(λ) is
invertible for some λ ∈ C \ {0}.

We expand the symbol of Dl (l = 1, 2) centered at (z′, 0) ∈ ∂Ω0 by the same manner
in subsection 5.2.2. However, here we change the definition of homogeneous functions with
generalized degree s by

F (tκ; t−1y′, t−1yd, tξ
′, tξd) = tsF (κ; y′, yd, ξ

′, ξd) t > 0, κ =
√
λ (5.50)

for λ ∈ C \ {0}, taking a suitable branch of κ =
√
λ. We gather terms of the same generalized

degree in the sense (5.50), and we denote the symbol in y-coordinates as

Dl(κ; y
′, yd, ξ

′, ξd) =
N∑

m=0

Dl,m(κ, z
′; y′ − z′, yd, ξ

′, ξd)

up to the remainder term whereDl,m(κ, z
′; y′−z′, yd, ξ′, ξd) homogeneous functions of generalized

degree 2−m. In particular, putting D̃(λ)
l,m = Dl,m(κ, z

′;−i∂ξ′ , yd, ξ′, i∂d), we have

D̃(λ)
l,0 = −∂2d + |ξ′|2Γ − λnl(z

′, 0), (5.51)

D̃(λ)
l,1 = D̃l,1 + λB̃

(λ)
l,1 (5.52)

where D̃l,1 is defined by (5.30) and

B̃
(λ)
l,1 = i∇y′nl(z

′, 0) · ∇ξ′ − yd∂dnl(z
′, 0).

We denote by {E(λ)
l,m}m≥0 the solution of

m∑
n=0

D̃(λ)
l,nE

(λ)
l,m−n(z

′; yd, ξ
′) = 0, m ≥ 0,

E
(λ)
l,0

∣∣
yd=0

= 1, E
(λ)
l,m

∣∣
yd=0

= 0, m ≥ 1

(5.53)

with the additional condition such that E
(λ)
l,m → 0 converges to zero as yd → ∞ for m ≥ 0.

In order to apply the theory of parameter-dependent pseudo-differential operators to Λ1(λ)−
Λ2(λ), we recall its definition. Let N be a d-dimensional compact manifold without boundary.
We call p(x, ξ, τ) ∈ C∞(N×Rd×R≥0) a uniformly estimated polyhomogeneous symbol of order
s and regularity r if p(x, ξ, τ) satisfies

|∂αx∂
β
ξ ∂

j
τp(x, ξ, τ)|

≤ Cαβj

(
⟨ξ⟩r−|β| + (|ξ|2 + τ 2 + 1)(r−|β|)/2) (|ξ|2 + τ 2 + 1)(s−r−j)/2

(5.54)

on N ×Rd ×R≥0 for constants Cαβj > 0, and p(x, ξ, τ) has the asymptotic expansion

p(x, ξ, τ) ∼
∞∑
l=0

ps−l(x, ξ, τ) (5.55)
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where ps−l(x, ξ, τ) is homogeneous with generalized degree s− l with respect to ξ, τ in the sense
of

ps−l(x, tξ, tτ) = ts−lps−l(x, ξ, τ) for t > 0. (5.56)

A pseudo-differential operator P (τ) on N with a uniformly estimated polyhomogeneous symbol
p(x, ξ, τ) is said to be uniformly parameter elliptic if the principal symbol pd(x, ξτ) does not
vanish when |ξ| + τ ̸= 0. For more information and general theory on parameter-dependent
operators, one can refer Chapters 2 and 3 in [15].

Let us turn to Λ1(λ) − Λ2(λ). For λ ∈ C \R≥0, we put
√
λ = τeiθ with τ > 0 and θ ∈ R

such that θ ̸= 0 modulo π. In the following, we fix a suitable θ and put

R(τ) = τ−2e−2iθ(Λ1(τ
2e2iθ)− Λ2(τ

2e2iθ)). (5.57)

Lemma 5.3.39. Let λ = τ 2e2iθ ∈ C \R≥0.

(1) We assume that (I-2-1) holds. Then R(τ) is uniformly parameter elliptic with order −1
and regularity ∞. Its principal symbol is

−(n1(x)− n2(x))√
|ξ′|2Γ − τ 2e2iθn1(x) +

√
|ξ′|2Γ − τ 2e2iθn2(x)

for x ∈ Γ, ξ′ ∈ Rd−1. (5.58)

(2) We assume that (I-2-2) holds. Then R(τ) is uniformly parameter elliptic with order −2
and regularity ∞. Its principal symbol is

(∂ν1n1(x)− ∂ν2n2(x))

4(|ξ′|2Γ − τ 2e2iθn(x))
for x ∈ Γ, ξ′ ∈ Rd−1 (5.59)

where n(x) := n1(x) = n2(x).

Proof. We fix an arbitrary point (z′, 0) ∈ ∂Ω0. Suppose that (I-2-1) holds. Obviously we
have

E
(λ)
l,0 (z

′; ξ′, yd) = exp

(
−
√

|ξ′|2Γ − λnl(z′, 0)yd

)
. (5.60)

Under the assumption, we also have Ã(λ)
1,0 ̸= Ã(λ)

2,0 so that E
(λ)
1,0 ̸= E

(λ)
2,0 . Then the principal

symbol −∂d(E(λ)
1,0 − E

(λ)
2,0 )
∣∣
yd=0

of Λ1(λ)− Λ2(λ) is given by

−λ(n1(x)− n2(x))√
|ξ′|2Γ − λn1(x) +

√
|ξ′|2Γ − λn2(x)

. (5.61)

This shows (5.58).

Let us consider the case (I-2-2). In view of n1 = n2(= n) on Γ, we have Ã(λ)
1,0 = Ã(λ)

2,0 so that

E
(λ)
1,0 (z

′; ξ′, yd) = E
(λ)
2,0 (z

′; ξ′, yd) = exp

(
−
√

|ξ′|2Γ − λn(z′, 0)yd

)
.

Since we have assumed (I-1) and (I-2-2), we have

Ã(λ)
1,1 − Ã(λ)

2,1 = −λ(∂dn1(z
′, 0)− ∂dn2(z

′, 0))yd. (5.62)
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Then E
(λ)
1,1 − E

(λ)
2,1 satisfies the equation

(−∂2d + |ξ′|2Γ − λn(z′, 0))(E
(λ)
1,1 − E

(λ)
2,1 )

= λ(∂dn1(z
′, 0)− ∂dn2(z

′, 0))yd exp

(
−
√
|ξ′|2Γ − λn(z′, 0)yd

)
.

Precisely, we obtain

E
(λ)
1,1 (z

′; ξ′, yd)− E
(λ)
2,1 (z

′; ξ′, yd) = −λ
4
(∂dn1(z

′, 0)− ∂dn2(z
′, 0))

×

(
y2d√

|ξ′|2Γ − λn(z′, 0)
+

yd
|ξ′|2Γ − λn(z′, 0)

)
exp

(
−
√

|ξ′|2Γ − λn(z′, 0)yd

)
.

Then the principal symbol −∂d(E(λ)
1,1 − E

(λ)
2,1 )
∣∣
yd=0

of Λ1(λ)− Λ2(λ) is given by

λ(∂ν1n1(x)− ∂ν2n2(x))

4(|ξ′|2Γ − λn(x))
.

This shows (5.59).

In view of Lemma 5.3.39, we can obtain a uniform estimate in τ of R(τ) and its inverse. In
the following, we define the Hilbert space Hm,t(Γ) for t ≥ 1 by the norm

∥f∥2Hm,t(Γ) = ∥f∥2Hm(Γ) + t2m∥f∥2L2(Γ).

Lemma 5.3.40. For sufficiently large τ > 0, there exists R(τ)−1 : Hm,τ (Γ) → Hm−s,τ (Γ) for
any m ∈ R where s = 1 for (I-2-1) or s = 2 for (I-2-2).

Proof. In view of Lemma 5.3.39, we can construct the parametrix of R(τ). The lemma is a
direct consequence of Theorem 3.2.11 in [15].

Let us turn to the case ζ ̸= 0. In view of

Λ1(λ)− Λ2(λ)− ζ = ζ1/2(ζ−1/2(Λ1(λ)− Λ2(λ))ζ
−1/2 − 1)ζ1/2,

we put
K(λ) = ζ−1/2(Λ1(λ)− Λ2(λ))ζ

−1/2. (5.63)

Since ζ ∈ C∞(Γ) is strictly positive or strictly negative and Λ1(λ)−Λ2(λ) has a negative order,
the operator K(λ) is compact in L2(Γ) when λ is not a pole. Since K(λ) is meromorphic with
respect to λ, we have the following lemma. The proof is completely same of and 2.4 in [21].
Note that we will refer the above lemma again later.

Lemma 5.3.41. Let {κj(λ)} be the set of eigenvalues of K(λ). Then every κj(λ) is meromor-
phic with respect to λ. If λ0 is a pole of K(λ) and p is the rank of the residue of K(λ) at λ0,
p eigenvalues and its eigenfunctions have a pole at λ0. Moreover, resλ=λ0κj(λ) are eigenvalues
of resλ=λ0K(λ).

As a consequence, we have the following lemma.

Lemma 5.3.42. There exist λ ∈ C \R≥0 such that 1 ̸∈ {κj(λ)}. In particular, K(λ)− 1 has
the bounded inverse for some λ ∈ C \ {0}.
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Proof. Note that the set A = {λ ∈ C\{0} ; λ is not a pole of K(λ)} is a connected domain
in C \ {0}. Since K(λ) is compact, {κj(λ)} is the set of eigenvalues of finite multiplicities with
the only possible accumulation point at 0.

We take a point λ1 ∈ C \ R≥0 such that κj(λ1) = · · · = κj+l−1(λ1) = 1. In view of the
discreteness of eigenvalues, there exists a small constant ϵ0 > 0 such that |κm(λ1)− 1| > ϵ0 for
m ̸∈ {j, j + 1, . . . , j + l − 1}. Taking a sufficiently small δ > 0, we also have |κm(λ) − 1| > ϵ0
for |λ− λ1| < δ.

Suppose that there exists an eigenvalue κj′(λ) with j
′ ∈ {j, j + 1, . . . , j + l − 1} such that

κj′(λ) = 1 in {λ ∈ C | |λ − λ1| < δ}. Since κj′(λ) is analytic in A, we have κj′(λ) = 1 in A.
We take a pole λ0 of κj′(λ). In a small neighborhood of λ0, κj′(λ) can be written by

κj′(λ) =
resλ=λ0κj′(λ)

λ0 − λ
+ κ̃j′(λ),

where κ̃j′(λ) is analytic in this neighborhood. However, we obtain

resλ=λ0κj′(λ) = (λ0 − λ)(1− κ̃j′(λ)) → 0,

as λ→ λ0. This is a contradiction.

Now we have our first main theorem as a corollary of Theorem 5.3.38, Lemma 5.3.40 and
Lemma 5.3.42. We take an arbitrary closed sector S0 centered at the origin such that S0∩R>0 =
∅. We put Se

0 := S0 ∩ {λ ∈ C | |λ| ≥ 1}.

Theorem 5.3.43. Suppose (A) and (I-1). We assume that either (I-2-1) or (I-2-2). The set
of locally isotropic ITEs consists of a discrete subset of C with the only possible accumulation
points at 0 and infinity. There exist at most finitely many ITEs in Se

0.

Proof. Note that Λ1(λ)− Λ2(λ)− ζ is finitely meromorphic and Fredholm for λ ∈ C \ {0}.
Lemma 5.3.40 implies that the bounded inverse (Λ1(λ) − Λ2(λ))

−1 exists for λ ∈ Se
0 with

sufficiently large |λ|. Lemma 5.3.42 implies that the bounded inverse (Λ1(λ) − Λ2(λ) − ζ)−1

exists for some λ ∈ C \R≥0. In view of Theorem 5.3.38, we obtain the theorem for both of the
cases ζ = 0 and ζ ̸= 0.

5.3.2 Weyl type estimate for interior transmission eigenvalues

In the following, we use Weyl’s asymptotic behavior for Dirichlet eigenvalues of −n−1
l ∆gl (l =

1, 2) on Ml. The following fact is a direct consequence of Theorem 1.2.1 in [25].

Theorem 5.3.44. Let Ol(x) = {ξ ∈ Rd |
∑d

i,j=1 g
ij
l (x)ξiξj ≤ nl(x)} for each x ∈Ml and

v(Ol(x)) :=

∫
Ol(x)

dξ,

be the volume of Ol(x) associated by the Euclidean measure. Then Nl(λ) := #{j | λl,j ≤ λ}
satisfies as λ→ ∞

Nl(λ) = Vlλ
d/2 +O(λ(d−1)/2), Vl = (2π)−d

∫
Ml

v(Ol(x))dVl. (5.64)
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Taking an arbitrary point x(0) ∈ Γ, we take a small neighborhood V ⊂ Γ of x(0) and
a sufficiently small open domain Ω which is diffeomorphic to U1

∼= U2 such that U1 ∩ Γ =
U2 ∩ Γ = V as has been defend in the beginning of §2.2. Then, identifying x ∈ V with the
corresponding point on ∂Ω0, we have that

γζ(x) := −sgn(ζ(y)) for ζ ̸= 0, (5.65)

and

γ0(x) :=

{
sgn(n2(y)− n1(y)) for (I-2-1),

sgn(∂ν1n1(y)− ∂ν2n2(y)) for (I-2-2),
(5.66)

for y ∈ Ω are well-defined constant functions γ0(x) = 1 or −1 and γζ(x) = 1 or −1 for x ∈ V ,
respectively. The functions γ0(x) = 1 or −1 and γζ(x) = 1 or −1 can be naturally extended on
every connected component of Γ, respectively. We also define the function γ on Γ by

γ =

{
γζ for ζ ̸= 0,

γ0 for ζ = 0.
(5.67)

Generally, the function γ can change its value for each connected component. However, let
us impose the following third assumption for the proof of Theorem 5.3.51. In the following, we
suppose (I-3) for all lemmas.

If ζ ̸= 0, then ζ does not change its sign on whole of Γ.

If ζ = 0, then n2(x)− n1(x) or ∂ν1n1(x)− ∂ν2n2(x) do not change its sign on whole of Γ.

(I-3)

In particular, the function γ is constant 1 or −1 on Γ. In the following, we use an auxiliary
operator defined by

B(λ) = γD
(1+s)/4
Γ (Λ1(λ)− Λ2(λ)− ζ)D

(1+s)/4
Γ (5.68)

where s = 0 for ζ ̸= 0 or s = 1 for (I-2-1) or s = 2 for (I-2-2). Here DΓ is given by DΓ = −∆Γ+1
where ∆Γ is the Laplace-Beltrami operator on Γ. Then B(λ) is a first order singular integro-
differential operator when λ is not a pole of Λ1(λ)− Λ2(λ).

Lemma 5.3.45. (1) Suppose λj ̸∈ σD,1 ∩ σD,2. Then λj ∈ C is a locally isotropic ITE if and
only if kerB(λj) ̸= {0}. The multiplicity of λj coincides with dimkerB(λj).

(2) Suppose λj ∈ σD,1∩σD,2. Then λj ∈ R is a locally isotropic ITE if and only if kerB(λj) ̸=
{0} or the ranges of γD

(1+s)/4
Γ Q1,jD

(1+s)/4
Γ and γD

(1+s)/4
Γ Q2,jD

(1+s)/4
Γ have a non trivial

intersection. The multiplicity of λj coincides with the sum of dimkerB(λj) and the
dimension of the above intersection.

Proof. Since −∆Γ+1 is invertible, the lemma is a direct consequence of Lemma 5.2.29.

Lemma 5.3.46. Let λ ̸∈ σP .

(1) For ζ ̸= 0, B(λ) is a first order, symmetric and elliptic singular integro-differential oper-
ator. Its principal symbol is

−γζ(x)|ξ′|Γ for x ∈ Γ, ξ′ ∈ Rd−1. (5.69)
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(2) For ζ = 0, B(λ) is a first order, symmetric and elliptic singular integro-differential oper-
ator. Its principal symbol is

λγ(n2(x)− n1(x))

2
|ξ′|Γ for x ∈ Γ ξ′ ∈ Rd−1 (5.70)

for (A-2-1), or

λγ(∂ν1n1(x)− ∂ν2n2(x))

4
|ξ′|Γ for x ∈ Γ, ξ′ ∈ Rd−1 (5.71)

for (A-2-2).

(3) For λ ∈ R>0, the spectrum of B(λ) is discrete and consists of the set of real eigenvalues
{µj(λ)}∞j=1.

Proof. We have the first assertion by direct computation using Lemma 5.2.37. From the
first assertion, we also see the second assertion.

Since B(λ) has a positive principal symbol and B(λ) is meromorphic with respect to λ, we
also have the following lemma. For the proof, see Lemmas 2.3 and 2.4 in [21]. Note that, in
view of (5.10), we define the residue resλ=λ0µj(λ) of µj(λ) at a pole λ0 by the expansion

µj(λ) =
resλ=λ0µj(λ)

λ0 − λ
+ µ̃j(λ), (5.72)

where µ̃j(λ) is analytic in a small neighborhood of λ0.

Lemma 5.3.47. (1) For each compact interval I ⊂ R>0 such that any pole of B(λ) are not
included in I, there exists a constant C(I) > 0 such that µj(λ) ≥ −C(I) for λ ∈ I,
j = 1, 2, . . ..

(2) If B(λ) is analytic in a neighborhood of λ0, all eigenvalues µj(λ) are analytic in this
neighborhood. If λ0 is a pole of B(λ) and p is the rank of the residue of B(λ) at λ0, p
eigenvalues µj(λ) and its eigenfunctions have a pole at λ0. Moreover, resλ=λ0µj(λ) are
eigenvalues of resλ=λ0B(λ).

We choose a small constant α ∈ (0,min{λ1,1, λ2,1}). We define counting function with
multiplicities taken into account :

NT (λ) = #{j | α < λTj ≤ λ} (5.73)

where λT1 ≤ λT2 ≤ · · · are ITEs included in (α,∞).
Now we consider the relation between {λTj } and {µj(λ)} for λ ∈ (α,∞). Roughly speaking,

we can evaluate NT (λ) by the number of the singular ITEs and the number of λ satisfying
µj(λ) = 0. We put

N−(λ) = #{j | µj(λ) < 0} for λ ̸∈ {λTj } ∪ {λ1,j} ∪ {λ2,j}. (5.74)

Assume that λ′ moves from α to ∞. Since µj(λ
′) is meromorphic with respect to λ′, N−(λ

′)
changes only when some µj(λ

′) pass through 0 or λ′ passes through a pole of B(λ′). When λ′

moves from α to λ > α, we denote by N0(λ) the change of N−(λ)−N−(α) due to the first case,
and N−∞(λ) as the change due to the second case, i.e.,

N−(λ)−N−(α) = N0(λ) +N−∞(λ). (5.75)

For a pole λ0 of B(λ), we put

δN−∞(λ0) = N−(λ0 + ϵ)−N−(λ0 − ϵ) (5.76)

for any ϵ > 0.
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Lemma 5.3.48. Let λ0 ∈ R>0 be a pole of B(λ). We have δN−∞(λ0) = s+(λ0) − s−(λ0) for
s±(λ0) = #{j | ±resλ=λ0µj(λ) > 0}.

Proof. In view of Lemma 5.3.47, some eigenvalues µj(λ) have a pole at λ0. If±resλ=λ0µj(λ) >
0, we have µj(λ) → ∓∞ as λ→ λ0+0 and µj(λ) → ±∞ as λ→ λ0−0, respectively. Then the
number of negative eigenvalues decreases for resλ=λ0µj(λ) < 0 and increases for resλ=λ0µj(λ) > 0
when λ passes through λ0 from α. This implies the lemma.

Lemma 5.3.49. If λj ∈ R>0 is a pole of Λl(λj) (l = 1, 2), the residue Ql,j is negative.

Proof. Recall that Bl(λj) is the subspace of L2(Γ) spanned by ∂ν,lϕl,i for i ∈ El,j. In view
of (5.11), we have for 0 ̸= f ∈ Bk(λ0)

(Ql,jf, f)L2(Γ) = −
∑
i∈El,j

|(∂ν,lϕl,i, f)L2(Γ)|2 < 0.

Then we have Ql,j < 0.

For λj ∈ σD,l (l = 1, 2), we put ml(λj) = dimRanQl,j. For λj ∈ σD,1 ∩ σD,2, m(λj) =
dim(RanQ1,j ∩ RanQ2,j).

Lemma 5.3.50. Let λ0 ∈ R>0 be a pole of B(λ).

(1) If λ0 ̸∈ σD,1 ∩ σD,2, we have δN−∞(λ0) + γ(m1(λ0)−m2(λ0)) = 0.

(2) If λ0 ∈ σD,1 ∩ σD,2, we have |δN−∞(λ0) + γ(m1(λ0)−m2(λ0))| ≤ m(λ0).

Proof. First we prove the assertion (1). Suppose λj ∈ σD,1 \ σD,2. We can expand B(λj) in
a small neighborhood of λj as

B(λ) =
γD

(1+s)/4
Γ Q1,jD

(1+s)/4
Γ

λj − λ
+ H̃1,j(λ),

where H̃1,j(λ) := γD
(1+s)/4
Γ (H1,j(λ) − Λ2(λ) − ζ)D

(1+s)/4
Γ is analytic. From Lemma 5.3.49, we

have Q1,j < 0 and also D
(1+s)/4
Γ Q1,jD

(1+s)/4
Γ < 0 so that D

(1+s)/4
Γ Q1,jD

(1+s)/4
Γ has exactly m1(λj)

strictly negative eigenvalues. Hence we have sgn(resλ=λj
µi(λ)) = −γ. In view of the assertion

(2) in Lemma 5.3.47, this means s+(λj) = 0 and s−(λj) = m1(λj) for γ = 1, or s+(λj) = m1(λj)
and s−(λj) = 0 for γ = −1. Lemma 5.3.48 implies δN−∞(λj) = γ(m2(λj) − m1(λj)) with
m2(λj) = 0. For the case λj ∈ σD,2 \ σD,1, we can see the same formula with m1(λj) = 0 by the
similar way. Plugging these two cases, we obtain the assertion (1).

Let us prove the assertion (2). Suppose λj = λ1,j(i1) = λ2,j(i2) for λ1,j(i1) ∈ σD,1 and
λ2,j(i2) ∈ σD,2. Then we have the following representation in a small neighborhood of λj

B(λ) =
γQ̃0,j

λj − λ
+ H̃0,j(λ)

where Q̃0,j = D
(1+s)/4
Γ (Q1,j(i1) − Q2,j(i2))D

(1+s)/4
Γ and H̃0,j(λ) = γD

(1+s)/4
Γ (H1.j(λ) − H2,j(λ) −

ζ)D
(1+s)/4
Γ . We see that Q̃0,j < 0 on B1(λ1,j(i1)) ∩ B2(λ2,j(i2))

⊥ and Q̃0,j > 0 on B1(λ1,j(i1))
⊥ ∩

B2(λ2,j(i2)). If γ = 1, we have m2(λj) − m(λj) ≤ s+(λj) ≤ m2(λj) and m1(λj) − m(λj) ≤
s−(λj) ≤ m1(λj). If γ = −1, we have m1(λj)−m(λj) ≤ s+(λj) ≤ m1(λj) and m2(λj)−m(λj) ≤
s−(λj) ≤ m2(λj). These inequalities and Lemma 5.3.48 imply the assertion (2).

Now we have arrived at our main result on the Weyl type lower bound for NT (λ).
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Theorem 5.3.51. Suppose (A) and (I-1). We assume that either (I-2-1) or (I-2-2), and (I-3).
For large λ ∈ R>0, we have

NT (λ) ≥ γ
∑

α<λ′≤λ

(m1(λ
′)−m2(λ

′))−N−(α) (5.77)

where the summation is taken over poles λ′ ∈ (α, λ] of Λ1(λ)−Λ2(λ). Moreover, if γ(V1−V2) > 0
where V1, V2 > 0 are defined in (5.64), NT (λ) satisfies asymptotically as λ→ ∞

NT (λ) ≥ γ(V1 − V2)λ
d/2 +O(λ(d−1)/2). (5.78)

Proof. We prove for the case σD,1 ∩ σD,2 ̸= ∅. For σD,1 ∩ σD,2 = ∅, the proof is similar and
can be slightly simplified. Letting us recall that we call λ is a singular ITE when λ satisfies the
latter condition of the assertion (2) of Lemma 5.2.29, we put

Nsng(λ) = #{singular ITEs ∈ (α, λ] ⊂ R>0}.

Here Nsng(λ) counts the number of singular ITEs with multiplicities taken into account. Note
that N0(λ) + Nsng(λ) ≤ NT (λ) by the definition of N0(λ) and Lemma 5.3.45. We take the
summation of |δN−∞(λ′) + γ(m1(λ

′)−m2(λ
′))| ≤ m(λ′) in (α, λ]. Then we have∣∣∣∣∣N−∞(λ) + γ

∑
α<λ′≤λ

(m1(λ
′)−m2(λ

′))

∣∣∣∣∣ ≤ Nsng(λ).

See also Remark of Proposition 5.2.25. Plugging this inequality and (5.75), we have

N−(λ)−N−(α) + γ
∑

α<λ′≤λ

(m1(λ
′)−m2(λ

′)) ≤ N0(λ) +Nsng(λ) ≤ NT (λ).

Since N−(λ) ≥ 0, we obtain (5.77).
The inequality (5.77) implies

NT (λ) ≥ γ(N1(λ)−N2(λ))−N−(α).

The asymptotic estimate (5.78) is a direct consequence of this inequality and Theorem 5.3.44.
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