Study on Solar-light-driven P/Ag/Ag₂O/Ag₃PO₄/TiO₂ Photocatalyst

January 2018 ZHU QI

Study on Solar-light-driven P/Ag/Ag₂O/Ag₃PO₄/TiO₂ Photocatalyst

A Dissertation Submitted to

the Graduate School of Life and Environmental Sciences,

the University of Tsukuba

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Biotechnology

(Doctor Program of Bioindustrial Sciences)

ZHU QI

Abstract

Recently, photocatalytic technology has been widely investigated for solving environmental pollution and energy crisis. Titanium dioxide (TiO₂) photocatalyst was intensively developed for wastewater treatment, water splitting, disinfection and many other applications due to its relatively high photocatalytic activity, low cost, non-toxicity and bio-chemical stability. Nevertheless, the practical application of TiO₂ is limited, because it can only be excited by UV light with wavelengths below 380nm, which only account for about 3-5% of the total solar spectrum. And the fast recombination of photogenerated electron-hole pairs also decrease the activity.

To create solar-light-driven TiO₂ photocatalysts with higher efficiency, considerable efforts have been made by doping noble metals (Ag, Au and Pt), narrow band semiconductors (CdO, CdS, Fe₂O₃ and In₂O₃) or nonmetals (C, P and N) on TiO₂. It was found that Ag₃PO₄ with narrow band gap energy could improve the ability of TiO₂ for water splitting and photodecomposition of organic dyes. However, Ag₃PO₄ is highly unstable under light irradiation. For noble mental, Ag nanoparticles dopant could extend optical absorption spectrum of TiO₂ to the visible light region and inhibit the recombination of electron-hole pairs. Interestingly, with suitable treatment, metallic Ag can be easily oxidized into Ag₂O, while Ag₂O is a capable photocatalyst with narrow band gap. In addition, the present of metallic Ag could inhibit the aging of Ag₃PO₄. On the other hand, nonmetal P element was also reported that can improve the activity of TiO₂. Until now, there was no study had focus on the synthetization, optimization and utilization of P (nonmetal), Ag (noble metal) and

Ag₂O, Ag₃PO₄ (narrow band semiconductors) co-modified TiO₂. Therefore, it is expected to prepare $P/Ag/Ag_2O/Ag_3PO_4/TiO_2$ photocatalyst for wastewater treatment, water splitting processes and disinfection.

In this study, P/Ag/Ag₂O/Ag₃PO₄/TiO₂ composite photocatalyst powder was firstly prepared by sol-gel method and followed by degradation test and structure analysis. The characteristics of the material were analyzed by X-ray Diffraction (XRD), UV-vis spectrophotometer, X-ray photoelectron spectroscopy (XPS), Scanning electron microscope - Energy-dispersive X-ray spectroscopy (SEM-EDS), photoluminescence spectroscopy (PL) and transmission electron microscope (TEM). The degradation tests revealed that the activity of TiO₂ could be highly improved by suitable amount of Ag, Ag₂O (come from AgNO₃) and P, Ag₃PO₄ (come from Ag₃PO₄) dopant. Comparing with pure TiO₂, the as prepared composite powder showed higher absorption in visible light region, narrower band gap, extremely lower recombination rate of photogenerated electron-hole pairs and higher photocatalytic efficiency for Rh B degradation. Additionally, the radical trapping experiments implied that holes and O₂⁻⁻ radicals were the major active species for Rh B degradation.

In the application of photocatalyst powder, an adequate previous-mixing and a tedious post-separation after treatment are usually needed. To avoid this drawback, the P/Ag/Ag₂O/Ag₃PO₄/TiO₂ composite photocatalyst is further optimized as thin film for large scale application. The thin film samples, which have same component with powder, were prepared by sol-gel at different temperature, time and number of coating layers. The optimal conditions and the remarkable stability of thin film were

confirmed, and the thin film demonstrated remarkable activity on disinfection. In addition, the photocatalytic reaction mechanism of thin film was clarified.

Normally, sol-gel prepared photocatalysts has low specific surface area and poor performance on water splitting. To further improve the utilization of P/Ag/Ag₂O/Ag₃PO₄/TiO₂ composite photocatalyst, hydrothermal method for the material prepared under different time and temperature was investigated and the photocatalyst exhibited smaller crystal size, larger specific surface area, higher amount of P element and lower PL intensity than sol-gel prepared material. These results further supported that the hydrothermal material exposed higher activity in dye degradation and water splitting tests under solar light irradiation.

In summary, P/Ag/Ag₂O/Ag₃PO₄/TiO₂ composite photocatalyst was successfully synthesized by sol-gel and hydrothermal methods. After co-modified by Ag (noble metal), Ag₂O, Ag₃PO₄ (narrow band semiconductors) and P (nonmetal), the capacity of TiO₂ was greatly improved. Comparing with sol-gel synthesized photocatalyst, hydrothermal material with same component showed higher photocatalytic activity and water splitting ability. Photocatalyst thin film also presented excellent performance and stability in dye degradation. As-prepared P/Ag/Ag₂O/Ag₃PO₄/TiO₂ composite photocatalyst with remarkable activity and stability would become a promising material for practical applications in wastewater treatment, water splitting and disinfection of bacteria in future.