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Abstract 

With environmental issues of climate change and seriously environmental pollution 

associated with the use of fossil fuel as well as emphasis of resources utilization of biomass, 

the use of thermochemical processes to convert biomass into a useful fuel (H2 or syngas) has 

received considerable attention and effort by businesses, governments, and the public since the 

1970s. In particular, lingnocellulose (cellulose, hemcellulose and lignin), which is present in 

almost all agricultural and forest residues, potentially serves as an excellent feedstock for waste-

to-energy conversion. Gasification along with pyrolysis is the most effective means to convert 

biomass into high energy content gases or liquids. Unfortunately, producer gas from gasification 

process usually contains unacceptable levels of tar with low H2 content. Tar can cause 

operational problems in downstream processes. Most producer gas applications require removal 

of at least part of the dust and tar before the gas can be used. 

In this study, two most important elements, tar removal and H2 production, in gasification 

of biomass are evaluated. Catalytic conversion of tar is a straightforward approach at lower 

temperatures achieving the most effective efficiency of removing tars; the development of 

catalysts is essential. Ni-based catalysts have been extensively used in the petrochemical 

industry for naphtha and methane reforming. Also, olivine, a naturally occurring mineral, has 

been demonstrated for its effectiveness in tar reduction. Typically, Ni can be impregnated into 

olivine and the resultant Ni/olivine catalysts can enhance steam adsorption, facilitate the 

gasification of surface carbon and hence prevent carbon deposition. Furthermore, the use of 

promotor, such as Ce, has been successfully employed for tar reduction. In particular, the 

promoter Mg (in Ni/Al2O3) has been demonstrated for its effectiveness for exhibiting excellent 

catalytic activity, stability and sulphur tolerance in catalytic reforming of toluene and 

naphthalene. Also, enhanced H2 production can be achieved through hot cleaning for tar 

removal as well as using the combining hot cleaning and water-gas shift system. Consequently, 

the current study was undertaken to utilize different techniques with Ni-based catalysts to 

remove tars and to enhance H2 production. 

The present study was divided into three tasks: Task (1) included catalytic steaming 

reforming for tar (toluene and benzene) removal using commercial Ni-based catalysts with 

olivine as a carrier. Three catalysts were prepared by wet impregnation in this task, yielding 

different compositions. Benzene was selected as a model tar compound. Catalytic steam 

reforming of benzene was performed in a bench scale fixed bed reactor at temperatures between 

700 and 830 °C using a molar ratio of steam/carbon equal to 5. Task (2) utilized catalytic hot 
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cleaning in two-bed system (guard and catalytic reactor) from fluidized gasifier to remove tars. 

The system consisted of a guard bed and catalytic reactor to treat the producer gas from an air 

blown, fluidized bed biomass gasifier. A slipstream was drawn immediately downstream of the 

cyclone at a rate of 0.5–3.0 L min-1. The guard bed used dolomite to crack the heavy tars. The 

catalytic reactor was used to evaluate three commercial steam reforming catalyst. Task (3) 

involved hydrogen production from combining hot cleaning and water-gas shift system (high 

temperature and low temperature bed). Since the conventional air-blown gasification of 

biomass in fluidized bed reactors produces relatively low concentrations of hydrogen (about 8 

vol%), in order to produce high hydrogen concentration syngas, the four fixed-bed catalytic 

system including two water-gas shift reactors was set up in this task. The typical techniques 

were used for catalyst characterization including X-Ray diffraction, X-ray photoelectron 

spectroscopy, fourier transform infrared, scanning electron microscopy, BET, 

thermogravimetric and mercury porosimetry analysis, among others.  

The results from Task (1) indicated that 3.0% NiO/olivine doped with 1.0% CeO2 (prepared 

via wet impregnation) as the most promising catalyst based on catalytic activity and its 

resistance to coking. Cerium oxide is thought to promote the catalytic activity of nickel through 

a redox mechanism and resist the deposition of the carbon. In addition, the use of Mg promotor 

in Ni-Ce/olivine catalyst was evaluated and results indicates that Ni–Ce–Mg/olivine catalysts 

could improve the resistance to carbon deposition, enhance energy gas yield and resist 10 ppm 

H2S poison at 100 mL min−1 for up to 400 min. As for the results from Task (2), the system was 

effective in eliminating heavy tars (> 99% destruction efficiency) and in increasing H2 

concentration by 6–11 vol%. Space velocity had little effect on gas composition while 

increasing temperature boosted hydrogen yield and reduced light hydrocarbons (CH4 and C2H4), 

thus suggesting tar destruction is controlled by chemical kinetics. Lastly, the results from Task 

(3) indicated that steam reforming of tars and light hydrocarbons and reacting steam with carbon 

monoxide via the water–gas shift reaction could increase hydrogen content in the producer gas 

to 27-30 vol% through biomass gasification. In general, H2 production as a function of 

temperature, space velocity and steam/gas ratio was quantified. The remarks in tar control with 

respect to end of pipe treatment and cleaner production are discussed. 

 

Keywords: Biomass gasification; Tar removal; Syngas; Ni-based catalyst; Olivine; H2 

production 
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Chapter 1 Introduction 

1.1 Overview 

With environmental issues including climate change and serious environmental pollution 

associated with the use of fossil fuel, the use of thermochemical processes to convert biomass 

into a useful fuel (H2 or syngas) has received considerable attention and effort by businesses, 

governments, and the public since the 1970s. In particular, lingnocellulose (cellulose, 

hemcellulose and lignin), which is present in almost all agricultural and forest residues, 

potentially serves as an excellent feedstock for waste-to-energy conversion. In addition, the use 

of the biomass as a feedstock is a carbon neutral process. In the United States, it is estimated 

that 1.3 x 1012 kg of biomass can be harvested for biofuel production (Perlack et al., 2005) – 

equivalent to the energy content of 4.6 x 1011 L petroleum oil (Gates et al., 2008). While in 

China, it is estimated that 1.4 x 1012 kg of biomass can be harvested and equivalent to the energy 

content of 4.9 x 1011 L petroleum oil. This clearly illustrates the need for using renewable 

biomass as an energy source. 

Gasification along with pyrolysis is the most effective means to convert biomass into high 

energy content gases or liquids. Gasification process is conducted under O2 deficient conditions 

at 800 to 900 oC that converts biomass into a combustible gas mixture (H2, CH4, and CO). This 

gas mixture can then be used in turbines and gas engines or as a raw material for industrial 

usage. In gasification, the use of catalysts is essential for completing thermal-chemical reactions. 

Unfortunately, catalyst deactivation is one of the major obstacles for utilization of this process 

in full-scale mass production. The deactivation of catalysts results in reduced energy yields and 

exerts significant costs to waste-to-energy operation; regeneration, replacement, and disposal 

of spent catalysts. In addition, disposal of spent catalysts can create environmental problems as 

they are typically classified as hazardous waste due to their heavy metal content.  

In general, contaminants responsible for catalyst poisoning include all unavoidable 

reaction-induced byproducts [gases (e.g., HCl, H2S, carbonyl sulfide), solid (e.g., tar), aerosols 

and liquid]. Their formation is typically related to the following parameters: feedstock, reactor 

configuration, operating conditions (feeding rate, temperature and Steam/Carbon (S/C) ratio), 

and type of catalysts. The adverse effects on catalysts may be reversible; however, some effects 

are irreversible (Hepola et al., 1994; Hepola and Simell, 1997a, 1997b) as in the case of bulk 

structure change (Forzatti and Lietti, 1999). Consequently, tar formation, prevention, and 

http://www.sciencedirect.com/science/article/pii/S0926337397000313
http://www.sciencedirect.com/science/article/pii/S0926337397000313
http://www.sciencedirect.com/science/article/pii/S0926337397000313
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removal remain a major challenge in the gasification field. Tar not only affects the performance 

of catalysts, but also affects downstream equipment. Thus, most producer gas applications 

require removal of at least part of the dust and tar before the gas can be used. 

The formation of tar in the gasifier is affected by operating conditions (temperature, 

oxidizing agent quantity, feedstock rate, and type of catalyst, etc.) as well as reactor 

configuration. For example, updraft fixed bed gasifiers yield high amount of tar (up to 12 wt% 

of feed) due to lower temperature of exit gases, as compared to downdraft gasifier (> 1 wt%: 

Baker et al., 1988; Kumar et al., 2009). Typically, fluidized gasifiers (bubbling or circulating) 

have better capability to reduce tar content (e.g., Baker et al., 1988; Devi et al., 2003; ECN, 

2004); its content depends on fuel properties and operating conditions (e.g., temperature and 

residence time).In general, higher S/C ratios (Devi et al., 2003) as well as higher temperatures 

(McKendry, 2002) can reduce tar content. A higher feed rate would yield high amounts of tar 

(Vreugdenhil and Zwart, 2009). Nonetheless, the addition of catalysts (e.g., olivine and 

dolomite) may catalyze tar destruction (Rapagna et al., 2000). 

Catalyst plays an important role in tar removal. For example, in the reforming system, use 

of Rh/CeO2/SiO2 almost eliminates tar production (Dayton, 2002; Asadullah et al., 2002, 2003, 

2004); NiMo/Al2O3 and dolomite reduce activation energy for toluene from 250-350 to 30-120 

kJ mol-1 at 650-850 oC (Taralas and Kontominas, 2004). Huang et al. (2011) presented a novel 

gas purification technology based on catalytic hydrocracking with Pd catalysts in an updraft 

gasifier with most of the tar components converted and removed.  

In this study, two most important elements, tar removal and H2 production, in gasification 

of biomass are evaluated. There are some review papers covering catalytic hydrogen production 

from biomass (Ni et al., 2006; Tanksale et al., 2010) as well as numerous papers dealing with 

tar formation and removal. 

The goals of this thesis are to (1) use synthesized catalysts to catalytically steam reforming 

of model tar compounds; (2) use commercial catalysts to test the hot cleaning system for 

reducing tar content; (3) enrich H2 production through combination of hot cleaning system and 

water-gas shift reactors. The enhanced H2 production in air-blown gasification of biomass such 

as switchgrass, agriculture waste straws and saw dusts in fluidized bed reactors could be 

realized through water-gas shift reaction using different catalysts. The catalytic tar removal 

could be achieved through a hot cleaning system, consisting of a guard bed and catalytic reactor 

by using commercial nickel based catalysts. In addition, the performance of steam reforming 

of benzene and toluene as model tar compound for the improvement of coke decomposition by 
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using synthesized catalysts was evaluated. The synthesized catalysts included Ni/olivine 

catalysts, Ni/olivine doped with CeO2or even with promoter Mg. Olivine, a naturally occurring 

mineral [(Mg,Fe)2SiO4], has been demonstrated for its effectiveness in tar reduction (Devi et 

al., 2005d). Typically, Ni can be impregnated into olivine and the resultant Ni/olivine catalysts 

enhance steam adsorption, facilitate the gasification of surface carbon and hence prevent carbon 

deposition (Świerczyński et al., 2007). In addition, the use of promoters (e.g., Co, Ce, etc.) has 

been successfully employed for tar reduction, e.g., Ni–Co (or Fe)/dolomite (Chaiprasert and 

Vitidsant, 2009), Fe/olivine (Barisano et al., 2012) and Ni–Ce/olivine (Cheaha et al., 2013). In 

particular, the promoter Mg (in Ni/Al2O3) has been demonstrated for its effectiveness for 

exhibiting excellent catalytic activity, stability and sulphur tolerance in catalytic reforming of 

toluene and naphthalene (Yue et al., 2010) and Ni–Mg/Al2O3 over Ni/Al2O3 catalyst for biomass 

gasification (Garcia et al., 2002; Ozaki et al 2012). The Ni–Ce/Al2O3 has better resistance 

toward tar and coke formation as compared to Ni/Al2O3 due to strong interactions between Ni 

and CeO2 (Tomishige et al., 2007). Also, Ni–Ce/zeolite exhibited better rate of cellulose 

gasification and partially inhibited carbon deposition, as compared to those without Ce 

promoter (Inaba et al., 2006). In addition, those obtained from manufacturers were also used in 

H2 production including ICI 46-1 (Ni-based catalyst), a Fe–Cr-based LB catalyst, and Cu–Zn-

based catalyst. 

1.2 Biomass gasification process and derived products 

1.2.1 Gasification process 

Biomass contains varying amounts of cellulose, hemicellulose, lignin and a small amount 

of other biomass extracts (McKendry, 2002a). The abundance of elements in biomass follows 

the following order: C, O, H, N, Ca, K, Si, Mg, Al, S, Fe, P, Cl, Na, Mn, and Ti (Vassilev et al., 

2010). The nitrogen content of biomass varies from 0.2% to more than 1%, while sulfur content 

is typically below 0.2%, with a few feedstocks having a sulfur content as high as 0.7% (DDG, 

2012).The biomass feedstock needs to be first processed (e.g., size reduction, drying, etc.) 

before being fed to gasifiers for its conversion to energy-rich gas components. To further reduce 

impurities in the biomass to yield better gasification, biomass may be subject to fractionation 

and leaching (McKendry, 2002b). 

Under partial oxidation conditions (approximately 25 to 40% of stoichiometric amount of 

combustion) with air, pure oxygen, steam or a mixture of these gases at appropriate 

http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0065
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0065
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0145
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0040
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0040
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0175
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0085
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0150
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0105
http://www.sciencedirect.com/science/article/pii/S0960852401001201
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temperatures (800 to 900 oC), the biomass feedstock is converted to producer gas mainly, tar 

and particulates with trace containments of NH3, HCN, H2S and HCl as illustrated in Fig. 1-1. 

The organic carbon present in biomass undergoes a series of reactions in forming CO, H2 

CH4, and CO2 as follows (Huber et al., 2006; Kumar et al., 2009): 

Partial oxidation reaction 2C + O2 = 2CO       (1.1) 

Complete oxidation reaction C + O2 = CO2        (1.2) 

Hydrogasification reaction C + 2H2 = CH4       (1.3) 

Water gas shift reaction CO + H2O = CO2 + H2       (1.4) 

Steam reforming reaction CH4 + H2O = CO + 3H2      (1.5) 

Water gas reaction C + H2O = CO + H2        (1.6) 

Boudourd reaction C + CO2 = 2CO         (1.7) 

Since feedstock also contains trace amount of S, N, and Cl, the gas produced certainly 

contains H2S, HCN and HCl, in addition to NH3 due to an incomplete oxidation of N-containing 

feedstock. These undesirable gases along with tar generated significantly affect the performance 

of catalysts. The poly-aromatic CmHnOo and others (e.g., mixed oxygenates, heterocyclic ethers, 

etc.) are condensable after cooling and termed “tar-like compounds”. If not removed, they will 

significantly affect downstream equipment in terms of corrosion and blockage. The formation 

of unavoidable tar is the major bottleneck for the commercial application of biomass 

gasification. 

In general, the fluidized systems yield less tar content (e.g., Baker et al., 1987; Devi et al., 

2003). A co-current moving bed gasifier fed using wood chips with internal recycle and separate 

gas combustion produced a low tar content of < 0.1 g m-3 (Susanto and Beenackers, 1996). 

Another lab-scale fluidized bed system uses a unique design in which the biomass was initially 

pyrolyzed and the produced char was partially gasified in the upper reduction region of the 

reactor. The char residue was combusted at the bottom region of the reactor in an oxidization 

atmosphere (Cao et al., 2006). 

Typically, gasifier operating conditions, such as temperature of air (or steam), residence 

time, and steam/carbon (S/C) ratios affect the amount of tar produced (Devi et al., 2003; Lucas 

et al., 2004; Umeki et al., 2010; Gröbl et al., 2012). The type of bed material also affects tar 

formation, e.g., calcined limestone proved to be most effective for tar adsorption 

(Weerachanchai et al., 2009; Pfeifer et al., 2011). In addition to the downstream process for tar 

removal (e.g., Pfeifer and Hofbauer, 2008; Gustam et al., 2009), catalysts may be directly used 

in the gasifier (in-bed catalyst) by impregnating them with the biomass to reduce tar content 

http://www.sciencedirect.com/science/article/pii/S0306261909004279
http://www.sciencedirect.com/science/article/pii/S0960852408006858
http://www.springerlink.com/content/?Author=Christoph+Pfeifer
http://pubs.acs.org/action/doSearch?action=search&author=Pfeifer%2C+Christoph&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Hofbauer%2C+Hermann&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Gusta%2C+Elizabeth&qsSearchArea=author
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and increase gas yield (e.g., Gil et al., 1999; Courson et al., 2000; Devi et al., 2003; Lv et al., 

2004; Pfeifer et al., 2004; Devi et al., 2005a; de Andréset al., 2011). For example, use of 

dolomite in a gasifier could decrease the tar content of the outlet gas below 2 g m-3 (Corella et 

al., 1999a). Although the catalyst used (e.g., dolomite or olivine) is easily deactivated, the 

replacement in-bed catalyst may be less expensive (Sutton et al., 2001). The most effective 

catalyst is a nickel based one, such as Ni/olivine (Courson et al., 2000; Dayton, 2002). The use 

of Ni-based catalyst is effective not only for tar reduction, but also for decreasing the amount 

of ammonia formation (Devi et al., 2003). 

A bundle of catalytic ceramic candles was placed in the gasifier freeboards (800-850°C) 

by using a catalytically active mineral substance for tar reforming and by optimizing the 

addition of sorbents into the bed for removal of detrimental trace elements (UNIQUE, 2012). 

In general, the above system could remove 58% of the tar produced (Rapagnà et al., 2009). 

A multiple-stage system can be employed to reduce tar formation (Brandt et al., 2000; 

Henriksen et al., 2006). For example, Brandt et al. (2000) reported that the reduction in tar was 

achieved by the partial oxidation of the pyrolysis gas following multiple reactions on a charcoal 

bed in the char gasification unit; the tar content was decreased from 3000 to < 40 mg kg-1 

woodchips. Also use of 2-stage gasification with secondary air injection in the gasifier can 

reduce tar formation (Devi et al., 2003). Asadullah et al. (2003) proposed a dual-bed gasifier 

consisting of a primary-bed section for pyrolysis of biomass as well as separation of pyrolyzed 

gas and tar and a secondary-catalytic tar reformer. The tar generated can be completely 

converted to a gas product. Recently, Galindo et al. (2012) used a 2-stage fixed bed downdraft 

gasifier with different air supply and found a better-quality gas (higher calorific content) with 

a lower tar content (reduction of gas tar content up to 87%). Another 2-stage system (fluidized 

bed zone and a tar cracking zone) loaded with activated carbon (AC) had a tar removal 

efficiency of up to 80% (Mun et al., 2009). In addition, the use of a simple guard bed with 

calcined dolomite to decrease the tar content at the inlet of the subsequent catalytic bed to a 

level below 2 g m-3 is effective (Corella et al., 1999b). 

The alkali elements present in the biomass affect catalytic performance and the alkali 

compounds released in the reactor will condense on the fly ash particles or on the walls of the 

flue gas tube and also form aerosol particles in the flue gas (Glazer et al., 2005). During biomass 

gasification, gas-phase concentrations of K, Na and Ca typically exceed turbine fuel 

specifications with Si, Fe, P, and Cl also present in the gas phase (Turn et al., 1998). Thus, alkali 

content in the feedstock must be low or diluted with another feedstock. It has been demonstrated 

http://pubs.acs.org/action/doSearch?action=search&author=Corella%2C+Jos%C3%A9&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Rapagna%CC%80%2C+Sergio&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Corella%2C+Jos%C3%A9&qsSearchArea=author
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that the alkali retention in the fluidized bed gasifier ranges from 4 to 12% while alkali separation 

in the cyclone could be as high as 70% (Gabra et al., 2001). 

1.2.2 Cleaning treatment of the producer gas 

The unwanted gases and incomplete byproducts will be subsequently subjected to multiple 

stages purification, further conversion of undesirable products and more importantly, upgrading 

product gas for use in gas turbines/engines or as raw materials for chemical production as shown 

in Fig. 1-2.  

The particulate matter (PM) is removed via a series of cyclones and other devices (such as 

wet scrubbers, filters and electrostatic precipitators). The PM levels after purification should be 

significantly reduced. For example, PM2.5 level in downstream filter purification outlet stream 

of 13 µg m-3 was significantly lower than the maximum level for catalyst protection of 500 µg 

m-3 (Wang et al., 2011b). For removal of large quantities of fly ash, use of a NiO-MgO/γ-

Al2O3/cordierite monolithic catalyst exhibited excellent catalytic performance, operating 

stability, and little pressure buildup even with high fly ash content of 330 g m-3 in the raw fuel 

gas (Wang et al., 2011a; Qiu et al., 2012). 

The scrubbing of gases consists of three approaches: hot gas cleanup, wet scrubbing and 

dry/wet-dry scrubbing. The product gas with high alkali content should be subjected to alkali 

removal for protecting downstream equipment. Increasing alkali retention/separation during the 

gasification process may lead to improved product gas quality. Research in this area, however, 

is limited (Kumar et al., 2009). 

A simple way to reduce NH3 content in gas produced is the use of catalysts in gasifiers 

typically with naturally occurring minerals, such as olivine, dolomite, and limestone 

(Hongrapipat et al., 2012), although ferrous materials and other commercial nickel catalyst 

proved to be the most efficient agents for decomposing NH3 (Leppälahti et al., 1991). 

Subsequently, the desulfurization and dechlorination processes may be used for the 

removal of H2S, carbonyl sulfide (COS), HCN and HCl. The removal of H2S can be 

accomplished with absorbents (Yumura and Furimsky, 1985; Fenouil and Lynn, 1995; Kwon et 

al., 2003; Atimtay, 2001; Ko et al., 2004, 2007; Kim et al., 2007; Li et al., 2008). As would be 

expected, different absorbents exhibit different absorption capacity towards H2S. The use of 

zinc ferrite (ZnOFe2O3) for H2S adsorption and subsequent regeneration can be described as 

(Kobayashi et al., 1997): 

http://www.springerlink.com/content/?Author=Janjira+Hongrapipat
http://www.sciencedirect.com/science/article/pii/0378382091900166
http://pubs.acs.org/action/doSearch?action=search&author=Yumura%2C+Motoo&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Furimsky%2C+Edward&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Fenouil%2C+Laurent+A.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Lynn%2C+Scott&qsSearchArea=author
http://link.springer.com/search?facet-author=%22Aysel+T.+Atimtay%22
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Reduction: 

ZnFe2O4 + 1/3H2→ZnO + 2/3Fe3O4 + 1/3H2O          (1.8) 

Sulfidation: 

ZnO + H2S → ZnS + H2O          (1.9) 

2/3Fe3O4 + 2H2S + 2/3H2 → 2FeS + 8/3H2O      (1.10) 

Regeneration: 

ZnS + 2FeS + 5O2 → ZnFe2O4 + 3SO2       (1.11) 

The catalysts composed of NiO, MoO3 and Al2O3 were found to be able to remove COS 

and CS2 by converting to H2S (Dou et al., 2002); the same catalysts also simultaneously remove 

HCl, 1-methylnaphthalene (model tar) and NH3. 

A novel catalytic filter incorporating Ni/CaO catalyst was used to remove both tars and 

particles in the presence of H2S at 900 oC (Engelen et al., 2003); the nickel and calcium modified 

filter exhibited 67% conversion of tar model compound (benzene) at 900 °C with 100 ppm H2S 

and 4 cm s-1 gas velocity (Draelants et al., 2000). Also, active carbon can be used for tar removal 

(Hu et al., 2007) as well as simultaneous removal of tar, particles, and sulfur compounds 

(Hanaoka et al., 2012). 

The discharged gas stream is then delivered to a steam reforming reactor where tar and 

light hydrocarbons are further decomposed to CO, CO2, CH4, etc. along with NH3 to N2 and H2. 

Typically, Ni based catalyst is employed in this process. Kawamoto et al. (2009) reported that 

nickel catalysts containing CaO exhibited superior catalytic performance, with the product gas 

having a maximum hydrogen content of 57 vol% and the lowest tar level converted from the 

wood material at 1023 K.  

1.2.3 Enhanced hydrogen via catalytic tar conversion and water gas shift reaction 

Tar formation, prevention, and removal remain a major challenge in the gasification field. 

Tar not only affects the performance of catalysts, but also affects downstream equipment. For 

example, the tolerance levels for tar have been suggested as 50 to 500, 5 to 100, and 5 mg Nm-

3 for the use for compressors, internal combustion systems, and gas turbines, respectively 

(Milne et al., 1998). Its generation originates from the initial gasifier stage to subsequent 

reforming systems. The formation of tar in the gasifier is affected by operating conditions 

(temperature, oxidizing agent quantity, feedstock rate, and type of catalyst, etc.) as well as 

reactor configuration. Updraft fixed bed gasifiers yield high amount of tar (up to 12 wt% of 
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feed) due to lower temperature of exit gases, as compared to downdraft gasifier (> 1 wt%) 

(Baker et al., 1988; Kumar et al., 2009). In general, higher S/C ratios (Devi et al., 2003; see Eq. 

1.13) as well as higher temperatures (McKendry, 2002b) reduce tar content. A higher feed rate 

(or lower residence time) would yield high amounts of tar (Vreugdenhil and Zwart, 2009). 

Nonetheless, the addition of catalysts (e.g., olivine and dolomite) may catalyze tar destruction 

(Rapagna et al., 2000). 

Tar can be removed via several reactions of steam- (Eq. 1.12), dry- (Eq. 1.13), hydro-, 

thermal-reforming, cracking as (Devi et al., 2005b; Li and Suzuki, 2009: Xu et al., 2010):  

Cracking: CnHm  nC+ (m/2)H2          (1.12) 

Hydro-cracking:  CnHm + (4n-m)/2)H2  nCH4       (1.13) 

Again, catalyst plays an important role in tar removal. For example, in the reforming 

system, use of Rh/CeO2/SiO2 almost eliminates tar production (Dayton, 2002; Asadullah et al., 

2002, 2003, 2004); NiMo/Al2O3 and dolomite reduce activation energy for toluene from 250-

350 to 30-120 kJ mol-1 at 650-850 oC (Taralas and Kontominas, 2004). Huang et al. (2011) 

presented a novel gas purification technology based on catalytic hydrocracking with Pd 

catalysts in an updraft gasifier with most of the tar components converted and/or removed.  

The short chain alkanes/alkenes (C1-C4) and large molecular weight compounds (aromatic 

CmHmOo) formed in the gasifier undergo further reactions in the reformer reactors as (Mann, 

1995; Sutton et al., 2001): 

CmHn + mH2O  mCO + (m + n/2) H2        (1.14) 

CmHn + mCO2  2mCO + (n/2) H2        (1.15) 

The last stage is needed for further upgrading gases to H2 via the water-gas shaft reaction 

in Eq. 1.4 (Choi and Stenger, 2003).  

Again, catalyst plays an important role in tar removal. For example, in the reforming 

system, use of Rh/CeO2/SiO2 almost eliminates tar production (Dayton, 2002; Asadullah et al., 

2002, 2003, 2004); NiMo/Al2O3 and dolomite reduce activation energy for toluene from 250-

350 to 30-120 kJ mol-1 at 650-850 oC (Taralas and Kontominas, 2004). Huang et al. (2011) 

presented a novel gas purification technology based on catalytic hydrocracking with Pd 

catalysts in an updraft gasifier with most of the tar components converted and removed.  

 

 

 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DDevi,%2520Lopamudra%26authorID%3D35860458600%26md5%3Dbd225008fab2f67f073592eae2cda80a&_acct=C000051951&_version=1&_userid=7761109&md5=04cc14036ba6ea6ec9bf9ae4c9ae2f0f
http://www.sciencedirect.com/science/article/pii/S1364032108000063
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1.3 Hot gas cleaning of tar by catalytic steam reforming 

The technologies for removing tar from producer gas (raw syngas) mainly included 

physical method such as electrostatic capture, wet scrubber and adsorption and hot gas cleaning 

of catalytic steam reforming. Physical methods and cold gas cleanup use relatively mature 

techniques that are highly effective although they often generate wastewater streams and may 

suffer from energy inefficiencies. Hot gas cleaning of catalytic steam reforming of tar is 

attractive because it avoids cooling and reheating the gas stream and enhances production of 

syngas. Concerning the catalytic tar conversion, the catalyst takes an importance role so that 

catalyst properties ranging from types, catalyst characterization, mechanisms for catalyst 

deactivation, catalyst sensitivity to poisoning are described in details. 

1.3.1 Tar from biomass gasification 

Tars are a complex mixture of organic compounds resulting from biomass incomplete 

decomposition. Milne et al. (1998) classified tars in four different groups: “primary products” 

which are characterized by cellulose-, hemicellulose- and lignin-derived products; “secondary 

products” which mainly composed of phenolics and olefins; “alkyl tertiary products” which are 

mainly methyl derivatives of aromatic compounds; and “condensed tertiary products” which 

are polycyclic aromatic hydrocarbons (PAHs) without substituent groups. The primary and 

tertiary products are mutually exclusive, or the primary products are destroyed before the 

tertiary products are formed (Milne et al., 1998). In addition, tar species are classified into five 

classes as shown in Table 1-1.  

Apart from their acute toxic and carcinogenic properties, tar species may condensate in 

cold environment and during gas compression. During condensation or resublimation the 

compounds agglomerate frequently with dust, which are entrained in the gas. Han and Kim 

(2008) reviewed the technologies for control technology of tar during biomass 

gasification/pyrolysis.  

Tars are the most troublesome pollutants of producer gas and consist of a complex mixture 

of organic compounds (including aromatic and heteroaromatic species as well as PAHs) with 

high boiling points. The main technical problems caused by biomass gasification tars include 

tar condensation which causes plugging and fouling problems, tar polymerisation at high 

temperatures (which produces polycyclic compounds and even soot in extreme cases). The need 

for managing hazardous residual effluents derived from wet cleaning systems for tar removal, 

and catalyst deactivation due to tar deposition is apparent (Devi et al., 2003). 
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Tar is difficult to sample and analyze with the techniques that many research groups have 

developed their own protocols, which makes it difficult to compare results. To avoid this 

difficulty, in this study we employ the Provisional Protocol for the Sampling and Analysis of 

Tar and Particulates in the Gas from Large Scale Biomass Gasifiers (Version 1998) prepared 

by the Working Group of the Biomass Gasification Task of the IEA Bioenergy Agreement 

(Smeenk and Brown, 1998). Tars including heavy tar, light hydrocarbon and water soluble 

hydrocarbon will be measured by this Protocol. The detailed procedures can be found elsewhere 

(Smeenk and Brown, 1998). 

1.3.2 Role of catalysts 

There are numerous types of catalysts used in the gasification process for tar removal. 

Typically, domolite and olivine were used in gasifiers (Delgado et al., 1996; Gil et al., 1999; 

Devi et al., 2003; Pfeifer et al., 2004; de Andréset al., 2011) as well as in a subsequent separate 

unit (Rapagnàet al., 1998; Abu El-Rub et al., 2004; Gustam et al., 2009; Xu et al., 2010), and 

Ni or Ru-based catalysts with Al2O3 or SiO2 support in reforming system for tar removal. 

Interestingly, the Co/MgO catalyst had higher activity than any other type of Ni/MgO catalysts 

at lower S/C ratio (0.6) and higher concentration of fed naphthalene of 3.5 mol% (Furusawa 

and Tsutsumi, 2005). The naturally occurring calcined dolomites, limestones, and magnesites 

(Delgado et al., 1996; Corella et al., 1999a; Dayton, 2002; Devi et al., 2005c) or Ni-based 

monoliths (Corella et al., 2004b) were used for cleaning raw hot gas from biomass gasifiers. 

Delgado et al. (1996) reported that not much catalyst deactivation was observed for tar 

concentrations with the raw gas below 48 g Nm-3, particle diameters of less than 1.9 mm, 

temperatures above 800 °C, and space times above 0.13 kg h-1 Nm-3. Abu El-Rub et al. (2008) 

used biomass chars for tar removal and found that char gave the highest naphthalene conversion 

among the low-cost catalysts used (calcined dolomite and olivine). As for the type of model tar 

compounds, the order of reactivity follows: benzene > anthracene > pyrene > toluene > 

naphthalene during purification of syngas (Coll et al., 2011) with the tendency towards coke 

formation growing as the molecular weight of the aromatics increased. 

Typically, catalysts can be classified into 3 major source categories: (1) naturally occurring 

materials, e.g., domolite, olivine, calcite and alumina; (2) Ni based commercial catalysts; and 

(3) newly synthesized/developed catalysts to overcome particular problems. The domolites 

typically are composed of MgCO3, CaCO3 with small amounts of SiO2, Fe2O3 and Al2O3 

http://pubs.acs.org/action/doSearch?action=search&author=Delgado%2C+Jes%C3%BAs&qsSearchArea=author
http://www.sciencedirect.com/science/article/pii/S0360319997001080
http://pubs.acs.org/action/doSearch?action=search&author=Gusta%2C+Elizabeth&qsSearchArea=author
http://www.sciencedirect.com/science/article/pii/S0926860X04008099
http://pubs.acs.org/action/doSearch?action=search&author=Delgado%2C+Jes%C3%BAs&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Delgado%2C+Jes%C3%BAs&qsSearchArea=author
http://www.sciencedirect.com/science/article/pii/S0378382001002144
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(Sutton et al., 2001), while olivine with (Mg,Fe)SiO4 as the main phase plus small quantities of 

MgSiO3, MgFe2O4 and -F2O3 (Świerczyński et al., 2006). The exact crystal phase and catalytic 

activity as well as the extent of deactivation depend on the source of these minerals (Zhao et al, 

2009; Buchireddy et al., 2010). Ni-based catalysts synthesized in the laboratory and 

commercially produced have been extensively studied. Although the yield performance is good, 

the deactivation of catalysts due to structure changes in Ni and carbon deposit is unfortunately 

unavoidable.  

Ideally catalysts should have the following roles (Sutton et al., 2001): (1) effective in tar 

removal; (2) capable of achieving higher yield; and (3) providing suitable syngas ratio. The 

selection of catalysts is a function of cost, high activity, selectivity, resistant to deactivation, 

and ease of regeneration. Clearly no single catalyst can achieve and meet the above-mentioned 

goals and selection criteria. A particular catalyst may function well in one aspect (e.g., high 

catalytic activity), but suffer in another aspect (e.g., subject to deactivation). For example, 

K2CO3 supported on Al2O3 is more resistant to carbon deposition, but less active as compared 

to a Ni-based catalyst resulting in unsuitable application in hydrocarbon conversion (Sutton et 

al., 2001). A “in-bed catalyst”, using dolomite yields only 60% of the tar content compared to 

olivine, but it generates 4 to 6 times more particulates and additional NH3 (Corella et al., 2004a). 

Thus, the role of catalyst in enhancing H2 production, prevention of tar formation and 

elimination of carbon deposition is different (Inaba et al., 2006). Also operating conditions for 

optimizing yield, gas composition and energy may be different for tar/carbon 

reduction/elimination. Therefore, the selection of the catalyst is goal- and selectivity-specific. 

Lastly, the selection of any catalysts should also consider cost, e.g., Ni-Ce/H-ZSM-5 catalyst 

may be selected for cellulose gasification over Rh-Ce/SiO2 catalyst, since Ni-based catalysts 

are cheaper (Inaba et al., 2006). Also, under real conditions (e.g., presence of H2S), the two 

natural materials, calcite and olivine, have clear advantages over perovskite-type oxides with 

respect to price, catalytic activity and oxygen capacity (Pecho et al., 2008). The bottom line is 

when evaluating catalysts, activity, stability, sensitivity, selectivity, reliability, durability and 

cost should be all considered to yield the so-called optimized conditions.  

The preparation procedure of catalysts also affects catalytic activity (Bartholomew, 2001; 

Chen et al., 2005a). For example, the co-impregnation of Ni/CeO2/Al2O3 catalyst is subject to 

less catalyst deactivation than sequential impregnation (Ni/Al2O3, Ni/CeO2/Al2O3) (Kimura et 

al., 2006). The intimate interaction between Ni and CeO2 on the Ni/CeO2/Al2O3 catalyst by the 

co-impregnation method is responsible for the low yield of tar and coke as compared to 

http://pubs.acs.org/action/doSearch?action=search&author=%C5%9Awierczy%C5%84ski%2C+D.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Buchireddy%2C+Prashanth+Reddy&qsSearchArea=author
http://www.sciencedirect.com/science/article/pii/S000925090800064X
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Ni/CeO2/Al2O3 by a sequential impregnation method in steam gasification of biomass 

(Tomishige et al., 2007). Furthermore, the addition of 0.1% Pt to Ni/CeO2/Al2O3 enhanced the 

performance compared to Ni/CeO2/Al2O3 in terms of low tar yield and high gas yield, due to 

the formation of Pt–Ni alloy (Nishikawa et al., 2008). Seo et al. (2009) analyzed three methods 

(impregnation, co-precipitation, and sequential precipitation) for preparation of Ni/Al2O3 

catalysts and found that the sequential precipitation method was the most effective for catalytic 

activity in suppressing the carbon deposition. This is because sequential precipitation yielded 

the highest Ni surface area, pore volume and better nickel dispersion. On the other hand, catalyst 

(Ni/domolite with promotor Pt, Co or Fe) preparation by the impregnation method had superior 

performance compared to co-precipitation (Chaiprasert and Vitidsant, 2009). 

In addition, the support plays an important role in the overall catalytic performance as well 

as tar resistance (Wang and Lu, 1998; Inaba et al., 2006; Buchireddy et al., 2010). Clearly, 

support has an important function in the distribution and dispersion of an active metal catalyst. 

For example, Kong et al. (2011) employed MgO, carbon, -Al2O3, -Al2O3, SiO2 and ZrO2 on 

Ni-based catalysts in CO2 reforming of toluene in a fluidized bed reactor and observed that the 

Ni/MgO catalyst was the most effective due to the strong interaction between NiO and MgO 

via the formation of a Ni–Mg–O solid solution with the highest dispersion of Ni particle. In 

fact, anti-sintering and anti-carbon deposition properties of a NiO-MgO solid solution catalyst 

have been confirmed in reforming biomass fuel gas by Ni-MgO/-Al2O3 catalysts (Qiu et al., 

2012). Also, Miyazawa et al. (2006) found that Ni/CeO2 showed a lower amount of coke than 

other supports of Ni-based catalysts (Ni/Al2O3, Ni/ZrO2, Ni/TiO2, and Ni/MgO) in the steam 

reforming of tar derived from the pyrolysis of cedar wood. Tomishige et al. (2004) reported that 

gasification of cellulose over novel Rh/CeO2/SiO2 catalysts involved in the reforming of tar and 

the combustion of solid carbon. In addition, the impurities on the support surface can poison 

the catalyst (Wang and Lu, 1998). With the exception of nickel nitrate, all the Ni-precursors 

(chloride and sulfate) caused deactivation of the catalyst in the steam reforming of benzene 

(Park et al., 2010). The strong interactions between Cl inside the pores and the supports with 

chloride as a precursor and production of H2S with sulfate precursors are the reasons for catalyst 

deactivation. However, the choice of a Ni-based precursor (NiO or Ni) demonstrated minimal 

influence on the catalytic activity and stability for naphthalene- and methane-steam reforming 

(Zhao et al, 2009). 

In another study on Ni-based catalysis for cellulose gasification, Inaba et al. (2006) found 

that Ni/conventional metal oxide catalysts produced tar without carbon deposition, while most 

http://www.sciencedirect.com/science/article/pii/S1566736707002403
http://pubs.acs.org/action/doSearch?action=search&author=Buchireddy%2C+Prashanth+Reddy&qsSearchArea=author
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Ni/zeolite catalysts could inhibit the formation of tar to some degree; however, carbon 

deposition still occurred. The Ni-Ce/zeolite support was able to enhance the rate of gasification 

due to inhibition of tar formation and carbon deposition (Inaba et al., 2006). Clearly the property 

of support (e.g., pore structure) and its interaction with metal catalyst are important (Wang and 

Lu, 1998). In fact, deterioration of support or change in support structure certainly leads to 

catalyst deactivation (McMinn et al., 2001; Klimova et al., 2003).  Moreover the source or 

type of zeolite/olivine/domolite is also important; catalytic activity increases with an increase 

in the zeolite acidity (Buchireddy et al., 2010) and Washington olivine support (Ni based) 

demonstrates improved catalytic performance and stability compared to two other olivine 

supports (Austrian and North Carolina olivine) during reforming naphthalene (Zhao et al., 

2009). 

Ni−Al co-precipitated catalysts promoted with magnesium (NiMgAl2O5)showed the 

highest initial activity and stability compared to NiAl2O4 catalyst (Garcia et al., 2002). As for 

rare elements as a promotor, Ma et al. (1999) found that the catalytic activity of rare elements 

promoted to Ni-based catalysts decreased as: CeO2 > PrO2 > Sm2O3 in steaming reforming of 

methane, with CeO2 exhibiting excellent anti-coking activity. Zhang et al. (2009) in their study 

of steam reforming of toluene also found the order of catalytic performance and carbon 

resistance as: Ni-Ce > Ni-La > Ni-Zr based on Ni/Mg(Al)O catalysts. The addition of mixed 

rare elements (La2O3, CeO2, Pr6O11, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, and Y2O3) onto 

Co/-Al2O3 catalysts exhibited good activity and stability with low carbon formation at 800 oC 

for 320 h during CH4/CO2 reforming to syngas (Zeng et al., 2012). Also, the addition of 

promoters (Ce, La, Ca, K) to NiCoMn/ZrO2 catalyst markedly improved CH4 and CO2 

conversions as well as selectivities to H2 and CO relative to the unprompted catalysts (Bhavani 

et al., 2012). The Ce and La were more effective than alkaline earth Ca and K, and exhibited 

higher activity and improved stability. However, coke deposition on the catalysts for the CO2-

reforming reaction was remarkably diminished with the addition of alkaline promoters such as 

K and Ca oxides. This was attributed to the formation of carbonate species on alkaline 

promoters, mainly Ca, which was located adjacent to Ni sites and to the dissociative adsorption 

of CO2 on the Ni surface (Chang et al., 1996). In addition, the inclusion of some rare earth (La3+) 

and alkaline earth oxides (Ba2+) into a modified γ-alumina enhances sintering resistance 

(Church et al., 1994).The role of the promoter on Ni/dolomite apparently is different, e.g., 

platinum promoter enhances the reforming reaction, iron promotes a water-gas shift reaction, 

and the cobalt favors methanation reaction (Chaiprasert and Vitidsant, 2009). 

http://pubs.acs.org/action/doSearch?action=search&author=Buchireddy%2C+Prashanth+Reddy&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Garcia%2C+L.&qsSearchArea=author
http://www.sciencedirect.com/science/article/pii/S0926860X12006564
http://www.sciencedirect.com/science/article/pii/0926860X94851603
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The overall performance of catalysts is related to the content of metal loading as well as 

metal dispersion (Chen et al., 2005b), incorporation of other dopant metals/compounds 

(Bangala et al., 1998), type of impurity (Abu El-Rub et al., 2008), calcination temperature 

(Courson et al., 2000; Zhao et al., 2009) and time (Devi et al., 2005a), preparation method (Li 

et al., 2005), catalyst precursor (Park et al., 2010), type of supports (Breysse et al., 2003; Inaba 

et al., 2006; Kong et al., 2011; Xie et al., 2012), extent of “impurity” in support (Wang and Lu, 

1998), operating temperature (Devi et al., 2003), among others. 

In comparison of different Ni-based catalysts for coke resistance, Chen et al. (2005b) 

reported that a better resistance is due to smaller metallic Ni particle size through lowering Ni 

loading and in combination with the addition of B promoter with the decreasing order: 10 wt% 

Ni/AlO >1 wt% Ni/Ca-AlO > 1 wt% NiB/Ca-AlO >1 wt% Rh/AlO. The addition of other metal 

on a Ni-based catalyst may offer more sulfur resistance due to the adsorption of C2H4 and sulfur 

on Ni-Ru/Al2O3 on completely different sites (Rangan et al., 2012). This explains the observed 

phenomenon that this catalyst is more sulfur resistant than Ni/Al2O3. Also Ni/olivine 

(Świerczyński, et al., 2007, 2008) and Fe/olivine (Virginie et al., 2010) have been demonstrated 

to be effective for tar reduction with better product gas quality. The former is due to magnesium 

oxide enhanced steam adsorption, facilitating the gasification of surface carbon and Ni–Fe 

alloys prevent carbon deposition (Świerczyński, et al., 2007), and the latter due to the presence 

of metallic iron leading to C–C and C–H bonds breaking and a sufficient percentage of iron(II) 

available (Virginie et al., 2010). A zirconia-promoted Ni-based commercial catalyst (Katalco 

46-6Q) showed 100% tar conversion efficiency even at a relatively low temperature of 600 °C 

(Yoon et al., 2010). The introduction of small amounts of molybdenum compounds (1 wt% of 

Mo) into the Ni-based catalysts greatly improved their resistance to coking during steam 

reforming of n-butane (Kepinski et al., 2000). 

1.3.3 Newly developed catalysts 

Because of some disadvantages associated with conventional catalysts, there are many 

newly developed catalysts to overcome the deactivation due to adverse effects caused by 

various factors. In fact, one of the research areas in the gasification field is to identify and 

synthesize catalysts for their use in enhancing both performance and resistance to poison and 

coke formation. Use of Ni-based monoliths has been found to be effective in hot gas cleaning, 

particularly in particle removal (Corella et al., 2004a). The addition of Rh, Pt, W or Ru to Ni-

http://www.sciencedirect.com/science/article/pii/S0920586103004000
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DSwierczynski,%2520D.%26authorID%3D34573107000%26md5%3Dadc97f8dadc6828109f281494656365a&_acct=C000051951&_version=1&_userid=7761109&md5=bc874042c829fad021c0744808211350
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DVirginie,%2520Mirella%26authorID%3D24367490000%26md5%3D61049c1279a8fbc8863d93817fbc890c&_acct=C000051951&_version=1&_userid=7761109&md5=d03c52966f9e0b69f2af4908acac1ff6
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DSwierczynski,%2520D.%26authorID%3D34573107000%26md5%3Dadc97f8dadc6828109f281494656365a&_acct=C000051951&_version=1&_userid=7761109&md5=bc874042c829fad021c0744808211350
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DVirginie,%2520Mirella%26authorID%3D24367490000%26md5%3D61049c1279a8fbc8863d93817fbc890c&_acct=C000051951&_version=1&_userid=7761109&md5=d03c52966f9e0b69f2af4908acac1ff6
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based catalyst could result in less sulfur poison (Strohm et al., 2006; Wang et al., 2009; 

Ronkkonen et al., 2011a, 2011b). Examples of some newly developed catalysts are listed in 

Table 1-1. The table, by no means complete and only a fraction of literature data, illustrates the 

interest and improvement of new catalysts to overcome catalyst deactivation in the gasification 

process. Briefly, these catalysts shown in Table 1-2 indicate several important aspects: (1) use 

of noble metal catalysts (e.g., Rh, Pd) is extensive but may be expensive; (2) most Nickel based 

catalysts use a variety of supports (e.g., olivine, dolomite, Al2O3, SiO2 and zeolite), and doped 

with various metals (e.g., Ce, Mg); (3) other transit metal catalysts (e.g., Fe, Co); and (4) char-

based catalyst. Essentially Ni-based catalysts are widely used and improvements have been 

made to improve their catalytic capability and their resistance to deactivation. 

1.3.4 Catalyst characterization and performance 

Catalyst can be characterized via different techniques, including but not limited to: X-ray 

Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), X-ray 

Photoelectron Spectroscopy (XPS) and Mass Spectrometry (MS), Mossbauer Spectroscopy, 

Extended X-Ray Absorption Fine Structure (XAFES), Brunauer-Emmett-Teller (BET), UV-Vis 

Diffuse Reflectance Spectroscopy (UV-Vis DRS), Diffuse Reflectance Infrared Spectroscopy 

(DRIS), Scanning Electron Microscope/Microscopy (SEM), Transmission Electron 

Microscope/microscopy (TEM), Thermogravimetric Analysis (TGA), Temperature 

Programmed Desorption (TDP), Temperature Programmed Oxidation (TPO), Nuclear 

Magnetic Resonance Spectroscopy (NMR), and zeta potential meter, etc. In general, they 

determine physical properties (surface are, pore size, density, strength), fine structure (surface 

structure and topography), different phases, elemental composition, and chemical 

characterization or acid/base sites, and catalyst properties (measurements of activity parameters, 

selectivity, inhibition of the catalytic action, characterization of catalyst response to inhibitory 

substances, etc.) (Haber, 1999). 

The characterization of catalysts may shed some light as to how are catalysts deactivated? 

Why are some less sensitive to poisoning? Which sites are affected? What mechanisms are 

involved? Where is competitive edge over other catalysts? For example, Orio et al. (1997) 

concluded that the order of activity of 4 different dolomite catalysts evaluated is primarily 

dependent on the content of measured Fe2O3. Based on EXAFS analysis, sulfur poisoning and 
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oxide formation, not carbon formation, nor changes in particle size and phosphorus poisoning, 

are responsible for deactivation of Ni-based (Mg and K) catalyst (Yung and Kuhn, 2010). 

Typically, substances causing catalyst deactivation will initially undergo 

physical/chemical/thermal adsorption onto the surface of catalysts. The mechanisms for 

eventual catalyst deactivation are complex and the extent of catalyst deactivation depends on 

the type of substances, catalysts themselves, and operating conditions. Moulijn et al. (2001) 

outline deactivation in terms of length scale: nono scale (micropores); micro scale (macropore); 

macro scale (particles); and meter size (reactor). Deactivation can be classified into 6 types: (1) 

poisoning, (2) fouling, (3) thermal degradation, (4) vapor compound formation accompanied 

by transport, (5) vapor-solid and/or solid-solid reactions, and (6) attrition/crushing 

(Bartholomew, 2001), or 4 major elements: (1) fouling due to aggregation and polymerization 

of deposit resulting in structural changes; (2) poison; (3) catalyst sintering; and (4) 

catalyst/support degradation due to thermal erosion/attrition/abrasion (Forzatti and Lietti, 1999; 

Moulijn et al., 2001). 

In order to better understand the mechanism(s) for catalyst deactivation, it is important to 

know how catalysts function. Essentially, it involves diffusion of reactants (step 1 and 2), 

adsorption (step 3), reaction (step 4), desorption of the products (step 5), and diffusion of 

products back into the bulk fluid (step 6 and 7) (Bartholomew and Farrauto, 2006). Any of these 

steps can be the limiting factor depending on the catalyst design, the reactor setup, and the 

reaction condition (Bartholomew and Farrauto, 2006; Lin and Huber, 2009). 

For particles/aerosol, their direct deposition (blockage) on the surface of catalysts (Einvall 

et al., 2007) or pore (Rostrup-Nielsen and Trimm, 1977) is responsible for the decreased 

catalytic activity.  Typically, the specific surface area and metal crystallite are decreased and 

changed after deactivation (Albertazzi et al., 2011). The formation of 27 to 36 wt% content of 

K2O in Ni/monolith catalyst also causes its deactivation (Corella et al., 2005). 

For hydrocarbons, the deposited carbon will undergo structural as well as morphological 

changes with formation of encapsulating, filamental and pyrotic carbons (Bartholomew, 1982; 

Xie et al., 2011). The formation of these carbons depends on temperature and they all exhibit 

catalyst deactivation. Xu and Saeys (2006) identified three types of chemisorbed carbon: on-

surface carbon atoms, bulk carbon atoms, and extended graphene islands. They further reported 

that boron prefers to adsorb in the octahedral sites just below the surface, rather than in the Ni 

bulk phase; therefore, the addition of promotor B inhibited the formation of bulk carbide and 

http://www.sciencedirect.com/science/article/pii/S0926860X00008425
javascript:popupOBO('CHEBI:35223','b814955k')
http://www.sciencedirect.com/science/article/pii/S0021951706002004
http://www.sciencedirect.com/science/article/pii/S0021951706002004
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slowed the formation of graphene islands. This results in reducing coking of Ni-based catalyst. 

Fortunately, deposited carbon can be easily removed via steam reforming. 

The deactivation problems are compounded by the fact that the presence of sulfur in steam 

reforming of liquid hydrocarbon significantly increases the carbon content on Ni/Rh-based 

catalysts supported by CeO2-Al2O3 (Chen et al., 2010; Xie et al., 2011). The XANES analysis 

revealed that graphic carbon was dominant and Rh catalyst was less subject to the effects of 

sulfur as compared to Ni-based catalyst (Xie et al., 2011). Thus, the synergic effect of several 

substances is responsible for the eventual deactivation of the catalyst. For example, in a 

deactivation study of Ni-based catalyst during reforming of syngas, it was found that 

mechanisms consisted of physical deposition of fine particles, aerosol and carbon deposit and 

poisoning by sulfur (Albertazzi et al., 2011). Wambach et al. (2012) have recently reported that 

deactivation of Ru/C catalyst during gasification of aqueous organic feed is due to the complete 

disappearance of the spectral features in the valance band region. Coverage of the ruthenium 

clusters e.g., with a thin ‘carbonaceous' layer, or structural modifications of the ruthenium 

clusters may be the reason for deactivation of Ru/C catalyst. 

For H2S, direct adsorption of sulfur on the surface of Ni crystallites is responsible for the 

initial deactivation which in turn affects carbon gasification resulting in additional carbon 

deposit (Lakhapatri and Abraham, 2011). H2S can directly react with Ni forming NiSO4 (Li et 

al., 2010) and NiS (Hepola and Simell, 1997c; Koningen and Sjöström, 1998; Srinakruang et 

al., 2006a; Chen et al., 2010). There is a clear correlation between the H2S concentration in gas 

(Alstrup et al., 1981), catalytic activity (Roberts et al., 1993) and the amount sulfur deposit on 

catalyst surface. Typically, the sulfur poison is reversible as (Srinakruang et al., 2006b): 

NiS + H2  Ni + H2S            (1.17) 

NiO + H2 Ni + H2O            (1.18) 

In fact, after changing feed gas containing H2S to H2S-free feed, catalytic activity could be 

restored (Koningen and Sjöström, 1998; Ashrafi et al., 2008) due to self-regeneration Eq. (1.17). 

Also, the presence of FeSO4 may be the reason for the loss of activity based on XPS 

analysis of silica promoted ferric oxide based catalyst, compared to ferric oxides (Mashapa et 

al., 2007). For some catalysts, the formation of inorganic compound may be responsible for 

catalyst poisoning. For example, in the presence of NH3 and H2S, the formation of FeS on the 

catalyst (limonite) may cause catalyst deactivation, although it does not affect NH3 conversion 

(Tsubouchi et al., 2008). On the other hand, the formation of NiO-MgO solid solution on the 

http://www.sciencedirect.com/science/article/pii/S0926337397000313
http://www.sciencedirect.com/science/article/pii/S0926337397000313
http://pubs.acs.org/action/doSearch?action=search&author=Koningen%2C+Jeroen&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Sj%C3%B6str%C3%B6m%2C+Krister&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Koningen%2C+Jeroen&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Sj%C3%B6str%C3%B6m%2C+Krister&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Ashrafi%2C+Mojdeh&qsSearchArea=author
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olivine surface during calcinations and Ni-Fe during the reduction may increase carbon 

deposition resistance (Świerczyński et al., 2006).  

The other route for catalyst deactivation is that toxic metals (e.g., Pb, Hg, Cd, etc.) may 

interact with catalysts by forming metal alloys. For HCl, the deactivation of Pt/-Al2O3 for 

steam reforming of trichloroethylene is due to chlorine poisoning, catalytic coke formation as 

well as support degradation (McMinn et al., 2001). For Ni/Mg/K/AD90 (90% -Al2O3) catalyst, 

the loss of activity is due to the formation of a NiAl2O4 species that is not fully reduced under 

regeneration conditions, which in turn results in a decreased number of potential metallic nickel 

(NiO) sites needed for hydrocarbon steam reforming (Yung and Kuhn, 2010). 

By performing kinetic studies of steam reforming of syngas using alkali-promoted 

Ni/Al2O3 catalyst, Bain et al. (2005) were able to model initial catalyst deactivation. The 

activated energy varies with the tar model compound, ranging from 16 kJ mol-1 for total tars to 

74 kJ mol-1 for benzene and to 121 kJ mol-1 for tars and benzene. The formation of NiAl2O4 

species during tar and methane reforming at 900 oC that is not fully reduced is responsible for 

the decreased number of potential metallic Ni sites resulting in deactivation of Ni-Mg-K/AD90 

(Yung and Kuhn, 2010).  

Waldner et al. (2007) evaluated catalyst stability and tolerance towards dissolved 

inorganics (Na2SO4) and found Ru/C to be more stable than Ni/C catalyst. However, Ru/C is 

deactivated over time due to irreversible sulfate bonding to Ru(III) which is formed in the redox 

cycle of biomass gasification. In wet feedstock gasification, inorganics also play an important 

role in catalyst deactivation, e.g., Ru catalyst pellets coated with magnesium phosphorus (with 

associated silicon) with some separate calcium-containing crystallites making Ru associated 

with sulfur (Elliott et al., 2004). 

The sensitivity of catalyst towards fouling-causing substances is a function of type of 

catalyst as well as operating conditions. For example, it has been demonstrated that dolomite is 

easily deactivated in gasifiers (Simell et al., 1996; Sutton et al., 2001; Wang et al., 2008), and a 

Ni-based catalyst is more sulfur-sensitive than a Pt or Rh catalyst (Einvall et al., 2007; Xie et 

al., 2011). The addition of promoters (e.g., Li, K, Ca and Mg) could reduce carbon fouling and 

enhance the resistance of sulfur poisoning of Ni/alumina catalyst (Chen and Shiue, 1988; 

Draelants et al., 2001).  For example, in a filter-Ni/CaO system to remove naphthalene in the 

presence of 100 ppm H2S, the conversion of naphthalene at 2.5 cm s-1 could remain 98% over 

a period of 180 h (Engelen et al., 2003).  

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DSwierczynski,%2520D.%26authorID%3D34573107000%26md5%3Dadc97f8dadc6828109f281494656365a&_acct=C000051951&_version=1&_userid=7761109&md5=bc874042c829fad021c0744808211350
http://www.sciencedirect.com/science/article/pii/S0926337300002745
http://www.sciencedirect.com/science/article/pii/S0896844607001441
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The inexpensive limonite catalyst is less susceptible to 100 ppm H2S poison at 750 oC 

(Tsubouchi et al., 2008), as compared to conventional and expensive Ni- and Ru-based catalyst 

at 50-500 ppm H2S (800-950 oC) (Simell et al., 1997). Tsubouchi et al. (2008) found that FeS 

may be responsible for enhancing NH3 conversion as: 

FeS + 2NH3 N2 + 2H2 + H2S         (1.19)  

Both the type of metal and supports affect the sulfur tolerance and carbon resistance. The 

performance of CeO2-supported Rh and Pt catalysts (compared to Tu and Pd on Al2O3, SiO2 

and MgO) was due to the promotion effect of CeO2 on carbon gasification (Xie et al., 2012). 

The addition of CaO to the Ni-based catalyst on the filter discs resisted sulfur toxicity (Zhang 

et al., 2003), and yielded higher H2 concentration level (57 vol%) with the lowest tar and H2S 

concentrations for reforming wood at 750 oC (Kawamoto et al., 2005). 

1.4 Research objectives and thesis structure 

1.4.1 Research objectives 

As described above, biomass gasification is one of the most efficient route of biomass to 

energy conversion as well as hydrogen production. Unfortunately, the producer gas from this 

process usually contains unacceptable levels of tar. In terms of tar removal, it remains a major 

challenge since most producer gas applications require removal of at least part of the dust and 

tar before the gas can be used. Therefore, the main objectives of this study are three folds. Firstly, 

to synthesize suitable and efficient catalyst for tar conversion; olivine is used as a substrate for 

various catalyst formulations designed to steam reforming of tar to gas with nickel as active 

component and Ce and Mg as promoters. Benzene and toluene are selected as model tar 

compounds. Catalytic steam reforming of these compounds is performed in a bench scale fixed 

bed reactor. The effect of catalyst composition on tar conversion and yield of various product 

gases and coking tendencies are determined. Secondly, to investigate catalytic destruction of tar 

formed during gasification of biomass for improving the quality of the producer gas, a hot gas 

cleaning system consisting of a guard bed and catalytic reactor is designed to treat the producer 

gas from an air-blown, fluidized bed gasifier. The guard bed used dolomite to crack the heavy 

tars. The catalytic reactor was used to evaluate nickel based commercial steam reforming 

catalysts. Since air-blown gasification of biomass in fluidized bed reactors produces relatively 

low concentrations of hydrogen, the third goal is to increase hydrogen content in the producer 

gas from biomass gasification by steam reforming of tar and light hydrocarbons and reacting 
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steam with carbon monoxide via the water–gas shift reactions. The parameters evaluated 

included the temperature, space velocity, and steam/gas ratio to determine the effect of these 

variables on hydrogen production. The seed corn and switchgrass, a warm-season, perennial 

grass was used as gasification feedstock. 

1.4.2 Thesis structure 

The thesis is organized as below. Overview in Chapter 1.1 briefly covers gasification 

process in yielding biomass-derived energy. Chapter 1.2 reviews gasification process and 

derived products in rather details, including biomass feedstock, type of gasifiers, purification 

of undesirable compounds [particulate matter, inorganics (H2S, NH3, HCl) and organics 

hydrocarbons], tar formation and cleaning treatment of the producer gas as well as enhanced 

H2 production via catalytic tar conversion and waster-gas shift reactions. Since catalyst plays 

an important role in gasification of biomass, the role of catalyst, particularly in hot gas cleaning 

of tar by catalytic steam reforming, is of importance and is thus also covered in Chapter 1.3. In 

particular, newly developed catalysts and catalyst characterization are reviewed. The end of 

Chapter 1.4 outlines research objectives and dissertation structure.   

Figure 1-3 shows the methods, keys and goals of each chapter to better illustrate the 

content of the remaining three chapters (Chapter 2 to 5) which is divided into three main 

sections. Section (1) covers catalytic removal of tar with Ni/olivine along with different 

promotors (Ce and Mg) in Chapter 2 and 3. Section (2) describes catalytic removal of tar in 

two-bed systems (guard bed and catalytic reaction) in enhancing H2 production in Chapter 4. 

Section (3) covers enhanced H2 production in four fixed bed system including two water-gas 

shift reactors in Chapter 5. In short, the synthesized Ni/olivine catalyst is found to be useful for 

reforming the model compound toluene and benzene (Chapter 2 “Steam Reforming of Tar 

Compounds over Ni/olivine Catalysts Doped with CeO2”). The addition of promoter Ce and 

Ce-Mg in Ni/olivine catalyst for reforming toluene is present in Chapter 3, entitled, “The related 

Ni/olivine catalyst in “Catalytic Reforming of Toluene as Tar Model Compound: Effect of Ce 

and Ce–Mg Promoter using Ni/olivine Catalyst”. The enhanced H2 production with tar removal 

is in Chapter 4, entitled, “Catalytic Destruction of Tar in Biomass Derived Producer Gas”. Use 

of two different biomass feedstocks in enhancing H2 production after hot cleaning tar is 

illustrated in Chapter 3 entitled, “Generation of Hydrogen from Switchgrass and Seed Corn 

from an Air-blown Fluidized Gasifier”. 
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Each chapter in these three sections is independent and has its own entirety with 

introduction in the beginning, following by methods, results/discussion and summary. For 

compliance with requirement, references for each chapter are provided at the end of this thesis.  

The conclusions and future research direction are presented in the final chapter; improved 

gasification technologies, optimized operating conditions and innovative catalysts for 

enhancing H2 production, end of pipe treatment of tar generated and source control to reduce 

tar formation. A large-scale pilot study and thermal and biochemical hybrid system of syngas 

fermentation are recommended.  
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Table 1-1. Five classes of tar (taken from Rabou et al., 2009) 

Class  Name Species 

I GC undetectable very heavy (>7 rings) 

II heterocyclic  cyclic hydrocarbons with heteroatoms, (highly) water soluble 

(e.g., phenol, cresol, pyridine, thiophene) 

III  light aromatic 1 ring compounds with low condensation temperatures (e.g., 

toluene, styrene, xylene) 

IV light polyaromatic 2-3 rings condensing at intermediate temperatures at high 

concentrations (e.g., naphthalene, phenanthrene, anthracene) 

V heavy 

polyaromatic 

4-6 rings condensing at high temperatures at low 

concentrations (e.g., fluoranthene, pyrene) 
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Table 1-2. Newly developed catalysts enhancing performance and resistance to deactivation 

Types of catalysts` Catalysts Function Improvement References 

Noble metal based  Rh–LaCoO3/Al2O3; 

Rh/CeO2/SiO2; 

Rh/Mg-Ce-Zr-O- 

based mixed oxides; 

Rh, Ni, Co, and their 

alloys; 

Rh/40Mg-20Ce-

20Zr-20La-O 

Reforming tar to syngas; 

Reforming of phenol 

Unchanged catalytic properties upon 200 

ppm H2S, compared to LaCoO3/Al2O3; 

High tar (biomass) removal to H2 and CO; 

No effect with 280 ppm H2S; Better than Ni 

catalyst in terms of tar reduction and coke 

formation; Reduce carbonaceous deposit; 

Synergy effects on metal-oxide and metal–

metal 

Ammendola et al., 2012; Li 

et al., 2015; Tomishige et al., 

2005, 2007;  

Polychronopoulou et al., 

2012 

 Pt/Al2O3 Reforming of 

naphthalene/benzene 

Steam reforming of naphthalene/benzene to 

produce H2 

Furusawa et al., 2013 

Nickel based  Ni/olivine; Ni/olivine 

modified with Ca 

aluminate cement; 

Ni- cerium/olivine 

Steam reforming of 

methylnaphthalene; 

enhancing gasification  

Reforming of model tar and emphasized 

secondary reaction of water-gas shift; 

Tar removal efficiency of 98% with 

maximum hydrogen content of 34 vol%; 

Better activity and resistance to coking 

Michel et al., 2013; Mun et 

al., 2014; Yang et al., 2010b; 

Cheah et al., 2013; Zhao et 

al., 2015 

NiO/MgO; 

NiO-MgO/ 

γ-Al2O3/cordierite 

monolithic 

 

Reforming of benzene and 

naphthalene; 

CO2 Reforming 

Higher performance than Ni/Al2O3 and 

Ni/CeO2/Al2O3 and provided lower yields 

of coke and tar, and higher yields of 

gaseous products; 35-95% ammonia 

removals, no deactivation of the catalyst at 

50-150 ppm H2S; No channel blocking 

Furusawa et al., 2009; Kong 

et al., 2012; Wang et al., 

2000, 2011a 

http://www.sciencedirect.com/science/article/pii/S1566736708004639
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Types of catalysts` Catalysts Function Improvement References 

Ni/MgO; Ni/MgO-

Al2O3; Ni/MgO 

(Ni/(Ni + Mg) = 15) ;  

Ni/MgO-CaO doped 

with WO3 

 

Reforming of toluene and 

naphthalene with H2S 

resistance; Particular 

removal; Reforming of tar; 

Reforming syngas 

Excellent catalytic activity, stability and 

sulphur tolerance; Increase gas yield by 

20% and converting 58% of the product tar; 

No carbon deposit for 100 h; Exhibited 

excellent activity, stability and resistance to 

carbon deposition; Higher naphthalene 

activity, resistant to coking and H2S 

Kong et al., 2012; Yue et al., 

2010; Rapagnà et al., 2009; 

Wang et al., 2006; Yang et 

al., 2010a; Sato and 

Fujomoto, 2007 

Ni/zeolite; 

Ni/ Al2O3-ZrO2; 

Ni/Al2O3 with dopant 

MnOx; nano-Ni–La–

Fe/γ-Al2O3; 

NiO- MoO3-Al2O3 

NiO/Al2O3 

 

Reforming of tar; Reforming 

of toluene; Enhancing H2 

yield; Removal of gaseous 

impurities 

Better than Ni/Al2O3 or SiO2; Naphthalene 

conversion 98% after 170 h, 99% benzene 

and 100% naphthalene conversion at 850 

°C; Increased catalytic activity, suppression 

of coke deposition and the catalyst stability; 

Tar removal efficiency reached 99%; 

Simultaneous removal of organic sulfur, tar 

component, NH3 

Buchireddy et al., 2010; Ma 

and Baron, 2008; Koike et 

al., 2013; Li et al., 2009a; 

Dou et al., 2002; Ozaki et al., 

2012 

Ni/CaO; 

Ni/(12CaO.7Al2O3); 

Ni/domolite with 

Fe2O3 powder; 

Ni/domolite WO3 

doped; 

NiFe CaO-doped 

/FeO Al2O3 

Reforming of wood tar and 

model tar 

Reduce tar and enhance H2 content (58 

vol%); Excellent resistance to toluene 

coking with higher H2 yield, higher CO 

selectivity; 98% tar (toluene) conversion 

with increased H2 yield; Naphthalene 

conversion 98%; Superior resistance to 

coking as well as sulfur poisoning 

 

Kawamoto et al., 2009; 

Taufiq-Yap et al., 2012; Di 

Carlo et al., 2015; Li et al., 

2009b; Wang et al., 2005, 

2012; Engelen et al., 2003 

Sato and Fujimoto, 2007; 

Sato et al., 2007; Ashok and 

Kawi, 2015 

http://pubs.acs.org/action/doSearch?action=search&author=Rapagna%CC%80%2C+Sergio&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Buchireddy%2C+Prashanth+Reddy&qsSearchArea=author
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Types of catalysts` Catalysts Function Improvement References 

Other transition 

metal 

 

Co(20%)/γ-Al2O3 

catalyst promoted 

with rare earths; 

(Co/Mo) commercial 

catalyst 

CH4/CO2 reforming; Water-

gas shift reaction 

Good activity and stability with low carbon 

formation for 320 h; Efficient tar removal 

and CO conversion close to 85%  

Zeng et al., 2012; Chianese 

et al., 2016 

 Fe/silicate Reforming benzene Benzene conversion and enhance syngas Sarvaramini, and Larachi, 

2012 

 Fe2O3 dopant of 

CeO2 

Tar decomposition by both 

steam reforming and water 

gas shift reaction 

Ceria promoted iron catalysts active for 

both hydrogen production and tar 

decomposition in steam gasification 

Duman et al., 2014 

 Fe/CaO Enhanced gasification and 

conversion of tar 

Enhanced biomass gasification, converted 

tar and enhanced hydrogen production. 

Huang et al., 2012 

 Fe (10%)/olivine 

 

Tar conversion; Enhance 

hydrogen production 

High conversion of tar  

 

Rapagnà et al., 2002, 2011; 

Virginie et al., 2012 

 LaNi0.3Fe0.7O3; 

FeTiO3; 

LaNi0.3Fe0.7O3 and 

LaNixCr1-xO3  

 

Tar conversion; Enhance 

hydrogen or syngas 

production; Tar Conversion  

Increased gas yield by 40%, H2 yield by 

88%, reduced tar production per kg of dry 

ash free biomass by 46% compared to 

olivine alone; Convert about 90% of tar 

with no cake formation 

Barisano et al., 2012; 

Virginie et al., 2012; Min et 

al., 2013; Grieco et al., 2013 

 ZrO2; Y2O3–ZrO2; 

ZrO2/Al2O3 

Reforming tar and NH3 

cleanup 

Tar conversion and sulfur addition 

improved naphthalene and ammonia 

conversion; high toluene and ammonia 

Ronkkonen et al., 2009; 

Ferella et al., 2013; 

Juutilainen et al., 2006; 

Viinikainen et al., 2013 

http://pubs.acs.org/action/doSearch?action=search&author=Rapagna%CC%80%2C+Sergio&qsSearchArea=author
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Types of catalysts` Catalysts Function Improvement References 

conversions even below 600 °C; H2S had 

little effect on the activity 

Char based  Biomass char; char-

supported nickel-

iron; 

nano-nickel on char 

Tar conversion and 

adsorption of heavy metals 

and organic pollutants 

Tar conversion; Biomass can directly 

adsorb heavy metal ions   

 

Shen, 2015; Shen et al., 

2015a, 2015b 

 char supported 

nickel 

Reforming of toluene Higher removal efficiency of toluene, but 

decreased in the presence of naphthalene 

Qian and Kumar, 2017 
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Figure 1-1. Schematic diagram of products by biomass gasification 
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Figure 1-2. Schematic diagram for gasification process 
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Figure 1-3. The thesis structure  
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Chapter 2 Steam Reforming of Tar Compounds over Ni/olivine 

Catalysts Doped with CeO2 

2.1 Introduction 

Biomass as a source of renewable energy has several environmental advantages over fossil 

fuels. The main advantage is the lower net emission of greenhouse gases. Gasification of 

biomass produces a raw gas mixture composed of hydrogen (H2), carbon monoxide (CO), 

carbon dioxide (CO2), water (H2O), methane (CH4) and various light hydrocarbons. The 

producer gas also contains several undesirable constituents, including dust (ash and char), 

ammonia (NH3), alkali (mostly potassium), sulfur, chlorine and tar. Tar is a complex mixture of 

aromatics including a significant fraction of polycyclic aromatic hydrocarbons. The 

concentrations of gas impurities are 5–30 g Nm-3 for particulate matter (Bridgwater, 1995) and 

0.5–30 g Nm-3 for volatile alkali metals, depending on the type of gasifier and the characteristics 

of the feedstock. Tar content varies from 5 to 75 g Nm-3 for fluidized bed gasifiers (Kurkela and 

Sthalberg, 1992; Kinoshita et al., 1994; Narváez et al., 1997). This range is well above the 

maximum allowed for gas turbines and diesel engines (Milne et al., 1989; Bridgwater, 1995), 

so most power applications require substantial removal of tar before the gas can be used. Tar 

cracking and reforming increases the gas heating value and the overall efficiency of the biomass 

thermochemical conversion process. This approach is more desirable than water or oil 

scrubbing to remove tar, which poses environmental hazards not easily resolvable. 

Both manufactured catalysts and naturally occurring minerals known to promote tar 

cracking and reforming have been investigated for potential incorporation in the gasification 

process (Sutton et al., 2001). Although the former is undoubtedly needed to reach very stringent 

specifications on gas purity, there is abundant experimental evidence that inexpensive and 

widely available basic oxide minerals are effective in drastically reducing the tar content of 

producer gas (Gil et al., 1999). In fact, simple mineral oxides are often suggested for initial gas 

conditioning followed by a secondary catalytic reactor in which the gas composition is further 

refined (Delgado et al., 1996). 

It is well known that dolomite efficiently decomposes tar at the operating conditions 

usually employed in gasification processes (Ekstrom et al., 1985; Elliot and Baker, 1986). 

Dolomite has been utilized directly in fluidized bed gasifiers as well as in secondary reactors 

(Corella et al., 1996) in both demonstration units and industrial installations (Espenas et al., 
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1998). The main problem with dolomite is its friability, which causes it to disintegrate into fines, 

which pose problems for the stable operation of the fluidized bed gasifier and its ancillary units. 

For economic reasons, nickel catalyst is the most suitable choice among metals like cobalt 

(Co), iron (Fe), platinum (Pt), ruthenium (Ru) and rhodium (Rh). Several nickel (Ni) based 

catalysts have been investigated and found to be very effective in terms of tar removal (Arauzo 

et al., 1997; Corella et al., 1998; Devi et al., 2003). Ni based catalysts are also very effective 

for ammonia (NH3) removal (Wang et al., 1999, 2000); The main limitation in using Ni based 

catalysts is severe deactivation of the catalyst. This deactivation occurs mainly when the 

catalyst is placed immediately after the gasifier where high tar levels cause coking and trace 

contaminants poison the catalyst. Steam reforming catalysts are useful for polishing purposes 

when very clean gas is needed in such operations as Fischer–Tropsch reactions. 

Most commercially available Ni catalysts display moderate to rapid deactivation due to 

the buildup of surface carbon and “sintering” effects (Rostrup-Nielsen, 1984). This latter 

phenomenon occurs at high temperatures. When nickel is deposited on a support (usually 

alumina), the metallic particles tend to migrate and form larger aggregates, reducing the 

dispersion and consequently the catalyst activity. Sintering also encourages the formation of 

coke. 

Olivine is a mineral containing magnesium oxide, iron oxide and silica. Olivine is resistant 

to attrition compared to dolomite. Investigations by Rapagna et al. (2000) showed that olivine’s 

activity in steam reforming of tar was superior to that of calcined dolomite. The authors also 

performed experiments with olivine as bed material with lanthanum–nickel–iron (La–Ni–Fe) 

tri-metallic perovskite catalyst in a secondary reactor. The combined action of these materials 

was very promising; a gas with around 0.3 g m-3 of tar was obtained (Rapagna et al., 1998). 

Rose’n et al. (1997) reported success in using olivine as bed material for pressurized 

gasification (0.4–1.0 MPa) of birch. However, Abu El-Rub et al. (2002), using naphthalene as 

a model tar compound, observed no significant catalytic activity for olivine. Other researchers 

have proposed the use of olivine as a catalyst support (Courson et al., 2002; Devi et al., 2005). 

Olivine contains iron, which helps stabilize nickel in the support structure (Petit et al., 

1995; Provendier et al., 1999). The initial nickel–olivine interactions have to be strong enough 

to prevent nickel sintering and attrition of the active phase. Moreover, to be active for methane 

(CH4) reforming, nickel particles must be accessible. Nickel strongly linked to the olivine 

support has previously been suggested for use with fluidized bed gasifiers (Courson et al., 2002). 

The results of previous research have revealed that the characteristics of natural olivine 
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(hardness, density and basicity) would be of particular interest in respect of this application. 

Active phase support interactions affect the dispersion of transition metals and the catalytic 

activity of the catalysts prepared from them (Tohji et al., 1984; Zou and Gonzalez, 1992). Che 

and Bonneviot (1988) have developed a two-step preparation method capable of controlling the 

particle size of Ni/SiO2 catalyst. The nucleation step gave nickel oxide nuclei in strong 

interaction with the support; thereby the impregnation step effectively yielded a nickel reservoir 

(Yang et al., 1998). The effects of the active phase composition (Ni and/or NiO) are considered 

in relation to the catalytic properties in the dry reforming of methane (CH4 + CO2) (Courson et 

al., 2002). 

Cerium oxide (CeO2) has been used as a promoter in Ni based catalysts to enhance the 

resistance to coke formation since the Ni–CeO2 system has strong metal support interaction 

(Wu et al., 1987). The role of CeOx (x = 2 or 1.5) is to accelerate the reaction of steam with 

absorbed gaseous species on the nickel surface near the boundary area, so that carbon appearing 

on the surface can be quickly converted to gaseous products, preventing its accumulation. An 

attractive solution will be to associate nickel and olivine with cerium oxide as a promoter 

because olivine has an appropriate structure and mechanical strength. Moreover, olivine 

contains iron that can help stabilizing nickel in the structure (Petit et al., 1995; Provendier et al., 

1999). Cerium oxide can improve catalytic activity and resistance to coking. The integration of 

small amounts of nickel into natural olivine could control the reducibility of nickel oxide and 

prevent carbon deposition on the catalyst during either dry or steam reforming of methane 

(Courson et al., 2000). This paper is an investigation of NiO/olivine and NiO/olivine doped 

with CeO2. Benzene and toluene were used as model tar compounds to evaluate the catalytic 

quality and resistance to carbon deposition of the synthesized catalysts during steam reforming. 

2.2 Experimental procedures 

2.2.1 Micro-reaction system 

A schematic of the experimental apparatus, which employs a WFS-3010 micro-reaction 

system manufactured by Xian Quan Science and Technology Ltd, Tianjin, China, is shown in 

Fig. 2-1. H2 and N2 were metered into a stainless steel vessel that served in these experiments 

to heat the gas mixture to 600 °C. Mass flow meters adjusted the gas flow in the range of 10–

200 mL min-1. Liquid pumps were used to inject a model tar compound (benzene or toluene) 

and water into the gas flow, where they quickly evaporated at the elevated temperature, with 

metering accuracy better than 1.0%. Benzene and toluene injection rates were 1.7 and 1.8 mL 
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h-1, respectively. The steam to carbon (S/C) ratio was maintained at 5.0. The hot gas mixture 

was admitted into a catalytic reactor constructed of a quartz tube with internal diameter of 8 

mm and length of 280 mm. The catalytic reactor was mounted inside an electric furnace, which 

had a large homothermal area compared to the reactor dimensions. Temperatures were 

measured with two 1.0 mm OD thermocouples (type K), one placed at the center of the catalyst 

bed in the tubular reactor and the other placed against the outside surface of the tubular reactor 

wall. A pressure gage monitored the pressure drop across the catalyst bed during tests. Gases 

and vapors exiting the tubular reactor were passed through an ice water condenser where non-

converted fractions of the model tar compounds were substantially condensed. Traces of steam 

and benzene were absorbed in a gas cleaner prior to analysis of the gas stream. A rotameter 

monitored the flow rate of product gas during a test, while a wet test meter monitored the 

cumulative volume of gas exiting the reactor. 

The composition of the gas mixture at the reactor exit was determined by two on line 

Varian Model CP-3380 gas chromatographs (GC) with thermal conductivity detectors (TCD) 

with detection limits of 2 ppm and linear dynamic range of 104. One GC was equipped with a 

Molsieve 5A column and a thermal conductivity detector with argon as carrier gas to measure 

H2, O2, N2, CH4 and CO. The GC was equipped with a Porapak Q column and a thermal 

conductivity detector with helium as carrier gas to measure CO2 and ethylene (C2H4). This 

system performed a complete gas analysis every 7 min. The duration of each test was 1 h with 

average gas composition calculated from the approximately eight measurements made during 

a test. The cumulative volume was monitored by a wet test meter so that the total volume of 

producer gas and the average volumetric flow rate at standard temperature and pressure could 

be calculated. 

Conversion of model tar compounds to gaseous products (CO, CO2 and CH4) in the 

presence of the different catalysts was determined as a function of temperature (T), S/C, and 

space velocity (SV). Conversion efficiency, η, was calculated using the expression: 

 

c

CHCOCO

NM

FFFQ )(100 42 
        (2.1) 

 

where Q is the volumetric flow rate of gas (L h-1); FCO is the mole fraction of carbon 

monoxide in the gas products; FCO2 is the mole fraction of carbon dioxide in the gas products; 
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FCH4 is the mole fraction of methane in the gas products; NC is the molar feed rate of carbon to 

the reactor (mol h-1); and M is the molar density of the gas (22.4 L mol-1). 

2.2.2 Catalyst materials and preparation 

The catalysts were prepared in the laboratory by wet impregnation. Preparation method, 

chemical composition and surface areas for the catalysts are listed in Table 2-1. The nickel and 

cerium contents are expressed as weight percent in the synthesized catalysts. Olivine supports 

were from Xixia Heqiang Company, China. The as received natural olivine was crushed and 

sieved to particle sizes between 20 and 30 mesh. Ni(NO3)3•6H2O and Ce(NO3)3•6H2O were 

dissolved in de-ionized water. Nickel and cerium were loaded onto supports by wet 

impregnation with Ni(NO3)3 and Ce(NO3)3 solutions, respectively, followed by drying in a 

vacuum at 105 °C for 8 h. After drying, the samples were calcined in air at a low heating rate 

until a final calcination temperature of 800 °C was achieved and maintained for 2 h. Three 

catalysts were obtained: 3.0% NiO/olivine, 3.0% NiO/olivine doped with 1.0% CeO2 and 6.0% 

NiO/olivine, which are subsequently referred to as catalyst A, catalyst B and catalyst C, 

respectively. 

2.2.3 Catalytic testing 

The synthesized catalysts were sieved to particle sizes between 20 and 30 mesh in order 

to minimize internal mass transfer limitations (Kinoshita et al., 1994). Catalyst in the amount 

of 0.5 mL was loaded into the reactor for each test. A small plug of quartz wool at the bottom 

and top of the catalyst bed held the catalyst in place. A thermal couple placed at the center of 

the bed monitored reaction temperature. The gas preheater was heated to 600 °C, and the 

catalyst bed was heated to 700 °C while passing 100 mL min-1 N2 through it. Prior to starting a 

test, the catalyst was reduced at 700 °C by flowing a mixture of 50% H2 and 50% N2 through 

the reactor at a rate of 80 mL min-1 for 2.5 h. To commence a test, gas flow through the reactor 

was stopped and the catalyst bed was brought to the desired temperature. When the temperature 

stabilized, the model tar compound (either benzene or toluene) and steam were injected into the 

preheater where they were rapidly vaporized. The steam reforming of benzene and toluene were 

performed at the operating conditions specified for each test. Measurements included reactor 

pressure drop, volumetric flow rate and total gas volume exiting the reactor and gas composition 

(via the GC). During the steam reforming tests, space velocities (SV) were chosen high enough 

to minimize external mass transfer limitations while holding conversion efficiencies less than 
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80% (higher conversion efficiencies were not easily resolved in the present experimental 

system). 

2.2.4 Catalyst characterization 

Fresh and used catalysts were analyzed by powder X-ray diffraction (XRD), which was 

performed with a Japan D/Max-3B type diffractometer with a CuKα radiation source. Operating 

conditions were 2θ between 10° and 70°, current set to 30 mA and scan rate of 6° min-1. The 

diffraction patterns were identified by comparing them with those listed in the Joint Committee 

of Powder Diffraction Standards (JCPDS) data base (JCPDS, 1984). Specific area and pore 

structure of the fresh and used catalysts were measured by BJH mode, which was performed 

with a US NOVA1000e Surface and Pore Analyzer. Scanning electron microscopy (SEM) was 

performed with a Japan Electronic JSM-5610LV SEM with accelerating voltage 0.5–30 kV and 

electron flow 1 pA to 1 μA and equipped with an energy spectrum analyzer. 

 

2.3 Results and discussion 

2.3.1 Catalyst for steam reforming 

The baseline operating condition was initially selected to be the benzene injection rate of 

3.6 mL h-1 (3.18 g h-1), ICI steam reforming commercial catalyst volume 0.5 mL, S/C ratio 

equal to 5.0, SV equal to 1826 h-1 and reactor temperature equal to 750 °C. However, within 

115 min of starting tests under these conditions, the reactor became clogged by coke as 

indicated by a dramatic increase in pressure drop across the reactor. Thus, it was necessary to 

redefine the baseline test to be a benzene injection rate equal to 1.7 mL h-1 (1.5 g h-1), catalyst 

volume equal to 0.5 mL, SV 862 h-1 and S/C 5. The baseline test for toluene had similar 

operating conditions except that the toluene injection rate was 1.8 mL h-1. All subsequent 

catalysts tests were performed under these baseline conditions. 

2.3.2 Performance of NiO/olivine catalysts 

Tables 2-2 to 2-5 summarize the gas product compositions upon steam reforming of 

benzene and toluene for the three synthesized catalysts at 700 to 830 °C. Generally, the gas 

products are 60–64 vol% H2, 17–33 vol% CO, 4–18 vol% CO2 and less than 0.2 vol% CH4. All 

three impregnated catalysts of olivine catalyzed benzene steam reforming. The mechanism of 

steam reforming involves the absorption of the target molecules and water vapor on the catalyst 
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surface where they react until all carbon atoms are converted to CO or CO2. Methane is not a 

reaction intermediate or primary product and is formed from CO through the methanation 

reaction. However, methanation is clearly unimportant as methane was less than 0.2% of the 

product gases. 

Figure 2-2 plots H2 concentration vs. benzene or toluene conversion for steam reforming 

by the synthesized catalysts at 700 to 830 °C. As shown by the figures, catalyst A produced 

hydrogen to the same extent as catalyst C. Benzene or toluene conversions for catalyst C were 

slightly higher than the conversions for catalyst A at the four temperatures. This indicates that 

the catalytic activities of catalysts A and C were almost the same despite the 3.0%Ni difference 

in their catalyst compositions. Catalyst B produced more hydrogen than catalysts A and C. 

Benzene or toluene conversions for catalyst B were much higher than the conversions for 

catalysts A and C at 700 °C, 750 °C and 800 °C, respectively. However, at the highest 

temperature tested (830 °C), the differences in conversion were not obvious. Apparently, 

catalyst B, which was the CeO2 doped 3.0% NiO/olivine, had better catalytic performance than 

catalyst A, the 3.0% NiO/olivine and catalyst C, the 6.0% NiO/olivine. In other words, the 

doped CeO2 promoted the catalytic property of the NiO/olivine catalyst. 

2.3.3 Comparison of NiO/olivine catalysts with NiO/olivine doped with CeO2 catalyst 

Benzene conversion was compared for 3.0%NiO/olivine (catalyst A), 3.0%NiO/olivine 

doped with CeO2 (catalyst B) and 6.0%NiO/olivine (catalyst C). 

Benzene steam reforming tests were performed at 700 °C, 750 °C, 800 °C and 830 °C, 

respectively. Table 2-6 illustrates the effect of temperature on benzene conversion among the 

three catalysts. At 700 °C, the benzene conversions by catalysts A, B and C were 5%, 34% and 

13%, respectively. At 750 °C, the benzene conversions by catalysts A, B and C were 41%, 61% 

and 41%, respectively. At 800 °C, the benzene conversions by catalysts A, B and C were 52%, 

69% and 62%, respectively. At the higher temperature 830 °C, the benzene conversions by 

catalyst A, B and C were 70%, 70% and 71%, respectively. For all three catalysts, the benzene 

conversions increased with increased temperature. Benzene conversions by catalyst B were 

much higher than those by catalysts A and C at lower temperature. At the highest temperature 

(830 °C), the difference was less than 0.5%. This clearly indicated the reaction was controlled 

by chemical equilibrium. NiO/olivine doped with CeO2 had better catalytic activity than 

NiO/olivine for benzene steam reforming. Table 2-2 also illustrates that the catalysts produced 

CH4 less than 0.04% at temperature 700 °C and about 0.01% at the temperature 700 °C. At 

higher temperature, product CH4 was so small as to be undetectable. 
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Table 2-7 illustrates the effect of temperature on toluene conversion among the three 

catalysts. Although the trend for these results is similar to those obtained for benzene, toluene 

conversion was higher than benzene conversion at comparable reaction conditions. This result 

is not surprising as benzene has a more stable chemical structure than toluene. For all three 

catalysts, toluene conversions increased with temperature increase. Toluene conversions by 

catalyst B were much higher than those of catalysts A and C at lower temperatures. At the 

higher temperature of 830 °C, toluene conversions for catalyst A, B and C were 75%, 79% and 

78%, respectively. The difference became smaller with temperature increase and was within 

1.0% at the temperature of 830 °C. This clearly indicates the reaction was controlled by 

chemical equilibrium at temperature 830 °C. NiO/olivine doped with CeO2 had better catalytic 

activity than NiO/olivine for toluene steam reforming. Table 2-3 also illustrates that the 

catalysts produced CH4 of less than 0.3%, which was much higher than that from benzene steam 

reforming at the same reaction conditions. 

Table 2-8 shows the carbon content by elemental analysis of the three expended catalysts. 

The amount of carbon found on catalysts A and C, on the order of 15 wt%, was much higher 

than the amount of carbon found on catalyst B, which was only about 3 wt%. These values 

indicated that doped CeO2 could improve the resistance to carbon deposit on the Ni/olivine 

catalyst. 

Figures 2-3a to 2-3c illustrate the crystal phases of the fresh, pre-reduced and expended 

catalysts A, B and C, respectively. The fresh NiO/olivine catalysts were composed of NiO, NiO, 

Mg2SiO4 and (Mg, Fe)SiO3 according to the JCPDS file of the Mg2SiO4 (Efryushina et al., 1998; 

JCPDS, 1984). Besides the peaks of NiO/olivine catalyst, there was a very small CeO2 peak in 

the NiO/olivine doped CeO2 catalyst. In the reduced and expended samples, nickel appeared 

instead of NiO. Metallic nickel was an active component, while CeO2 was a promoter for the 

steam reforming catalyst. 

Figure 2-4 illustrates the SEM of the reduced catalysts and expended catalysts. The 

catalysts look similar before and after testing. This similarity suggests that the principal effect 

of the catalytic test is the reduction of nickel oxide particles to the metal along with an 

accompanying decrease in size. For the catalyst obtained via a two-step impregnation by nickel 

and cerium, the change consists of a less regular distribution of the metal upon the surface. 

Data in Table 2-9 show the surface elemental compositions of reduced and expended 

catalysts A and B. Surface carbon content was much higher on the used NiO/olivine catalyst 

than on the used doped CeO2 NiO/olivine catalyst. Surface oxygen content was much higher 

http://www.sciencedirect.com/science/article/pii/S0196890406001610#tbl7
http://www.sciencedirect.com/science/article/pii/S0196890406001610#fig3
http://www.sciencedirect.com/science/article/pii/S0196890406001610#fig4
http://www.sciencedirect.com/science/article/pii/S0196890406001610#tbl9
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on the used NiO/olivine catalyst than on the used doped CeO2 NiO/olivine catalyst. Doped 

CeO2 improved the properties and increased the crystal oxygen on the surface, which benefited 

the redox reaction during the steam reforming. 

Carbon deposition on catalysts has been widely studied (Figueiredo, 1982; Vogt et al., 

1987). The tendency of carbon to deposit depends upon the nature and fate of surface carbon 

species. The carbon species can either react with water or form products (hydrogen, carbon 

monoxide and carbon dioxide) or pass through a series of steps leading to carbon deposition. 

The carbon deposition process can be regarded as a competitive reaction with steam reforming. 

A general approach to preventing coke accumulation includes both reducing the deposition rate 

and increasing the rate of carbon gasification. Hydrocarbon steam reforming is an oxidative 

dehydrogenation process: the hydrocarbons are oxidized by steam to form carbon monoxide 

and carbon dioxide and simultaneously give up hydrogen. In the doped CeO2NiO/olivine 

catalyst, some of the cerium might be in the state of Ce(III) during the steam reforming process. 

The cerium oxide promoting effect is assumed to be via a redox mechanism.  

The lower valence state cerium might adsorb water and dissociate it, the resulting species 

–O or –OH transferring to nickel and reacting with surface carbon species to form CO, CO2 and 

H2. 

2.4 Summary  

Natural olivine showed good performance as a support for nickel catalysts. The hardness, 

density and basicity are compatible with the gasification environment. A proportion of nickel 

oxide is included in the olivine and maintains the level of reducible nickel oxide. 

Steam reforming of benzene and toluene were investigated for Ni/olivine and Ni/olivine 

doped with CeO2 catalysts. NiO/olivine doped with CeO2 catalyst was particularly effective 

compared to the other two NiO/olivine formulations (catalysts A and C) in terms of both 

catalytic activity and coking resistance. 

Cerium oxide is thought to promote the catalytic activity of nickel and resist the deposition 

of the carbon. CeOx (x = 1.5 or 2) produced during the catalyst reduction, which also existed in 

the steam reforming environment. The promotion effect of cerium oxide on the nickel catalyst 

for steam reforming of benzene is probably through a redox mechanism. The lower valence 

state cerium might adsorb water and dissociate it, the resulting species –O or –OH transferring 

to the nickel and reacting with surface carbon species to form carbon monoxide, carbon dioxide 

and hydrogen. 
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Table 2-1. The chemical composition, preparation and surface areas for the catalysts 

Catalyst Preparation technique Composition (wt%) Specific area 

(m2 g
-1

) 

Pore radius 

(Å) 

Olivine 

carrier 

Natural mine MgO 49.0, SiO2 42.0 Fe2O3 8.0, 

Al2O3 0.5, CaO 0.5 

4.6 21.2 

A One impregnation NiO 3.0 on olivine carrier 1.3 68.2 

B Two impregnations NiO 3.0 CeO2 1.0 on olivine 

carrier 

2.2 36.0 

C Two impregnations NiO 6.0 on olivine carrier 2.3 52.8 

A: 3.0% NiO/olivine 

B: 3.0% NiO/olivine doped with 1.0% CeO2  

C: 6.0% NiO/olivine 
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Table 2-2. Gaseous products from steam reforming of benzene and toluene for three catalyst 
formulations (A, B and C) at 700°C (catalyst volume of 0.5 mL; S/C ratio = 5.0; SV = 862 h-1) 

Catalyst Benzene steam reforming Toluene steam reforming 

H2 (%) CH4 (%) CO (%) CO2 (%) H2 (%) CH4 (%) CO (%) CO2 (%) 

A 62.3 ± 0.1 

 

0.02 ± 0.01 32.3 ± 0.3 5.3 ± 0.3 63.4 ± 0.4 0.1 ± 0.0 24.4 ± 1.7 12.1 ± 1.7 

B 64.0 ± 0.3 

 

0.02 ± 0.01 23.9 ± 0.9 12.1 ± 1.2 64.8 ± 0.6 0.1 ± 0.0 16.6 ± 0.9 18.5 ± 1.3 

C 63.6 ± 0.1 0.04 ± 0.01 31.7 ± 0.3 4.7 ± 0.3 63.9 ± 1.1 0.2 ± 0.0 23.6 ± 1.5 12.3 ± 0.3 

Note: Uncertainty in tabulated values is expressed as 95% confidence intervals. 
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Table 2-3. Gaseous products from steam reforming of benzene or toluene for three catalyst formulations 
(A, B and C) at 750 °C (catalyst volume of 0.5 mL; S/C ratio = 5.0; SV = 862 h-1) 

 

Catalyst Benzene steam reforming Toluene steam reforming 

H2 (%) CH4 (%) CO (%) CO2 (%) H2 (%) CH4 (%) CO (%) CO2 (%) 

A 62.3 ± 0.4 

 

0.01 ± 0.00 32.5 ± 1.1 6.3 ± 1.1 61.3 ± 0.2 0.2 ± 0.0 28.9 ± 0.1 10.2 ± 0.2 

B 63.6 ± 0.6 

 

0.01 ± 0.01 23.8 ± 0.3 12.6 ± 0.5 63.6 ± 0.4 0.1 ± 0.0 22.5 ± 0.7 14.6 ± 0.8 

C 61.9 ± 0.4 0.01 ± 0.01 31.6 ± 1.1 6.4 ± 1.1 61.1 ± 0.4 0.2 ± 0.0 29.2 ± 0.5 9.4 ± 0.1 

Note: Uncertainty in tabulated values is expressed as 95% confidence intervals. 
 

 

 

 

  



 
 

42 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2-4. Gaseous products from steam reforming of benzene and toluene for three catalyst 
formulations (A, B and C) at 800°C (catalyst volume of 0.5 mL; S/C ratio = 5.0; SV = 862 h-1) 

 

Catalyst Benzene steam reforming Toluene steam reforming 

H2 (%) CH4 (%) CO (%) CO2 (%) H2 (%) CH4 (%) CO (%) CO2 (%) 

A 61.6 ± 0.4 0 32.3 ± 0.2 4.8 ± 0.3 58.1 ± 1.7 0.2 ± 0.0 31.2 ± 1.2 10.5 ± 0.5 

B 62.5 ± 0.4 0 27.6 ± 0.5 9.0 ± 0.5 61.8 ± 0.4 0.2 ± 0.0 23.4 ± 0.4 15.6 ± 0.3 

C 61.7 ± 0.2 0 29.8 ± 0.2 7.3 ± 0.3 58.9 ± 0.3 0.2 ± 0.0 31.6 ± 0.2 9.3 ± 0.2 

Note: Uncertainty in tabulated values is expressed as 95% confidence intervals. 
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Table 2-5. Gaseous products from steam reforming of benzene and toluene for three catalyst 
formulations (A, B and C) at 830°C (catalyst volume of 0.5 mL; S/C ratio = 5.0; SV = 862 h-1) 

 

Catalyst Benzene steam reforming Toluene steam reforming 

H2 (%) CH4 (%) CO (%) CO2 (%) H2 (%) CH4 (%) CO (%) CO2 (%) 

A 62.0 ± 0.2 0 28.5 ± 0.8 9.9 ± 0.6 58.9 ± 0.8 0.1 ± 0.0 31.0 ± 1.1 10.0 ± 0.5 

B 63.4 ± 0.4 0 26.5 ± 0.7 11.0 ± 0.7 60.6 ± 0.2 0.3 ± 0.0 25.5 ± 0.4 13.9 ± 0.4 

C 62.8 ± 0.2 0 30.3 ± 0.8 7.9 ± 0.6 59.6 ± 1.5 0.2 ± 0.0 33.5 ± 1.0 10.7 ± 0.7 

Note: Uncertainty in tabulated values is expressed as 95% confidence intervals. 
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Table 2-6. Benzene conversion and H2 for steam reforming of benzene: comparison of synthetic 
catalysts A, B and C (CH4 levels < 0.02%) 

T (°C)  Benzene conversion (%)  H2 (vol%) 

 A B C  A    B C 

700  5 34 13  62.4±0.1 64.0±0.3 63.6±0.1 

750  41 61 41  61.3±0.4 63.6±0.6 61.9±0.4 

800  52 69 62  62.0±0.2 63.4±0.4 62.8±0.2 

830  70 70 71  61.6±0.4 62.5±0.4 61.7±0.4 

Note: Uncertainty in tabulated values is expressed as 95% confidence intervals. 
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Table 2-7. Toluene conversion and H2 concentrations for steam reforming of toluene: 
comparison of synthetic catalysts A, B and C 

T (°C)  Toluene 

conversion (%) 

 H2 (vol%)  CH4 (vol%) 

 A B C  A B      C     A  A B   C 

700  28.3 42.5 29.4  63.4 64.8 63.9  0.1 0.1 0.2 

750  45.9 64.8 49.7  61.3 63.6 61.1  0.2 0.1 0.2 

800  62.0 69.8 66.1  62.0 61.8 58.9  0.2 0.2 0.2 

830  75.2 78.8 77.9  61.6 60.6 59.6  0.1 0.3 0.2 

Note: Uncertainty in tabulated values is expressed as 95% confidence intervals. 
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Table 2-8. Carbon content of three expended catalysts 

 

Catalyst           A            B           C 

 Carbon  

Content 

 (wt%) 

On  

stream  

(h) 

 Carbon  

content  

(wt%) 

On 

stream  

(h) 

 Carbon  

content  

(wt%) 

On  

Stream 

(h) 

Sample 1a  13.8±3.1 10  2.4±0.7 10  15.2±3.3 10 

Sample 2b  14.6±2.8 8  3.2±0.8 10  18.0±3.4 8 

Note: Uncertainty in tabulated values is expressed as 95% confidence intervals. 

a Used for benzene steam reforming 

b Used for toluene steam reforming 

  

http://www.sciencedirect.com/science/article/pii/S0196890406001610#tblfn1
http://www.sciencedirect.com/science/article/pii/S0196890406001610#tblfn2
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Table 2-9. Surface composition of catalysts 

 

Catalyst Elemental composition (wt%) 

Mg Si Fe O Ni Ce C 

Reduced A 8.3±4.2 4.4±2.2 3.1±1.6 5.5±2.8 70.7±35.4 0 8.0±4.0 

Used A 5.9±3.0 5.5±2.8 1.2±0.6 6.8±3.4 11.1±5.6 0 69.5±24.8 

Reduced B 10.1±5.1 6.3±3.2 4.6±2.3 5.9±3.0 50±25.0 16.1±8.1 7.0±3.0 

Used B 8.9±4.5 11.9±6.0 1.9±1.0 14±7.0 32.4±16.2 4.7±2.4 26.2±13.1 

Note: Uncertainty in tabulated values is expressed as 95% confidence intervals. 
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Figure 2-1. The schematic diagram of the reaction system. 

 

  

http://www.sciencedirect.com/science/article/pii/S0196890406001610#gr1
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Figure 2-2. H2 concentration vs. benzene (B) or toluene (T) conversion for steam reforming of 

benzene using three catalyst formulations (A, B and C). Conditions were: catalyst volume of 

0.5 mL; S/C ratio = 5.0; SV = 862 h-1; reaction temperature (a) 700 °C; (b) 750 °C; (c) 800 °C; 

(d) 830 °C.  
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Figure 2-3. X-ray diffraction (XRD) of synthesized catalysts. (a) Catalyst A, (b) catalyst B and 

(c) catalyst C (peaks: ▴ – Ni, ● – NiO, ○ – CeO2, ▵ – Mg2SiO4, □ – (Mg, Fe)SiO3). 

  

http://www.sciencedirect.com/science/article/pii/S0196890406001610#gr3
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Figure 2-4. Scanning electron micrographs of catalysts: (a) Reduced 3.0% Ni/olivine, (b) used 

3.0% Ni/olivine, (c) reduced and (d) used 3.0% Ni/olivine doped with 1.0% Ce. 

 

  

http://www.sciencedirect.com/science/article/pii/S0196890406001610#gr4
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Chapter 3 Catalytic Reforming of Toluene as Tar Model Compound: 

Effect of Ce and Ce–Mg Promoter using Ni/olivine Catalyst 

3.1 Introduction 

Due to the depletion of fossil fuels, environmental problems associated with these 

resources, along with high energy demand worldwide, renewable energy resources are attaining 

increasing attention (Demirbas, 2001). Among renewable energy resources, biomass is 

considered as a potential substitute for fossil fuels. Further, the use of biomass is a carbon 

neutral process. Among all biomass conversion processes, gasification is one of the promising 

ones (Garcia et al., 1999). However, this process is always accompanied by the formation of tar 

(Sutton et al., 2001). The “tar-like” compounds are a complex mixture of condensable 

hydrocarbons, which includes single to multiple ring aromatic compounds along with other 

oxygen containing hydrocarbons and complex polycyclic aromatic hydrocarbons (Devi et al., 

2005a). The presence of tar is undesirable because of various problems associated with 

condensation, formation of tar aerosols and polymerization to form more complex structures, 

which cause catalyst deactivation and present problems in the process equipment including the 

engines and turbines used in application of the producer gas (Bui et al., 1994). 

The reduction of tar content is the major challenge for successful operation of gasification. 

There are many factors associated with its formation (Milne et al., 1998) and different processes 

for its removal (Aub Ei-Rub et al., 2004). Catalytic reforming is considered to be the most 

potential method of reducing tar (Anis and Zainal, 2011). 

The exploration of effective catalyst is vital for reducing tar in the biomass gasification 

process. Both synthesized catalysts and naturally occurring minerals known to promote tar 

cracking and reforming have been investigated in the gasification process (Sutton et al., 2001). 

Calcined dolomite is a porous catalyst, and its high surface area and the presence of oxides in 

its matrix (CaO, MgO) make it an active catalyst for tar reduction (Devi et al., 2005b). However, 

the main problem with dolomite is its softness, especially at high temperature (Gil et al., 1999). 

Olivine, a naturally occurring mineral [(Mg,Fe)2SiO4], has been demonstrated for its 

effectiveness in tar reduction (Devi et al., 2005a). Typically, Ni can be impregnated into olivine 

and the resultant Ni/olivine catalysts enhance steam adsorption, facilitate the gasification of 

surface carbon and hence prevent carbon deposition (Świerczyński et al., 2007). 

The use of promoters (e.g., Co, Ce, etc.) has been successfully employed for tar reduction, 

e.g., Ni–Co (or Fe)/dolomite (Chaiprasert and Vitidsant, 2009) and Ni–Ce/olivine (Zhang et al., 

http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0060
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0090
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0130
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0065
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0065
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0030
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0125
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0080
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0010
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0130
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0070
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0095
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0065
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0145
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0040
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0180
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2007). In particular, the promoter Mg (in Ni/Al2O3) has been demonstrated for its effectiveness 

for exhibiting excellent catalytic activity, stability and sulphur tolerance in catalytic reforming 

of toluene and naphthalene (Yue et al., 2010) and Ni–Mg/Al2O3 over Ni/Al2O3 catalyst for 

biomass gasification (Garcia et al., 2002). The Ni–Ce/Al2O3 has better resistance toward tar and 

coke formation as compared to Ni/Al2O3 due to strong interactions between Ni and 

CeO2 (Tomishige et al., 2007). Also, Ni–Ce/zeolite exhibited better rate of cellulose 

gasification and partially inhibited carbon deposition, as compared to those without Ce 

promoter (Inaba et al., 2006). Based on our previous study (Zhang et al., 2007) as well as others 

(e.g. Carlos et al., 2011), it appears that Ce promoter incorporated into Ni/olivine should be an 

effective catalyst. 

Further, the use of more promoters may exhibit better catalytic activity and prolong 

catalyst life duration, e.g., Ni–Ce–Fe/Al2O3over Ni–Ce/Al2O3 in reforming ethanol for 

hydrogen production (Huang et al., 2009) and Ni–Cr/Al203·MgO·La2O3 over Ni/Al2O3alone in 

steam reforming of naphthalene (Bangala et al., 1998). Unfortunately, a systematic evaluation 

of Ni/olivine with one and two promoters has not been performed before. Consequently, the 

present study was undertaken to synthesize different Ni/olivine catalysts to see their activity 

towards toluene as a model compound for tar reduction, since toluene is the major part of tar, 

e.g., 20% of tar (Coll et al., 2001). Initially, we tried different concentrations of Ni/Ce 

impregnating onto olivine (Ni–Ce/olivine) to select the optimum Ni/Ce content for toluene 

conversion. Thereafter, the selected Ni–Ce catalyst was then modified with the addition of MgO 

(Ni–Ce–Mg/olivine) to see its impact on overall catalyst activity. 

The effect of Ce and Mg promoter on the reaction activity and the resistant ability to carbon 

deposition were investigated by powder X-ray diffraction (XRD), Fourier Transform Infrared 

(FTIR) and thermogravimetric (TG) analysis. 

3.2 Methods 

3.2.1 Preparation of catalysts 

Natural olivine obtained from Xixia Heqiang Minerals, China was sieved through 20 and 

30 mesh (0.60–0.85 mm). The catalyst was prepared by impregnating different amounts of 

aqueous solution of Ni(NO3)2⋅6H2O and Ce(NO3)3⋅6H2O into sieved olivine, calcined at 800 

°C for 2 h, and then dried at 105 °C for 2 h. A total of 9 catalysts with different Ni/Ce ratios 

were synthesized and it was found that the composition of 3% Ni/1% Ce yielded the highest 

http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0180
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0175
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0085
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0150
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0105
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0180
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0035
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0100
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0020
http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0050
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toluene conversion (88%). Consequently, this catalyst was chosen with addition of promoter 

[Mg(NO3)2]. The preparation method, procedure and composition of catalysts are shown in 

Table 3-1.  

3.2.2 Catalytic tests 

Activity tests were carried out in an atmospheric fixed-bed micro-reaction apparatus WFS-

3010 (Fig. 3-1). The reaction temperature in the quartz tube reactor was controlled between 730 

and 790 °C by programmed heating apparatus and measured by a thermocouple. The catalysts 

(0.5 mL; 0.8 g) were placed into quartz tube and heated to 730 °C for 3 h in the mixed gas of 

50 vol% N2 and 50 vol% H2. The total flow rate of the mixed gas was 100 mL min-1. The toluene 

was fed by pump (SZB-1A) at 1.7 mL h-1 with a gas volumetric space velocity (SV) loading of 

782 h-1. The test lasted for about 440 min for catalyst durability test. 

One major factor, steam/carbon (S/C, from 3.5 to 6.5), was evaluated for toluene 

conversion and gas composition with different catalysts. All other conditions were maintained 

constant: catalyst loading 0.5 mL, toluene feed 1.7 mL h-1 and SV at 782 h-1. The toluene 

conversion efficiency (η), was determined as: 

c

CHCOCO

NM

FFFQ )(100 42 
          (3.1) 

Where Q is the volumetric off-gas rate (L h-1), FCO, FCO2, and FCH4 is the molar fraction of 

CO, CO2 and CH4, respectively, NC is the molar feed rate of carbon to the reactor (mol h-1); and 

M is the molar density of the gas (22.4 L mol-1). Similarly, energy gas yield (Y, mol gas mol-1 

toluene) was determined with the above equation where the numerator was replaced by useful 

gases (FCO + FH2 + FCH4) as: 

c

CHHCO

NM

FFFQ
Y

)(100 42 
          (3.2) 

The specific energy yield (mol mol-1 g-1) was then determined by dividing energy yield 

with the amount of catalysts. 

To further compare the capability of various catalysts, we have defined a new term, called 

specific toluene loading rate which is determined as total toluene molar loading rate divided by 

the amount of catalyst, or toluene mol h-1 kg-1 catalyst. 

3.2.3 Gas analysis 

Product gas was measured by a wet meter and analyzed simultaneously with two on-line 

gas chromatographs (GC). The first GC (CP-3380, Varian, USA) was equipped with a 5A 

http://www.sciencedirect.com/science/article/pii/S0045653513015476#s0095
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molecular sieve and a thermal conductivity detector (TCD) for the measurement of CH4, CO, 

H2, O2, and N2. The injector, oven and detector temperatures were kept at 50, 80 and 130 C, 

respectively. Argon (99.9999%) was used as the carrier gas at flow rate 30 L min-1. The second 

GC (CP-3800) equipped with a Propack Q column with another TCD was used for measuring 

CO2roduction. He gas was used as carrier gas at flow rate 30 mL min−1 and the oven 

temperature was kept at 80 °C for 13 min. Both Instruments were calibrated by calibration gas 

for quantification of all gas components. The reported gas composition was the average of at 

least 3 measurements over the duration of 2 h. 

3.2.4 Characterization of catalysts 

The crystal phases of catalysts were detected by XRD on a Rigaku D/Max-3B 

diffractometer (Tokyo, Japan) using Cu Kα radiation with voltage 35 V and current 30 A. The 

samples were detected in the range of 2θ between 10° and 90° with scanning velocity of 6 min-

1. The crystal profiles were identified by JCPDS database. 

FTIR analysis was performed using a Tensor 27 (Bruker Optics) spectrometer. The spectra 

were recorded within the region from 4000 to 400 cm-1. The FTIR sample was mixed with KBr 

and pressed into pellets, then placed into the plate which was cleaned with acetone twice. The 

amounts of coke formed on the spent catalysts were determined by TG analysis in air. The 

experiments were carried out in the temperature range from ambient temperature to 973 K at a 

heating rate of 10 K min-1 in an air flow of 60 mL min-1. 

3.3 Results and discussion 

3.3.1 Catalyst activity 

(1) Effects of Ni and Ce content 

The activity of the catalysts at T = 790 °C and SV = 782 h-1 at constant S/C ratio of 5 is 

related to the content of Ni in olivine as shown in Fig. 3-2a. The conversion efficiency initially 

increased slightly with the increase of Ni content (from 1% to 2%), reached the highest at Ni = 

3% and then decreased with further increases in Ni content. With the lower Ni content, the 

active sites may not be adequate while higher Ni contents may form agglomerated crystals 

(Bangala et al., 1998) – all these phenomena result in lower efficiency. Courson et al. (2000) 

also reported that 2.8% Ni/olivine yielded the best performance in terms of syngas yield and 

stability for reforming of CO2/CH4. 
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In general, the addition of a dopant can improve the dispersion of the active phase, increase 

the thermal stability of support, and resist sintering of the active phase in which Ce is most 

effective (Wenge et al., 2012). Therefore, the next step was to find the optimum Ce content in 

3% Ni/olivine for toluene reforming. Similar to Ni pattern, there exist an optimum Ce content 

(1%) for yielding the highest toluene conversion as shown in Fig. 3-2a. The toluene conversion 

has been remarkably increased, or from 59% to 88% in the presence of 1% Ce in 3% Ni–

Ce/olivine catalyst. There is a strong interaction between Ni and CeO2 by the formation of Ni–

CeO2 nanocomposite structure (Li et al., 2012). Therefore, the catalyst of 3% Ni/1% Ce was 

subsequently used for incorporating Mg to see its impact on overall performance. 

(2) Effects of promoter MgO 

The 3% Ni-1%Ce-1% Mg/olivine catalyst was used for determining the effects of S/C ratio 

on toluene reforming with the results shown in Fig. 3-2b. Clearly, the addition of Mg improved 

toluene conversion up to 93% at the lowest S/C ratio of 3.5. With increased S/C ratios, activity 

decreased for all three catalysts, as high steam exhibited a negative impact on Ni. It is believed 

that the addition of promoters may lead to better Ni dispersion and higher interaction with 

nickel-support resulting in increasing catalytic activity and reducing carbon formation (Zhang 

et al., 2007). In fact, highly dispersed and well-stabilized Ni particles have been found with 

NiO–MgO solid solutions (Choudhary et al., 1997). 

It must be noted that the toluene conversion is remarkably high considering the fact that 

pure toluene solution was used at concentration almost 50 wt%. For comparison, in other studies, 

gaseous toluene feed was only 0.7 vol% (Świerczyński et al., 2007), 2000 ppm (Li et al., 2009), 

and 2.0 vol% (Yue et al., 2010) as shown in Table 3-2. The specific toluene loading rate (mol 

toluene h-1 kg-1 catalyst) shown in Table 3-2 indicates a much high value in the present study 

as compared to other studies (e.g., 20 mol toluene h-1 kg-1 in the present study as compared to 

3–7 mol toluene h-1 kg-1 by others). 

(3) Gas composition 

The composition of the gases produced from catalytic steam reforming of toluene by these 

three catalysts as function of S/C ratio is shown in Table 3-3. In general, all three catalysts yield 

higher amount of H2 with content 57–66% (Eq. 3.3). The product gas flow rate depends on the 

type of catalysts and to some extent, S/C ratio. The introduction of Ce or Ce–Mg promoter 

enhances the overall gas production rate and yields higher H2concentration. For example, at 

S/C = 3.5, gas production conversion was 56%, 75% and 93% for Ni/olivine, Ni–Ce/olivine 
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and Ni–Ce–Mg/olivine catalyst, respectively. In general, CH4 content with Ni-Ce/olivine and 

Ni–Ce–Mg/olivine catalysts was slightly decreased. The profiles of CO for two modified 

N/olivine catalysts were completely different. For Ni–Ce catalysts, the CO content was 

significantly reduced (almost 50%), resulting in high levels of CO2 concentration. On the other 

hand, CO level was slightly increased for Ni–Ce–Mg catalyst. Also, the specific energy yield 

reached the highest value of 20 mol gas mol-1 toluene g-1 catalyst. In short, the addition of Mg 

promoter to Ni–Ce/olivine clearly enhances toluene conversion and energy yield, especially at 

lower S/C ratio. It is noted that despite higher toluene conversion for Ni–Ce/olivine, the 

selectively of this catalyst is poor (high CO2 formation) resulting in lower specific energy yield; 

clearly, the Ni–Ce/olivine catalyst favors the water shift reaction Eq. (3.4): 

Steam reforming   C7H8 +7H2O = 7CO + 11H2    (3.3) 

Water-gas shitng   CO +H2O = CO2 + H2      (3.4) 

(4) Durability and sensitivity of the catalysts 

Figure 3-3 shows the toluene conversion efficiency and corresponding pressure buildup 

over three catalysts at two S/C ratios. Clearly, the Ni–Ce–Mg/olivine has the highest toluene 

conversion and exhibits a steady performance up to 400 min at lower S/C ratio of 3.5 (Fig. 3-

3a), and the performance remains the same up to 300 min at higher S/C ratio of 5 (Fig. 3-3b). 

Thus the addition of Mg has a profound impact on the Ni–Ce catalysts. The reason for longer 

catalytic activity is due to less tar deposit as reflected by the observed pressure buildup (Fig. 3-

3c and 3-3d). For example, pressure started to build up at 150 min for both Ni/olivine and Ni–

Ce/olivine whereas it remained essentially the same for Ni–Ce–Mg/olivine catalyst until 400 

min (Fig. 3-3c). 

Since there will be a small amount of H2S produced during biomass gasification process, 

three different catalysts were further subject to H2S test with the results shown in Fig. 3-4. In 

general, the initial toluene conversion is similar in the presence of H2S for all catalysts as in the 

cases of without H2S (Fig. 3-3a and 3-3c). But the toluene conversion dropped significantly 

with prolonged time for those catalysts without Mg or Ce promotor (Fig. 3-4a and 3-4c). For 

example, at S/C = 5.0, toluene efficiency for Ne/olivine catalyst started to decrease at ca 75 min 

while other two catalysts could maintain the relatively constant efficiency until 150 min (Fig. 

3-4c). At lower S/C = 3.5, the Ni–Ce–Mg/olivine could maintain the same conversion 

efficiency (90%) up to 400 min. The corresponding pressure plots essentially confirm the 

sensitivity of these three catalysts (Fig. 3-4b and 3-4d). In order to see whether Ni–Ce–

http://www.sciencedirect.com/science/article/pii/S0045653513015476#f0010
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Mg/olivine catalyst can withstand a higher H2S mass loading, the H2S injection flow rate is 

doubled to 200 mL min-1. The results indicate that activity can be maintained up to 300 min 

(Fig. 3-5). Clearly, the addition of Mg helps improve the sulfur resistance of the catalyst. 

3.3.2 Characterization of carbon deposition on catalyst 

(1) Characterization of coke by FTIR and XRD 

The surface functional groups of the used catalyst were analyzed by FTIR spectrometer 

shown in Fig. 3-6. There are no peaks in the region of 1400–1600 and 690–860 cm-1 which 

indicates aromatic rings. It means that coke formation on the used catalysts probably is graphite 

or graphite precursor. Figure 3-7 shows the XRD patterns for the used catalysts. The peak at 2θ 

= 26.6° (PDF 75–1621) corresponds to graphitic carbon. The peak of 26.6° (0 0 2) almost 

disappears after Ce and Mg doped in Ni/olivine. It is suggested that CeO2 and MgO can inhibit 

the growth of graphite. In addition, the peak at 35.7° was assigned to SiC (PDF 22–1273, Du 

et al., 2011). As in the case of graphite peak, the SiC peak is significantly reduced for Ni–Ce–

Mg/olivine catalyst. The spent Ni–Ce–Mg/olivine catalyst shows no such graphite and SiC 

peaks indicating its resistance to carbon deposit. 

(2) Kinetic characteristics of coke by TG 

To further determine the type and amount of coke present in the used catalysts, TG analysis 

was performed. There is no significant mass reduction before 550 °C (Fig. 3-8), or no 

decomposition and phase transformation occurs before 550 °C in an air atmosphere. The 

reduction of three catalysts at 790 °C was 29%, 8% and 3% for Ni/olivine, Ni–Ce/olivine, and 

Ni–Ce–Mg/olivine, respectively. In other words, the carbon deposition on Ni/olivine is the most, 

and significantly reduced with Ce dopant and almost insignificant for Ni–Ce–Mg/olivine after 

7 h reaction. 

According to the results of previous studies (Belgued et al., 1991; Świerczyński et al., 

2007), there are three carbon combustion temperature ranges under air atmosphere and heating 

rate 10 K min-1. The carbide is more likely to be converted due to its high activity and can be 

burned at 250 °C. The amorphous carbon with its lower activity is burned at 400 °C.  

The carbon burning at 550–700 °C is graphite carbon or its precursor. As seen from Fig. 

3.9, the catalyst after the reaction loses weight from 570 °C, and reaches a maximum rate at 

666 °C which may indicate that the above catalyst carbon is present in the form of graphite or 

graphite precursor. 
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As discussed above, the TG diagrams have shown that coke can be decomposed through 

burning with air at high temperatures. In general, the activity of coked catalysts can be partly 

restored after the coke was treated with oxygen-containing mixtures to increase the catalyst 

lifetime. So, the investigation of coke burning kinetic parameters will contribute to the 

regeneration study of catalyst on the basis of TG results. 

According to the TG curves, the kinetics equation of coke burning reaction can be 

described as follows (Yang et al., 2013): 

TR

E

E

RA

T

x





ln)

ln
ln(

2
           (3.5) 

where x is the mass percentage of the unburned coke, A is the pre-exponential factor, E is 

the activation energy, R is the gas constant, T is the temperature, and β = dT/dt. 

According to the results of TG analysis, a straight line can be obtained corresponding to 

each catalyst as shown in Fig. 3-10. The slopes and intercepts of these lines were calculated by 

linear regression to obtain the coke burning E and A for different catalysts as shown in Table 

3-4. 

It is obvious that the E of Ni/olivine is higher than those of Ni–Ce/olivine and Ni–Ce–

Mg/olivine (lowest 126 kJ mol-1). It illustrates that the coke deposition on Ni/olivine without 

promoter is the most difficult to be removed. The addition of Ce relatively increases the 

regeneration ability of deactivated catalysts and then incorporating Mg further increases the 

regeneration capability. Yang et al. (2013) also reported that the E for 3.9% Ni/olivine was 180 

kJ mol-1, which is similar to the value determined in the present study. 

3.4 Summary  

The efficiency of the Ni–Ce/olivine catalyst in tar removal was high in steam reforming 

of toluene. The addition of Ce can reduce the coking formation on the catalyst and increase 

toluene conversion. 1% Ce impregnation into 3% Ni/olivine effectively increases the toluene 

conversion yield from 59% to 88%. Further addition of 1% Mg to 3% Ni–1%Ce/olivine also 

increases reaction activity (toluene conversion up to 93%), prevents coke deposition and is 

resistant to H2S poison. In short, Ce and Mg promoters enhance Ni/olivine catalysts in toluene 

conversion; Ni–Ce–Mg/olivine exhibits the highest toluene conversion and energy yield; Ni–

Ce–Mg/olivine is resistant to 10 ppm H2S poison; and Ni–Ce–Mg/olivine is resistant to 

deactivation. 

http://www.sciencedirect.com/science/article/pii/S0045653513015476#b0170
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FTIR and XRD analyses indicate that the deposition of graphite-like compound on the 

surface of the three catalysts. XRD shows that an addition of Ce or Mg can inhibit carbon from 

depositing on the catalyst surfaces. TG analyses show that Ce and Mg promoters decrease the 

coke deposition on Ni/olivine. The activation energy of coke burning of Ni/olivine decreases 

from 165 to 126 kJ mol-1 after adding Ce and Mg. 

The more complex compounds, e.g., naphthalene, will be selected as a model compound 

in the future study to see the effectiveness of developed Ni–Ce–Mg/olivine in reforming 

complex compounds. If successful, the use of catalysts can be extended to actual biomass 

gasification. 
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Table 3-1. Preparation method, composition, carrier of three catalysts 

Name Preparation method Composition (wt%) Carrier Impregnating order 

Ni/olivine 
Impregnation 

preparation 
3 Ni  Olivine Ni 

Ni/Ce/olivine Two-step preparation 3 Ni and 1 Ce  Olivine Ce-Ni 

Ni/Ce/Mg/olivine Three-step preparation 3 Ni, 1 Ce and 1 Mg  Olivine Mg-Ce-Ni 
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Table 3-2. Comparison of toluene conversion using Ni-based catalysts 

 

catalyst 

Condition* 

S/C 

 

mol toluene  

h
-1 

kg
-1 

 

toluene 

conversion 

(%) 

References 

 

 

Ni/olivine  2.3 4.5 98 Swierczynski et al., 2007, 2008 

Katalco 46-6Q 2.2 6.5 100 Yoon et al., 2010 

Ni-CeO2 

SBA-15 
 3 2.6 95 Tao et al., 2013 

Ni/MgO-Al2O3 0.28 5.4 100 Yue et al., 2010 

Ni/mayenite  2.1 4.6 100 Li et al., 2009 

Ni-Ce/olivine  5 20 70 Zhang et al., 2007 

Ni-Ce-Mg/olivine 3.5 20 93 this study 

Note: All at 800 ºC 
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Table 3-3. Gas production, toluene conversion and specific energy yield as the function of S/C ratio. 

 

Catalyst S/C H2 

(mol%) 

CH4 

(mol%) 

CO 

(mol%) 

CO2 

(mol%) 

Volume  

(L h
-1

) 

Conversion 

(%) 

SYa 

(g
-1 

cat) 

Ni/olivine 6.5 64.3 0.13 27.4 6.0 2.4 34 8.1 

5 60.4 0.12 23.4 9.2 4.3 59 13.1 

3.5 58.3 0.08 23.2 8.0 4.1 56 11.9 

Ni/Ce/olivine 6.5 66.2 0.04 12.2 21.9 5.4 80 15.6 

5 65.8 0.03 13.5 21.5 5.8 88 16.9 

3.5 64.6 0.13 18.1 15.7 5.1 75 15.6 

Ni/Ce/Mg/olivine 6.5 62.6 0.08 28.0 8.5 5.2 81 17.5 

5 62.6 0.08 26.5 10.2 5.5 89 19.4 

3.5 61.8 0.09 27.3 9.6 6.2 93 20.0 

a SY, the specific energy gas yield (mol gas mol-1 toluene g-1 catalyst). 

  

http://www.sciencedirect.com/science/article/pii/S0045653513015476#tblfn1
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Table 3-4. Kinetics parameters of coke burning of catalysts 

Catalyst Temp. range (K) E (kJ mol-1) A (s-1) Correlation coefficient 

Ni/olivine 850-970 165 9.1×105 0.9949 

Ni-Ce/olivine 850-970 152 4.0×104 0.9907 

Ni-Ce-Mg/olivine 850-970 126 5.7×102 0.9862 
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Figure 3-1. Schematic diagram of the reaction system. 

  



 
 

66 
 

 

 

 

 

 

 

 

 

 

 

Figure 3-2. Toluene conversion of the catalysts. (a) Ni/olivine with different nickel content and 

3% Ni–Ce/olivine with different cerium content at S/C = 5; (b) three catalysts at different S/C 

ratios. Reaction condition: 790 °C; SV, 782 h−1; time, 2 h. 

  



 
 

67 
 

 

 

 

 

 

 

 

 

 

Figure 3-3. Durability test in steam reforming of toluene. Reaction condition: 790 °C; SV, 782 

h-1; time, 7 h. (a) S/C 3.5, (b) S/C 5. (c) Pressure buildup corresponding to (a), (d) Pressure 

buildup corresponding to (b). 

 

  

http://www.sciencedirect.com/science/article/pii/S0045653513015476#gr2
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Figure 3-4. Effect of H2S in steam reforming of toluene. Reaction condition: 790 °C; SV, 782 

h-1; time, 7 h. H2S: 10 ppm, 50 mL min-1. (a) S/C 3.5, (b) S/C 5, (c) pressure buildup 

corresponding to (a), (d) pressure buildup corresponding to (b).  

http://www.sciencedirect.com/science/article/pii/S0045653513015476#gr3
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Figure 3-5. Effect of H2S in steam reforming of toluene at different inject rate with Ni–Ce–

Mg/olivine catalyst. Reaction condition: 790 °C; S/C, 3.5; SV, 782 h-1; time, 7 h; H2S, 10 

ppm.  
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Figure 3-6. FTIR profiles of the Ni-Ce-Mg/olivine catalyst after reaction. Reaction condition: 

790 ºC; S/C, 3.5; SV, 782 h-1. 
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Figure 3-7. X-ray diffraction (XRD) patterns of the spent catalysts. Reaction condition: 790 

°C; SV, 782 h-1; time, 2 h.  
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Figure 3-8. Thermogravimetric profiles of the catalysts after reaction. Reaction condition: 790 

°C; S/C = 3.5; SV, 782 h-1. TG condition: air atmosphere, 10 K min−1 
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Figure 3-9. Kinetic curves of coke burning for the catalysts after reaction 
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Chapter 4 Catalytic Destruction of Tar in Biomass  

Derived Producer Gas 

4.1 Introduction 

Gasification of biomass produces a dirty raw gas mixture composed of hydrogen (H2), 

carbon monoxide (CO), carbon dioxide (CO2), water (H2O), methane (CH4) and various light 

hydrocarbons along with undesirable dust (ash and char), tar, ammonia (NH3), alkali (mostly 

potassium) and some other trace contaminants. Most applications require removal of at least 

part of the dust and tar before the gas can be used. 

It is widely recognized that tar in the producer gas presents a significant impediment to the 

use of biomass gasification systems. Tar can deposit on surfaces in filters, heat exchangers and 

engines where they reduce component performance and increase maintenance requirements. 

These effects must be mitigated if biomass gasification is to become a viable option for energy 

producers. 

The purpose of this study is to investigate catalytic destruction of the tar formed during 

gasification of biomass. This work focuses on nickel based catalysts treated with alkali in an 

effort to promote steam gasification of the coke that deposits on the catalyst surface. Three 

metal catalysts were tested: ICI46-1, Z409 and RZ409. 

Methods to remove tars from producer gas can generally be classified into one of three 

categories: physical processes, thermal processes or catalytic processes. Physical processes, 

such as filters or wet scrubbers, remove the tar from the producer gas through gas/solid or 

gas/liquid interactions. While these methods are effective and relatively easy to maintain, they 

do not truly alleviate the problem, as the tar is not destroyed and environmentally responsible 

disposal of the resulting tar laden filter material is difficult. 

Thermal processes raise the temperature of the producer gas to levels that “crack” the 

heavy aromatic tar species into lighter and less problematic species, such as hydrogen, carbon 

monoxide and methane. For thermal cracking of tars, it is suggested that temperatures exceed 

1000 °C (Milne et al., 1998) in order to reduce tars effectively. High temperatures require the 

cracking system be constructed of expensive alloys. 

Catalytic processes can operate at much lower temperatures (600–800 °C) than thermal 

processes, alleviating the need for expensive alloys for reactor construction. Depending on the 

catalytic process, this temperature range may eliminate the need to heat and/or cool the producer 
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gas as it leaves the gasifier. Most physical processes usually require the producer gas 

temperature to be lowered to 150 °C or less. Gas cooling substantially reduces the 

thermodynamic efficiency of the gasification process, impairing the performance as well as the 

economics of the system. Also, unlike physical processes, catalytic cleaning destroys the tar, 

eliminating waste disposal problems. Potentially, catalytic cracking processes provide the 

simplest and most effective means of removing tars while retaining the sensible heat required 

for efficient use of the producer gas in close coupled applications. 

A number of catalytic processes have been previously investigated. Early on, it was 

discovered that in situ catalysis, in which the catalysts are placed directly in the gasification 

reactor, is not effective. Nickel based catalysts showed rapid deactivation when employed in 

fluidized bed gasifiers (Baker et al., 1985). In tests with non-metallic catalysts, the catalysts 

eroded and were elutriated from the bed (Corella, 1988, 1996). Tar destruction was verified for 

each type of catalyst, but the short lifetimes of these catalysts precluded the continued use of in 

situ catalysts. 

Adding steam and/or oxygen to the catalytic reactor can enhance catalytic tar conversion. 

The addition of oxygen at 600–700 °C accelerates the destruction of primary products and 

inhibits the formation of aromatics. However, once benzene rings, the primary component of 

aromatics, are formed, they cannot be easily destroyed by oxygen. The addition of steam has 

been reported to produce fewer refractory tars, enhance phenol formation, reduce the 

concentration of other oxygenates, convert few of the aromatics and produce tars that are easier 

to reform catalytically (Milne et al., 1998). The addition of steam also facilitates the water/gas 

shift reaction: 

CO + H2O  CO2 + H2                      (4.1) 

As greater amounts of steam are introduced into the system, the H2and CO2 concentrations 

increase, while the CO concentration decreases (Zhou et al., 1999). This reaction is extremely 

beneficial for methanol production applications, as methanol production occurs most efficiently 

when the H2/CO ratio is 2. The H2/CO ratio for unprocessed producer gas is usually less than 

1, and steam addition to a catalytic tar conversion system has demonstrated the ability to adjust 

the H2/CO ratio to levels as high as 13 (Gebhard et al., 1995). 

The use of a catalytic reactor downstream of the gasification reactor has proven to be an 

effective approach to catalytic tar destruction (Kurkela et al., 1993). A variety of catalysts have 

shown significant ability to destroy tar in gasifier streams. These catalysts include dolomite 

(Alden et all., 1988; Simell and Bredenburg, 1990), nickel and alumina based catalysts (Hepola, 
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1993; Wiant et al., 1994) and various proprietary catalysts (Gebhard et al., 1995; Bain and 

Overend, 1996; Paisley, 1997). System variables, such as biomass composition, residence time 

and reactor temperature, play important roles in the successful application of these catalysts. 

The use of a guard bed of inexpensive catalytic material upstream of a metallic catalyst 

bed has been demonstrated to improve the life of the metallic catalysts (Narvaez et al., 1997). 

The inexpensive mineral catalyst converts many of the heavy tars, while the metallic catalysts 

serve to “polish” the gas stream, reducing tar concentrations to very low levels. Lifetime tests 

have not been reported for catalysts protected by guard beds, but Milne et al. (1998) recommend 

this approach to catalytic tar destruction. 

Nickel based catalysts almost completely remove the tar, but they are gradually 

deactivated by the deposition of coke on the catalysts. Coke formation on nickel results from a 

balance between coke formation and gasification. In industrial operations, coke gasification is 

accelerated by the use of alkali or alkali containing supports. Magnesium and potassium based 

materials are mainly used (Rostrup-Nielsen, 1984; Ross, 1975; Twigg, 1994). A complex of 

potassium alumina silicate and calcium magnesia silicate is used in the ICI nickel based catalyst. 

The potassium is liberated slowly as non-volatile K2CO3, which is hydrolyzed to the hydroxide. 

Mobility on the surface ensures good coke-alkali contact and rapid gasification (Twigg, 1994). 

Recent research results (Brown et al., 2000; Snoeck and Froment, 2002) also verify that alkali, 

by itself or added to commercial catalysts, promotes carbon or coke gasification. 

 

4.2 Methods 

4.2.1 Gasifier 

Tests were conducted at the Biomass Energy Conversion Facility (BECON) in Nevada, 

IA, which is operated by the Iowa Energy Center. A pilot scale fluidized bed reactor was used 

to perform the experiments. The system was rated 800 kW thermal input, which corresponds to 

an average throughput of 180 kg h-1 of solid biomass fuel at a heating value of 16,000 kJ kg-1. 

The major components of the plant include the fluidized bed reactor, fluidization gas system, 

fuel delivery system, data acquisition system and gas sampling system. 

The current experiments employed discard seed corn as fuel. The proximate and ultimate 

analyses of the waste seed corn are given in Table 4-1. A variable speed auger metered the fuel 

into a rotary airlock where it fell into a constant speed injection auger. The high speed auger 

injected the fuel into the bottom of the fluidized bed. A small amount of air, introduced 

immediately below the airlock, prevented backflow of the fuel gas into the fuel hopper. 

http://www.sciencedirect.com/science/article/pii/S0196890403002358?np=y&npKey=f8ddac527494d1c9f08fc767d61d76d3f29bd794c08168cf5cc7cbce16ca3e62#TBL1
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The diameter of the steel fluidized reactor was 46 cm standing 2.44 m tall. The reactor 

wall was lined with castable ceramic to insulate the vessel. Fluidization air entered the reactor 

through an array of perforated pipes that evenly distributed the air to the bottom of the bed. The 

bed media were sand mixed with a small quantity of limestone, making up about 5% of the total 

bed weight, to prevent agglomeration of the bed material arising from alkali in the biomass feed. 

The particulate laden fuel gas exited the reactor through the freeboard and passed through a 

cyclone that removed much of the particulate matter larger than 10 μm in size. Details on the 

operation of the biomass gasifier can be found in Simell et al. (2000). 

The gasifier was fluidized with air at an equivalence ratio between 0.25 and 0.35, which 

maintained the reactor in the temperature range of 700–760 °C. The feed rate of seed corn 

during these trials was in the range of 160 -200 kg h-1. The overall experimental apparatus is 

illustrated in Fig. 4-1. 

4.2.2 Catalytic tar conversion system 

The catalytic tar conversion system is illustrated schematically in Fig. 4-2. A slipstream 

was drawn immediately downstream of the cyclone at a rate of 0.5–3.0 L min-1. The slipstream 

passed through a heated particulate filter before entering the tar conversion system. Both the 

slipstream line and the particulate filter were maintained at 450 °C to prevent condensation of 

the tars. 

The tar conversion system consisted of a guard bed reactor of dolomite stone in series with 

a tar-cracking reactor containing a metallic catalyst. The guard bed was designed to capture fine 

particulates as well as steam reform the heavy tars and absorb hydrogen sulfide. The metallic 

catalyst bed, which is susceptible to coking during destruction of the heavy tars and poisoning 

by hydrogen sulfide, was designed to convert the lighter tars into carbon monoxide and 

hydrogen. The two reactors, which were identical in construction, were operated as fixed beds. 

The more complex compounds, e.g., naphthalene, will be selected as a model compound 

in the future study to see the effectiveness of developed Ni–Ce–Mg/olivine in reforming 

complex compounds. If successful, the use of catalysts can be extended to actual biomass 

gasification. Fig. 4-2 illustrates the reactor setup. They have internal diameters of 22 mm and 

can be filled to various depths to give space velocities between 1500 and 6000 h-1. Each was 

installed in an electrically heated oven to maintain the desired temperature for each experiment. 

Each reactor had two thermocouples, as indicated in Fig. 4-2: one at the center of the fixed bed, 
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which was moveable for obtaining longitudinal temperature profiles and the other at the 

perimeter of the bed. 

The catalysts evaluated in our tests included three kinds of commercial steam reforming 

Ni based catalysts: ICI46-1 was produced by the Imperial Chemical Industry, while Z409 and 

RZ409 are products of Qilu Petrochemical Corp., P.R. China. The compositions of the catalysts 

are listed in Table 4-2. All three catalysts contained alkali additives, such as potassium, calcium 

and magnesium oxides, which promote the elimination of coke formed on the catalyst by 

reactions of the type: 

C +H2O  CO + H2                        (4.2) 

Although the potassium promoter might be expected to diffuse readily out of the catalyst, 

it is in the form of potassium aluminosilicate, which releases the potassium very slowly, 

resulting in long service life. 

Catalysts are usually activated before use by exposure to a reducing environment, typically 

a mixture of N2 and H2 at 750–850 °C for several hours. However, in our experiments, we tested 

ICI46-1 and Z409 without reduction. RZ409 is a reduced form of Z409 prepared by the 

manufacturer. The as-received catalysts were in the form of 15 mm rings. For use in our reactor, 

these rings were crushed and sifted to obtain 0.9–2.0 mm diameter particles. The pore size 

distributions of the crushed and sieved catalyst particles were obtained by mercury porosimetry. 

Typical characteristics for catalysts used in steam reforming are: specific surface area of 16–23 

m2 g-1, total pore volume of 0.14–0.18 cm3 g-1 and average pore diameter of 200–500 Å. 

The operating conditions for the catalysts are given in Table 4-3. In addition to the type of 

catalyst, operating variables include temperature of the guard bed (TGB), temperature of the 

catalytic bed (TCR), space velocity (SV) calculated on a dry gas basis and the ratio of steam to 

total organic carbon ratio (steam/TOC). TOC represents the amount of carbon in the organic 

compounds that are susceptible to steam reforming. 

4.2.3 Sampling and analysis of gas and tar 

Tar is a very difficult substance to sample and analyze with the result that many research 

groups have developed their own protocols, which makes it difficult to compare results. To 

avoid this difficulty, we employed the Provisional Protocol for the Sampling and Analysis of 

Tar and Particulates in the Gas from Large Scale Biomass Gasifiers (Version 1998) prepared 

by the Working Group of the Biomass Gasification Task of the IEA Bioenergy Agreement 
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(Smeenk and Brown, 1998). We only briefly outline this procedure; details can be found in the 

literature. 

Gas drawn from the slipstream is passed through a heated particulate filter followed by a 

series of six impinger bottles placed in cooling baths (Fig. 4-1). The first four bottles were 

immersed in an ice bath while the last two bottles were immersed in an acetone/dry ice bath. 

The first and sixth bottles were filled with glass beads, while the second, third and fourth bottles 

were filled with dichloromethane (DCM). The fifth bottle was filled with both glass beads and 

DCM. Gas leaving the impinger train is passed through a vacuum pump before exiting through 

a wet test meter to determine accurately the total (dry) gas volume sampled. 

Gas samples were taken before the guard bed and after the catalytic reactor to provide 

information about overall system performance. Gas sampling was done every half hour after 

steady operation of the gasifier and catalytic reactors. Gas samples were analyzed off line by 

gas chromatography using a Varian Micro-GC CP-2003 Quad equipped with Molsieve 5A BF, 

Poroplot Q and CP-Sils CB columns and a thermal conductivity detector with argon as carrier 

gas for the first column and helium as carrier gas for the second and third columns. The first 

column gave H2, O2, N2, CH4 and CO concentrations, while the second and third columns 

yielded CO2, C2H4 and some light hydrocarbons. 

At the completion of a test, DCM was rinsed through gas lines connected to the impingers 

to remove any tar condensed in them. This rinse liquid and impinger liquid were combined and 

refrigerated until the tar analysis was performed. 

Two types of analysis were performed on these tar samples: evaporation at 105 °C and 

distillation at 75 °C. In either case, analysis began by filtering out solids from the sample 

mixture and decanting the water from it. Evaporative analysis was the simpler of the two 

analyses performed and yielded tar values in good agreement with traditional methods of 

measuring “heavy tar” (Milne et al., 1998). This analysis consists of pouring 50 mL of DCM/tar 

mixture in a ceramic dish, letting it stand in a fume hood overnight, moving it to a heating 

chamber at 105 °C for 1 h and recording the weight of the remaining residue. From knowledge 

of the total gas flow through the sampling system, the tar concentration in the producer gas can 

be obtained, which we shall refer to as “heavy tar.” 

The second method of analysis is based on distilling 50 mL of the DCM/tar mixture in a 

water bath maintained at 75 °C for 30 min. This distillation produces two fractions of 

hydrocarbons: light hydrocarbons (still dissolved in the distilled DCM and the distillation 

residue. In addition, the decanted water contains a third fraction of dissolved hydrocarbons 
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referred to as water soluble hydrocarbons. These three fractions were sent out for TOC analysis, 

which is useful in estimating the amount of steam required to convert the hydrocarbons in the 

tar to carbon monoxide and hydrogen. 

4.3 Results and discussion 

4.3.1 Properties of raw producer gas 

When operating in the equivalence ratio range of 0.25–0.35 and at gasification temperature 

of 700–760 °C, the average composition of the producer gas was (dry, volumetric basis): 51.2% 

nitrogen, 15.7% carbon monoxide, 14.2% carbon dioxide, 6.5% hydrogen, 4.8% methane and 

4% higher hydrocarbons. The concentration of tar determined from evaporation at 105 °C was 

10.4 g Nm-3. 

From the TOC analysis of the three tar sampling fractions, the carbon concentrations 

associated with hydrocarbons recovered in the tar impinger train are: 27.8 g Nm-3 from the 

distillation residue, 13.6 g Nm-3 from the light hydrocarbons and 5.7 g Nm-1 from the water-

soluble hydrocarbons. Thus, the TOC concentration arising from hydrocarbons recovered from 

the impinger train was 47.1 g Nm-1. The carbon concentration arising from CH4 and C2H4 in 

the producer gas (that is, hydrocarbons not recovered in the impinger train) was 58.9 g Nm-1. 

Taken together, the steam/TOC ratio in the producer gas is estimated to be 2.8. 

4.3.2 Tar destruction 

For all catalysts and operating conditions tested, no visible tar was observed in the lines 

after the catalytic reactor or in the impingers. The DCM mixtures recovered after these tests 

were clear with no hint of color. Analysis by evaporation at 105 °C found no detectable tar at 

the exit of the catalytic reactor for any of the tests, indicating heavy tar reduction in excess of 

99%. Analysis by distillation at 75 °C was performed for only one test: the ICI46-1 catalyst 

operated at 800 °C with a SV of 3000 h-1 and a steam/TOC ratio of 2.8. Carbon from the light 

hydrocarbon fraction was present in the amount of 5.8 g Nm-3, while carbon in the form of 

soluble hydrocarbons was 0.6 g Nm-3. Although 6.4 g Nm-3 of carbon associated with 

hydrocarbons recovered in the impinger train may appear to be a relatively large concentration, 

it includes organic compounds that are not considered “tar” in many applications since they 

would not normally condense out. Nevertheless, it represents a carbon conversion efficiency of 

86% for hydrocarbons collected from the raw gas by the impinger train operated at −70 °C. 
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4.3.3 Effect of catalytic reactor operating conditions on gas composition 

The effects of space velocity, catalytic bed temperature, and steam/C ratio on gas 

composition (H2, CO, CO2, CH4 and C2H4) for each of the three catalysts are presented in Fig. 

4-3 to 4-5. In these figures, “GB Inlet” refers to the concentration of a gas species at the guard 

bed inlet (upstream of the tar destruction system), and “CR Outlet” refers to the concentration 

of a gas species at the catalytic reactor outlet (downstream of the tar destruction system). In 

general, H2 and CO2 increase, while CO decreases in the producer gas as it passes through the 

tar destruction system, as expected for steam reforming reactions acting in tandem with the 

water–gas shift reaction. Concentrations of CH4 and C2H4 decrease in the producer gas. The 

decrease in CH4 was about 0.2–1.0 vol%, while the decrease in C2H4 was about 0.5–1.5%. 

Although these low molecular weight hydrocarbons can be products of steam reforming of tar, 

they are also susceptible to further steam reforming to CO and H2. The ICI46-1 catalyst showed 

no deactivation during 12 h of testing, while the Z409 and RZ409 catalysts showed no 

deactivation during 18 h of testing. 

The effect of space velocity on hydrogen concentration in the producer gas is illustrated in 

the left column of Fig. 4-3 for catalysts ICI46-1, Z409 and RZ409 (TCR = 800 °C; Steam/TOC 

= 2.8). There was little evidence that decreasing SV significantly increased hydrogen 

production (observed variations were within the uncertainty of hydrogen measurements). The 

effects of SV on CO and CO2 concentrations in the producer gas are illustrated in the middle 

column of Fig. 4-3 for catalysts ICI46-1, Z409 and RZ409. For SVs less than 4500 h-1 there is 

no effect (in excess of uncertainty) on CO concentration. The concentration of CO2 is not 

substantially influenced by SV in the range of 1500–6000 h-1. The effects of SV on CH4 and 

C2H4 concentrations in the producer gas are illustrated in the right column of Fig. 4-3 for 

catalysts ICI46-1, Z409 and RZ409. No definitive trends (in excess of uncertainty) are evident 

for CH4, while C2H4 clearly decreases as SV decreases. These observations indicate that tar 

destruction is not mass transfer limited in the present experimental system. 

The effect of catalytic bed temperature on hydrogen concentration in the producer gas is 

illustrated in the left column of Fig. 4-4 for catalysts ICI46-1, Z409 and RZ409 (SV = 3000 h-

1; Steam/TOC = 2.8). As expected, hydrogen production increases with increasing reaction 

temperature although the increase is less than 25% from 740 to 820 °C. The effect of catalytic 

bed temperature on CO and CO2 concentrations in the producer gas are illustrated in the middle 

column of Fig. 4-4 for catalysts ICI46-1, Z409 and RZ409. Carbon monoxide increases, while 

CO2 decreases with increasing temperature. The strongest effect is observed for catalyst Z409 



 
 

82 
 

(CO increases 40% from 740 to 820 °C) and weakest for ICI46-1. The effects of catalytic bed 

temperature on CH4 and C2H4 concentrations in the producer gas are illustrated in the right 

column of Fig. 4-4 for catalysts ICI46-1, Z409 and RZ409. No definitive trends (in excess of 

uncertainty) are evident for CH4, while C2H4 clearly decreases, especially for the Z409 and 

RZ409 catalyst (reduction greater than 85% from 740 to 820 °C). These observations indicate 

that the rate of tar destruction is controlled by chemical kinetics. 

The effect of steam/TOC ratio on hydrogen concentration in the producer gas is illustrated 

in in the left column of Fig. 4-5 for catalysts Z409 and RZ409 (TCR = 800 °C; SV = 3000 h-1). 

As expected, hydrogen production increases with increasing steam/TOC ratio, although the 

increase is less than 30% in going from a steam/TOC ratio of 2.8–6.5. The effects of steam/TOC 

ratio on CO and CO2 concentrations in the producer gas are illustrated in in the middle column 

of Fig. 4-5 for catalysts Z409 and RZ409. Carbon monoxide decreases by 50%, while 

CO2increases by 50% in going from a steam/TOC ratio of 2.8–6.5 for both catalysts, indicating 

a strong water–gas shift reaction. The effects of steam/TOC ratio on CH4 and C2H4 

concentrations in the producer gas are illustrated in in the right column of Fig. 4-5 for catalysts 

Z409 and RZ409. No definitive trends are evident for either CH4 or C2H4. 

One reason for evaluating both the Z409 and RZ409 catalysts was to determine whether 

reducing the catalyst prior to use on gasification streams was important to catalytic activity 

(RZ409 catalyst is pre-reduced Z409). During the tests, we observed that hydrogen 

concentrations exiting the tar destruction system were 2.0–3.0 vol% higher for RZ409 than for 

Z409 during the first 2–3 h. However, for longer times, the difference between them 

disappeared. Thus, it appears that the producer gas is able to quickly reduce the metallic 

catalysts, making unnecessary a separate reducing step before using the catalyst. 

4.3.4 Mercury porosimetry analysis 

The catalysts were analyzed by mercury porosimetry to compare surface areas, pore sizes 

and pore size distributions before and after use in the tar destruction system (fresh and used 

catalyst, respectively). The results are shown in Table 4-4. In all cases, the pore structure of the 

used catalysts changed. 

The ICI46-1 catalyst showed an insignificant change in surface area while the Z409 and 

RZ409 catalysts showed surface area reductions of 30–35%. Furthermore, all three catalysts 

showed shifts away from small pores (R < 100 Å) and micro-pores (100–500 Å) to medium 

pores (500–2000 Å) and large pores (R > 2000 Å). Although this could result from coke 
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blocking the smaller pores, the fact that pore volume increased suggests the conversion of small 

pores and micro-pores into larger pores during high temperature operation. If this 

transformation were to continue, the catalytic activity would eventually degrade 

4.3.5 Carbon and sulfur analysis of catalysts and dolomite 

Carbon and sulfur analyses were performed on each of the three metallic catalysts and the 

dolomite catalyst both before and after the catalysis tests. Since all of the catalysts are inorganic, 

the appearance of carbon is an indication of coking. Likewise, the accumulation of sulfur on 

the metal catalyst indicates the breakthrough of hydrogen sulfide from the guard bed. The 

results are listed in Table 4-5. 

Although the metallic catalysts were selected for their high resistance to carbon deposition, 

both the metallic and mineral catalysts accumulated carbon. However, the accumulation on the 

dolomite bed was 6–20 times greater than on the metallic catalysts, suggesting that the guard 

bed was doing its job of cracking the heaviest tar compounds, which are most likely to produce 

coking. 

Steam/TOC ratios of 4–6 are typically used in Ni based catalytic steam reforming of 

naphtha. In our tests, the first several hours of testing for all the catalysts were performed 

without steam injection, that is, only steam arising from biomass gasification was present. This 

resulted in steam/TOC ratios of only 2.8. In an effort to remove coke accumulated after 18 h of 

testing, the steam/TOC ratio of the producer gas was increased to 4–6 for the last 6 h of testing 

of the Z409 and RZ409 catalysts. Although higher steam levels may enhance destruction of 

hydrocarbons absorbed on the catalysts, we saw no evidence that coke already deposited was 

readily removed by the steam/carbon reaction of Eq. 4.2. 

We hoped that the calcined dolomite in the guard bed would absorb most of the hydrogen 

sulfide existing in the producer gas. However, the appearance of sulfur in all the samples of 

used metallic catalysts and the relatively low concentration of sulfur in the used dolomite 

indicates significant breakthrough of hydrogen sulfide from the guard bed. In fact, the high 

concentration of sulfur in the used ICI46-1 catalyst (0.4 wt% after 12 h without steam injection) 

indicates a very serious problem. However, relatively little sulfur accumulated on the used Z409 

and RZ409 catalysts, which were subjected to steam injection for the last 6 h of testing. This 

observation suggests that steam injection can regenerate metallic catalysts that have been 

poisoned by sulfur. The regenerative process may consist of the following three reactions: 

NiS + H2O  NiO + H2S           (4.3) 
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NiO + H2  Ni + H2O            (4.4) 

NiO + CO  Ni + CO2            (4.5) 

After as little as 6–8 h of testing, a white powder was found in the tar sampling line after 

the catalytic reactor. This proved that dolomite had attrite in the guard bed and blown through 

the slipstream line. Clearly, the strength of catalytic material for the guard bed needs to be 

improved. 

4.4 Summary  

A tar conversion system consisting of a guard bed and catalytic reactor was designed for 

the purpose of improving the quality of producer gas from an air blown, fluidized bed biomass 

gasifier. All three metal catalysts (ICI46-1, Z409 and RZ409) proved effective in eliminating 

heavy tars (> 99% destruction efficiency) and in increasing hydrogen concentration by 6–11 

vol% (dry basis). Space velocity had little effect on gas composition while increasing 

temperature boosted hydrogen yield and reduced light hydrocarbons (CH4 and C2H4), thus 

suggesting tar destruction is controlled by chemical kinetics. 

Although the reactivity of the tar conversion system did not diminish during the 12–18 h 

of testing, measurements of surface area and pore size distribution indicated the conversion of 

small pores into larger pores during high temperature operation. If this transformation were to 

continue, the catalytic activity would eventually degrade. Furthermore, coke accumulated on 

both the dolomite and metallic catalysts, although this might have been mitigated if higher 

steam/TOC ratios had been employed from the beginning of the tests. 

Significant breakthrough of hydrogen sulfide from the guard bed occurred. However, 

relatively little sulfur accumulated on the Z409 and RZ409 catalysts, which were subjected to 

steam injection for the last 6 h of testing. This observation suggests that steam injection can 

regenerate metallic catalysts that have been poisoned by sulfur. 
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Table 4-1. Chemical characterization of obsolete seed corn used as fuel 

Seed corn 

Proximate analysis Ultimate analysisa  

Moisture Volatile matter Fixed carbon Ash C H N S Oa 

As Received. 9.0 77.9 11.7 1.4 41.7 6.4 1.1 0.1 49.2 

Dry 0.0 85.6 12.9 1.5 45.8 6.0 1.2 0.1 45.4 

a oxygen determined by difference. 

  

http://www.sciencedirect.com/science/article/pii/S0196890403002358?np=y&npKey=f8ddac527494d1c9f08fc767d61d76d3f29bd794c08168cf5cc7cbce16ca3e62#TBLFN1
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Table 4-2. Chemical composition of tested catalysts 

Catalyst Active component Promoter Carrier Preparation 

ICI46-1 NiO CaO, K2O SiO2, Al2O3 Not reduced 

Z409 NiO MgO, K2O, FeOx SiO2, Al2O3 Not reduced 

RZ409 NiO MgO, K2O, FeOx SiO2, Al2O3 Reduced 
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Table 4-3. Operating parameters for catalytic reactors 

Parameter ICI46-1 Z409  RZ409  

Amount of calcined dolomite 

(guard bed reactor) 

120 mL (132.16 g) 

 

120 mL (132.10 g) 

 

120 mL (132.10 g) 

 

Amount of Ni based catalyst 

(metal catalyst reactor) 

20 mL (22.30 g) 

 

20 mL (23.24 g) 

 

20 mL (23.10 g) 

 

Amount of inert material (metal 

catalyst reactor) 

20 mL (15.30 g) 

 

20 mL (15.20 g) 

 

20 mL (15.40 g) 

 

Pretreatment of catalyst No reduction No reduction 
Pre-reduced by 

manufacturer 

Guard bed temperature, TGB (±5 

°C) 

650  

 

650 

 

650  

 

Catalytic reactor temperature, 

TCR (±3 °C) 

740 - 820  

 

740 - 820  

 

740 - 820  

 

Space velocity––dry gas basis 

(h
-1

) 

1500 to 6000 

 

1500 to 6000 

 

1500 to 6000 

 

Operating time without steam 

injection (h) 

12  

(S/C = 2.8) 

12  

(S/C = 2.8) 

12  

(S/C = 2.8) 

Operating time with steam 

injection (h) 
0  

6 

(S/C = 4.5, 5.5, 6.5) 

6  

(S/C = 4.5, 5.5, 6.5) 
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Table 4-4. Pore volume, specific surface and pore size distribution of catalyst samples (by 

mercury porosimetry) 

Sample no. 

Pore volume 

(cm3 g
-1

) 

 

Specific surface 

(m2 g
-1

) 

 

Distribution of pore radius (%) 

R < 100 Å 100–500 Å 500–2000 Å R > 2000 Å 

Fresh ICI46-1 0.17 16.5 13 32 26 29 

Used ICI46-1 0.21 16.2 10 18 37 35 

Fresh Z409 0.14 22.9 34 38 22 6 

Used Z409 0.23 16.0 9 28 49 14 

Fresh RZ409 0.18 23.3 28 34 34 4 

Used RZ409 0.21 14.8 11 24 43 22 
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Table 4-5. Carbon and sulfur analysis of metallic catalysts and dolomite 

Sample S (wt%) C (wt%) Condition 

Fresh ICI46-1 0.016 ∼0 Fresh 

Used ICI46-1 0.4 0.36 12 h run (no injected steam) 

Fresh Z409 0.013 ∼0 Fresh catalyst 

Used Z409 0.021 0.80 18 + 6 h with injected steam 

Fresh RZ409 0.018 ∼0 Fresh catalyst 

Used RZ409 0.019 1.04 18 + 6 h with injected steam 

Fresh dolomite 0.0084 ∼0 Fresh 

Used dolomite 1 0.014 7.26 12 h (no injected steam) 

Used dolomite 2 0.012 6.46 18 h (no injected steam) 

Used dolomite 3 0.013 6.76 18 h (no injected steam) 
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Figure 4-1. Schematic of overall experimental apparatus 
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Figure 4-2. Catalytic reactor  
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Figure 4-3. Concentrations in producer gas at the inlet of the guard bed and the exit of 

catalytic bed as a function of space velocity: TGB = 650 °C; TCR = 800 °C; steam/TOC 

= 2.8. (a) ICI46-1, (b) Z409, (c) RZ409  



 
 

93 
 

 

Figure 4-4. Concentration in the producer gas at the inlet of the guard bed and the exit of 

catalytic bed as a function of catalytic bed temperature: TGB = 650 °C; SV = 3000 h-1; 

steam/TOC = 2.8. (a) ICI46-1, (b) Z409, (c) RZ409  
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Figure 4-5. H2 concentration in producer gas at the inlet of the guard bed and the exit of 

catalytic bed as a function of steam/TOC ratio: TGB = 650 °C; TCR = 800 °C; SV = 

3000 h-1. (a) Z409, (b) RZ409 
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Chapter 5 Generation of Hydrogen from Switchgrass and Seed Corn 

from an Air-blown Fluidized Gasifier 

5.1 Introduction 

The gasification of renewable materials provides one of the most cost-competitive means 

of obtaining hydrogen gas from renewable resources (Milne et al., 1998). Because it is produced 

thermochemically, it offers good prospects for market integration with conventional 

petrochemical industries (Baker et al., 1985). 

A hydrogen economy will most likely be based on fuel cells, which requires high-purity 

hydrogen for their reliable operation. Gasification of biomass produces a number of 

contaminants including tars and trace levels of nitrogen, sulfur, and chlorine compounds that 

must be removed, not only for end use applications, but to prevent poisoning of catalysts used 

in steam reforming, water–gas shift reactions, and gas separation. Gas cleaning technologies 

are under development for removing dust, absorbing trace contaminants, and converting the 

condensable tar to low molecular weight gases to render the gas acceptable for fuel cells. 

The traditional method of gas cleaning by means of wet scrubbing not only wastes the 

chemical energy of the tar but also poses environmental pollution problems that are not easily 

resolvable. In the previous work (Baker et al., 1985), a tar cracking system consisting of a guard 

bed and reforming catalytic reactor was designed for the purpose of improving the quality of 

producer gas from an air-blown, fluidized bed biomass gasifier. Steam reforming of tar 

increases both the hydrogen (H2) and carbon monoxide (CO) content of the producer gas. 

Further increases in hydrogen content can be achieved via the water–gas shift reaction: 

CO + H2O ↔ CO2 + H2  ΔH = −41.1 kJ mol-1     (5.1) 

This reaction is widely used to adjust the CO/H2 ratio of producer gas prior to the 

manufacture of ammonia and methanol. Water–gas shift catalysts have been commercially 

developed for use by the petrochemical industry (Corella, 1996; Zhou et al., 1999). 

Presently, there is renewed interest in the water–gas shift reaction because of its 

importance in reforming fuels to hydrogen for use in fuel cells. Since biomass gasification 

yields relatively high CO/H2 ratios, higher H2 contents can be achieved by using commercial 

CO shift catalysts in two fixed bed reactors operated in series: a high-temperature shift (HTS) 

reactor for rapid reaction and a low-temperature shift reactor to shift thermodynamic 

equilibrium to very low levels of CO. The high-temperature shift reaction takes advantage of 

faster kinetics at elevated temperatures to convert about 75% of the CO into H2. Conversion is, 
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however, limited by thermodynamic equilibrium, which favors hydrogen formation at low 

temperatures. Accordingly, the gas is slightly cooled and passed through a second, low-

temperature shift reactor to convert most of the remaining CO to H2. 

The goal of this research is to increase the concentration of hydrogen in producer gas that 

has been obtained from air-blown gasification of biomass. The steam reforming system 

evaluated in a previous study (Corella, 1988) is combined with a water–gas shift system to 

maximize hydrogen production. The effects of temperature, steam/gas ratio, and space velocity 

on hydrogen production are evaluated. At the completion of these tests, the deposition of carbon, 

chlorine, and sulfur on the catalysts was investigated. 

5.2 Experimental apparatus and methodology 

Tests were conducted in a pilot-scale fluidized bed reactor located at the Biomass Energy 

Conversion Facility (BECON) in Nevada, IA, which is operated by the Iowa Energy Center. 

The system is rated 800 kW thermal input, which corresponds to an average throughput of 180 

kg h-1 of solid biomass fuel at a heating value of 16,000 kJ kg-1. The major components of the 

plant include the fluidized bed reactor, fluidization gas system, fuel delivery system, data 

acquisition system, and gas sampling system. Details on the operation of the biomass gasifier 

can be found in Smeenk and Brown (1998). The fuel for these tests was discard seed corn or 

switchgrass. The composition is given in Table 5-1. It was gasified in air at an equivalence ratio 

between 0.25 and 0.35, which maintained the reactor in the temperature range of 700 to 760 °C. 

The feed rate of seed corn during these tests was in the range of 160-200 kg h-1. 

A 5 L min-1 slipstream from the gasification stream, illustrated in Fig. 5-1, was used to 

evaluate gas cleaning and hydrogen enhancement. This catalytic reaction system includes a 

guard bed, a tar (steam reforming) reactor, and high- and low-temperature catalytic water–gas 

shift reactors. A series of gasification trials was performed to evaluate the efficiency of 

hydrogen production and CO conversion. 

The four fixed bed reactors were of identical construction, fabricated from 22-mm ID 

stainless steel. Each was mounted in an electrically heated oven to maintain desired 

temperatures for each experiment. Each reactor had two thermocouples: one at the center of the 

fixed bed, which was moveable for obtaining longitudinal temperature profiles, and the other 

fixed at the center of catalytic bed, which was used for temperature control. The catalysts used 

in the reactors were sandwiched between layers of inert alumni spheres (4-mm diameter). Table 
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5-2 details operating conditions of the reactor, as well as the amount of inert material added 

above and below the catalyst in the reactor. 

Water was fed by means of a micropump into a stainless-steel pipe heated to 150–240 °C 

for the purpose of generating steam to mix with the producer gas just prior to its entry into the 

steam reformer. Gas composition both upstream and downstream of the gas conditioning 

system was periodically analyzed by online gas chromatography using a Varian Micro-GC CP-

2003 Quad equipped with Molsieve 5A BF, Poroplot Q, and CP-Sils CB columns, and a thermal 

conductivity detector with argon as carrier gas for the first column and helium as carrier gas for 

the second and third columns. The first column gave H2, O2, N2, CH4, and CO concentrations; 

the second and third columns yielded CO2, C2H4, and some light hydrocarbons. Continuous 

monitoring of exit gases was achieved with non-dispersive infrared analyzers for CO and CO2, 

a Nova thermal conductivity analyzer for H2, and a California Analytic electrochemical sensor 

for O2. The reliability of the analyzers was checked periodically using calibration gas. The 

volumetric flow rate of the dry gas exiting the gas conditioning system was measured by means 

of a wet test meter and converted to normal conditions. Since the focus of this work was the 

water–gas shift reactors, direct measurements of tar content in the producer gas were not 

performed, although previous work indicated that heavy tar in the raw producer gas was on the 

order of 20 g m-1 and steam reforming was able to reduce heavy tar to undetectable levels. 

Analysis of the extent of conversion of CO by the water–gas shift reaction requires careful 

consideration of changes in mole fractions of the reacting gases. Although the water–gas shift 

reaction is an equal molar reaction, resulting in no net volume change, one must account for the 

fact that gas analysis is performed on a dry gas basis. 

Let χ be defined as the molar conversion of CO: 

inlet

outletinlet

CO

COCO

n

nn 
           (5.1) 

where n designates the number of moles of CO at the inlet or outlet of the reactor as appropriate. 

Since the water–gas shift reaction is equimolar, the total number of moles at the inlet and outlet 

of the reactor are equal, and it follows that: 

 

inlet

outletinlet

CO

COCO

X

XX 
         (5.2) 
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where X designates mole fractions based on water vapor being one of the constituents of the 

gas mixture. In practice, gas analysis is performed on dry gas, the water vapor having been 

removed from the gas mixture before analysis; thus, it is convenient to define mole fractions 

that are based on moles of dry gas: 

DG

CO
CO

n

n
'           (5.3) 

where nDG is the total moles of dry gas. Solving Eq. (5.3) for nCO, substituting this expression 

into Eq. (5.1), and recognizing that the change in moles of dry gas through the reactor is equal 

to the change in moles of CO through the reactor, it can be shown that the molar conversion of 

CO expressed in terms of XCO is: 

)'1('

''

outletinlet

outletinlet

COCO

COCO

XX

XX




        (5.4) 

This formula was used to calculate CO conversions presented in the results. 

The guard bed was designed to capture fine particulate, absorb hydrogen sulfide, and 

steam-reform some of the heavy tars in the producer gas. It plays an important role in protecting 

the nickel catalyst in the steam-reforming reactor, which is susceptible to coking by heavy tars 

and poisoning by hydrogen sulfide. Calcined dolomite was used in the guard bed reactor. 

The tar reactor converts light tars into carbon monoxide and hydrogen. ICI 46-1, a Ni-

based catalyst produced by Imperial Chemical Industry, was used in the steaming reforming tar 

reactor. A Fe–Cr-based LB catalyst, synthesized according to China National Patent No. ZL 

96102477.1 (Zhang and Ma, 2000) was used in the high-temperature water–gas shift reactor. A 

Cu–Zn-based catalyst was used in the low-temperature shift reactor. The chemical 

compositions of the shift catalysts are given in Table 5-3. 

All three catalysts were reduced prior to evaluation of catalytic activity. This was done by 

treating them with producer gas in the amount of 1 L min-1 along with steam injected at a 

steam/gas ratio of 0.8. The Ni-based ICI-46 catalyst in the tar reactor was reduced at a 

temperature of 700 °C, while the Fe–Cr-based catalyst in the high-temperature shift reactor was 

reduced at 250 °C, and the Cu–Zn-based catalyst in the low-temperature shift reactor was 

reduced at 180 °C. Judging from the hydrogen content exiting the reactors, the Fe–Cr-based 

catalyst was substantially reduced after 20 min, while the Cu–Zn-based catalyst required 45 

min. Reduction was assumed complete when the hydrogen concentration exiting the reactor 

stopped increasing and reached a steady-state concentration. The catalysts were readily reduced 

by producer gas without requiring the addition of hydrogen as a reducing agent. 
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Both fresh and spent catalysts were characterized by BET specific surface and porosity 

and by X-ray photoelectron spectroscopy (XPS). Analysis by XPS was performed to check for 

coking and poisoning of the catalysts by chlorine and sulfur. Specific surface area and porosity 

were tested using ASAP 2010 with analysis adsorptive N2 at 77.35 K. 

Analysis by XPS was performed using a Physical Electronics 5500 Multitechnique system 

with monochromatic Al and standard Mg/Al sources using sample sizes of less than 2×2 cm. 

5.3. Results and discussion 

5.3.1 Seed corn 

Producer gas was passed through the gas conditioning system at flow rates of 3–5 L min-1, 

with steam added to achieve steam/gas ratios between 0.6 and 1.1. The raw producer gas 

entering the system had nominal composition as follows: H2 at 5–9 vol%, CO at 13–16 vol%, 

CO2 at 14–17 vol%, CH4 at 4 vol%, and C2H4 at less than 2.0 vol%. The guard bed was operated 

at a temperature TGB equal to 650 °C, while the steam reformer (tar reactor) was operated at a 

temperature TTR equal to 800 °C. Exiting the tar reactor, typical gas compositions were H2 at 

17–21 vol%, CO at 6–13 vol%, CO2 at 17–21 vol%, CH4 at 3.5 vol%, and C2H4 at less than 0.6 

vol%, which were dependent on the steam/gas ratio. The combination of guard bed and tar 

reactor was effective in boosting hydrogen and substantially reducing CO, CH4, and C2H4. 

Producer gas exiting the tar reactor entered sequentially the high-temperature and low-

temperature water–gas reactors, where the effects of volumetric flow rate, steam/gas ratio, and 

reactor temperature were evaluated. 

The effect of space velocity on performance of the high-temperature shift (HTS) reactor 

was investigated for baseline conditions of TTR = 800 °C, THTS = 350 °C, and steam gas ratio 

S/G = 0.9. Three flow rates were tested: 2.6, 3.8, and 4.6 L min-1, which represent space velocity 

varying from 1350 to 2300 h-1. As shown in Table 5-4, CO content was reduced from 6.7 vol% 

to less than 2.7 vol%, while H2 increased from 17.8 vol% to as high as 28.1 vol%. CH4 and 

C2H4 had almost no concentration change through the high-temperature reactor. 

The effect of temperature on performance of the high-temperature shift reactor was 

conducted for baseline conditions of TTR = 800 °C, S/G = 0.7, SV = 1950 h−1. Four 

temperatures were investigated: 360, 380, 420, and 440 °C. As shown in Table 5-5, CO content 

was reduced from 8.4 vol% to less than 2.6 vol%. The extent of CO conversion was around 

80% independent of temperature. Hydrogen content increased from 20 to 28 vol%. 
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The effect of steam/gas ratio on performance of the high-temperature shift reactor was 

conducted under baseline conditions of TTR = 800 °C, THTS = 400 °C, SV = 1950 h-1. Four 

steam/gas ratios were evaluated: 1.09, 0.73, 0.67, and 0.6. Since both injected steam and steam 

generated from gasification of biomass contributed to the total steam, the steam/gas ratio was 

determined from the amount of steam condensed from the gas exiting the water–gas shift reactor 

system. As shown in Table 5-6, CO content was reduced at the outlets of both the tar reactor 

and the high-temperature shift reactor as a result of steam addition. Carbon monoxide in the 

raw producer gas was reduced from 13.3 vol% to as little as 1.0 vol% by the combined action 

of the tar reactor and the high-temperature shift reactor, with about 60% of this change arising 

from the tar reactor. CO conversions were more than 75%. High levels of steam clearly 

enhanced the water–gas shift reaction. Steam levels had little effect on CH4 and C2H4 

concentrations. 

The effect of space velocity on performance of the low-temperature shift reactor was 

conducted under baseline conditions of TTR = 800 °C, THTS = 400 °C, TLTS = 210 °C, and 

S/G = 0.8. The effect of volumetric flow rates was determined for flows of 2.0, 3.0, and 4.0 L 

min-1, representing a range of space velocities between 800 to 1600 h-1. As shown in Fig. 5-2, 

CO concentration dropped dramatically between the exit of the tar reactor and the exit of the 

low-temperature water–gas shift reactor. However, space velocity had negligible effect on the 

CO concentration exiting the low-temperature water–gas shift reactor.  

The effect of temperature on performance of the low-temperature shift reactor was 

conducted under baseline conditions of TTR = 800 °C, THTS = 400 °C, S/G = 0.8, SV = 1200 

h-1. Four reactor temperatures were evaluated: 180, 200, 220, and 240 °C. As shown in Table 

5-8, CO concentration exiting the low-temperature water–gas shift reactor was as low as 0.20 

vol% at 180 °C increasing to 0.46 vol% as the temperature was raised to 240 °C, a result in 

accordance with an exothermic reaction. Overall, CO conversion of 95% is possible, and H2 

concentrations in air-blown producer gas can reach 29.5 vol%. 

The effect of steam/gas ratio on performance of the low-temperature shift reactor was 

conducted under baseline conditions of TTR = 800 °C, THTS = 400 °C, TLTS = 210 °C, SV = 

1200 h-1. Four steam/gas ratios were evaluated: 1.20, 0.85, 0.54, and 0.32. As shown in Table 

5-9, the performance of the low-temperature shift reactor in reducing CO in the producer gas 

was strongly dependent on steam/gas ratio, reaching 0.19 vol% CO for S/G of 1.2. 

Atomic concentrations (mol%) of carbon, oxygen, sulfur, chlorine, and metals found on 

fresh and spent catalysts as determined by XPS are summarized in Table 5-10. Figures 5-2 to 
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5-4 illustrate the XPS of carbon, sulfur, and chlorine for the Ni catalyst, Fe–Cr catalyst, and 

Cu–Zn catalyst, respectively. 

Comparison of fresh and spent catalysts indicates that carbon accumulated on all three 

kinds of catalysts to some extent. Coking was most serious on the Cu–Zn catalyst, where the 

relative amount of carbon almost doubled during the gasification test (Fig. 5-4). Coking on the 

Ni catalyst was also serious, with carbon content increasing by nearly 30%. Accumulation of 

sulfur of atomic concentration on the catalysts was less than 0.5 mol%, while chlorine 

accumulation represented 1.0 to 2.0 mol%. Clearly, some hydrogen chloride and hydrogen 

sulfide in the raw producer gas broke through the guard bed and deposited on the catalysts. 

Although the reactors did not show any evidence of catalyst deactivation, the design of the 

guard bed needs to be improved to protect the metal catalysts from these trace contaminants. 

Table 5-11 summarizes the specific surface and average pore diameters of catalysts as 

determined by BET analysis. In all cases, specific surface area of spent catalysts greatly 

decreased compared to fresh catalysts. The average pore diameter of Ni-based catalyst 

decreased while it increased for the other two catalysts shown in Fig. 5-5 and Fig. 5-6, 

respectively. Figure 5-8 plots pore volume distributions for the three catalysts as determined by 

BJH adsorption (Barret et al., 1951), illustrating that pore volumes changed greatly during the 

tests. Generally, the micropores and mesopores decreased, while macropores remained 

relatively unchanged. These changes are probably the result of both the reduction of catalysts 

prior to tests, as well as from coking, which blocks pores with carbon. 

5.3.2 Switchgrass 

Table 5-12 presents gas composition at different points in the gas conditioning system. The 

raw producer gas entering the system contained 8.6 vol% H2, 14.3 vol% CO, 18.0 vol% CO2, 

4.5 vol% CH4, and 1.5 vol% C2H4. The producer gas contained about 19.5 g Nm-3 heavy tar 

with the average gas composition of 19.4 vol% H2, 9.0 vol% CO, 20.5 vol% CO2, 3.36 vol% 

CH4, and 0.28 vol% C2H4. No condensable (heavy) tar was detectable at the exit of the steam 

reformer. As might be expected, the reaction between steam and tar increased the hydrogen 

content of the producer gas. Although steam reforming might also be expected to produce CO, 

this gas actually decreased 5.3 vol%, indicating that the water-gas shift reaction is occurring 

even at the elevated temperature of the steam reformer. The steam reformer substantially 

reduced the concentration of C2H4, but only moderately reduced CH4. Although CH4 is expected 

to be more resistant to catalytic cracking than C2H4, the most probable reason for its persistence 

arises from thermodynamic equilibrium of the steam reforming reaction for methane: 

http://www.sciencedirect.com/science/article/pii/S037838200400181X#tbl11
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CH4 + 2H2O  CO2 + 4H2         (5.5) 

This reaction is strongly endothermic and highly reversible. Thus, complete reaction favors 

high temperatures and low partial pressures of CO2. At the operating conditions of the tar reactor 

in this study (750−850 °C, 20.5 vol% CO2) a few percent of CH4 in the product gas is not 

surprising. Temperatures approaching 1000 °C would be required to substantially reduce 

methane. 

Exiting the high-temperature shift reactor, the average gas composition was 23.7 vol% H2, 

1.4 vol% CO, 26.8 vol% CO2, 3.1 vol% CH4, and 0.08 vol% C2H4. The high-temperature shift 

reactor reduced CO content by 7.6 vol%, representing 83% conversion. The concentration of 

CH4 is essentially unchanged through the high-temperature shift reactor, while the 

concentration of C2H4 decreases substantially. The fact that CH4 is essentially unchanged gives 

some confidence that the high-temperature shift reactor was operated with adequate steam. 

Otherwise, the Fe−Cr-based catalyst has a tendency to be over-reduced by H2 and CO to form 

metallic iron, which catalyzes the methanation reaction: 

CO + 3H2  CH4 + H2O          (5.6) 

Exiting the low-temperature shift reactor, the average gas composition was:  26.7 vol% H2, 

0.11 vol% CO, 27.4 vol% CO2, 1.9 vol% CH4, and 0.13 vol% C2H4. The total decrease in CO 

content through the shift-reactor system of 8.9 vol% represents an overall CO conversion of 

99%. The overall increase in H2 due to the combined action of the steam reforming and shift 

reactors is 18 vol%. Within the uncertainty of the measurements, the concentrations of CH4 and 

C2H4 were not significantly affected through the low-temperature shift reactor. 

Table 5-13 summarizes the atomic concentrations (mol%) of carbon, oxygen, sulfur, 

chlorine, and metals found on fresh and spent catalysts as determined by XPS. Comparison of 

fresh (Figs. 5-2 to 5-4) and spent catalysts indicates that carbon accumulated on all three kinds 

of catalysts to some extent. Coking was most serious on the Cu−Zn catalyst where the relative 

amount of carbon almost doubled during the gasification test. Coking on the Ni catalyst was 

also serious, with carbon content increasing by nearly 40%. Accumulation of sulfur of atomic 

concentration on the catalysts was less than 0.2 mol% while chlorine accumulation represented 

about 1.0 to 2.5 mol%. Clearly, some hydrogen chloride and hydrogen sulfide in the raw 

producer gas broke through the guard bed and deposited on the catalysts. Although the reactors 

did not show any evidence of catalyst deactivation, the design of the guard bed needs to be 

improved to protect the metal catalysts from these trace contaminants. 
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In all cases, the specific surface area of spent catalyst greatly decreased compared to fresh 

catalyst (Table 5-11). The average pore diameter of Ni-based catalyst decreased while it 

increased for the other two catalysts. Figures 5-5 to 5-7 plot pore volume distributions for the 

three catalysts as determined by BJH adsorption, illustrating that pore volumes changed greatly 

during the tests. Generally, the micropores and mesopores decreased while macropores 

remained relatively unchanged. These changes are probably the result of both the reduction of 

catalysts prior to tests and from coking, which blocks pores with carbon. 

5.4 Summary  

A catalytic reactor system was successfully tested with biomass-derived producer gas to 

determine its ability to steam reform tar and water–gas shift CO and steam to CO2 and H2. The 

catalytic tar reactor in combination with high-temperature and low-temperature water–gas shift 

reactors upgraded hydrogen in the raw gas from 5.8–8.8 vol% to as high as 27–29 vol%. Carbon 

monoxide concentration of 13–15 vol% in the raw gas was reduced to less than 0.5 vol%. The 

conversion of carbon monoxide in the high-temperature water–gas shift reached 75% to 80%, 

while CO conversion by the combination of high-temperature and low-temperature water–gas 

shift reactors exceeded 95%. The tar reactor did not significantly reform either CH4 or C2H4. 

Hydrogen production in the steam reformer favored high steam-to-gas ratios and high 

temperatures but appeared to be independent of low space velocities. Hydrogen production in 

the high-temperature shift reactor favored high steam-to-gas ratios, high temperatures, and low 

space velocities. The highest H2concentrations and the lowest CO concentrations exiting the 

low-temperature water–gas shift reactor occurred at the lowest reactor temperature, the lowest 

space velocity, and at a steam–gas ratio of 0.85. 

Characterization of the catalysts by XPS showed that coke and small quantities of sulfur 

and chloride deposited on the catalysts. BET analysis revealed losses in micropores and 

mesopores. Although no sign of catalytic deactivation was evident during the tests, these 

changes indicate the need for improvements in the design of the guard bed. 
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Table 5-1. Chemical characterization of seed corn and switchgrass used as feedstock (in %) 

Seed corn 

Proximate analysis Ultimate analysisa 

Moisture Volatile matter Fixed carbon Ash C H N S O 

As rec. 9.0 77.9 11.7 1.4 41.7 6.4 1.1 0.1 49.2 

Dry 0.0 85.6 12.9 1.5 45.8 6.0 1.2 0.1 45.4 

Switchgrass          

As rec. 3.2 79.9 13.3 3.6 42.4 5.3 0.6 0.1 48.1 

Dry 0.0 82.6 13.8 3.6 43.8 5.1 0.6 0.1 46.7 

a Oxygen determined by difference. 

 

  

http://www.sciencedirect.com/science/article/pii/S037838200400181X#tblfn1
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Table 5-2. Experimental conditions 

 

Guard bed 

(GB) 

 

Tar steam 

reformer 

(TR) 

High-temperature 

water–gas shift 

(HTS) 

Low-temperature 

water–gas shift  

(LTS) 

Control temperature (°C) 650 800 380 or 400 200 or 210 

Temperature range (°C) 600–670 750–850 350–420 180–240 

Space velocity (h
-1

) 900–1600 3000–6000 1500–2300 1000–1600 

Catalyst 
Calcined 

dolomite 
ICI 46-1 Fe–Cr−based LB Cu–Zn–Al-based B202 

Catalyst volume (mL) 200 60 120 150 

Inert material (mL mL
-1

)a 0/20 20/20 20/50 25/50 

a Volume of inert material above and below catalyst layer, respectively. 
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Table 5-3. Composition of catalysts 

Reactor system 

 

Active 

components 

Promoter 

 

Binder 

 

Trace 

contaminants 

Ni-based ICI046-1 NiO Cao, K2O/SiO2, Al2O3   

High-temperature shift Fe2O3 78% ±2% 
Cr2O3 9%±2% CuO 

2.0% rare earth 1.5% 

Black carbon 

0.5% 

S < 80 ppm Cl < 

100 ppm 

Low-temperature shift CuO > 29% 
ZnO 41–47% Al2O38.1–

10% 
 

S < 1000 ppm Cl 

< 100 ppm 
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Table 5-4. Effect of space velocity on performance of HTS reactor (TTR = 800 °C, THTS = 

350 °C, S/G = 0.9) 

Gas constituent 

(vol%) 

 

Raw gas 

 

 

Exit of Tar steam reactora 

 

 

Exit of high-temperature shift reactor 

1350 h
-1

 1950 h
-1

 2300 h
-1

 

H2 5.8 17.8 28.1 26.6 25.1 

CO  15.8 6.7 2.1 2.7 2.7 

CO2 14.4 19.9 26.8 26.4 25.8 

CH4 4.2 3.1 3.3 3.3 3.3 

C2H4 2.0 0.6 0.3 0.3 0.3 

a Previous study showed that space velocity (SV) does not substantially affect the performance of the 

tar steam reaction. Therefore, the measurements on the tar steam reactor were performed at only one SV 

of 1950 h-1 (3.8 L min-1). 
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Table 5-5. Effect of temperature on performance of HTS reactor (TTR = 800 °C, S/G = 0.7, SV 

= 1950 h-1) 

Gas constituent 

(vol%) 

 

Raw gas 

 

 

Exit of tar steam 

reactor 

 

Exit of high-temperature shift reactor 

360 °C 380 °C 420 °C 440 °C 

H2 7.74 19.85 27.78 28.48 28.3 28.14 

CO  13.27 8.38 2.58 1.14 1.21 1.38 

CO2 16.69 20.71 27.40 27.80 27.82 27.72 

CH4 3.89 3.19 2.97 2.94 2.95 2.94 

C2H4 1.71 0.26 0.22 0.22 0.22 0.22 
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Table 5-6. Effect of steam/gas ratio (S/G) on performance of HTS reactor (TTR = 800 °C, THTS 

= 400 °C, SV = 1950 h-1) 

Gas constituent 

(vol%) Raw gas 

Exit of tar reactor Exit of high−temperature shift reactor 

 Steam/Gas   Steam/Gas  

  1.09 0.73 0.67 0.6 1.09 0.73 0.67 0.6 

H2 7.74 21.61 20.47 19.85 18.52 29.97 28.78 28.48 27.65 

CO 13.27 5.42 7.22 8.38 10.21 1.02 1.22 1.39 2.03 

CO2 16.69 23.14 21.60 20.70 19.30 27.63 27.54 27.56 27.58 

CH4 3.89 3.05 3.17 3.19 3.24 2.94 2.95 2.94 2.95 

C2H4 1.71 0.19 0.28 0.26 0.30 0.21 0.21 0.21 0.21 
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Table 5-7. Effect of space velocity on performance of LTS reactor (TTR = 800 °C, TLTS = 210 

°C, S/G = 0.8) 

Gas constituent 

(vol%) 

Raw 

gas 

Exit of tar steam 

reactora 

Exit of low-temperature shift reactor 

800 h
-1

 1200 h
-1

 1600 h
-1

 

H2 6.53 20.50 36.11 29.68 29.13 

CO 14.18 8.04 0.4 0.43 0.49 

CO2 16.30 20.90 28.83 28.63 28.72 

CH4 4.04 3.17 2.97 2.97 2.97 

C2H4 1.77 0.21 0.28 0.28 0.28 

a Previous study showed that space velocity (SV) does not substantially affect the performance of the 

tar steam reaction. Therefore, the measurements on the tar steam reactor were performed at only one SV 

of 1200 h-1 (3.0 L min-1). 
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Table 5-8. Effect of temperature on performance of LTS reactor (TTR = 800 °C, S/G = 0.8, SV 

= 1200 h−1) 

Gas constituent 

(vol%) 

Raw gas 

 

Exit of tar steam 

reactor 

  Exit of low-temperature shift reactor 

180 °C 200 °C 220 °C 240 °C 

H2 6.53 20.50 29.68 29.60 29.56 29.44 

CO  14.18 8.04 0.20 0.31 0.37 0.46 

CO2 16.30 20.90 28.50 28.45 28.51 28.30 

CH4 4.04 3.17 2.97 2.97 2.98 2.98 

C2H4 1.77 0.21 0.25 0.25 0.26 0.25 
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Table 5-9. Effect of steam/gas ratio (S/G) on performance of LTS reactor (TTR = 800 °C, 

TLTS = 200 °C, SV = 1200 h-1) 

Gas constituent 

(vol%) 

Raw 

gas 

S/G (Exit of tar steam reactor) 
S/G (Exit of low-temperature shift 

reactor) 

1.2 0.85 0.54 0.32 1.2 0.85 0.54 0.32 

H2 8.81 23.86 23.53 22.80 21.07 27.83 28.1 27.75 27.51 

CO  13.23 7.99 9.01 10.33 12.63 0.19 0.16 0.20 0.40 

CO2 17.01 20.85 20.41 19.38 17.37 27.20 27.04 26.90 26.70 

CH4 3.81 3.13 3.34 3.51 3.44 3.05 3.05 3.05 3.05 

C2H4 1.69 0.30 0.26 0.22 0.20 0.24 0.24 0.24 0.24 
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Table 5-10. Concentrations of atomic species (mol%) in the catalysts as determined by X-ray 

photoelectron spectroscopy (XPS) (feedstock seed corn) 

 

Ni-based catalyst Fe–Cr-based catalyst Cu–Zn-based catalyst 

Fresh  Spent  Fresh  Spent  Fresh  Spent  

Carbon C1s 10.16 13.14 18.27 18.76 12.29 22.91 

Oxygen O1s 59.78 54.59 49.96 48.96 46.33 48.10 

Sulfur S2p 0.00 0.02 0.03 0.49 0.07 0.12 

Chlorine Cl2p 0.29 1.09 1.00 1.23 2.12 4.49 

Aluminum Al2p 14.50 15.27 – – – – 

Nickel Ni2p 8.51 8.65 – – – – 

Iron Fe2p – – 27.25 23.76 – – 

Chromium Cr2p – – 3.48 6.80 – – 

Copper Cu2p – – – – 13.26 4.84 

Zinc Zn2p – – – – 25.93 19.54 
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Table 5-11. BET analysis of catalysts 

 

Ni-based catalyst Fe–Cr-based catalyst Cu–Zn-based catalyst 

Fresh 

 

 

 

Spent      

Switch- 

Seed       grass 

Corn         

Fresh 

 

 

 Spent    

Switch- 
Seed      

grass 

Corn     

Fresh 

 

 

Spent    Switch- 

Seed     grass 

Corn     

 

Specific surface 

(m2 g-1) 

18.1  5.7          5.3 131  34.3        

37.4 

108 77.8      88.4 
 

Average 

diameter (Å) 

129  113         110 61.6  192         

155 

59.9 83.2      37.4 
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Table 5-12. Gas Composition at various Locations in the Gas Conditioning System 

Gas constituent 

(vol%) 

Raw gas 

 

Exit of tar steam 

reactora 

Exit of Low-temp Exit of high-temp 

shift Shift 

H2 8.6 19.4 23.7 26.7 

CO 14.3 9.0 1.4 0.1 

CO2 18.0 20.5 26.8 27.4 

CH4 4.5 3.4 3.1 1.9 

C2H4 1.5 0.3 0.1 0.1 

 a Gas composition is dry basis (vol%) measured by gas chromotography 
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Table 5-13. Concentrations of atomic species (mol%) in the catalysts as determined by X-ray 

photoelectron spectroscopy (XPS) (feedstock switchgrass) 

 

Ni-based catalyst            Fe–Cr-based catalyst        Cu–Zn-based 

catalyst 

Fresh  Spent  Fresh  Spent  Fresh  Spent  

Carbon C1s 9.93 14.18 18.70 12.43 10.37 20.29 

Oxygen O1s 60.61 52.44 49.60 46.31 46.49 41.60 

Sulfur S2p 0.00 0.15 0.05 0.14 0.51 0.38 

Chlorine Cl2p 0.23 0.34 0.92 2.55 2.17 2.32 

Aluminum Al2p 13.18 15.67     

Nickel Ni2p 8.85 9.7     

Iron Fe2p – – 27.30 32.23   

Chromium Cr2p – – 3.43 6.33   

Copper Cu2p – – – – 13.41 12.68 

Zinc Zn2p – – – – 27.06 22.73 
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Figure 5-1. Diagram of the catalytic reaction system  
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Figure 5-2. X-ray photoelectron spectra (XPS) of Ni-based catalysts using Physical Electronics 

5500 equipped with Al Kα source (a) carbon 1s peak, (b) chlorine 2p peak, (c) sulfur 2p peak  
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Figure 5-3. X-ray photoelectron spectra (XPS) of Fe–Cr-based catalysts using Physical 

Electronics 5500 equipped with Al Kα source (a) carbon 1s peak, (b) chlorine 2p peak, (c) sulfur 

2p peak  
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Figure 5-4. X-ray photoelectron spectroscopy (XPS) of Cu–Zn-based catalysts using Physical 

Electronics 5500 equipped with Al Kα source (a) carbon 1s peak, (b) chlorine 2p peak, (c) sulfur 

2p peak  
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Figure 5-5. BJH pore volume dV/dlog D versus pore diameter of Ni-based catalyst 
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Figure 5-6. BJH pore volume dV/dlog D versus pore diameter of Fe–Cr-based catalyst 
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Figure 5-7. BJH pore volume dV/dlog D versus pore diameter of Cu–Zn-based catalyst. 
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Chapter 6 Conclusions and Future Research 

6.1 Conclusions 

In this study, catalytic conversion of tar by biomass gasification was conducted through 

steam reforming of model tar compound with Nickel based catalysts and with promoter of Ce 

and Mg to improve catalytic activity and coke resistance. The catalytic conversion of tar was 

also performed through hot cleaning system of two-bed systems to steam reforming of tar along 

with enhancing H2 production. High H2 production by biomass gasification is also realized 

through combining catalytic hot cleaning system with water-gas shift reactions. Conclusions 

from the present study can be drawn as follows: 

(1) Catalytic conversion of tar is an efficient approach at lower temperatures achieving    

the most effective removing tars with the benefit of energy saving and better fuel value of 

producer gas from biomass gasification. The innovative catalytic hot cleaning system along 

with newly developed catalysts and optimized operating conditions surely enhances H2 

production. 

(2) Nickel based catalysts are suitable for steam reforming of tar. Nickel based catalysts 

were prepared by wet impregnation method using olivine as a substrate for catalytic steam 

reforming of benzene in a bench scale fixed bed reactor at temperatures between 700 and 830 °C 

using a molar ratio of steam/carbon equal to 5. The results indicated that for all three catalysts 

used, the benzene conversions increased with increased temperature. However, benzene 

conversions by catalyst NiO/olivine doped with CeO2 were much higher than those by two 

other catalysts at lower temperature due to that fact that doped CeO2 increased the crystal 

oxygen on the surface and hence promoted the catalytic activity of nickel and resisted the 

deposition of the carbon through a redox mechanism. The mechanism of steam reforming 

involves the absorption of the target molecules and water vapor on the catalyst surface where 

they react until all carbon atoms are converted to CO or CO2.   

(3) The performance of Ce and Mg promoted Ni/olivine catalysts was better than that of 

only Ce promoter and Ni/olivine alone. The addition of 1% Mg to 3% Ni–1%Ce/olivine also 

increased reaction activity (toluene conversion up to 93%), prevented coke deposition, and was 

resistant to H2S poison. Furthermore, Ni–Ce–Mg/olivine was resistant to deactivation due to its 

resistance to carbon deposition and 10 ppm H2S poison at 100 mL min-1 up to 400 min. It is 
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suggested that 3% Ni-1%Ce-1% Mg/olivine is the most promising catalyst due to its minimum 

coke amount and the lower activation energy of coke burning as well as the high durability.  

(4) A guard bed and catalytic reactor to treat the producer gas from an air blown, fluidized 

bed biomass gasifier showed promising results. The guard bed used dolomite to crack the heavy 

tars. The catalytic reactor was used to evaluate three commercial steam reforming catalysts 

(ICI46-1, Z409 and RZ409). All three commercial NiO based catalysts proved to be effective 

in eliminating heavy tars (> 99% destruction efficiency) and in increasing hydrogen 

concentration by 6–11 vol%. Space velocity had little effect on gas composition while 

increasing temperature boosted hydrogen yield and reduced light hydrocarbons (CH4 and C2H4), 

thus suggesting tar destruction is controlled by chemical kinetics.  

(5) Air-blown gasification of biomass in fluidized bed reactors produces relatively low 

concentrations of hydrogen (about 8 vol%). Steam reforming of tars and light hydrocarbons and 

reacting steam with carbon monoxide via the water–gas shift reaction can increase hydrogen 

content in the producer gas to 27-30 vol% through the system of catalytic hot cleaning system 

combining with two water-gas shift reactors. In the tests, the temperature, space velocity, and 

steam/gas ratio were varied to determine the effect of these variables on hydrogen production. 

6.2 Future research perspective 

With hundreds, if not thousands, of papers published, in the gasification field, detailed 

information for understanding the overall process is available. Unfortunately, by the nature of 

the gasification process as well as the feedstock composition, the formation of tar and other 

catalyst-fouling causing substances is unavoidable. This leads to catalyst deactivation which 

hinders full-scale commercial application. The improved technologies include innovative 

process design and proper operation of gasifiers to reduce tar formation along with newly 

developed catalysts that resist tar formation and other catalyst-deactivated causing substances; 

these advances coupled with the high demand for energy worldwide undoubtedly will further 

spur interest and technology and process development in the gasification field. The innovative 

gasifiers along with newly developed catalysts and optimized operating conditions surely will 

enhance H2 production. 

The removal or purification of catalyst-deactivated causing substances in the current 

“wet/dry scrubber systems” (end of pipe treatment) is not sufficient. One needs development of 

novel catalysts for efficient and cost-effective elimination of these undesirable substances. Still 
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a better approach is to reduce their presence by reducing impurities from the feedstock (source 

control) and taking advantage of different operational practices and process and reactor designs 

in gasifiers to reduce these undesirable compounds (cleaner production). Also, a better 

comprehension of deactivation mechanisms at the molecular level is essential for enhancing 

resistance from catalyst-deactivated causing substances in the development of new catalysts. 

The catalyst deactivation is unavoidable with regeneration of catalysts a key aspect in 

prolonging the lifespan and reducing costs associated with gasification. Therefore, the research 

in the area of regeneration and eventual recovery of precious metals in the spent catalysts needs 

further investigation – not only from cost consideration, but also from resource conservation 

and minimization of potential environmental impacts. 

One of the main deterrents to the use of biomass in the waste-to-energy industry is the 

costs associated with it. Improvements in the refining technologies, including both reactor 

design and catalysts, syngas yield would be improved and the cost of gasification to obtain high 

energy gases would be significantly reduced. Two important studies are recommended in the 

future. 

(1) It is necessary to build pilot facilities to test the catalytic hot gas cleaning system to 

achieve the potential for producing syngas and hydrogen from biomass gasification. And the 

assessment of its feasibility of technology and economy should be done for commercial purpose.  

(2) The hybrid of thermal conversion and biochemical method should be evaluated with 

syngas fermentation to produces cellulosic ethanol or other fuels and chemicals via microbial 

reactions. Syngas fermentation also has advantages compared to other gasification-based 

catalytic conversion technologies, including high yield, low operating costs, and tolerance to 

impurities including a wider range of CO:H2 ratios.  
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