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Abstract

In a earlier paper[8], we considered Type 1 Gray maps and Type 2 Gray maps
for groups of order 16, and we succeeded the Type 1 construction for all groups
of order 16 and confirmed that we can construct Type 2 maps for several groups
of order 16, but failed to construct such maps for other groups.

In another paper[9], we suggested a new design principle of Gray maps for
groups and tried to apply it to several concrete groups. Though the trial made
some success, the method is not very constructive.

Therefore, in this paper we try to design a more constructive method based
on the semidirect-product structure of the target group.

1 Introduction

Coding theory is very important research subject which forms a base of the information
and communication technology, because it is widely used as means of data communi-
cation, recode device such as CD, DVD and the computer disk etc., where the high
reliability is necessary.

The study on coding theory began with the article that Shannon published in 1948,
A mathematical theory of communication. Codes playing a key role of the studies are
BCH code, Reed-Solomon code and Algebraic Geometry code etc., defined over finite
fields. On the other hand, a code defined over ring of integers (mainly Z/4Z) is studied
flourishingly.

The detection and the correction methods of errors that occurred in encoded infor-
mation play a key role of the study, but these studies may not reflect the structure of
the information before the encoding.

In 1947 Frank Gray devised the so called Gray code to have the character that
the Hamming distance between adjacent codewords is one. It is expected that this
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code reduces the influence for error outbreak, if we assign the nearer codeword to the
nearer piece of information, by investigation the structure of the information before
the encoding.

Reza Sobhani [1] designed two classes of Gray maps called Type 1 Gray map and
Type 2 Gray map, for finite p-groups. Both are constructed as extensions of a Gray
map for a smaller group. Type 1 method constructs a code for a group from a code
for a maximal subgroup of the target group naturally, but it doubles the length of the
resulting code.

The Type 2 method in contrast, generally construct a shorter code than Type 1
that is just 1 bit longer than that for the based maximal subgroup. However, in our
trial [8], among all the groups of order 16, only 6 groups allow a Type 2 extension from
3-bit Gray codes for groups of order 8.

So, we proposed a new design policy for an arbitrary finite group (not necessary to
be a p-group) in [9]. Our idea to construct an n-bit Gray code for group G is to search
in the group of affine permutation of degree n for a subgroup isomorphic to G with a
suitable property. This method is different from both Type 1 and Type 2.

In [9], we showed that this method can reconstruct 4-bit Gray maps for G2, G3,
G7, G8, G9, G12 and G13

1. Also we showed that our method is effective to several
non-p-groups of simple type, namely, C2n, C2n+1, D6, D10 and D12. However, since our
construction in [9] is somewhat ad hoc, We propose a more constructive method in this
paper.

We believe the method can also contribute to constructing non-binary codes. How-
ever, in order to concentrate on binary codes here, we assume that the information is
encoded in Zn2 , throughout this paper.

2 Preliminaries

2.1 Hamming-distance, Hamming-weight and Gray map

In this section we assume that G is a finite 2-group of order 2m. We review some key
definitions and a lemma on Gray maps in [1, 5].

Definition 1. For any two elements u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) in
Zn2 , the Hamming-distance between u and v is defined by

d(u,v)
def.
= |{i | 1 ≤ i ≤ n, ui ̸= vi}|.

The Hamming-distance is indeed a distance on Zn2 [5].

1We follow Wild [2] for the name of groups of order 16. Refer to Remark 3 for each group Gi.
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Definition 2. The Hamming-weight of an element u ∈ Zn2 is defined by

w(u)
def.
= |{i | 1 ≤ i ≤ n, ui ̸= 0}|.

Definition 3. A map ϕ : G→ Zn2 is said to be a Gray map, if it is an injection and

w(ϕ(a−1b)) = d(ϕ(a), ϕ(b))

holds for all a, b in G.2

Lemma 1. Let ϕ : G→ Zn2 be a Gray map. Then,

(1) For g ∈ G we have w(ϕ(g)) = 0 iff g = e, where e stands for the identity of G,

(2) For all g in G we have w(ϕ(g)) = w(ϕ(g−1)),

(3) For all x, y in G we have w(ϕ(xy)) ≤ w(ϕ(x)) + w(ϕ(y)).

Proof: Assume that ϕ is a Gray map.

(1) 0 = w(ϕ(g)) = w(ϕ(e−1g)) = d(ϕ(e), ϕ(g)) ⇐⇒ ϕ(g) = ϕ(e) ⇐⇒ g = e,

(2) w(ϕ(g)) = w(ϕ(e−1g)) = d(ϕ(e), ϕ(g)) = d(ϕ(g), ϕ(e)) = w(ϕ(g−1e)) = w(ϕ(g−1)),

(3) w(ϕ(g))+w(ϕ(h)) = d(ϕ(g−1), ϕ(e))+d(ϕ(e), ϕ(h)) ≥ d(ϕ(g−1), ϕ(h)) = w(ϕ(gh)).

We define map dϕ : G × G → N ∪ {0} by dϕ(a, b) = d(ϕ(a), ϕ(b)). Then, dϕ is a
distance on G clearly.

2.2 Cyclic extensions

For notational convenience, we use the standard presentation ⟨X | ∆⟩ of groups by
generator X and relation ∆ [4].

For example, the cyclic group Cn of order n is represented as ⟨x | xn = e⟩, the Klein
four group K4 = C2 × C2 as ⟨x, y | x2 = y2 = e, xy = yx⟩, and C3

2 = C2 × C2 × C2

is represented as ⟨x, y, z | x2 = y2 = z2 = e, yx = xy, zx = xz, yz = zy⟩. The direct
product of C4 and C2 is represented as ⟨x, y | x4 = y2 = e, yx = xy⟩.

Since group C4 × C2 appears frequently in this paper we denote it by K8 as in [2].
Similarly, we denote the dihedral group ⟨x, y | xn = y2 = e, yx = xn−1y⟩ of order 2n by
D2n, and the quaternion group ⟨x, y | x4 = e, y2 = x2, yx = x3y⟩ of order 8 by Q8.

2In Sobhani’s definion of the Gray map [1], function dϕ is defined by dϕ(a, b) = w(ϕ(ab−1)) and is
required to be indeed a distance on G. For simplicity in our definition, map ϕ is required just to be
an injection, accepting suggestion of a IPSJ referee.



4

Let N be a normal subgroup of G (in symbol N ◁ G). We denote by ta the

conjugation automorphism of N defined by element a ∈ G (namely ta(x)
def.
= axa−1 for

element x ∈ N).
Suppose that G/N ≃ Cn and pick any a in G such that the coset Na has order n

in G/N . If we put v = an and τ = ta, then v ∈ N, τ(v) = ta(v) = aana−1 = an = v,
and τn = tna = tan = tv.

Definition 4. A quadruple (N, n, τ, v) is said to be an extension type if N is a group,
v is an element in N , and τ is an automorphism of N such that τ(v) = v and τn = tv.

Remark 1. An extension type determines the structure of group G = ⟨N, a⟩ uniquely.

Remark 2. The set Aut(G) of all automorphisms of a group G forms a group under
composition of mappings. Let X generate G. Then each θ : G → G in Aut(G) is
determined by its values on X. In particular Aut(C4), Aut(C8), Aut(K8) and Aut(D8)
consist of the following respective functions [2, 9]:

Aut(C4) and Aut(C8)≃K4

Aut(C4) effect on x Aut(C8) effect on x
φ1 x σ1 x
φ2 x3 σ2 x3

σ3 x5

σ4 x7

Aut(K8) ≃ D8

Aut(K8) effect on x effect on y order of automorphism
ψ1 x y 1
ψ2 x3y x2y 4
ψ3 x3 y 2
ψ4 xy x2y 4
ψ5 xy y 2
ψ6 x3 x2y 2
ψ7 x3y y 2
ψ8 x x2y 2
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Aut(D8)≃D8

Aut(D8) effect on x effect on y order of automorphism
α1 x y 1
α2 x xy 4
α3 x x2y 2
α4 x x3y 4
α5 x3 y 2
α6 x3 xy 2
α7 x3 x2y 2
α8 x3 x3y 2

Group Aut(Q8) is isomorphic to symmetric group S4 and Group Aut(C3
2) consists

of 7× 6× 4 = 168 elements.

Remark 3. In [2], Marcel Wild denotes the 14 groups of order 16 (besides the outsider
G0 = C2 ×C2 ×C2 ×C2) as follows (we add the last column to show extension types3

of each group.):

G1 = C8 × C2 (C8, 2, σ1, e), (K8, 2, ψ1, x)
G2 = C8 ⋊σ2 C2 (C8, 2, σ2, e), (D8, 2, α8, x

2), (Q8, 2, β1, e)
G3 = C8 ⋊σ3 C2 (C8, 2, σ3, e), (K8, 2, ψ8, x)
G4 = C8 ⋊σ4 C2 (C8, 2, σ4, e), (D8, 2, α6, e)
G5 = Q16 (C8, 2, σ4, x

4), (Q8, 2, β1, x
2)

G6 = C16 (C8, 2, σ1, x)
G7 = C4 ×K4 (K8, 2, ψ1, e), (C

3
2 , 2, γ1, z), (C4, 4, φ1, e)

G8 = D8 × C2 (K8, 2, ψ3, e), (D8, 2, α1, e), (C
3
2 , 2, γ2, e)

G9 = K4 ⋊σ C4 (K8, 2, ψ7, e), (C
3
2 , 2, γ3, yz), (K4, 4, σ, e)

G10 = Q8 ⋊τ6 C2 (K8, 2, ψ6, e), (D8, 2, α3, e), (Q8, 2, β2, e)
G11 = Q8 × C2 (K8, 2, ψ3, x

2), (Q8, 2, β3, e)
G12 = C4 ⋊φ2 C4 (K8, 2, ψ5, x

2), (C4, 4, φ2, e)
G13 = C4 × C4 (K8, 2, ψ1, y), (C4, 4, φ1, e),

3An extension type determines the group structure, but a group can have several extension types
even if the base group is fixed. We select a few of specific extension types for the reason described
later.
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where the automorphisms of Q8 and C3
2 in the table above are as follows:

β1 : Q8 → Q8 (x 7→ x3, y 7→ xy),

β2 : Q8 → Q8 (x 7→ x, y 7→ x2y),

β3 : Q8 → Q8 (x 7→ x, y 7→ y),

γ1 : C
3
2 → C3

2 (x 7→ x, y 7→ y, z 7→ z),

γ2 : C
3
2 → C3

2 (x 7→ x, y 7→ xy, z 7→ z),

γ3 : C
3
2 → C3

2 (x 7→ x, y 7→ xy, z 7→ xz).

2.3 Type 1 Gray maps

In this subsection, we assume that H is a maximal subgroup of G with [G : H] = 2,
and x is an arbitrary element in G \ H and h is an arbitrary element in H. Type 1
Gray map for G is constructed as follows based on a Gray map for H.

Let us denote by 0 and 1 the vectors in Zn2 whose components are all 0 and 1,
respectively. Also we denote the usual concatenation of vectors by ( | ). Suppose
ϕ : H → Zn2 is a Gray map and define the map ϕ̂ : G → Z2n

2 by ϕ̂(h) = (ϕ(h) | ϕ(h))
and ϕ̂(xh) = (ϕ(h) | ϕ(h) + 1) [1]. We can easily see that w(ϕ̂(g)) = 2w(ϕ(g)) for
g ∈ H and w(ϕ̂(g)) = n for g ̸∈ H. So the proofs of the following lemmas and theorem
are routines.

Lemma 2. For all g ∈ G we have w(ϕ̂(g)) = w(ϕ̂(g−1)).

Lemma 3. For all a, b ∈ G we have w(ϕ̂(ab)) ≤ w(ϕ̂(a)) + w(ϕ̂(b)).

Theorem 1. With notation as above, the map ϕ̂ is a Gray map.

Refer to [1] for the details4

Remark 4. In [8], we constructed Type 1 Gray maps for all groups G0, G1, . . . , G12

and G13 of order 16.
Since our recipe (describe in Section 5) failed to construct Gray maps for G2, G3, G5

and G6, we show construction examples of them.

(1) Type 1 Gray map for G2

Let G be G2 = (C8, 2, σ2, e). Assume that H = C8 ≤ G be the maximal subgroup
of G. Let ϕ1 : H → Z4

2 be the previously constructed Gray map for C8[8]. Set

ϕ2
def.
= ϕ̂1, we have,

4The proof of Theorem 1 written in [1] contains a small error caused by the definition of distance
dϕ, but it is not essential.
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ϕ2(e) = (ϕ1(e) | ϕ1(e)) = 00000000
ϕ2(x) = (ϕ1(x) | ϕ1(x)) = 00110011
ϕ2(x

2) = (ϕ1(x
2) | ϕ1(x

2)) = 01010101
ϕ2(x

3) = (ϕ1(x
3) | ϕ1(x

3)) = 01100110
ϕ2(x

4) = (ϕ1(x
4) | ϕ1(x

4)) = 11111111
ϕ2(x

5) = (ϕ1(x
5) | ϕ1(x

5)) = 11001100
ϕ2(x

6) = (ϕ1(x
6) | ϕ1(x

6)) = 10101010
ϕ2(x

7) = (ϕ1(x
7) | ϕ1(x

7)) = 10011001
ϕ2(a) = (ϕ1(e) | ϕ1(e) + 1111) = 00001111
ϕ2(xa) = (ϕ1(x) | ϕ1(x) + 1111) = 00111100
ϕ2(x

2a) = (ϕ1(x
2) | ϕ1(x

2) + 1111) = 01011010
ϕ2(x

3a) = (ϕ1(x
3) | ϕ1(x

3) + 1111) = 01101001
ϕ2(x

4a) = (ϕ1(x
4) | ϕ1(x

4) + 1111) = 11110000
ϕ2(x

5a) = (ϕ1(x
5) | ϕ1(x

5) + 1111) = 11000011
ϕ2(x

6a) = (ϕ1(x
6) | ϕ1(x

6) + 1111) = 10100101
ϕ2(x

7a) = (ϕ1(x
7) | ϕ1(x

7) + 1111) = 10010110

(2) Type 1 Gray map for G3, G5 and G6.

Let G be G3(C8, 2, σ3, e). Assume that H = C8 ≤ G be the maximal subgroup
of G. Let ϕ1 : H → Z4

2 be the previously constructed Gray map for C8[8]. Set

ϕ2
def.
= ϕ̂1, we have the same Gray map with G2. Also we have the same Gray

map with G2 for G3, G5 and G6.

2.4 Type 2 Gray maps

In this subsection, we assume that G is isomorphic to the semidirect product K⋊ψH of
two finite 2-groupsK andH where ψ : H → Aut(K) is the conjugation homomorphism,
i.e. ψh is the automorphism on K defined by ψh(k) = hkh−1 . Suppose further that
both H and K accept Gray maps θ1 : H → Zn1

2 and θ2 : K → Zn2
2 , where θ2 is

compatible with ψ in the sense that for all h ∈ H and k ∈ K

w(θ2(k)) = w(θ2(ψh(k))).

Every element g ∈ G can be written uniquely in form kh by an element k ∈ K and an
element h ∈ H. Then, define map θ from G to Zn1+n2

2 as

θ(g) = θ(kh) = (θ2(k) | θ1(h)),

where we denote the usual concatenation of vectors by ( | ).

Theorem 2 (Sobhani [1]). The map θ defined above is a Gray map.
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Proof: Let a = kh, b = k′h′ be elements of G. Then

w(θ(a−1b)) = w(θ(h−1k−1k′h′)) = w(θ(ψh−1(k−1k′)h−1h′))

= w(θ2(ψh−1(k−1k′)) | θ1(h−1h′))

= w(θ2(ψh−1(k−1k′))) + w(θ1(h
−1h′))

= w(θ2(k
−1k′)) + w(θ1(h

−1h′))

= d(θ2(k), θ2(k
′)) + d(θ1(h), θ1(h

′))

= d((θ2(k) | θ1(h)), (θ2(k′) | θ1(h′)))
= d(θ(kh), θ(k′h′)) = d(θ(a), θ(b)).

Since θ1 and θ2 are injections, θ is clearly an injection.

Remark 5. In [8], we constructed Type 2 Gray maps for G0, G7, G8, G9, G12 and G13.

However, compatible map θ2 may not exist and, even if one exists, it is not very
easy to find.

3 Embedding to the group of affine permutations

and the induced Gray map

In this section, we assume that G is an arbitrary finite group (not necessary to be
a p-group). Cayley’s theorem says that every finite group can be embedded in the
symmetric group of degree |G| as a subgroup.

Define the mapping g : Zn2 → Zn2 as g(u) = uP + c for all u in Zn2 , where c is a
fixed element in Zn2 and P is a fixed permutation matrix of order n. (A permutation
matrix of order n is a n × n-matrix which has exactly one 1 in each row and column
and whose other entries are all 0. As is well known, a permutation matrix represents
just a replacement of coordinates of vectors.) Since the mapping g above is an affine
transformation over Zn2 , we call a mapping of this form an affine permutation [5] of
degree n.

Our ideas to construct a Gray map for an arbitrary group is realizing Cayley’s
theorem over the group of affine permutations, instead of the symmetric group. The
key points are that the set of all the affine permutations forms a group with respect to
composition as a transformation from Zn2 to itself and every affine permutation is an
isometry with respect to Hamming distance.

In fact, let g(u) = uP + c and h(u) = uQ+ d (we denote them by [P, c] and [Q, d],
respectively) be two affine permutations. Since

(h ◦ g)u = (uP + c)Q+ d = uPQ+ cQ+ d,
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the composition h ◦ g = [Q, d] ◦ [P, c] is denoted by [PQ, cQ+ d] and is itself an affine
permutation since PQ is a permutation matrix again.

Moreover, it is easily verified that the identity permutation is [E,0] and the inverse
permutation of [P, c] is [P−1, cP−1]. Thus, the set of all the affine permutations of
degree n forms a group, which we denote by AP(n).

Next, let us confirm that every affine permutation g = [P, c] is an isometry. Since P
is a permutation matrix and c is a constant vector, clearly from definition of Hamming-
distance, for any u and v in Zn2

dH(g(u), g(v)) = dH(uP + c, vP + c) = dH(uP, vP ) = dH(u, v)

holds.
Suppose that G is isomorphic to a subgroup of AP(n). For simplicity, in what

follows, we regard G as identical with the subgroup. Therefore, an element g ∈ G can
be written in form [P, c] by a permutation matrix P and a constant c ∈ Zn2 . We call c
the code-part of affine permutation [P, c]. The idea is that we employ the code-part c
as the codeword for element [P, c] in G.

Theorem 3. Let G be a subgroup of AP(n) and consider the function ϕ : G → Zn2
that maps each element [P, c] ∈ G to its code-part c. Then, ϕ is a Gray map, if and
only if it is an injection.

Proof: Let a = [P, c], b = [Q, d]. Then,

w(ϕ(a−1b)) = w(ϕ([P−1, cP−1][Q, d]))

= w(ϕ[QP−1, dP−1 + cP−1])

= w(dP−1 + cP−1) = w(d+ c)

= d(c, d) = d(ϕ(a), ϕ(b)).

Thus, in order to construct an n-bit Gray code for group G, we only need to search
in the group of affine permutation of degree n for a subgroup isomorphic to G such
that map ϕ is injective.

Remark 6. A permutation matrix is denoted by symbol Pπ, where π is a permutation
of n elements, namely Pπ is the matrix in which the (i, π(i)) entries are 1 and all
the other entries are 0. Henceforth, we mainly employs this notation for permutation
matrices. Note that multiplying a row vector by Pπ permutes the components of the
vector in the following way:

(a1, a2, . . . , an)Pπ = (aπ−1(1), aπ−1(2), . . . , aπ−1(n)),

and that P T
π = P−1

π = Pπ−1 , so

(a1, a2, . . . , an)P
T
π = (aπ(1), aπ(2), . . . , aπ(n)).
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4 Extension of embedding based on semidirect-pro-

duct structure

In this section we assume that G is isomorphic to the semidirect product G ≃ K⋊ψH
of a normal subgroup K and a subgroup H where ψ is the conjugation homomorphism.
Suppose further that both K and H can be embedded to the group of affine permu-
tations (described in Section 3), namely, there exist embeddings ϕK : K → AP(m),
ϕH : H → AP(n). Assuming that ϕK(k) = [Pk, ck] for k ∈ K and ϕH(h) = [Qh, dh] for
h ∈ H, we try to define an embedding ϕG : G→ AP(m+ n).

Any element g in G can be written in form kh by an element k ∈ K and an element

h ∈ H uniquely. We want to embed g = kh in form ϕG(kh) =

[(
Pkh O
O Qh

)
, (ckh | dh)

]
,

where Pkh is some permutation matrix of degree m. In particular, assume that k ∈ K

is embedded in form ϕG(ke) =

[(
Pk O
O E

)
, (ck | 0)

]
as an element ke in G. Select an

element a ∈ G \K and let us embed it in form ϕG(a) =

[(
Pa O
O Qh

)
, (ca | dh)

]
where

a is written as kh by k ∈ K and h ∈ H . Then, element ψa(k) = aka−1 is embedded to[(
P−1
a PkPa O
O E

)
, caP

−1
a PkPa + ckPa + ca | 0)

]
.

So, in order such an embedding to be successful, it is necessary that

P−1
a PkPa = Paka−1 , (A)

caP
−1
a PkPa + ckPa + ca = caka−1 . (B)

If we put ca = 0, then the latter condition (B) reduces to

ckPa = caka−1 . (B’)

In this case, since Pa is a permutation, we have w(ck) = w(caka−1) and Theorem 2
guarantees that the embedding induces a Gray map. Therefore, a promising candidate

for ϕG(a) is

[(
Pa O
O Qh

)
, (0 | dh)

]
with Pa satisfying conditions (A) and (B’). Moreover,

if an element g ∈ G have code part of form (0 | dh) and the coset Ka has order n in

H ≃ G/K, then ϕG(a
n) is written as

[(
Pa

n O
O E

)
, (0 | 0)

]
. So, in order the code part

to be injective, a must have order n also in G and Pa
n must be E. Therefore, if we want

to give a codeword of form (0 | dh) to element a, we can further limit the candidate a
and Pa as described above.
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5 A recipe of semidirect-product construction of

Gray maps for groups of order 16

Guided by the previous section, here we describe a design method of Gray maps for
groups of order 16 based on semidirect-product structure. Our recipe is as follows:

(1) If G has extension type (K, 2, τ, e) and K is embedded in AP(n) by ϕK , then:

(1-1) For any k ∈ K define ϕG(k) =

[(
Pk O
O 1

)
, (ck | 0)

]
, where ϕK(k) = [Pk, ck].

(1-2) Select an element a of order 2 in G \K.

(1-3) Search for a permutation matrix Pa of degree n satisfying Pa
2 = E, (A),

(B’) and define ϕG(a) =

[(
Pa O
O 1

)
, (0 | 1)

]
,

(1-4) Since the other values of ϕG are automatically determined, check if ϕG
successfully embeds G to AP(n+ 1).

(2) If G has extension type (K, 4, τ, e) and K is embedded in AP(n) by ϕK , then:

(2-1) For any k ∈ K define ϕG(k) =

[(
Pk O
O E

)
, (ck | 00)

]
, where ϕK(k) =

[Pk, ck].

(2-2) Select an arbitrary element a of order 4 in G \K.

(2-3) Search for a permutation matrix Pa of degree n satisfying Pa
4 = E, (A), (B’)

and define ϕG(a) =

[(
Pa O
O P

)
, (0 | 10)

]
, where P is permutation matrix(

0 1
1 0

)
.

(2-4) Since the other values of ϕG are automatically determined, check if ϕG
successfully embeds G to AP(n+ 2).

6 Construction Examples of Gray map for groups

of order 4 and order 8

In this section we show construction examples using the recipe. Since the above recipe is
not applicable for C4, C8 and Q8, we show construction examples for them by heuristic
method.

For simplicity, in what follows, we denote P T
πi

by Pi.
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6.1 Construction Examples based on the semidirect-product
structure

(1) K4 = ⟨x, y | x2 = y2 = e, xy = yx⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 = 10, c2 =

01, π1 and π2 are the identity permutations. K4 has the following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 00] = 00
ϕ(x) = ϕ[P1, c1] = ϕ[E, 10] = 10
ϕ(y) = ϕ[P2, c2] = ϕ[E, 01] = 01
ϕ(xy) = ϕ[P2P1, 01P1 + c1] = ϕ[E, 11] = 11

(2) K8 = ⟨x, y | x4 = y2 = e, xy = yx⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 = 100, c2 =

001, π1 = ( 1 2 3
2 1 3 ) and π2 is the identity permutation. K8 has the following Gray

map:

ϕ(e) = ϕ[E,0] = ϕ[E, 000] = 000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 100] = 100
ϕ(x2) = ϕ[P 2

1 , 100P1 + c1] = ϕ[E, 110] = 110
ϕ(x3) = ϕ[P 3

1 , 110P1 + c1] = ϕ[P1, 010] = 010
ϕ(y) = ϕ[P2, c2] = ϕ[E, 001] = 001
ϕ(xy) = ϕ[P2P1, 001P1 + c1] = ϕ[P1, 101] = 101
ϕ(x2y) = ϕ[P2P

2
1 , 101P1 + c1] = ϕ[E, 111] = 111

ϕ(x3y) = ϕ[P2P
3
1 , 111P1 + c1] = ϕ[P1, 011] = 011

(3) D8 = ⟨x, y | x4 = y2 = e, xy = yx3⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 = 100, c2 =

001, π1 = π2 = ( 1 2 3
2 1 3 ). D8 has the following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 000] = 000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 100] = 100
ϕ(x2) = ϕ[P 2

1 , 100P1 + c1] = ϕ[E, 110] = 110
ϕ(x3) = ϕ[P 3

1 , 110P1 + c1] = ϕ[P1, 010] = 010
ϕ(y) = ϕ[P2, c2] = ϕ[P2, 001] = 001
ϕ(xy) = ϕ[P2P1, 001P1 + c1] = ϕ[E, 101] = 101
ϕ(x2y) = ϕ[P2P

2
1 , 101P1 + c1] = ϕ[P1, 111] = 111

ϕ(x3y) = ϕ[P2P
3
1 , 111P1 + c1] = ϕ[E, 011] = 011

6.2 Construction Examples without using the recipe

(1) C4 = ⟨x | x4 = e⟩ ≃ ⟨[P T
π , c]⟩, where c = 10 and π = ( 1 2

2 1 ). C4 has the following
Gray map:
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ϕ(e) = ϕ[E,0] = ϕ[E, 00] = 00
ϕ(x) = ϕ[P, c] = ϕ[P, 10] = 10
ϕ(x2) = ϕ[P 2, 10P + c] = ϕ[E, 11] = 11
ϕ(x3) = ϕ[P 3, 11P + c] = ϕ[P, 01] = 01

(2) C8 = ⟨x | x8 = e⟩ ≃ ⟨[P T
π , c]⟩, where c = 1000 and π = ( 1 2 3 4

4 1 2 3 ). C8 has the
following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 0000] = 0000
ϕ(x) = ϕ[P, c] = ϕ[P, 1000] = 1000
ϕ(x2) = ϕ[P 2, 1000P + c] = ϕ[P 2, 1100] = 1100
ϕ(x3) = ϕ[P 3, 1100P + c] = ϕ[P 3, 1110] = 1110
ϕ(x4) = ϕ[P 4, 1110P + c] = ϕ[E, 1111] = 1111
ϕ(x5) = ϕ[P 5, 1111P + c] = ϕ[P, 0111] = 0111
ϕ(x6) = ϕ[P 6, 0111P + c] = ϕ[P 2, 0011] = 0011
ϕ(x7) = ϕ[P 7, 0011P + c] = ϕ[P 3, 0001] = 0001

(3) Q8 = ⟨x, y | x4 = e, x2 = y2, xy = yx3⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 =

1100, c2 = 0110, π1 = ( 1 2 3 4
3 4 1 2 ), and π2 = ( 1 2 3 4

2 1 4 3 ). Q8 has the following Gray
map:

ϕ(e) = ϕ[E,0] = ϕ[E, 0000] = 0000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 1100] = 1100
ϕ(x2) = ϕ[P 2

1 , 1100P1 + c1] = ϕ[E, 1111] = 1111
ϕ(x3) = ϕ[P 3

1 , 1111P1 + c1] = ϕ[P1, 0011] = 0011
ϕ(y) = ϕ[P2, c2] = ϕ[P2, 0110] = 0110
ϕ(xy) = ϕ[P2P1, 0110P1 + c1] = ϕ[P2P1, 0101] = 0101
ϕ(x2y) = ϕ[P2P

2
1 , 0101P1 + c1] = ϕ[P2, 1001] = 1001

ϕ(x3y) = ϕ[P2P
3
1 , 1001P1 + c1] = ϕ[P2P1, 1010] = 1010

7 Construction Examples of Gray map for groups

of order 16

Similarly, in this section we show construction examples using the recipe. Since the
recipe are not applicable for G2 and G3, we show construction examples by heuristic
method.
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7.1 Construction Examples based on the semidirect-product
structure

(1) G1 = ⟨x, a | x8 = a2 = e, xa = ax⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 = 10000, c2 =

00001, π1 = ( 1 2 3 4 5
4 1 2 3 5 ) and π2 is the identity permutation. G1 has the following

Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 00000] = 00000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 10000] = 10000
ϕ(x2) = ϕ[P 2

1 , 10000P1 + c1] = ϕ[P 2
1 , 11000] = 11000

ϕ(x3) = ϕ[P 3
1 , 11000P1 + c1] = ϕ[P 3

1 , 11100] = 11100
ϕ(x4) = ϕ[P 4

1 , 11100P1 + c1] = ϕ[E, 11110] = 11110
ϕ(x5) = ϕ[P 5

1 , 11110P1 + c1] = ϕ[P1, 01110] = 01110
ϕ(x6) = ϕ[P 6

1 , 01110P1 + c1] = ϕ[P 2
1 , 00110] = 00110

ϕ(x7) = ϕ[P 7
1 , 00110P1 + c1] = ϕ[P 3

1 , 00010] = 00010
ϕ(a) = ϕ[P2, c2] = ϕ[E, 00001] = 00001
ϕ(xa) = ϕ[P2P1, 00001P1 + c1] = ϕ[P1, 10001] = 10001
ϕ(x2a) = ϕ[P2P

2
1 , 10001P1 + c1] = ϕ[P 2

1 , 11001] = 11001
ϕ(x3a) = ϕ[P2P

3
1 , 11001P1 + c1] = ϕ[P 3

1 , 11101] = 11101
ϕ(x4a) = ϕ[P2P

4
1 , 11101P1 + c1] = ϕ[E, 11111] = 11111

ϕ(x5a) = ϕ[P2P
5
1 , 11111P1 + c1] = ϕ[P1, 01111] = 01111

ϕ(x6a) = ϕ[P2P
6
1 , 01111P1 + c1] = ϕ[P 2

1 , 00111] = 00111
ϕ(x7a) = ϕ[P2P

7
1 , 00111P1 + c1] = ϕ[P 3

1 , 00011] = 00011

(2) G4 = ⟨x, a | x8 = a2 = e, xa = ax7⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 = 10000, c2 =

00001, π1 = ( 1 2 3 4 5
4 1 2 3 5 ) and π2=( 1 2 3 4 5

4 3 2 1 5 ).

G4 has the following Gray map:
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ϕ(e) = ϕ[E,0] = ϕ[E, 00000] = 00000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 10000] = 10000
ϕ(x2) = ϕ[P 2

1 , 10000P1 + c1] = ϕ[P 2
1 , 11000] = 11000

ϕ(x3) = ϕ[P 3
1 , 11000P1 + c1] = ϕ[P 3

1 , 11100] = 11100
ϕ(x4) = ϕ[P 4

1 , 11100P1 + c1] = ϕ[E, 11110] = 11110
ϕ(x5) = ϕ[P 5

1 , 11110P1 + c1] = ϕ[P1, 01110] = 01110
ϕ(x6) = ϕ[P 6

1 , 01110P1 + c1] = ϕ[P 2
1 , 00110] = 00110

ϕ(x7) = ϕ[P 7
1 , 00110P1 + c1] = ϕ[P 3

1 , 00010] = 00010
ϕ(a) = ϕ[P2, c2] = ϕ[E, 00001] = 00001
ϕ(xa) = ϕ[P2P1, 00001P1 + c1] = ϕ[P1, 10001] = 10001
ϕ(x2a) = ϕ[P2P

2
1 , 10001P1 + c1] = ϕ[P 2

1 , 11001] = 11001
ϕ(x3a) = ϕ[P2P

3
1 , 11001P1 + c1] = ϕ[P 3

1 , 11101] = 11101
ϕ(x4a) = ϕ[P2P

4
1 , 11101P1 + c1] = ϕ[E, 11111] = 11111

ϕ(x5a) = ϕ[P2P
5
1 , 11111P1 + c1] = ϕ[P1, 01111] = 01111

ϕ(x6a) = ϕ[P2P
6
1 , 01111P1 + c1] = ϕ[P 2

1 , 00111] = 00111
ϕ(x7a) = ϕ[P2P

7
1 , 00111P1 + c1] = ϕ[P 3

1 , 00011] = 00011

(3) G7 = ⟨x, y, a | x4 = y2 = a2 = e, xy = yx, xa = ax, ya = ay⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2], [P

T
π3
, c3]⟩,

where c1 = 1000, c2 = 0010, c3 = 0001, π1 = ( 1 2 3 4
2 1 3 4 ) and π2, π3 are the identity

permutations.

G7 has the following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 0000] = 0000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 1000] = 1000
ϕ(x2) = ϕ[P 2

1 , 1000P1 + c1] = ϕ[E, 1100] = 1100
ϕ(x3) = ϕ[P 3

1 , 1100P1 + c1] = ϕ[P1, 0100] = 0100
ϕ(y) = ϕ[P2, c2] = ϕ[E, 0010] = 0010
ϕ(xy) = ϕ[P2P1, 0010P1 + c1] = ϕ[P1, 1010] = 1010
ϕ(x2y) = ϕ[P2P

2
1 , 1010P1 + c1] = ϕ[E, 1110] = 1110

ϕ(x3y) = ϕ[P2P
3
1 , 1110P1 + c1] = ϕ[P1, 0110] = 0110

ϕ(a) = ϕ[P3, c3] = ϕ[E, 0001] = 0001
ϕ(xa) = ϕ[P3P1, 0001P1 + c1] = ϕ[P1, 1001] = 1001
ϕ(x2a) = ϕ[P3P

2
1 , 1001P1 + c1] = ϕ[E, 1101] = 1101

ϕ(x3a) = ϕ[P3P
3
1 , 1101P1 + c1] = ϕ[P1, 0101] = 0101

ϕ(ya) = ϕ[P3P2, 0001P2 + c2] = ϕ[E, 0011] = 0011
ϕ(xya) = ϕ[P3P2P1, 0011P1 + c1] = ϕ[P1, 1011] = 1011
ϕ(x2ya) = ϕ[P3P2P

2
1 , 1011P1 + c1] = ϕ[E, 1111] = 1111

ϕ(x3ya) = ϕ[P3P2P
3
1 , 1111P1 + c1] = ϕ[P1, 0111] = 0111

(4) G8 = ⟨x, y, a | x4 = y2 = a2 = e, xy = yx, xa = ax3, ya = ay⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2], [P

T
π3
, c3]⟩,
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where c1 = 1000, c2 = 0010, c3 = 0001, π1 = π3 = ( 1 2 3 4
2 1 3 4 ) and π2 is the identity

permutation.

G8 has the following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 0000] = 0000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 1000] = 1000
ϕ(x2) = ϕ[P 2

1 , 1000P1 + c1] = ϕ[E, 1100] = 1100
ϕ(x3) = ϕ[P 3

1 , 1100P1 + c1] = ϕ[P1, 0100] = 0100
ϕ(y) = ϕ[P2, c2] = ϕ[E, 0010] = 0010
ϕ(xy) = ϕ[P2P1, 0010P1 + c1] = ϕ[P1, 1010] = 1010
ϕ(x2y) = ϕ[P2P

2
1 , 1010P1 + c1] = ϕ[E, 1110] = 1110

ϕ(x3y) = ϕ[P2P
3
1 , 1110P1 + c1] = ϕ[P1, 0110] = 0110

ϕ(a) = ϕ[P3, c3] = ϕ[P3, 0001] = 0001
ϕ(xa) = ϕ[P3P1, 0001P1 + c1] = ϕ[P1, 1001] = 1001
ϕ(x2a) = ϕ[P3P

2
1 , 1001P1 + c1] = ϕ[E, 1101] = 1101

ϕ(x3a) = ϕ[P3P
3
1 , 1101P1 + c1] = ϕ[P1, 0101] = 0101

ϕ(ya) = ϕ[P3P2, 0001P2 + c2] = ϕ[P3, 0011] = 0011
ϕ(xya) = ϕ[P3P2P1, 0011P1 + c1] = ϕ[E, 1011] = 1011
ϕ(x2ya) = ϕ[P3P2P

2
1 , 1011P1 + c1] = ϕ[P3, 1111] = 1111

ϕ(x3ya) = ϕ[P3P2P
3
1 , 1111P1 + c1] = ϕ[E, 0111] = 0111

(5) G8 = ⟨x, y, a | x4 = y2 = a2 = e, xy = yx3, xa = ax, ya = ay⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2], [P

T
π3
, c3]⟩,

where c1 = 1000, c2 = 0010, c3 = 0001, π1 = π2 = ( 1 2 3 4
2 1 3 4 ) and π3 is the identity

permutation.

G8 has the following Gray map:
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ϕ(e) = ϕ[E,0] = ϕ[E, 0000] = 0000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 1000] = 1000
ϕ(x2) = ϕ[P 2

1 , 1000P1 + c1] = ϕ[E, 1100] = 1100
ϕ(x3) = ϕ[P 3

1 , 1100P1 + c1] = ϕ[P1, 0100] = 0100
ϕ(y) = ϕ[P2, c2] = ϕ[P2, 0010] = 0010
ϕ(xy) = ϕ[P2P1, 0010P1 + c1] = ϕ[E, 1010] = 1010
ϕ(x2y) = ϕ[P2P

2
1 , 1010P1 + c1] = ϕ[P2, 1110] = 1110

ϕ(x3y) = ϕ[P2P
3
1 , 1110P1 + c1] = ϕ[E, 0110] = 0110

ϕ(a) = ϕ[P3, c3] = ϕ[E, 0001] = 0001
ϕ(xa) = ϕ[P3P1, 0001P1 + c1] = ϕ[P1, 1001] = 1001
ϕ(x2a) = ϕ[P3P

2
1 , 1001P1 + c1] = ϕ[E, 1101] = 1101

ϕ(x3a) = ϕ[P3P
3
1 , 1101P1 + c1] = ϕ[P1, 0101] = 0101

ϕ(ya) = ϕ[P3P2, 0001P2 + c2] = ϕ[P2, 0011] = 0011
ϕ(xya) = ϕ[P3P2P1, 0011P1 + c1] = ϕ[E, 1011] = 1011
ϕ(x2ya) = ϕ[P3P2P

2
1 , 1011P1 + c1] = ϕ[P2, 1111] = 1111

ϕ(x3ya) = ϕ[P3P2P
3
1 , 1111P1 + c1] = ϕ[E, 0111] = 0111

(6) G9 = ⟨x, y, a | x2 = y2 = a4 = e, xy = yx, ax = ya, ay = xa⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2], [P

T
π3
, c3]⟩,

where c1 = 1000, c2 = 0100, c3 = 0010, π3 = ( 1 2 3 4
2 1 4 3 ) and π1, π2 are the identity

permutations.

G9 has the following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 0000] = 0000
ϕ(x) = ϕ[P1, c1] = ϕ[E, 1000] = 1000
ϕ(y) = ϕ[P2, c2] = ϕ[E, 0100] = 0100
ϕ(xy) = ϕ[P2P1, 0100P1 + c1] = ϕ[E, 1100] = 1100
ϕ(a) = ϕ[P3, c3] = ϕ[P3, 0010] = 0010
ϕ(xa) = ϕ[P3P1, 0010P1 + c1] = ϕ[P3, 1010] = 1010
ϕ(ya) = ϕ[P3P2, 0010P2 + c2] = ϕ[P3, 0110] = 0110
ϕ(xya) = ϕ[P3P2P1, 0110P1 + c1] = ϕ[P3, 1110] = 1110
ϕ(a2) = ϕ[P 2

3 , 0010P3 + c3] = ϕ[E, 0011] = 0011
ϕ(xa2) = ϕ[P 2

3P1, 0011P1 + c1] = ϕ[E, 1011] = 1011
ϕ(ya2) = ϕ[P 2

3P2, 0011P2 + c2] = ϕ[E, 0111] = 0111
ϕ(xya2) = ϕ[P 2

3P2P1, 0111P1 + c1] = ϕ[E, 1111] = 1111
ϕ(a3) = ϕ[P 3

3 , 0011P3 + c3] = ϕ[P3, 0001] = 0001
ϕ(xa3) = ϕ[P 3

3P1, 0001P1 + c1] = ϕ[P3, 1001] = 1001
ϕ(ya3) = ϕ[P 3

3P2, 0001P2 + c2] = ϕ[P3, 0101] = 0101
ϕ(xya3) = ϕ[P 3

3P2P1, 0101P1 + c1] = ϕ[P3, 1101] = 1101

(7) G10 = ⟨x, y, a | x4 = e, y2 = x2, xy = yx3, xa = ax, ay = x2ya⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2], [P

T
π3
, c3]⟩,
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where c1 = 11000, c2 = 01100, c3 = 00001, π1 = ( 1 2 3 4 5
3 4 1 2 5 ) and π2 = π3 =

( 1 2 3 4 5
2 1 4 3 5 ).

G10 has the following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 00000] = 00000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 11000] = 11000
ϕ(x2) = ϕ[P 2

1 , 11000P1 + c1] = ϕ[E, 11110] = 11110
ϕ(x3) = ϕ[P 3

1 , 11110P1 + c1] = ϕ[P1, 00110] = 00110
ϕ(y) = ϕ[P2, c2] = ϕ[P2, 01100] = 01100
ϕ(xy) = ϕ[P2P1, 01100P1 + c1] = ϕ[P2P1, 01010] = 01010
ϕ(x2y) = ϕ[P2P

2
1 , 01010P1 + c1] = ϕ[P2, 10010] = 10010

ϕ(x3y) = ϕ[P2P
3
1 , 10010P1 + c1] = ϕ[P2P1, 10100] = 10100

ϕ(a) = ϕ[P3, c3] = ϕ[P3, 00001] = 00001
ϕ(xa) = ϕ[P3P1, 00001P1 + c1] = ϕ[E, 11001] = 11001
ϕ(x2a) = ϕ[P3P

2
1 , 11001P1 + c1] = ϕ[P3, 11111] = 11111

ϕ(x3a) = ϕ[P3P
3
1 , 11111P1 + c1] = ϕ[P3P1, 00111] = 00111

ϕ(ya) = ϕ[P3P2, 00110P2 + c2] = ϕ[P3P2, 01101] = 01101
ϕ(xya) = ϕ[P3P2P1, 01101P1 + c1] = ϕ[P1, 01011] = 01011
ϕ(x2ya) = ϕ[P3P2P

2
1 , 01011P1 + c1] = ϕ[P3P2, 10011] = 10011

ϕ(x3ya) = ϕ[P3P2P
3
1 , 10011P1 + c1] = ϕ[P1, 10101] = 10101

(8) G11 = ⟨x, y, a | x4 = e, y2 = x2, xy = yx3, xa = ax, ay = ya⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2], [P

T
π3
, c3]⟩,

where c1 = 11000, c2 = 01100, c3 = 00001, π1 = ( 1 2 3 4 5
3 4 1 2 5 ) , π2 = ( 1 2 3 4 5

2 1 4 3 5 ) and π3
is the identity permutation.

G11 has the following Gray map:
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ϕ(e) = ϕ[E,0] = ϕ[E, 00000] = 00000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 11000] = 11000
ϕ(x2) = ϕ[P 2

1 , 11000P1 + c1] = ϕ[E, 11110] = 11110
ϕ(x3) = ϕ[P 3

1 , 11110P1 + c1] = ϕ[P1, 00110] = 00110
ϕ(y) = ϕ[P2, c2] = ϕ[P2, 01100] = 01100
ϕ(xy) = ϕ[P2P1, 01100P1 + c1] = ϕ[P2P1, 01010] = 01010
ϕ(x2y) = ϕ[P2P

2
1 , 01010P1 + c1] = ϕ[P2, 10010] = 10010

ϕ(x3y) = ϕ[P2P
3
1 , 10010P1 + c1] = ϕ[P2P1, 10100] = 10100

ϕ(a) = ϕ[P3, c3] = ϕ[E, 00001] = 00001
ϕ(xa) = ϕ[P3P1, 00001P1 + c1] = ϕ[P1, 11001] = 11001
ϕ(x2a) = ϕ[P3P

2
1 , 11001P1 + c1] = ϕ[E, 11111] = 11111

ϕ(x3a) = ϕ[P3P
3
1 , 11111P1 + c1] = ϕ[P1, 00111] = 00111

ϕ(ya) = ϕ[P3P2, 00001P2 + c2] = ϕ[P2, 01101] = 01101
ϕ(xya) = ϕ[P3P2P1, 01101P1 + c1] = ϕ[P2P1, 01011] = 01011
ϕ(x2ya) = ϕ[P3P2P

2
1 , 01011P1 + c1] = ϕ[P2, 10011] = 10011

ϕ(x3ya) = ϕ[P3P2P
3
1 , 10011P1 + c1] = ϕ[P2P1, 10101] = 10101

(9) G12 = ⟨x, a | x4 = a4 = e, xa = ax3⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 = 1000, c2 =

0010, π1 = ( 1 2 3 4
2 1 3 4 ) , π2 = ( 1 2 3 4

2 1 4 3 ).

G12 has the following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 0000] = 0000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 1000] = 1000
ϕ(x2) = ϕ[P 2

1 , 1000P1 + c1] = ϕ[E, 1100] = 1100
ϕ(x3) = ϕ[P 3

1 , 1100P1 + c1] = ϕ[P1, 0100] = 0100
ϕ(a) = ϕ[P2, c2] = ϕ[P2, 0010] = 0010
ϕ(xa) = ϕ[P2P1, 0010P1 + c1] = ϕ[P2P1, 1010] = 1010
ϕ(x2a) = ϕ[P2P

2
1 , 1010P1 + c1] = ϕ[P2, 1110] = 1110

ϕ(x3a) = ϕ[P2P
3
1 , 1110P1 + c1] = ϕ[P2P1, 0110] = 0110

ϕ(a2) = ϕ[P 2
2 , 0010P2 + c2] = ϕ[E, 0011] = 0011

ϕ(xa2) = ϕ[P 2
2P1, 0011P1 + c1] = ϕ[P1, 1011] = 1011

ϕ(x2a2) = ϕ[P 2
2P

2
1 , 1011P1 + c1] = ϕ[E, 1111] = 1111

ϕ(x3a2) = ϕ[P 2
2P

3
1 , 1111P1 + c1] = ϕ[P1, 0111] = 0111

ϕ(a3) = ϕ[P 3
2 , 0011P2 + c2] = ϕ[P2, 0001] = 0001

ϕ(xa3) = ϕ[P 3
2P1, 0001P1 + c1] = ϕ[P2P1, 1001] = 1001

ϕ(x2a3) = ϕ[P 3
2P

2
1 , 1001P1 + c1] = ϕ[P2, 1101] = 1101

ϕ(x3a3) = ϕ[P 3
2P

3
1 , 1101P1 + c1] = ϕ[P2P1, 0101] = 0101

(10) G13 = ⟨x, a | x4 = a4 = e, xa = ax⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 = 1000, c2 =

0010, π1 = ( 1 2 3 4
2 1 3 4 ) , and π2 = ( 1 2 3 4

1 2 4 3 ).

G13 has the following Gray map:
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ϕ(e) = ϕ[E,0] = ϕ[E, 0000] = 0000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 1000] = 1000
ϕ(x2) = ϕ[P 2

1 , 1000P1 + c1] = ϕ[E, 1100] = 1100
ϕ(x3) = ϕ[P 3

1 , 1100P1 + c1] = ϕ[P1, 0100] = 0100
ϕ(a) = ϕ[P2, c2] = ϕ[P2, 0010] = 0010
ϕ(xa) = ϕ[P2P1, 0010P1 + c1] = ϕ[P2P1, 1010] = 1010
ϕ(x2a) = ϕ[P2P

2
1 , 1010P1 + c1] = ϕ[P2, 1110] = 1110

ϕ(x3a) = ϕ[P2P
3
1 , 1110P1 + c1] = ϕ[P2P1, 0110] = 0110

ϕ(a2) = ϕ[P 2
2 , 0010P2 + c2] = ϕ[E, 0011] = 0011

ϕ(xa2) = ϕ[P 2
2P1, 0011P1 + c1] = ϕ[P1, 1011] = 1011

ϕ(x2a2) = ϕ[P 2
2P

2
1 , 1011P1 + c1] = ϕ[E, 1111] = 1111

ϕ(x3a2) = ϕ[P 2
2P

3
1 , 1111P1 + c1] = ϕ[P1, 0111] = 0111

ϕ(a3) = ϕ[P 3
2 , 0011P2 + c2] = ϕ[P2, 0001] = 0001

ϕ(xa3) = ϕ[P 3
2P1, 0001P1 + c1] = ϕ[P2P1, 1001] = 1001

ϕ(x2a3) = ϕ[P 3
2P

2
1 , 1001P1 + c1] = ϕ[P2, 1101] = 1101

ϕ(x3a3) = ϕ[P 3
2P

3
1 , 1101P1 + c1] = ϕ[P2P1, 0101] = 0101

7.2 Construction Examples without using the recipe

(1) G2 = ⟨x, a | x8 = a2 = e, xa = ax3⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 = 0001, c2 =

0010, π1 = ( 1 2 3 4
2 3 4 1 ) and π2=( 1 2 3 4

1 4 3 2 ).

G2 has the following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 0000] = 0000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 0001] = 0001
ϕ(x2) = ϕ[P 2

1 , 0001P1 + c1] = ϕ[P 2
1 , 0011] = 0011

ϕ(x3) = ϕ[P 3
1 , 0011P1 + c1] = ϕ[P 3

1 , 0111] = 0111
ϕ(x4) = ϕ[P 4

1 , 0111P1 + c1] = ϕ[E, 1111] = 1111
ϕ(x5) = ϕ[P 5

1 , 1111P1 + c1] = ϕ[P1, 1110] = 1110
ϕ(x6) = ϕ[P 6

1 , 1110P1 + c1] = ϕ[P 2
1 , 1100] = 1100

ϕ(x7) = ϕ[P 7
1 , 1100P1 + c1] = ϕ[P 3

1 , 1000] = 1000
ϕ(a) = ϕ[P2, c2] = ϕ[P2, 0010] = 0010
ϕ(xa) = ϕ[P2P1, 0010P1 + c1] = ϕ[P2P1, 0101] = 0101
ϕ(x2a) = ϕ[P2P

2
1 , 0101P1 + c1] = ϕ[P2P

2
1 , 1011] = 1011

ϕ(x3a) = ϕ[P2P
3
1 , 1011P1 + c1] = ϕ[P2P

3
1 , 0110] = 0110

ϕ(x4a) = ϕ[P2P
4
1 , 0110P1 + c1] = ϕ[P2, 1101] = 1101

ϕ(x5a) = ϕ[P2P
5
1 , 1101P1 + c1] = ϕ[P2P1, 1010] = 1010

ϕ(x6a) = ϕ[P2P
6
1 , 1010P1 + c1] = ϕ[P2P

2
1 , 0100] = 0100

ϕ(x7a) = ϕ[P2P
7
1 , 0100P1 + c1] = ϕ[P2P

3
1 , 1001] = 1001
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(2) G3 = ⟨x, a | x8 = a2 = e, xa = ax5⟩ ≃ ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 = 0001, c2 =

0101, π1 = ( 1 2 3 4
2 3 4 1 ) and π2 is the identity permutation.

G3 has the following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 0000] = 0000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 0001] = 0001
ϕ(x2) = ϕ[P 2

1 , 0001P1 + c1] = ϕ[P 2
1 , 0011] = 0011

ϕ(x3) = ϕ[P 3
1 , 0011P1 + c1] = ϕ[P 3

1 , 0111] = 0111
ϕ(x4) = ϕ[P 4

1 , 0111P1 + c1] = ϕ[E, 1111] = 1111
ϕ(x5) = ϕ[P 5

1 , 1111P1 + c1] = ϕ[P1, 1110] = 1110
ϕ(x6) = ϕ[P 6

1 , 1110P1 + c1] = ϕ[P 2
1 , 1100] = 1100

ϕ(x7) = ϕ[P 7
1 , 1100P1 + c1] = ϕ[P 3

1 , 1000] = 1000
ϕ(a) = ϕ[P2, c2] = ϕ[P2, 0101] = 0101
ϕ(xa) = ϕ[P2P1, 0101P1 + c1] = ϕ[P2P1, 1011] = 1011
ϕ(x2a) = ϕ[P2P

2
1 , 1011P1 + c1] = ϕ[P2P

2
1 , 0110] = 0110

ϕ(x3a) = ϕ[P2P
3
1 , 0110P1 + c1] = ϕ[P2P

3
1 , 1101] = 1101

ϕ(x4a) = ϕ[P2P
4
1 , 1101P1 + c1] = ϕ[P2, 1010] = 1010

ϕ(x5a) = ϕ[P2P
5
1 , 1010P1 + c1] = ϕ[P2P1, 0100] = 0100

ϕ(x6a) = ϕ[P2P
6
1 , 0100P1 + c1] = ϕ[P2P

2
1 , 1001] = 1001

ϕ(x7a) = ϕ[P2P
7
1 , 1001P1 + c1] = ϕ[P2P

3
1 , 0010] = 0010

8 Construction Examples of Gray maps for a group

other than 2-group

In this section we show that our method can also construct Gray maps for several
non-p-groups.

(1) C3 = ⟨x | x3 = e⟩ ∼= ⟨[P T
π , c]⟩, where c = 110 and π = ( 1 2 3

2 3 1 ). C3 has the
following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 000] = 000
ϕ(x) = ϕ[P, c] = ϕ[P, 110] = 110
ϕ(x2) = ϕ[P 2, 110P + c] = ϕ[P 2, 011] = 011

(2) C5 = ⟨x | x5 = e⟩ ∼= ⟨[P T
π , c]⟩, where c = 11000 and π = ( 1 2 3 4 5

4 5 1 2 3 ). C5 has the
following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 00000] = 00000
ϕ(x) = ϕ[P, c] = ϕ[P, 11000] = 11000
ϕ(x2) = ϕ[P 2, 11000P + c] = ϕ[P 2, 11110] = 11110
ϕ(x3) = ϕ[P 3, 11110P + c] = ϕ[P 3, 01111] = 01111
ϕ(x4) = ϕ[P 4, 01111P + c] = ϕ[P 4, 00011] = 00011
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(3) C6 = ⟨x | x6 = e⟩ ∼= ⟨[P T
π , c]⟩, where c = 100 and π = ( 1 2 3

3 1 2 ). C6 has the
following Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 000] = 000
ϕ(x) = ϕ[P, c] = ϕ[P, 100] = 100
ϕ(x2) = ϕ[P 2, 100P + c] = ϕ[P 2, 110] = 110
ϕ(x3) = ϕ[P 3, 110P + c] = ϕ[E, 111] = 111
ϕ(x4) = ϕ[P 4, 111P + c] = ϕ[P, 011] = 011
ϕ(x5) = ϕ[P 5, 011P + c] = ϕ[P 2, 001] = 001

(4) For n ∈ N, C2n = ⟨x | x2n = e⟩ ∼= ⟨[P T
π , c]⟩, where c = 10 . . . 0, and π =

( 1 2 3 ... n
n 1 2 ... n−1 ). This gives a Gray map for C2n over Zn2 .

(5) For n ∈ N, C2n+1 = ⟨x | x2n+1 = e⟩ ∼= ⟨[P T
π , c]⟩, where c = 110 . . . 0 and

π =
(

1 2 3 ... 2n+1
2n 2n+1 1 ... 2n−1

)
. This gives a Gray map for C2n+1 over Z2n+1

2 .

(6) D6 = ⟨x, y | x3 = y2 = e, xy = yx2⟩ ∼= ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 = 011, c2 =

010, π1 = ( 1 2 3
2 3 1 ), and π2 is the identity permutation. D6 has the following 3-bit

Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 000] = 000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 011] = 011
ϕ(x2) = ϕ[P 2

1 , 011P1 + c1] = ϕ[P 2
1 , 101] = 101

ϕ(y) = ϕ[E, c2] = ϕ[E, 010] = 010
ϕ(xy) = ϕ[P1, 010P1 + c1] = ϕ[P1, 111] = 111
ϕ(x2y) = ϕ[P 2

1 , 111P + c1] = ϕ[P 2
1 , 100] = 100

(7) D10 = ⟨x, y | x5 = y2 = e, xy = yx4⟩ ∼= ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 =

00101, c2 = 01101, π1 = ( 1 2 3 4 5
2 3 4 5 1 ), and π2 is the identity permutation. D10

has the following 5-bit Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 00000] = 00000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 00101] = 00101
ϕ(x2) = ϕ[P 2

1 , 00101P1 + c1] = ϕ[P 2
1 , 01111] = 01111

ϕ(x3) = ϕ[P 3
1 , 01111P1 + c1] = ϕ[P 3

1 , 11011] = 11011
ϕ(x4) = ϕ[P 4

1 , 11011P1 + c1] = ϕ[P 4
1 , 10010] = 10010

ϕ(y) = ϕ[E, c2] = ϕ[E, 01101] = 01101
ϕ(xy) = ϕ[P1, 01101P1 + c1] = ϕ[P1, 11111] = 11111
ϕ(x2y) = ϕ[P 2

1 , 11111P + c1] = ϕ[P 2
1 , 11010] = 11010

ϕ(x3y) = ϕ[P 3
1 , 11010P + c1] = ϕ[P 3

1 , 10000] = 10000
ϕ(x4y) = ϕ[P 4

1 , 10000P + c1] = ϕ[P 4
1 , 00100] = 00100
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(8) D12 = ⟨x, y | x6 = y2 = e, xy = yx5⟩ ∼= ⟨[P T
π1
, c1], [P

T
π2
, c2]⟩, where c1 = 0010, c2 =

0111, π1 = ( 1 2 3 4
2 3 1 4 ), and π2 is the identity permutation. D12 has the following

4-bit Gray map:

ϕ(e) = ϕ[E,0] = ϕ[E, 0000] = 0000
ϕ(x) = ϕ[P1, c1] = ϕ[P1, 0010] = 0010
ϕ(x2) = ϕ[P 2

1 , 0010P1 + c1] = ϕ[P 2
1 , 0110] = 0110

ϕ(x3) = ϕ[P 3
1 , 0110P1 + c1] = ϕ[E, 1110] = 1110

ϕ(x4) = ϕ[P 4
1 , 1110P1 + c1] = ϕ[P1, 1100] = 1100

ϕ(x5) = ϕ[P 5
1 , 1100P1 + c1] = ϕ[P 2

1 , 1000] = 1000
ϕ(y) = ϕ[E, c2] = ϕ[E, 0111] = 0111
ϕ(xy) = ϕ[P1, 0111P1 + c1] = ϕ[P1, 1111] = 1111
ϕ(x2y) = ϕ[P 2

1 , 1111P + c1] = ϕ[P 2
1 , 1101] = 1101

ϕ(x3y) = ϕ[P 3
1 , 1101P + c1] = ϕ[E, 1001] = 1001

ϕ(x4y) = ϕ[P 4
1 , 1001P + c1] = ϕ[P1, 0001] = 0001

ϕ(x5y) = ϕ[P 5
1 , 0001P + c1] = ϕ[P 2

1 , 0011] = 0011

9 Summary

We propose a constructive method to design Gray maps for groups of order 16 in this
paper.

We have shown that our method can construct Gray maps for several groups of
order 16, namely, G1, G4, G7, G8, G9, G10, G11, G12 and G13. This method required
less time and effort to design a Gray map than that in the previous paper [9].

However, our recipe failed to construct Gray maps for G5 = Q16 and G6 = C16

because the groups do not have extension type of form (K, 2, τ, e) and so does it for
G2 = (C8, 2, σ2, e) and G3 = (C8, 2, σ3, e) because w(cx) ̸= w(cσ2(x)) and w(cx) ̸=
w(cσ3(x)).

Our next theme is to find a new recipe effective to the failed groups. Furthermore,
since we believe the method can also contribute to constructing non-binary codes, we
want to propose a new recipe to construct Gray maps for non-binary codes.
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