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Chapter 1 General Introduction 

 

1.1 Introduction to lignocellulosic materials 

The current supply of raw materials in terms of fuel, energy, and chemicals, 

depends on processing crude oil. Limited fossil resources, knowledge of their impacts, 

and increasing global fossil fuel demand encourages exploration into sustainable 

resources. The shift of raw materials to chemical processing offers the possibility of 

innovative products and thus more efficient production lines. The exploitation of 

biological resources in new processes is sometimes required to develop sustainable 

processes based on light and selective conversion steps. 

The most significant and available renewable carbohydrate is estimated to come 

from lignocellulosic biomass, which has the potential to generate several billion tonnes 

per year [1]. One potential source of lignocellulosic biomass is wood. It does not 

compete with edible plants and thus has the potential to provide raw materials that 

generate added value from wood. Wood is very resistant to biological, chemical, and 

mechanical attacks due to the nature of its structure.  

Lignocellulosic biomasses such as rice straw, sugarcane bagasse, cotton stalk, 

bamboo, wheat straw, and sugarcane tops, are abundantly available as agro-residues. 

The impressive growth rate, lack of land use competition, high cellulose content, and 

low lignin content of water hyacinth has led it to be a suitable lignocellulosic biomass 

[2]. Several factors, such as lignin content, particle size, cellulose crystallinity, 

hemicellulose and cellulose content exist in lignocellulosic biomass. The presence of 

lignin and hemicellulose inhibit the enzyme to reach cellulose. Pretreatments have a 

goal to improve the hydrolysis of lignocellulosic biomass [3,4]. 
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The beneficial effects of pretreatment of lignocellulosic materials have been 

recognized for a long time. The purpose of the pretreatment process is to remove lignin 

and hemicellulose, reduce cellulose crystallinity, and increase the porosity of 

lignocellulosic materials. Pretreatment must meet the following requirements: (1) 

improve the formation of sugars or the ability to subsequently form sugars by hydrolysis, 

(2) avoid the degradation or loss of carbohydrate, (3) avoid the formation of byproducts 

that are inhibitory to the subsequent hydrolysis and fermentation processes, and (4) be 

cost-effective [3,4].  

The selective and efficient conversion process for lignocellulosic biomass is 

very challenging. In 2002, the dissolution of cellulose was discovered in ionic liquids 

(ILs) at mild temperatures [5]. This presents an outstanding capability, as common 

solvents do not enable cellulose dissolution and processing in the homogeneous phase. 

Moreover, ILs are non-volatile, which is in contrast to organic solvents, whose 

emissions contribute to global warming. In more recent years, the first reports on the 

dissolution of wood with ILs have been published [6].  
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1.2 Chemical composition of lignocellulosic materials 

Lignocellulose is the main component of plant cell walls. Approximately 90% 

of the dry weight of most lignocellulosic materials is stored in the form of cellulose, 

hemicellulose, lignin, and pectin [4]. Wood mainly consists of 40-45 wt % cellulose, 

20-30 wt % hemicelluloses, and 26-32% lignin [7]. Grasses consist of 25-40 wt % 

cellulose, 35-50% wt % hemicellulose, and 10-30 wt% lignin. Plant biomass also 

composed of smaller amounts of protein, extractives (soluble nonstructural materials 

such as nonstructural sugars, nitrogenous material, chlorophyll, and waxes), and ash 

[3,4,7]. 

 

1.2.1 Cellulose  

A cellulose macromolecule consists of several glucose monomers that are 

linked to a dehydration reaction, with water as a by-product. The repeating unit of 

cellulose, the monomer, consists of a 6-membered ring of carbon atoms and one oxygen 

atom. The precise molecular formula of cellulose is C6nH10n+2O5n+1. Cellulose is a 

homopolysaccharide composed of β-D-glucopyranose units. These are linked together 

by (1  4)-glycosidic bonds. Cellulose molecules are linear and have a strong tendency 

to form intra and intermolecular hydrogen bonds. Bundles of cellulose molecules are 

thus aggregated together in the form of microfibrils, in which highly ordered crystalline 

regions alternate with less ordered amorphous regions. The fibrous structure and strong 

hydrogen bonding give cellulose a large tensile strength and insolubility in most 

solvents [7]. 

 The crystalline structure of cellulose has been characterized by X-ray 

diffraction analysis and by methods based on the absorption of polarized infrared 

radiation. The unit cell of native cellulose (cellulose I) consists of four glucose residues. 
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All chains of native cellulose microfibrils are oriented in the same parallel direction. 

Regenerated cellulose (cellulose II) has antiparallel chains. Cellulose II is formed 

whenever the lattice of cellulose I is destroyed, i.e., for swelling with strong alkali 

solvents or on the dissolution of cellulose. Since the strongly hydrogen bonded cellulose 

II is thermodynamically more stable than cellulose I, it cannot be reconverted into the 

latter. All naturally occurring cellulose has the structure of cellulose I. Cellulose III and 

IV are produced when celluloses I and II are subjected to specific chemical treatments 

and heating [7,8]. 

 

1.2.2 Hemicellulose 

Another group of carbohydrates found in wood are hemicelluloses. These are 

also polysaccharides. However, they constitute of hexoses and pentoses, i.e., xylose, 

mannose, glucose, rhamnose, galactose, and arabinose. They are organized in a chain 

to form the main backbone, which is frequently branched and substituted with sugars. 

Hemicelluloses are heteropolysaccharides. Like cellulose, most hemicelluloses 

function as supporting materials in the cell walls. Hemicellulose is relatively readily 

hydrolyzed by acids to their monomeric components consisting of D-glucose, D-

mannose, D-xylose, L-arabinose, and a small amount of rhamnose, in addition to D-

glucuronic acid, 4-O-methyl-D-glucuronic acid, and D-galacturonic acid. 

Hemicellulose usually comprises between 20 and 30% of the dry weight of wood [7]. 

 

 

 



5 

  

1.2.3 Lignin 

Lignin, the third structural polymer in wood, consists of aromatic moieties with 

a rather random structure. Lignin is a polymer consisting of phenylpropane units. 

Guaiacyl lignin, which occurs in almost all softwoods, is mostly a polymerization 

product of coniferyl alcohol. The guaiacyl-syringyl lignin, typically occurring in 

hardwoods, is a copolymer of coniferyl and sinapyl alcohol. Many studies have 

indicated that covalent linkage must exist between lignin and wood polysaccharides. 

Hemicellulose components (xylan and galactoglucomannans in softwood) are bound to 

lignin mainly through arabinose, xylose, and galactose moieties [7,9].  

In addition to the structural carbohydrates, several non-structural compounds 

are present in wood, commonly referred to as extractives and inorganic components. 

Although extractives like fats, waxes, tannins, acids, oils, etc., are existent only in a few 

percentages (to a greater extent in softwood), they determine the smell, color, and 

resistance against degradation of wood. Extractives are not a major constituent of wood 

but might prove to be beneficial sources for specialty chemicals and pharmaceuticals. 

The inorganic components turn into ash after combustion and consist of calcium, 

magnesium, potassium, and the like [7].  
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1.3 Water hyacinth (Eichhornia crassipes)  

Indonesia has 1 million ha of natural lakes and thousands of hectares of man-

made water reservoirs. Some of these are eutrophic, mainly due to human activities, 

and thus provide suitable habitats for the luxurious growth of aquatic plants. One of the 

most important species is the water hyacinth, which proliferates and migrates easily. It 

can infest a large area of water in a relatively short time [10].  

Various kinds of biomass with no significant purpose can easily be found in 

Indonesia if forms such as herbaceous, wood, fruit, or aquatic biomass. Several aquatic 

weed species growing wildly in water areas were considered as undesirable members 

of the local ecosystem and were identified as local aquatic pollution. Water hyacinth is 

one of the main culprits, along with the aquatic weeds Hydrilla verticillata, and 

Myriophyllum spicatum. Some lake and ponds in Indonesia have been monitored, and 

the presence of pollutant aquatic weeds evaluated. For example, water hyacinth grows 

in extremely high areas of biomass, which form mats at the bottom and surface of Toba 

lake (the largest lake in tropical Asia, located in the middle of North Sumatra). Once 

the water hyacinth contaminated biomass is harvested, it becomes aquatic waste. This 

increases the potential for biomass as a renewable energy resource, without financial 

demands for its cultivation [11].  

Water hyacinth is a perennial, mat-forming, herbaceous monocotyledon 

member of the pickerelweed family (Pontederiaceae) and is native to Brazil and tropical 

America. It is also a popular ornamental plant found in water gardens and aquariums 

and bears beautiful blue to lilac colored flowers, round to oblong shaped leaves, and 

waxy-coated petioles (Fig. 1.1) [12,13]. 

The mature water hyacinth plant consists of roots, rhizomes, stolons, leaves, 

inflorescences, and fruit clusters. The roots are fibrous, unbranched, and with a 
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conspicuous root cap. They turn purplish in exposed situations but are white when in 

darkness or when rooted in soil. They vary little in diameter but considerably in length 

(0.3 ft. to 3.0 ft. or possibly more) [13]. The stems and leaves contain air-filled bags, 

which help them stay afloat. Water hyacinth is considered a dangerous weed in many 

parts of the world because it proliferates quickly and depletes the nutrient and oxygen 

contents in the water [12, 14].  

Table 1.1 shows the carbohydrate and lignin contents of water hyacinth from 

different sources. Evaluation of the composition of water hyacinth is essential due to 

the variation in values of carbohydrate and lignin contents in different studies. Biotic 

and abiotic factors, such as differences in species, growth state, and harvesting time, 

influenced the carbohydrate and lignin contents. Even though the lignin content of 

water hyacinth shows varying values, it is still lower than other lignocellulosic 

materials, which theoretically renders water hyacinth suitable for the pretreatment 

process [2]. 
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Fig. 1.1 Water hyacinth in water body 
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Table 1.1 Composition of water hyacinth (carbohydrates and lignin) 

 

Water hyacinth 

fractions 

Cellulose 

(%) 

Hemicellulose 

(%) 

Lignin 

(%) 
Reference 

Whole plant 18.1 28.2 7.0 (Zhang et al. 2016) [15] 

Stems-leaves 35.2 19.7 15.3 (Das et al. 2014) [16] 

Whole plant 16.4 42.8 5.5 
(Rezania, Din, and Taib 2017) 

[17] 

Whole plant 18.3 23.3 17.7 (Gao et al. 2013) [18] 

Whole plant 35.8 19.4 13.2 
(Manivannan and 

Narendhirakannan 2015) [19] 

Leaves 33.8 26.8 14.2 (Das et al. 2014) [20] 

Stems-leaves 19.2 40.0 4.8 (Singh and Bishnoi 2013) [21] 
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1.4 Pretreatment with ILs 

There are a number of biological, chemical and physical technologies available 

for the pretreatment of lignocellulosic biomass, such as the use of an enzyme, ball 

milling, steam explosion, acid, alkali, lime, and wet oxidation. Environmental concerns 

and the production of inhibitors to fermenting yeasts during these pretreatment 

processes need to be considered [22]. Table 1.2 displays the advantages and 

disadvantages of using some of these popular pretreatments. There is no perfect 

pretreatment method, but ILs are interesting because they have an outstanding ability 

to pretreat lignocellulosic materials at relatively low temperatures and are more 

environmentally friendly. 

ILs are liquids consisting of ions. A liquid composed of ions at approximately 

room temperature is generally called room temperature ILs, liquid salt of room 

temperature, or organic ion liquids. The interparticle force that occurs in ILs is the 

coulombic force between anions and cations. Theoretically, there are billions of types 

of ILs. ILs differ from organic solvents because they cannot evaporate into gas. 

Therefore, ILs are safe from causing new air pollutants or harmful gases in experiments. 

Theoretically, ILs can also be recycled several times [23]. 

In general, ILs have very high viscosities, which thus limits their use as solvents 

(for example, alkyl imidazolium chloride). Despite this, some ILs have relatively low 

viscosities. There are several criteria to think about when choosing ILs for big scale 

operations. The most important ones are costs, physical properties, toxicity, corrosivity, 

availability, water tolerance, and biodegradability. For examples, [Bmim]Cl is a 

suitable solvent for cellulose, exhibits relatively moderate toxicity compared with 

[Emim]Cl. A more efficient alternative to chloride-containing ILs is [Emim]Ac, which 

is also considered biodegradable, and reasonably non-toxic and non-corrosive [24].  
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ILs can dissolve organic, inorganic, and polymeric substances. ILs are good 

solvents in many chemical reactions. The solubility of ILs is closely related to the 

cationic and anionic properties. Alteration of the alkyl cation will change the dissolution 

capability of ILs [23]. The properties of ILs can be tuned by appropriate selection of 

anions and cations. More than 40 ILs have been investigated in dissolving cellulose. 

Relatively smalls cations are often effective in dissolving cellulose. Functional groups 

in the cation can also be crucial for cellulose dissolution. For example, a hydroxyl group 

in the cation can interact with acetate or chloride anions and compete with cellulose in 

forming hydrogen bonds [24]. 

The chloride anion is a stable anion when aiming for cellulose dissolution, 

whereas large, non-coordinating anions have not been found to be as stable [5]. 

However, formate and acetate were found to be quite sturdy when combined with an 

appropriate cation [25]. The dissolution temperature affects the viscosity and the 

conductivity of ILs. A more intensive stirring effect can be achieved at a higher 

temperature compared to a lower one. The ILs are exhibiting relatively low viscosities, 

such as acetate, facilitate dissolution of cellulose at lower temperatures, thus giving a 

less thermal degradation of cellulose [26].  

It has been clarified that ILs have an excellent ability to dissolve cellulose 

[6,27,28]. The solution may be treated with acid hydrolysis or enzymatic hydrolysis of 

cellulose, to improve the saccharification rate of dissolving cellulose. However, there 

is a need to recycle and reuse the ILs. Otherwise, they will have no commercial value. 
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Table 1.2 Advantages and disadvantages of various pretreatment methods [2]  

 

Pretreatment Advantages Disadvantages 

Acid (H2SO4) 

Widely used due to its effectiveness, 

high sugar recovery efficiency (> 

90%) for both xylose and glucose, 

high hemicellulose solubility, removal 

of lignin and hemicellulose, cellulose 

accessibility for enzymatic 

saccharification 

Concentrated-acid process is 

corrosive and dangerous; 

specialized non-metallic 

equipment is needed, 

formation of inhibitors at low 

pH, losses of sugar content, 

neutralization and salt disposal 

Alkali 

(NaOH) 

Significant removal of lignin and a 

part of hemicellulose, decrease in 

polymerization degree and 

crystallinity 

Low digestibility in 

softwoods, significant amount 

of water is needed for 

washing, long pretreatment 

resident time, high chemical 

recovery cost 

Ionic liquids 

(ILs) 

Less crystallinity of regenerated 

cellulose and accessible external and 

internal surfaces of cellulose, lignin 

recovery and reuse after removal, 

disruption of lignin and hemicellulose 

network 

High cost of chemicals, 

recovery of solubilized 

cellulose/hemicellulose, 

toxicity of some ILs, sugar 

separation from ILs and 

recycling 

Combined 

methods 

(microwave-

assisted) 

Improved enzymatic hydrolysis, 

efficient removal of lignin and 

hemicellulose, maximum utilization 

of lignocellulosic components 

High energy demands, 

specialized equipment is 

needed, production of toxic 

waste which can limit further 

downstream processing, 

inability to remove 

hemicelluloses and lignin 
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1.5  Recycle ILs 

The presence of water in the ILs was shown to significantly decrease the 

solubility of cellulose, presumably through competitive hydrogen-bonding to the 

cellulose microfibrils, inhibiting solubilization. When water was added to the IL at 

concentrations greater than ca. 1 wt % (approximately 0.5-mole fraction H2O), the 

solvent properties were significantly impaired, and cellulose was no longer soluble [5]. 

The presence of water significantly hampered the dissolution efficiency of ILs [6]. 

Dissolved cellulose can be precipitated from the IL solution by adding anti-

solvents, such as water, methanol, ethanol, 2-propanol, acetone, dichloromethane, 

chloroform, acetonitrile, and tetrahydrofuran [5,27]. When anti-solvent is added, the 

ions of the ILs are extracted into the aqueous phase and are shielded by water molecules, 

forming hydrodynamic shells. This allows for the direct interaction between the 

cellulose units in solution [25].  

ILs have a very low vapor pressure, thus can be used in high vacuum systems, 

further reducing environmental problems from volatilization. ILs have good solubility 

in organic and inorganic minerals. The reaction can occur in homogeneous conditions, 

thus reducing the volume of equipment. The range of operational temperatures of ILs 

is between -40 to 300 ºC. They have excellent chemical and thermal stability. ILs could 

easily be separated from other materials so that they can be recyclable [23]. Swatloski 

(2002) reported that ILs have high recovery rate and can be re-used [5].  

Further research is required to find an economical method that makes use of 

clean technology for the recovery of ILs at the industrial scale. In this thesis, the recycle 

and reuse of [Emim]Ac, without any purification of impurities (dissolved materials 

from wood) was studied. 
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1.6  Enzymatic saccharification 

Due to the robust structure of lignocellulosic biomass, the final purpose of 

pretreatment is to make the cellulose susceptible to hydrolysis into fermentable sugars 

[3,4,29,30]. Cost of enzymatic hydrolysis is low compared to acid or alkaline hydrolysis 

because enzymatic hydrolysis is usually conducted at mild conditions (pH 4.8 and 

temperature 45–50 ˚C) and does not have a corrosion problem [31].  

Cellulose comprises the largest fraction of the sugars in lignocellulose, and 

glucose is for many microorganisms the preferred carbon source. Enzymatic hydrolysis 

of cellulose is carried out by cellulase enzymes which are highly specific [32]. However, 

some pretreatment methods leave the hemicelluloses in the material and efficient 

hydrolysis of these materials therefore also requires the use of hemicellulases. As 

hemicelluloses vary between different plant species, the optimal enzyme mixture is 

most likely to be tailor-made or adjusted to each different kind of material [30]. 

Cellulases usually consist of enzyme mixtures. At least three groups of 

cellulases are involved in the hydrolysis process: (1) endoglucanase (EG, endo1,4-D-

glucanohydrolase, or EC 3.2.1.4.) which attacks regions of low crystallinity in the 

cellulose fiber, creating free chain-ends; (2) exoglucanase or cellobiohydrolase (CBH, 

1,4-β-D-glucan cellobiohydrolase, or EC 3.2.1.91.) which degrades the molecule 

further by removing cellobiose units from the free chain-ends; (3) β-glucosidase (EC 

3.2.1.21) which hydrolyzes cellobiose to produce glucose. There are also a number of 

ancillary enzymes that attack hemicelluloses, such as glucuronidase, acetylesterase, 

xylanase, β-xylosidase, galactomannanase and glucomannanase [3,31].  
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1.7 Objectives of this study 

The IL 1-ethyl-3-methylimidazolium acetate ([Emim]Ac) was used to 

pretreated lignocellulosic material from softwood which is endemic in Japan 

(Cryptomeria japonica) and water hyacinth (Eichhornia crassipes) from the Cirata 

reservoir, West Java, Indonesia. The pretreatment process is applied to enhance the 

glucose liberation using enzymatic saccharification. The common pretreatment process 

using ILs is focused on the dissolution of lignocellulosic materials to produce 

regenerated cellulose, which requires relatively long steps. But here, we chose the more 

efficient and straightforward procedure of ILs pretreatment without producing 

regenerated cellulose. 

The thesis is structured as follows:  

In Chapter 2, the objective was tested on [Emim]Ac in an efficient pretreatment 

method, to amorphize cellulose in Japanese softwood material and enhance enzymatic 

saccharification without collecting regenerated cellulose. This could be a new and more 

straightforward process for softwoods. The effects of treatment time and temperature 

were studied. Then, using the proposed method, the recyclability of [Emim]Ac was 

studied without removing the dissolved materials. 

In Chapter 3, the fractions of water hyacinth (stems-leaves, and roots) were 

characterized and pretreated with [Emim]Ac for enhancing enzymatic saccharification 

without collecting regenerated cellulose, following the method clarified in Chapter 2. 

Then, the effects of pretreatment time and enzyme dosage were carefully studied.  
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Chapter 2 Recycled ionic liquid 1-ethyl-3-methylimidazolium acetate 

pretreatment for enhancing enzymatic saccharification of 

softwood without cellulose regeneration 

 

2.1  Introduction 

 Wood is a prominent sustainable source of biomass, because of its huge stocks 

 and the fact that it does not directly compete with food production. Materials derived 

from wood can be used as feedstocks to produce valuable chemicals. In particular, 

cellulose in the wood can be used to generate biofuels and other bio-based products. 

The softwood forest in Japan has not been well managed. The amount of softwood 

plantation in Japan was 3.0 billion m3 in 2012. However, the self-sufficiency rate of 

industrial wood is only 31.2% in 2014, and the utilization of wood resources is 

insufficient [1]. Therefore, it is necessary to develop novel methods to separate and 

collect wood-derived materials. In this study, we focus on a softwood that is endemic 

to Japan (Cryptomeria japonica). Unfortunately, biotransformation of lignocellulosic 

biomass is not easy by either microbial or enzymatic routes, thereby limiting its 

economic conversion into value-added products. The cellulose in wood has a crystalline 

structure and is covered with lignin and hemicellulose. Therefore, pretreatment is very 

crucial for the efficient transformation of lignocellulosic biomass.  

Several researchers reported the dissolution of lignocellulosic materials in ILs 

followed by cellulose hydrolysis with acid or enzymes [2,3,4,5,6]. The ILs are liquids 

at a relatively low temperature (< 100 ºC) consisting of a cation and an anion. They are 

chemically and thermally stable, non-flammable, non-volatile, and have low vapor 

pressures. They also have greatly variable chemical and mechanical properties. Hence, 

ILs have attracted attention as environment-friendly media for chemical reactions and 
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as solvents in extraction [3,4,7,8]. Swatloski et al. [9] first reported the dissolution of 

cellulose in ILs, and this was followed by many related studies [10]. Woods, especially 

softwood, can dissolve in various ILs such as a mixture of 1-butyl-3-

methylimidazolium chloride ([Bmim]Cl) and dimethyl sulfoxide (DMSO) [4,5], and 

then pure cellulose could be separated. Miyafuji et al. [7,11,12] reported that wood 

components such as cellulose, hemicellulose, and lignin are depolymerized during 

liquefaction by ILs treatment. The authors concluded that the liquefaction of softwood 

and hardwood with 1-ethyl-3-methylimidazolium chloride ([Emim]Cl) is not 

homogeneous from both chemical and morphological viewpoints. The morphological 

changes were also analyzed using optical and scanning electron microscopy methods 

[7,11,12].  

The ability of ILs to dissolve wood depends on the type of wood, dissolution 

time, temperature, and IL composition [10]. The dissolution rates of carbohydrates such 

as cellulose and hemicellulose in wood components are much faster than that of lignin. 

Consequently, lignin is concentrated in the residue after the dissolution of wood 

material in an IL, such as [Bmim]Cl [13]. For lignocellulosic materials, 1-ethyl-3-

methylimidazolium acetate ([Emim]Ac, Fig. 2.1) is among the most promising 

candidates for industrial applications, due to its non-corrosiveness, non-toxicity, and 

biodegradability [10]. Mood et al. used five different ILs to treat barley straw and found 

that [Emim]Ac was the most efficient in cellulose conversion [14]. Both softwood 

(southern yellow pine) and hardwood (red oak) can be completely dissolved in 

[Emim]Ac after mild grinding, with red oak dissolving more completely and faster than 

southern yellow pine [6]. 

The majority of lignocellulosic pretreatment methods have focused on reducing 

the lignin content and cellulose crystallinity, without destroying the fermentable sugars 
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of the lignocellulose [2,15]. It is believed that increasing the accessibility of cellulose 

is more important than removing lignin for high sugar yields [16,17]. Enzymatic 

saccharification and acid hydrolysis are used for producing glucose from cellulose. 

Enzymatic saccharification has some advantages: the hydrolysis can be carried out at 

lower temperatures, and the glucose liberation is higher than that of acid hydrolysis 

[2,15]. Factors affecting the enzymatic hydrolysis of cellulose after ILs pretreatment 

have been studied [2], and cellulose crystallinity is considered a key predictor of the 

enzymatic saccharification performance [18]. 

The ILs can be recovered after the regeneration of cellulose with water or 

water/acetone mixture. The solvent added to the ILs should be evaporated prior to its 

reuse in the next extraction cycle. Recycling and reusing ILs could help make the 

process more practical and environment-friendly for industrial applications. [Emim]Ac, 

which has been demonstrated as an effective ILs with excellent recyclability [15,19], 

was examined as the solvent in this study. 

 Herein, [Emim]Ac is tested in an efficient pretreatment method to amorphize 

cellulose in wood materials for enhancing enzymatic saccharification without 

collecting regenerated cellulose. This could be a new and simpler process for 

softwoods. The effects of treatment time and temperature are estimated. Then, using 

the proposed method, the recyclability of [Emim]Ac was studied without removing the 

dissolved materials. 
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2.2 Materials and Methods 

2.2.1 Materials 

Wood meals (40–80 mesh) from C. japonica with a moisture content of around 

10% were used for the IL pretreatment. [Emim]Ac with >95% purity was purchased 

from IoLitec ILs Technologies Inc. Microcrystalline cellulose powder was purchased 

from Aldrich Chemical Company, Inc., USA. A cellulase mixture (GC220) was 

provided by Genencore Kyowa Co. Ltd., Japan. Filter paper (Advantec No. 1) was used 

as a control substrate for comparison. 

 

2.2.2 Separation procedure of [Emim]Ac pretreatment (collecting regenerated 

cellulose) 

 The wood meals were previously extracted with ethanol-benzene (1:2, v:v). 

Afterwards, 1.25 g of oven-dried wood meals were treated with 25 g of [Emim]Ac at 

80 °C for 72 h. The mixture was washed with DMSO and acetone, then separated into 

the residue and filtrate by using a glass filter (1GP16). Excess water was then added to 

the filtrate to obtain regenerated cellulose in the form of precipitation. The precipitate 

was separated by centrifugation and washed with water. Meanwhile, the residue was 

separately washed with water (see the process in Fig. 2.2(a)). 

 

2.2.3 Non-separation procedure of [Emim]Ac pretreatment  

 Wood meals (0.5 g) with 10 g [Emim]Ac were placed in a round flask and 

heated in an oil bath at 60, 80, and 100 °C for 2, 4, 6, and 8 h, while being mixed with 

a magnetic stirrer. After the ILs pretreatment, 100 mL of distilled water was added to 

the flask, and then the mixture was filtered using a 1GP16 glass filter. Residue on the 

filter was washed with 250 mL of distilled water (see the process in Fig. 2.2(b)). After 
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drying overnight in an oven at 105 °C to remove excess water, the residue was subjected 

to chemical characterization and enzymatic saccharification.  

 

2.2.4 Recovery and reuse of [Emim]Ac 

The [Emim]Ac gathered from softwood pretreatment was reused, without 

removing the dissolved materials. The subsequent residue and filtrate were obtained 

using the same procedure as shown in Fig. 2.2(b). As a first step, pristine [Emim]Ac 

was dried in a vacuum oven at 75 °C for 24 h and used for the initial experimental 

treatments. Freeze drying was used to remove water from the filtrate containing the 

recovered [Emim]Ac, and the remainder was further dried in a vacuum oven at 75 °C 

for 24 h. The recovered [Emim]Ac was directly used for the next cycle of pretreatment 

without any purification.  

 

2.2.5 Enzymatic saccharification 

 Untreated and [Emim]Ac-pretreated wood meals (20 mg after oven drying) 

were suspended in 1.0 mL of 0.05 M acetic acid buffer solution (pH 4.5) with 45 filter 

paper units (FPU) of GC220 enzyme for each gram of cellulose at 45 °C for 24 h. The 

enzyme was deactivated by heating at 100 °C for 5 min, and the released glucose was 

analyzed with an ion chromatograph (ICS 3000, Thermo, USA). 
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Fig. 2.1 The Chemical structure of 1-Ethyl-3-methylimidazolium acetate ([Emim]Ac)   
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Fig. 2.2 Scheme of [Emim]Ac pretreatment (a) separation procedure: collecting 

regenerated cellulose, (b) a propose non-separation procedure: without 

collecting regenerated cellulose 
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2.2.6 Analysis of carbohydrates 

 Glucose liberation values were calculated from the glucose released from 

enzymatic saccharification relative to glucose contents in the residues. Each residue 

sample (20 mg after oven drying) was first hydrolyzed with 72% sulfuric acid at room 

temperature for 2.5 h and then hydrolyzed with 4% sulfuric acid at 121 °C for 1 h. After 

the hydrolysis, arabinose, galactose, glucose, xylose, and mannose were determined 

using an ion chromatograph [20]. Specifically, the monosaccharide contents were 

determined on a Dionex ICS 3000 ion chromatograph (Dionex, Sunnyvale, CA, USA) 

from a filtrate at 1000-fold dilution. The system consisted of an electrochemical 

detector (ED), a single pump model (SP-1), and a CarboPac PA 1 column (250 mm  

4 mm i.d.), CarboPac PA 1 guard column (250 mm  4 mm i.d.), and an autosampler 

(AS). 

 

2.2.7 Elemental analysis 

 The adsorption of [Emim]Ac was evaluated by the nitrogen content from the 

elemental analysis (Perkin-Elmer 2400 CHN Elemental Analyzer from the Research 

Facility Center for Science and Technology, University of Tsukuba). 

 

2.2.8 Analysis of acid-insoluble lignin (Klason lignin)  

 Acid-insoluble lignin (Klason lignin) was analyzed by hydrolysis according to 

the method described elsewhere [21]. A sample was weighed (0.5 g after oven drying) 

and treated with the two-step hydrolyzation using sulfuric acid as described above. The 

residue was collected on a glass filter (1GP16), and its weight was measured as acid-

insoluble lignin. 
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2.2.9 Measurement of dissolved lignin in the filtrate 

 The filtrates were diluted to 500 mL and adjusted to pH 5.0 using acetic acid. 

The lignin content in the filtrate was determined by UV absorbance at 300 nm, based 

on the absorption coefficient of 17.2 L·g-1·cm-1 obtained from alkali lignin (Aldrich 

Chemical Company Inc., USA). 

 

2.2.10 X-ray diffraction analysis 

 Untreated and treated wood meals were sieved to 40–80 mesh size. Their 

crystallinity was measured by a full-automatic multi-purpose X-ray diffractometer 

(XRD, D8 Advance/TSM, BrukerTSM, Germany) at 20 °C (voltage 40 kV, 40 mA) 

with Cu-Kα source (λ = 0.154 nm). The angular range was 10–30° with a step size of 

0.03° and a step time of 0.05 s. The XRD data was used to calculate the crystallinity 

index (CrI) according to the formula:        

                                  𝐶𝑟𝐼 =
𝐼002−𝐼𝑎𝑚

𝐼002
× 100         

where I002 is the maximum intensity of the I002 lattice diffraction between 2θ = 21–23°, 

and Iam is the minimum diffraction intensity of the amorphous background between 2θ 

= 17–19°. 
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2.3 Results and Discussion 

2.3.1 Effect of [Emim]Ac pretreatment on softwood dissolution and cellulose 

regeneration 

 The liberated glucose and chemical components of the re-washed residue, the 

regenerated cellulose, and the filtrate from separation procedure (as explained in Fig. 

2.2(a)) are shown in Table 2.1. The images of the products are shown in Fig. 2.3. 

Pretreatment at 80 °C for a relatively long time (72 h) resulted in a low dissolution ratio 

of softwood (24.7%). The very low solubility of wood meals in [Emim]Ac contrasts 

with the high solubility of free cellulose because the presence of lignin lowers the 

solubility of lignocellulose [2]. The lignin weight of the re-washed residue after 72 h 

treatment was 25.5%. This indicates that only 26.1% of lignin was dissolved. It was 

shown that [Emim]Ac pretreatment was not effective for removing lignin, and the same 

conclusion was reached by Mood et al. [16]. This result differs from that of Lee et al., 

who used [Emim]Ac to treat maple wood powders to achieve high lignin solubility [15]. 

Most researchers focus on complete dissolution of lignocellulosic materials in 

ILs to produce regenerated cellulose, followed by cellulose hydrolysis with acid or 

enzyme [2,5]. In contrast, in our study, pretreatment at 80 °C for 72 h resulted in low 

regenerated cellulose (12.6%), as most of the cellulose did not dissolve and remained 

in the re-washed residue. The yield of the re-washed residue was 75.3% (Table 2.1). 

These results clarified that the [Emim]Ac pretreatment could not completely dissolve 

the softwood or effectively produce regenerated cellulose.   
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(a) (b) 

 

(c) 

 

Fig. 2.3 Images of products obtained in the separation procedure of [Emim]Ac 

pretreatment; (a) filtrate, (b) regenerated cellulose, (c) residue 
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Table 2.1 Chemical compositions of softwood materials and products obtained in the 

separation procedure after 1-ethyl-3-methylimidazolium acetate 

([Emim]Ac) pretreatment at 80 °C for 72 h 

 

 

 
 

1) Klason lignin 
2) Elemental analysis 
3) It includes ash content: 0.4% 

 

 

 

 

 

 

 

 

 

 

 

Yields Lignin Glucan Mannan Xylan 
Arabinan 

& galactan 
Other Nitrogen

(% ) (% )
1) (% ) (% ) (% ) (% ) (% ) (% )

2)

Untreated 

wood
100 34.5 40.9 7.9 5.1 3.2 8.4

3) 0

Residue 105 26 38.1 5 3.3 1.9 30.8 4.1

Rewashed 

residue
75.3 25.5 28.3 4 2.5 1.5 13.5 0.9

Regenerated 

cellulose
12.6 2 5.3 1.2 0.2 0.1 3.8 0.6

Filtrate 12.1 - 0.2 0.1 0.6 0.5 10.7 -
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2.3.2 Enzymatic saccharification of residue and regenerated cellulose 

The totals of the liberated residue and regenerated cellulose were more than 

100% before re-washing the residue with distilled water. Elemental analysis revealed 

that [Emim]Ac was adsorbed into the residue. The proportion of adsorbed [Emim]Ac 

was reduced from 25.1% to 3.9% (based on residue weight) by re-washing using 

distilled water. The re-washing also increased the degree of glucose liberation of the 

residue from 51.1% to 90.1%. The digestion of regenerated cellulose (which contained 

5.3% [Emim]Ac) was around 100% (Table 2.2). These results indicated that the 

presence of 25% [Emim]Ac affected the performance of the cellulase, but the cellulase 

could work effectively when the [Emim]Ac was reduced to <5%. Wang et al. reported 

that an [Emim]Ac content of <15% was compatible with the cellulase mixture, and a 

high activity was retained for hydrolyzing Avicel and yellow poplar [22]. Therefore, a 

small amount of [Emim]Ac does not prohibit the saccharification process. This 

conclusion could help with the larger-scale applications of the pretreatment process 

because a specific threshold of residual IL could make the operation more difficult.   

The glucose liberation of the re-washed residue (which contained 33.8% lignin) 

was 90.1%, a value that is higher than that of filter paper (64%) (Table 2.2). The 

liberation of glucose from the regenerated cellulose was more than 100% (a value which 

was calculated based on the glucose content obtained from the hydrolysis method using 

72% and 4% sulfuric acid), even when the substrate contained 15.8% lignin. Thus, it 

suggests that the pretreatment using [Emim]Ac can facilitate the enzymatic 

saccharification of cellulose, either with producing regenerated cellulose or by using 

the simpler processes. 
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Table 2.2 Enzymatic saccharification of softwood products obtained in the separation 

procedure after [Emim]Ac pretreatment at 80 °C for 72 h  

 

 

 
 
1) Klason lignin 
2)

 Calculated from nitrogen content of samples relative to nitrogen content in [Emim]Ac by elemental 

analysis 
3)

 Calculated from liberated glucose levels generated by enzymatic saccharification relative to glucose 

content in the pretreated wood meals 

 

 

 

 

 

 

 

 

 

 

 

Glucose in 20 mg Lignin [Emim]Ac Liberated Glucose 

of initial sample content (%)
1)

content (%)
2)  glucose (mg) liberation (%)

3)

Filter paper 22.2 - - 13.8 62.2

Untreated wood 9.1 34.5 - 0.6 6.1

Residue 8.1 26 25.1 4.1 51.1

Re-washed 

residue
8.3 33.8 3.9 7.5 90.1

Regenerated 

cellulose
9.3 15.8 5.3 10.4 > 100
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2.3.3 Pretreatment without separating regenerated cellulose 

 Wood meals (0.5 g) were pretreated with 10 g [Emim]Ac using the simpler 

procedure (i.e., without collecting regenerated cellulose) at 60, 80, and 100 °C for 2, 4, 

6, and 8 h, according to the scheme described in Fig. 2.2(b). The results showed a low 

dissolution of softwood, as 91.7–98.9% of the pretreated wood remained as residues 

(Tables 2.3 and 2.4). The images of untreated and pretreated wood meals are shown in 

Fig. 2.4. 

 The color of the filtrate became darker with increasing time and temperature of 

the pretreatment, because of the dissolved wood components in the filtrate. Lignin 

contents in the filtrate determined with the UV-vis spectrophotometer were 1.9–7.9% 

of the wood materials. From these results, the lignin contents of the residues at 80 °C 

after 2, 4, and 8 h were calculated to be 31.4%, 31.0%, and 29.6%, respectively (Table 

2.4). Using the same pretreatment time and temperature, lignin contents in the residue 

were analyzed using the Klason lignin method (Table 2.3), resulting in 31.4%, 30.5%, 

and 30.9%. Lignin determination by Klason lignin gave results similar to that measured 

with an indirect method using UV-vis spectrophotometer analysis. Both sets of data 

demonstrate that lignin contents of the residue remained high. 
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(a) (b) 

 

Fig. 2.4 Images of wood meals before and after the non-separation procedure of 

[Emim]Ac pretreatment; (a) untreated, (b) pretreated at 80˚C 
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Table 2.3 Adsorption of [Emim]Ac relative to the residue obtained in the proposed 

non-separation procedure 

 
 

 
 
1)

 Klason lignin 

 

 

 

 

 

 

 

 

 

 

 

 

 

Residue [Emim]Ac Lignin Glucan Mannan Xylan Arabinan Other

weight & galactan

(%)  (%) (%)
1)  (%)  (%) (%) (%)  (%)

80 ºC, 2 h 96.6 ± 0.5 4.6 31.4 32.4 6.3 4 2.2 15.7

80 ºC, 4 h 95.0 ± 0.2 4.4 30.5 35.5 6.7 4.4 2.3 11.2

80 ºC, 8 h 94.9 ± 0.2 3 30.9 28.3 5.5 3.6 1.9 21.7

Conditions
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Table 2.4 Effects of [Emim]Ac pretreatment on the dissolution of softwood 

components 

 

 

1)
 Calculated from nitrogen content of samples relative to nitrogen content in [Emim]Ac by elemental 

analysis 
2) 100  ̶  (residue – [Emim]Ac) (%) 
3)

 UV absorbance at 300 nm 
4) 34.5   ̶ lignin content in filtrate (%) 

 

 

 

 

 

 

 

Residue [Emim]Ac Lignin content 

weight (%) (%)
1)

Total (%)
2)

Lignin (%)
3)

in residue (%)
4)

2 h 98.8 0.9 2.1 1.9 32.6

4 h 98.9 1.6 2.7 2.3 32.2

6 h 98.1 1.3 3.2 3 31.5

8 h 96.8 1.8 5 3.2 31.3

2 h 96.6 1.3 4.7 3.1 31.4

4 h 95 2.2 7.2 3.5 31

6 h 95 1.6 6.6 4.9 29.6

8 h 94.9 2.2 7.3 4.9 29.6

2 h 96.6 1.8 5.2 4.1 30.4

4 h 94.9 0.9 5.9 5.4 29.1

6 h 94.5 2.2 7.7 5.7 28.8

8 h 91.7 2.7 11 7.9 26.6

Pretreatment Organic compounds in filtrate 

conditions

60 ˚C

80 ˚C

100 ˚C
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2.3.4 Effects of non-separation pretreatment on glucose liberation and cellulose 

crystallinity 

Separation procedure aimed at producing regenerated cellulose involves 

relatively long steps. Pretreatment at 80 °C for 72 h, total yield of rewashed residue and 

regenerated cellulose is 87.9% (Table 2.1). The glucose liberated from the rewashed 

residue reached 90.1% (Table 2.2). On the other hand, in a non-separation procedure, 

at the same temperature (80 °C) and for a relatively short pretreatment period (6–8 h), 

the glucose released was 40.2–42.6%. Glucose liberation after pretreatment at 100 °C 

for 8 h was 85.9% (Table 2.5), almost the same as that obtained after a relatively long 

pretreatment period (80 °C, 72 h). Thus, it can be concluded that the non-separation 

procedure is also appropriate for glucose liberation. 

 Two XRD peaks at 15° and 22.5° were clearly observed in the untreated wood 

samples and microcrystalline cellulose, indicating the presence of crystalline cellulose 

I [23,24]. The peaks of residues became flattened upon increasing the treatment 

temperature (Fig. 2.5) and time (data not shown). These weak diffraction patterns are 

attributed mainly to the conversion of crystalline cellulose into amorphous cellulose 

[23,24]. The CrI values of microcrystalline cellulose, untreated softwood, and residues 

were 82.5%, 50.9%, and 37.1–28.4%, respectively.  

 The lowest glucose liberation in the residues was found to be 16.5% after 

pretreatment at 60 °C for 4 h (Table 2.5). This percentage is still about 3 times that of 

untreated wood (5.1%). Glucose liberation after pretreatments at 100 °C for 6 and 8 h 

were 68.6% and 85.1%, respectively. These results are higher than that from filter paper 

(61.4%). Under moderate pretreatment conditions (80 °C for 6 and 8 h), the respective 

liberation ratios were 40.3% and 42.6%. The amounts of lignin left in these residues 

were in the range of 26.6–32.6% (Table 2.4). Hence, the glucose liberation was 
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successfully increased by the [Emim]Ac pretreatment, even though the residues 

contained high amounts of lignin. 

 A good correlation between the decreasing CrI of cellulose and the increasing 

enzymatic saccharification efficiency was observed at 80 °C (R2 = 0.9579) and 100 °C 

(R2 = 0.7913). However, the correlation became quite weak at 60 °C (R2 = 0.2118): 

pretreatment for 2–8 h reduced CrI to 23–30%, which did not correlate well with the 

glucose liberation values. The significant reduction in CrI confirms that the pretreated 

samples were highly amorphous, and thus the cellulose surface became much more 

accessible during enzymatic saccharification [2,15,24]. Ichiura et al. [25] observed that 

with the partial dissolution of cellulose fibers at 80 °C using a [Bmim]Cl treatment, the 

resulting CrI values decreased. Scanning electron microscope (SEM) images further 

showed that the regenerated cellulose tended to aggregate and form a cellulose film on 

the surface. Their results may provide an explanation for our findings that suggest that 

cellulose amorphization, with decreasing CrI, in the softwood residue was achieved by 

the pretreatment process with lower solubility. 
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Table 2.5 Enzymatic saccharification of softwood products obtained in the non-

separation procedure after [Emim]Ac pretreatment at various conditions 

 

1) Calculated from liberated glucose levels generated by enzymatic saccharification relative to glucose 

content of the pretreated wood meals 

 

 

 

 

 

 

 

Glucose in 20 mg Crystallinity Liberated Glucose 

of initial sample index (%) glucose (mg) liberation (%)
1)

2 h 9.5 38.9 1.7 18.2

4 h 9.6 39.4 1.6 16.5

6 h 9.6 36.4 1.9 19.6

8 h 9.6 35.7 1.7 17.5

2 h 9.9 35.1 2.8 28.7

4 h 9.7 33.3 3.5 35.9

6 h 9.4 30.6 3.8 40.3

8 h 8.8 30.6 3.8 42.6

2 h 9.9 29.8 4.5 45.9

4 h 8.8 28.7 5.3 60.6

6 h 8.3 28.1 5.7 68.6

8 h 8.5 28.1 7.3 85.9

Pretreatment 

conditions

60 ˚C

80 ˚C

100 ˚C
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Fig. 2.5 Effects of [Emim]Ac pretreatment on cellulose crystallinity (XRD patterns). 

Legends: (C) microcrystalline cellulose, (1) untreated wood, (2) pretreated at 

60 °C for 6 h, (3) pretreated at 80 °C for 6 h, and (4) pretreated at 100 °C for 

6 h 
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2.3.5 Recovery and reuse of [Emim]Ac  

The high-cost of imidazolium cations, which are chemically synthesized from 

petroleum sources, is one major obstacle to the large-scale industrial application of 

imidazolium-based ILs for biomass pretreatment [8]. Therefore, the recovery and reuse 

of ILs are necessary. The presence of water in the ILs is usually detrimental to the 

dissolution of biomass [8,15,19,25]. For example, the function of recovered [Bmim]Cl 

was lower than the function of pure [Bmim]Cl if it contained any water. Otherwise, the 

functionality was similar with pure [Bmim]Cl [25]. In this work, water in the filtrate 

was removed by a freeze-drying process, and then further dried in a vacuum oven to 

attain less than 1.0% of moisture content [15,25]. Without further purification, the 

recovered [Emim]Ac was recycled and reused to pretreat wood meals, resulting in the 

accumulation of dissolved materials.  

Since the influence of moisture on the recycling of IL has already been clarified 

in many papers, the influence of lignin was examined herein. It is desirable that the 

lignin content of the organic compounds of filtrate is high. Considering the presence of 

lignin in the organic compounds of the filtrate, the residue yield (~95%), the medium 

glucose liberation, crystallinity index (~30%), and low temperature, the recycling 

experiment was performed at 80 °C for 6 h. 

The percentage of lignin in the recovered [Emim]Ac increased with the cycling, 

reaching 22.4% after the 3rd reuse (which corresponds to an average increase of 5.6% 

in dissolved lignin per cycle, Table 6). The color of the filtrate became darker with the 

number of reuse of [Emim]Ac, because of the accumulation of dissolved wood 

components in the filtrate (Fig. 2.6). Even though the lignin content in the pretreated 

wood remained high, and the amount of lignin dissolved in the filtrate increased, the 

liberation of glucose by enzymatic saccharification was unaffected. Findings showed 
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that the glucose liberation was equally successful between pristine [Emim]Ac and 

recovered [Emim]Ac up until the 3rd cycle. This is consistent with the results of 

Weerachanchai and Lee, who observed the deterioration of reused IL in the 5th–7th 

batches using thermogravimetric analysis and 1H-nuclear magnetic resonance 

spectroscopy [19].  
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Table 2.6  Reuse of [Emim]Ac for softwood pretreatment at 80 ºC for 6 h 

 

 

 

1) UV absorbance at 300 nm 
2) Values in parentheses indicate incremental lignin dissolved for each reuse 
3) Calculated from liberated glucose levels generated by enzymatic saccharification relative to glucose 

content in the pretreated wood meals 

 

 

 

 

 

 

 

 

 

 

 

Times of reusing Residue Lignin content C rI Glucose 

[Emim]Ac weight (%) in filtrate (%)
1)2) (%) liberation (%)

3)

None 95.3 5.5 32.5 48.6

1st 97.8 10.8 (5.3) 32.5 52.6

2nd 97.1 17.3 (6.5) 30.7 49

3rd 96.6 22.4 (5.1) 34 46.2
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Fig. 2.6 Images of reuse filtrates after [Emim]Ac pretreatment at 80 ºC for 6 h 
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2.4 Conclusions 

 It is essential to develop suitable and efficient methods for [Emim]Ac 

pretreatment of softwood. This study clarified that [Emim]Ac does not have a strong 

effect on softwood dissolution. Hence, it is not efficient if producing regenerated 

cellulose and removing lignin are the focuses. Despite the large fraction of residues 

containing high amounts of lignin, the glucose liberation of pretreated softwood by 

enzymatic saccharification was significantly increased compared to untreated wood. It 

was demonstrated that [Emim]Ac substantially reduced the crystallinity of cellulose 

and amorphized it, thereby increasing the glucose liberation by saccharification. 

[Emim]Ac was also successfully recycled for at least 3 cycles without performance loss, 

even though the dissolved lignin accumulated. 
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Chapter 4 General Conclusion 

 In this work, pretreatment of wood meals using a recycled ionic liquid (IL), 1-

ethyl-3-methylimidazolium acetate ([Emim]Ac), enhanced glucose liberation by 

enzymatic saccharification, without dissolution of cellulose and lignin. In contrast, 

previous studies on IL pretreatment have mostly focused on lignocellulosic dissolution 

to regenerate cellulose and removing lignin. Softwood (Cryptomeria japonica) was 

pretreated with [Emim]Ac at 60–100 °C for 2–8 h without collecting regenerated 

cellulose. The pretreatment did not have a substantial effect on wood component 

dissolution (weight of residues: 91.7–98.8%).  

The residues contained relatively high amounts of lignin (26.6–32.6%) with low 

adsorption of [Emim]Ac (0.9-2.7%). Meanwhile, the crystallinity index (CrI) of 

cellulose in the woods was significantly reduced by pretreatment, from 50.9% to 28.4–

37.1%. In spite of the high lignin contents in the residues, their glucose liberation values 

by enzymatic saccharification using a cellulase mixture were 3–16-times higher than 

that of untreated wood. A good correlation was found between the saccharification 

effectiveness of pretreated samples and the CrI. Although lignin dissolved in [Emim]Ac 

continued to accumulate after repeated use of [Emim]Ac; the pretreatment was found 

to be useful for three consecutive cycles without the need to remove the dissolved 

materials.  

Water hyacinth contains high total sugars and relatively low lignin, which are 

promising biomass to produce glucose or value-added materials. This study clarified 

that [Emim]Ac pretreatment without producing regenerated cellulose has an excellent 

effect on hydrolysis enhancement of all water hyacinth fractions (stems-leaves and 

roots), despite a significant amount of ash contents in the raw material. Without 

complete water hyacinth dissolution and treated at a relatively short time (30 and 60 
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min) at 100˚C, liberated glucose by enzymatic saccharification significantly increased 

compared with untreated.  
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