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Elucidation of biological phenomena by small molecules has been widely performed 

from long ago. Furthermore, in recent years, with the development of science and 

technology, chemical screening using more than 1,000 compounds has been widely 

conducted to identify novel biology and therapeutic drug candidate in industries and 

academia. The purpose of this study is to identify hit compounds that regulate biological 

phenomena and their target molecules through chemical screening and to analyze the 

mechanism of action of hit compounds. 

   In the first chapter, I focused on autophagy which is reported to be associated with 

various diseases especially in central nervous system and cancer, and have performed 

high content screening to identify autophagy regulators. I identified a hit compound 

named vacuolin-1, which is a target unknown compound. In order to identify the 

molecular target of vacuolin-1, I developed an algorithm to quantify cell morphology 

from images obtained at screening and clarified that vacuolin-1 inhibits PIKfyve by 

classifying hit compounds. More detailed analysis revealed that vacuolin-1 inhibits 

autophagy by suppressing vesicular transport from Golgi to endosome and lysosomal 

maturation.  

   In the second chapter, I clarified the mechanism of action of serine palmitoyl 

transferase (SPT) inhibitors that I had found as an attractive target to regulate cancer 

metabolism. In order to elucidate the mechanism of action, I constructed new chemical 

library containing about 3,000 biologically annotated compounds. In screening of 

compounds which affect cancer cell growth inhibitory activity of SPT inhibitors, I 

identified 32 compounds which attenuated cell growth inhibition induced by SPT 

inhibitors. Pathway enrichment analysis using these hit compounds revealed that 

prostaglandin production pathway is highly related with SPT inhibitor-induced cancer 

cell growth inhibition. More detail analysis showed that SPT inhibitor promotes cell 

death by activating prostaglandin production pathway through induction of expression 
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of COX-2.  

   In conclusion, I have successfully identified hit compounds that regulate biological 

phenomena and their target molecules through chemical screening and have analyzed 

the mechanism of action of hit compounds. It will be possible that my chemical 

screening methods for autophagy regulating compounds and for mechanism of action 

(MOA) analysis of anti-cancer drugs are widely applicable to identify autophagy inducer 

and to analyze MOA of other anti-cancer drugs.
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COX-2  Cycloxygenase-2 

FBS  fetal bovine serum 

HCS  high-content screening 

LDH  lactate dehydrogenase 

MOA  mechanisms of action 

M6PR   mannose 6-phosphate receptor 

SPT  Serine palmitoyl transferase 

vATPase vacuolar ATPase 
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Elucidation of biological phenomena is supported by the development of various 

analytical techniques and methodologies. Imaging of physiological state of biomolecules 

and cells using fluorescent probes and cell assays using compounds that specifically 

inhibit the function of certain biomolecules have also been utilized for a long time [1-4]. 

Particularly in recent years, the dramatic improvement of automated imaging devices 

and robotics technology allowed us to perform chemical screening at ultra-high 

throughput [5-8]. As a result, it has become possible to identify hit compounds with a 

shorter period of time and with higher probability than before. This achievement has 

made a great contribution not only to the advancement of life science, but also to the 

identification of medicines and new physiologically functional substances, so that the 

importance of chemical screening using cells is recognized not only by pharmaceutical 

companies but also by academia [9-13]. 

   Successful chemical screening requires sophisticated primary phenotypic screening 

assay systems for identifying hit compounds, target proteins of the hit compounds, and 

precise compound profiling for revealing the mechanisms of action (MOA). Recently 

image-based high-content screening (HCS) using automated imaging devises has been 

recognized as a powerful methodology for identifying new chemical tools [14, 15]. HCS 

enables us to simultaneously measure multiple features of cellular phenotypes and 

obtain phenotypic profiling data; therefore, profiling using parameters obtained from 

cellular morphological property provides indispensable information about hit 

compounds. 

  Target identification of hit compounds remains challenging. To date, target 

identification methods that use chemical proteomics have been developed, and they 

have uncovered many unique target proteins associated with bioactive compounds 

[16-19]. To determine the target molecules of compounds without affinity tags, 

small-molecular profiling based on biological descriptor and cell morphology has been 
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developed [20, 21]. A method called cell painting utilizes fluorescent dyes to stain 

specific cellular components and clusters compounds based on morphological profiles 

[22]. By combining the above methods, although the probability of target identification 

has increased [23, 24], the establishment thereof is still not high. Therefore, it is 

important to build a new target identification platform. 

  It is also a critical step to understand the MOA for hit compounds. There are two 

commonly accepted methods for analyzing the MOA of hit compounds. One method 

involves a target-specific hypothesis-based approach that combines known information 

with newly obtained data from transcriptome and metabolome analyses [25]. The other 

method involves a discovery-based approach involving a functional genomics analysis of 

whole genome siRNA or shRNA [26]. Functional genomics analyses have provided many 

novel possibilities with regard to target relationships and thus represent a powerful 

approach for the identification of relatively novel targets. However, these unbiased 

siRNA- or shRNA-based approaches share the fundamental challenges of off-target 

effect, knockdown efficiency, protein turnover, and compensatory reactions [27, 28]. The 

establishment of alternative methods would be valuable to our understanding of the 

MOA of hit compounds. 

  In this study, I tried to establish highly informative chemical screening platform to 

identify hit compounds and their target molecules, and furthermore to analyze how hit 

compounds induce the desired phenotype. In the first chapter, I performed chemical 

screening to identify autophagy regulators. Autophagy is an intracellular catabolic 

reaction induced when unnecessary proteins accumulate in cells due to aging or stress, 

and is reported to be closely related to various diseases such as Alzheimer disease and 

cancer [29]. However, it largely remains unclear about the detailed mechanism of 

regulating autophagy. Because autophagy regulator is expected to be a novel 

therapeutic candidate, I developed a high content screening system to visualize and 
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quantify autophagy in multiple stages and performed chemical screening. I also tried 

target identification and MOA analysis of hit compounds by using cellular 

morphological information obtained at primary screening. 

   In the second chapter, I also worked on applying compound screening methods to 

elucidate the MOA of anti-cancer drugs. Today, identification of patient stratification 

marker allows leading higher success rate for drug development, and importance of 

elucidating the mechanism of action of anti-cancer drugs is increasing year by year [30, 

31]. To elucidate the MOA of anticancer drugs, unbiased approach such as 

transcriptome or metabolome analysis, cancer cell panel assay, or genome wide siRNA 

screening are widely used. However, it is a problem that much labor and a large cost are 

required in either method. Therefore, by establishing a library of compounds with 

known MOA and constructing a screening system platform for combination with 

anti-cancer drugs, I tried to elucidate the mechanism of action of SPT inhibitors which I 

identified as a novel anti-cancer drug candidate. 
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Part Ⅰ 

Vacuolin-1 inhibits autophagy by impairing lysosomal maturation 

via PIKfyve inhibition 
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Abstract 

Lysosomal protein degradation via autophagy strictly regulates cellular protein 

homeostasis. Herein I performed high-content screening to identify compounds that 

inhibit autophagy pathways. I obtained 11 hit compounds and performed cluster 

analysis using cellular morphological information. As a result, Vacuolin-1, which 

induces the formation of giant vacuoles and is a target unknown compound, was 

clustered with the known PIKfyve inhibitor YM201636. I further demonstrated that 

vacuolin-1 is a potent PIKfyve inhibitor, and I finally concluded that PIKfyve inhibitors 

are novel chemical tool for regulating autophagy.  
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Introduction 

Sweeney et al. have analyzed the discovery strategies and the molecular mechanism of 

action (MMOA) for new molecular entities and new biologics that were approved by the 

US Food and Drug Administration between 1999 and 2008 to investigate whether some 

strategies have been more successful than others in the discovery of new drugs [32]. The 

results showed that the contribution of phenotypic screening to the discovery of 

first-in-class small-molecule drugs exceeded that of target-based approaches. Therefore, 

in both pharmaceutical and academic fields, phenotypic drug discovery has been 

recognized again as an essential process for discovering chemical tools that can unveil 

new therapeutic targets and new disease mechanism by previously undescribed 

mechanisms of action [10, 32]. Successful phenotypic screening requires sophisticated 

primary phenotypic screening assay systems for identifying hit compounds and precise 

compound profiling for revealing the mechanisms of action and target proteins of the hit 

compounds. High-content screening (HCS) has been recognized as a powerful 

methodology for identifying new chemical tools [33]. HCS enables us to simultaneously 

measure multiple features of cellular phenotypes and obtain phenotypic profiling data; 

therefore, profiling using parameters obtained from cellular morphological property 

provides indispensable information about hit compounds [34, 35].  
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  Target identification of hit compounds obtained via phenotypic screening remains 

challenging, and this process has been considered a major bottleneck of phenotypic 

screening. To date, target identification methods that use chemical proteomics have 

been developed, and they have uncovered many unique target proteins associated with 

bioactive compounds [36, 37]. Although these are useful methods, they require mass 

spectrometry instrumentation and further chemical syntheses to add tags to compounds 

of interest without deteriorating their activities. To determine the target molecules of 

compounds without affinity tags, a profiling analysis of small-molecules based on 

biological descriptor and cell morphology has been developed. A method called cell 

painting utilizes fluorescent dyes to stain specific cellular components for clustering 

compounds based on morphological profiles [38, 39]. CellProfiler and Morphobase have 

also been developed to obtain multidimensional parameters obtained from image-based 

analysis [40, 41]. 

  Macroautophagy (hereafter referred to as autophagy) is a catabolic process that 

results in the lysosomal degradation of bulk cytoplasmic contents [42-44]. Serum 

deprivation or unnecessary protein accumulation triggers autophagy to promote 

autophagosome formation and subsequent fusion to the lysosome, resulting in clearance 

of the unnecessary protein. The molecular bases of autophagy have been studied mainly 
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in yeast, and responsible genes have been identified using autophagy-defective mutants. 

In particular, a series of proteins called Atg (autophagy-related) have been identified to 

function as key drivers that modulate autophagy, and presently, more than 30 genes 

encoding Atg proteins have been discovered in yeast [45]. One Atg protein, Atg8, is a 

ubiquitin-like protein required for autophagosome formation. After being conjugated to 

the lipid phosphatidylethanolamine by a ubiquitin-like system, Atg8 is involved in the 

tethering and hemifusion of membranes [46]. The mechanism of autophagy was 

conserved during evolution among species ranging from yeast to mammals. When 

autophagy is activated, unlipidated LC3 (referred as LC3-I), the mammalian homologue 

of Atg8, was lipidated by addition of phosphatidylethanolamine, and lipidated LC3 

(referred as LC3-II) is anchored to autophagosomes until it is degraded in the lysosome; 

therefore, it is widely used to monitor autophagy [47]. However, LC3 accumulation 

could occur in not only autophagy induction but also decline of autophagy flux in the 

late-stage. It is difficult to distinguish autophagy induction from inhibition by only 

monitoring LC3 accumulation. 

   Lysosome maturation is an important process for autophagy because fusion between 

the autophagosome and lysosome is the final step of autophagy. Lysosomes are highly 

acidified compartments (pH 4.5–5.0), and this pH gradient is generated and maintained 
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by a vacuolar membrane proton pump named vacuolar ATPase (vATPase). Lysosomes 

contain a large number of proteases and hydrolases and degrade unnecessary cellular 

proteins and organelles. These lysosomal enzymes are synthesized on the endoplasmic 

reticulum and transported to Golgi bodies before their subsequent delivery to transport 

vesicles via a mannose 6-phosphate receptor (M6PR)-dependent pathway and are 

finally delivered to lysosomes via small GTPase family protein-dependent pathway [48, 

49]. Rab7 is localized to the late endosome, and it functions as a key regulator of 

vesicular transport to lysosomes and late endosomes [50]. Rab7 has also been reported 

to regulate fusion between the autophagosome and lysosome [51]. 

   Although the molecular mechanism of autophagy has been intensely studied, there 

are few chemical tools regulating autophagy whose target has not been unidentified. 

Bafilomycin A1 is a well-known inhibitor of autophagy which inhibits vATPase and 

suppresses fusion of autophagosomes with lysosomes besides the acidification of 

endosomes and transport of lysosomal proteases to lysosomes [52]. However, the other 

target molecules involved in autophagy inhibition largely remain unclear. In this study, 

we used HCS to identify inhibitors of autophagy and performed target identification of 

hit compounds by cluster analysis using morphological information.  



 

17 
 

Materials and Methods  

Materials 

E64d and pepstatin A were purchased from Peptide Institute Inc. Other reagents were 

obtained from Life technologies unless otherwise specified. 

 

Plasmid constructions 

The plasmid encoding LC3 was purchased from Ultimate ORF collection. Open reading 

frame of LC3 was amplified by PCR and the PCR product was digested and insert into 

pAcGFP-C1 (Clontech Laboratories) and further inserted to pmCherry-C1 (Clontech 

Laboratories) to construct mCherry-AcGFP LC3 plasmid. DNA fragment containing 

mCherry-AcGFP LC3 was inserted in pEntr11 vector, and promoter region of 

pTRE-Tight (Clontech Laboratories) was inserted in pEnt5' vectors. pEnt5’-pTight 

promoter and pEntr11-mCherry-AcGFP-LC3 were integrated into pLenti6.4 vector by 

using multisite Gateway reaction kit (Thermofisher). For tet repressor expression, the 

sequence from TR to blasticidin of pLenti6/TR (Thermofisher) was replaced to 

rtTA-IRES-Neo sequence.  

 

Antibodies 
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Anti-rab7 (9367S; used at 1/100 dilution for immuno-cytochemistry) and anti-beta-actin 

(4970S; used at 1/1000 dilution for western blotting) were purchased from Cell 

Signalling Technologies. Anti-M6PR (AB2733; used at 1/1000 dilution for 

immuno-cytochemistry) and anti-LAMP2 (AB25631; used at 1/250 dilution for 

immuno-cytochemistry) were purchased from Abcam. Anti-p62 (PM045; used at 1/2000 

dilution for immuno-cytochemistry) and anti-LC3 (PM036; used at 1/1000 dilution for 

immuno-cytochemistry, and 1/2000 dilution for western blotting) were purchased from 

MBL. 

 

Compounds  

Tocriscreen (Tocris Bioscience) and StemSelect Small Molecule Regulators (Merck 

Millipore) were dissolved in DMSO (10 mM). Biologically annotated compounds were 

also collected to create a screening compound library. Bafilomycin A1, vacuolin-1, and 

YM201636 were purchased from Millipore, Tocris, and Selleck, respectively.  

 

Cell line 

HeLa cells were purchased from American Type Culture Collection (ATCC) and 

maintained in EME medium (EMEM) supplemented with 10% fetal bovine serum (FBS) 



 

19 
 

and non-essential amino acids. H4 cells were purchased from ATCC and maintained in 

DME medium (DMEM) supplemented with 10% FBS. For establishment of H4 cells 

with doxycycline-inducible mCherry-AcGFP LC3, mCherry-AcGFP LC3 and 

rtTA-IRES-neo viruses were transduced to H4 cells following the manufacturer's 

protocol, and stable cell line was cloned by dual-selection with neomycin and blasticidin 

and subsequent serial dilution. 

 

HCS for LC3 

HeLa cells were seeded in black clear-bottom 384-well imaging plates (Corning #3985) 

and treated with compounds for 6 or 24 h. Cells were fixed with 4% paraformaldehyde 

(Wako Pure Chemicals) and permeabilized with 50 µg/mL of digitonin (Wako) in PBS 

containing 0.1% gelatin (Wako). After washing with PBS containing 0.1% gelatin, cells 

were incubated with anti-LC3 antibody for 1 h, followed by incubation with anti-rabbit 

antibody conjugated with Alexa Fluor-488 and Hoechst 33258 for 1 h. After washing 

with PBS containing 0.1% gelatin, PBS was added to cells, which were stored at 4°C 

until measurement. Cell images were captured by the IN Cell Analyzer 6000 (GE 

Healthcare Japan) using ×20 or ×40 objective lens. LC3 staining intensity was 

calculated from captured images using the IN Cell Developer Toolbox (GE Healthcare 
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Japan). 

 

HCS for proteins other than LC3 

HeLa cells were seeded in black clear-bottom 384-well imaging plates and treated with 

compounds for 24 h. Cells were fixed with 4% paraformaldehyde and permeabilized 

with 0.1% Triton X-100 (Wako) in 10% goat sera for 1 h. After washing with PBS 

containing 0.1% Triton X-100, cells were incubated with antibodies for 24 h at 4°C, 

followed by incubation with secondary antibodies conjugated with Alexa Fluor-488 or 

Alexa Fluor-647 and Hoechst 33258 for 1 h at room temperature. After washing with 

PBS containing 0.1% Triton X-100, PBS was added to cells, which were stored at 4°C 

until measurement. Cell images were captured using the IN Cell Analyzer 6000. As 

shown in Table 2, several parameters were calculated from the captured images using 

the IN Cell Developer Toolbox by referring to the reference [40].  Image processing 

includes the following four steps; 

Step 1: “Nuclei” segmentation using images of Hoechst staining. "Nuclear center" was 

predefined as a seed region of nuclear using objective segmentation module and 

postprocessing nodes, such as erosion and sieve. "Nuclei" was defined as the nuclear 

region that corresponded to "nuclear center" by the objective segmentation module. 
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Postprocessing nodes, such as clump breaking using "Nuclear center", erosion, sieve, 

and border object removal were used to separate close nuclei and properly segment the 

diverse nuclear phenotypes. 

Step 2: “Cell” segmentation using images of Hoechst staining. “Cell” was defined as the 

cellular regions by the objective segmentation module with high sensitivity to detect 

weak signal. Postprocessing nodes such as erosion, clump breaking using "Nuclei", sieve, 

and fill holes were used to separate close cells properly.  

Step 3: "Granule" segmentation. The immunofluorescence images of LC3, p62, LAMP2, 

and rab7 were used to detect textures, such as granules and vesicles, which were 

recognized by the vesicle segmentation module. "Cell" was linked with "Granule" using 

one to many target linking to quantify the area or density x area of Granule in each 

cells.  

Step 4: Measure nodes. After individual cells were segmented, 17 user-defined 

descriptors (Table 2) were calculated for each cell. 

  

Western blotting  

Cells were collected and lysed in PBS containing 2% Triton X-100 and a protease 

inhibitor cocktail (Roche). The lysate was boiled with an SDS sample buffer (Bio-Rad) 
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containing 100 µM DTT. Samples were electrophoresed on a 5–20% of SDS 

polyacrylamide gel (ATTO), transferred to a PVDF membrane using an iBLOT 

apparatus, and immunodetected with the antibodies as mentioned above. 

 

Tandem LC3 assay 

H4 cells stably expressing tet-inducible mCherry-GFP-LC3 were seeded in F150 flasks 

in the presence of 1 µg/mL of doxycycline for 48 h. Cells were re-seeded in black 

clear-bottom 384-well plates and were treated with each compound for 24 h and fixed 

with 4% paraformaldehyde. Nuclei were stained with Hoechst 33342. Images were 

captured using the IN Cell Analyzer 6000.  

 

siRNA transfection 

HeLa cells were transfected with a final concentration of 30 nM siRNA. RNAiMAX was 

used for the reverse transfection according to the manufacturer’s instructions (Life 

Technologies). To silence PIKfyve, specific siRNAs (Silencer® Select Pre-designed siRNA 

from Life Technologies; s47254, s47255, and s27256) targeting PIKfyve were used. 

Forty-eight hours after siRNA transfection, cells were harvested for real-time RT-PCR 

analysis using 1-step cells to CT reagent, and the knockdown of PIKfyve mRNA was 
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confirmed using TaqMan probes (Hs00381995_m1). Seventy-two hours after siRNA 

transfection, cell morphology was observed.  

 

Kinase assay against PIKfyve 

Vacuolin-1 and YM201636 were profiled using the commercially available Kd ELECT 

screening service (DiscoveRx) as previously described [53, 54]. Briefly, Kinase-tagged T7 

phage strains were prepared in an E. coli host derived from the BL21 strain. 

Streptavidin-coated magnetic beads were treated with biotinylated small molecule 

ligands for 30 minutes at room temperature to generate affinity resins for kinase assays. 

Binding reactions were prepared by mixing kinases, affinity beads with ligands, and 

test compounds in 1×binding buffer (20% SeaBlock (Merck Millipore), 0.17× PBS, 0.05% 

Tween 20, 6 mM DTT). The beads washed with wash buffer (1× PBS, 0.05% Tween 20) 

and then re-suspended in elution buffer (1× PBS, 0.05% Tween 20, 0.5 μM 

non-biotinylated affinity ligand) and incubated at room temperature with shaking for 

30 minutes. The kinase concentration in the eluates was measured by qPCR (Fig. 6). 

More detailed information is described in the DixcoveRX homepage; 

https://www.discoverx.com/technologies-platforms/competitive-binding-technology/kino

mescan-technology-platform 
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Cluster analysis of hit compounds 

All calculated data were normalized in each assay using the Z-scoring method and then 

analysed by hierarchical cluster analysis (Ward’s method) with TIBCO Spotfire 

software (TIBCO). 

 

Pearson’s correlation coefficient 

Pearson’s correlation coefficient (Rp) was calculated using the following equation: 

 

where N equals the 17 assay results and xi and yi are the activity values in each assay 

for compounds A and B, respectively.  
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Results and Discussion 

Establishment of an HCS assay for autophagy regulators  

The goals of this study were to obtain blockers of lysosomal protein degradation. I first 

analysed the morphological changes of cells treated with Bafilomycin A1 (Fig. 1) to 

define the criteria for hit compounds. I examined immunestained pattern of LC3 as an 

autophagy-related marker. I captured cell images using the IN Cell Analyzer 6000 

high-content imager and quantified the fluorescent intensity using the IN Cell 

Developer Toolbox. As shown in Fig. 2A and 2B, bafilomycin A1 treatment for 6 h 

induced LC3 dot formation, and LC3 dot formation was further increased following 

treatment for 24 h. I also immunostained cells with anti-p62 antibodies. p62 is a 

multifunctional protein that plays a crucial role in autophagy by linking autophagy 

with the proteasome pathway [55, 56]. Together with LC3 accumulation, p62 was 

significantly accumulated in bafilomycin A1-treated cells, indicating that cellular 

autophagy flux was inhibited. Moreover, immunostainings of rab7 as a late endosome 

marker and LAMP2 as a lysosome marker showed significant accumulation of 

rab7-positive vesicles and LAMP2-positive lysosomes in bafilomycin A1-treated cells 

(Fig. 2A, and 2B). Therefore, I defined simultaneous accumulation of LC3, p62, rab7, 

and LAMP2 as features of lysosomal dysfunction phenotype including that was seen in 
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bafilomycin A1-treated cells. 

 

Identification of autophagy inhibitors: Cluster analysis revealed that five inhibitors 

regulate autophagy and endosomal trafficking 

I performed primary screening of approximately 1,500 known bioactive compounds at a 

concentration of 3 µM to identify blockers of autophagy and endocytic pathways. I 

monitored LC3 dot formation after 6 and 24 h of treatment with the test compounds. 

Regarding p62, rab7, and LAMP2 accumulation following 24 h of treatment with the 

test compounds, I scored each sample based on the intensity of immunofluorescence, 

and the hit criterion was an immunofluorescence intensity at least three standard 

deviations greater than the mean intensity of immunofluorescence in DMSO-treated 

samples. As a consequence, 11 compounds as primary hit compounds were selected 

(Table 1). Because hit compounds from phenotypic screening have generally several 

modes of action, the establishment of classification methods of hit compounds improves 

the subsequent target identification steps. To classify the hit compounds, I utilized 

primary screening data, and captured images were re-analysed using a custom-made 

analysis algorism. In total, 17 parameters reflecting morphological changes were 

calculated as shown in Fig. 3A and Table 2. I put the utmost importance on 
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experimental reproducibility and robustness of the parameters to avoid variability from 

plate to plate or batch to batch, although, theoretically, I could calculate more 

parameters. In addition, except for the parameters used in the primary screening (the 

intensity of LC3, p62, rab7, LAMP2), I calculated morphological parameters mainly 

from images of Hoechst 33258 staining (10 out of 17 parameters) to apply this approach 

for other high content screening. Finally, I selected 17 parameters. All obtained data 

were analysed via hierarchical clustering of the activities using Ward’s method in 

TIBCO Spotfire software. As a result of the hierarchical cluster analysis, compounds 

that produced similar morphological changes were classified into the same cluster, 

enabling me to visually determine that they have similar molecular targets and 

signalling pathways. Via cluster analysis, 11 hit compounds were classified into five 

biological clusters (Fig. 3B). I found that three well-known tubulin disruptors 

(vincristine, vinblastine, and colchicine), one tubulin stabilizer (Taxol), and KF 38789, 

which was originally identified as a selective inhibitor of P-selectin-mediated cell 

adhesion [57] and recently identified as a tubulin disruptor [58], were classified into the 

same cluster. This result suggested that the calculated parameters and cluster analysis 

work well and reflect the features of cellular status. Interestingly, bafilomycin A1, 

which was used as the positive control, did not cluster with any other compound, and 
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this result suggested that other hit compounds have different modes of action regarding 

their inhibitory effects on the autophagy pathway. Two actin disruptors and a 

Bax-channel inhibitor also regulated the autophagy pathway. I focused on vacuolin-1 

(Fig. 1) since its target molecule has remained unknown. Vacuolin-1 was discovered by 

image-based screening [59], and recently, Lu et al. has reported that vacuolin-1 is a 

potent inhibitor of autophagy [60].  

 

Vacuolin-1 inhibits PIKfyve kinase as well as YM201636 does 

To identify a vacuolin-1 target molecule, I calculated Rp values (activity versus activity) 

between vacuolin-1 and the other hit compounds (Table 3). Intriguingly, despite the low 

number of structural similarities, our hierarchical clustering and Rp analysis strongly 

suggested that vacuolin-1 had similar biological activity as YM201636 (Fig. 1), which is 

a potent inhibitor of the phosphatidylinositol phosphate kinase PIKfyve [61]. Moreover, 

YM201636 is also a potent inhibitor of autophagy [62]. To validate our cluster analysis, I 

measured the binding activity of vacuolin-1 and YM201636 with PIKfyve using a 

cell-free binding competition assay. I found that vacuolin-1 and YM201636 were potent 

binders of PIKfyve, with Kd values of 32 and 9 nM, respectively (Fig. 4A). As the assay 

utilizes an active site-directed ligand as the binding probe, which binds to the ATP site 
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of PIKfyve, vacuolin-1 is also expected to inhibit PIKfyve in an ATP-competitive manner. 

Vacuolin-1 might affect autophagy by inhibiting cellular activity of PIKfyve. I therefore 

performed siRNA experiments to validate whether loss of PIKfyve function induces the 

formation of cellular giant vacuoles. HeLa cells were treated with three individual 

siRNAs against PIKfyve for 48 h. Transcription of PIKfyve mRNA was suppressed to 

<30% of the level in control siRNA-transfected cells (Fig. 4B). In this condition, giant 

vacuole formation was induced in cells treated with each PIKfyve siRNA (Fig. 4C). 

Coincidently, giant vacuole formation was also seen in cells treated with vacuolin-1 or 

YM201636 for 24 h (Fig. 4C). 

 

Vacuolin-1 and YM201636 are late-stage autophagy inhibitors 

The results of binding assays against PIKfyve and siRNA against PIKfyve revealed that 

vacuolin-1 and YM201636 induce giant vacuole formation via PIKfyve inhibition. I 

further examined the effect of these two compounds against lysosomal protein 

degradation pathways more precisely. First, I confirmed the effect of compounds against 

autophagy pathway by Western blotting that detected the conversion ratio of LC3-I to 

LC3-II in the presence or absence of lysosomal protease inhibitors. This method is more 

widely accepted to monitor autophagy flux [63]. Treatment with vacuolin-1 or 
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YM201636 increased LC3-II levels compared with findings in DMSO-treated cells in the 

absence of protease inhibitors, whereas, in the presence of protease inhibitors, 

vacuolin-1-treated cells displayed abnormal accumulation of LC3-II as well as 

DMSO-treated cells did since progression of autophagy was strongly suppressed by the 

protease inhibitor treatment (Fig. 5A). In addition, I also examined the status of 

autophagy using an mCherry-AcGFP tandem LC3 assay [64]. This assay is based on the 

nature of fluorecent protein that GFP-LC3 signals disappeared within the acidic 

lysosomal condition due to its pKa profile, while mCherry LC3 signals maintained even 

within the acidic lysosomal condition. In the case of autophagy inhibition, both 

GFP-signals and mCherry signals are detected, and on the other hand, in the case of 

autophagy induction, GFP-signals are declined and only mCherry signals are detected. 

By using this assay, treatment with vacuolin-1 or YM201636 induced the accumulation 

of AcGFP- and mCherry-positive puncta (Fig. 5B), indicating that vacuolin-1 and 

YM201636 decreased autophagy flux. These results suggested that vacuolin-1 and 

YM201636 suppressed autophagy activity probably by inhibiting degradation step of 

autophagosome.  

   Next, I analysed the effects of the compounds on the lysosomal maturation pathway. 

I first monitored the trafficking of the lysosomal enzyme cathepsin D. The processing of 
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cathepsin D from the precursor to its mature form occurs in lysosomes after it has been 

transported there via endosomal trafficking. I performed Western blotting, which could 

detect the band shift of immature and mature cathepsin D to test lysosomal function. 

Treatment with vacuolin-1 and YM201636 decreased mature cathepsin D levels and 

increased immature cathepsin D levels, suggesting the possibility that both compounds 

impaired the endosomal trafficking of de novo synthesized lysosomal enzymes, which in 

turn resulted in the suppression of the lysosomal degradation pathway (Fig. 5C). To 

examine the possibility, I confirmed the effect of these compounds on protein transport 

from Golgi bodies to lysosomes. I performed immunostaining of M6PR, a marker of 

transport between Golgi bodies and lysosomes, and revealed that vacuolin-1 and 

YM201636 treatment induced enlarged M6PR-positive vesicle formation (Fig. 5D). This 

result indicated that vacuolin-1 and YM201636 affected the delivery pathway of 

lysosomal enzymes from Golgi bodies to lysosomes. Both vacuolin-1 and YM201636 

probably inhibit autophagy by suppressing the maturation of lysosomes. 

   In conclusion, I established an assay that can visualize the final step of autophagy 

and obtained several classes of hit compounds. Subsequent analysis using cellular 

morphological information revealed for the first time that vacuolin-1 is a potent 

inhibitor of PIKfyve. My findings suggest that the PIKfyve inhibitors, vacuolin-1 and 
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YM201636, are novel and useful chemical tools as inhibitor of autophagy and lysosomal 

maturation. Moreover, because parameters used in my cluster analysis are calculated 

only from images obtained by primary screening without any additional experiment, 

morphology-based cluster analysis described in this study is a simple and 

straightforward approach. Therefore, it will be widely applicable for phenotypic drug 

discovery and subsequent target identification processes.  
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Figures and Tables  

Figure 1. Compounds used in this study
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Figure 2. Effect of bafilomycin A1 on autophagy and endocytic pathways. (A) HeLa cells 

were treated with 100 nM bafilomycin A1 for the indicated times, fixed, and 

immunostained with LC3, p62, rab7, and LAMP2 antibodies. Representative images 

are shown. (B) Fluorescent intensity of each parameter was quantified using the IN Cell 

Developer Toolbox. Values are reported as the mean ± s.e.m. in arbitrary units (n = 4). 
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Figure 3. Cluster analysis of hit compounds. (A) Representative parameters calculated 

from primary screening data. (B) The hit compounds were clustered using 

morphological parameters. The heat map was visualized using TIBCO Spotfire software 

for cluster analysis.  



 

38 
 

 



 

39 
 

Figure 4. Vacuolin-1 and YM201636 inhibit PIKfyve. (A) Vacuolin-1 and YM201636 

were evaluated in binding competition assays against PIKfyve. (B) HeLa cells were 

treated with 30 nM siRNA against PIKfyve for 48 h, and mRNA was extracted to 

quantify the silencing efficiency of siRNA against PIKfyve by RT-PCR. (C) HeLa cells 

were treated with 3 µM vacuolin-1 and YM201636 for 24 h. An image was obtained via 

optical microscopy. (C) HeLa cells were treated with 30 nM siRNA against PIKfyve for 

72 h. An image was obtained via optical microscopy. 
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Figure 5. Validation study for vacuolin-1 and YM201636. (A) HeLa cells were treated 

with 3 µM vacuolin-1 or YM201636 in the presence or absence of the lysosomal protease 

inhibitor E64d (10 µg/mL) and pepstatin A (10 µg/mL). After 24 h of treatment, cell 

lysates (10 µg) were separated by 10% polyacrylamide gel electrophoresis, and LC3 was 

detected by immunoblotting. (B) H4 cells expressing mCherry-GFP LC3 were treated 

with 3 µM vacuolin-1 and 3 µM YM201636 for 24 h and fixed. Nuclei were stained with 

Hoechst 33342. (C) HeLa cells were treated with 3 µM vacuolin-1 or YM201636 for 24 h. 

Cell lysates (10 µg) were separated by 4–20% polyacrylamide gel electrophoresis, and 

cathepsin D was detected by immunoblotting. (D) HeLa cells were treated with 3 µM 

vacuolin-1 or YM201636. After 24 h of treatment, cells were fixed and immunostained 

with M6PR antibody. 
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Figure 6. Assay principle of PIKfyve binding assay 

Assay principle of binding assay is illustrated by DiscoverX and cited from DiscoverX 

homepage. 
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Table 1 

List of hit compounds from the screening.  
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Compound Name MOA Target molecule Supplier 

Taxol stabilizer of microtubules tubulin Tocris 

KF 38789 inhibitor of 

P-selectin-mediated 

cell-adhesion 

tubulin Tocris 

Vincristine disruptor of microtubules tubulin Tocris 

Colchicine disruptor of microtubules tubulin Tocris 

Vinblastine disruptor of microtubules tubulin Tocris 

YM 201636 PIKfyve inhibitor PIKfyve Selleck 

Vacuolin-1 inducer of vacuolar formation unknown Tocris 

Cytochalasin D disruptor of actin polymer actin Tocris 

Cytochalasin E disruptor of actin polymer actin Millipore 

Bax channel blocker 

(#2160) 

inhibitor of cytochrome c 

release 

Bax channel Tocris 

Bafilomycin A1 vATPase inhibitor vATPase Millipore 
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Table 2 

List of calculated parameters 
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Parameter Treatment time Antibody 

Nuclear area 6 h Hoechst33258 

Nuclear form factor 6 h Hoechst33258 

Cell count 6 h Hoechst33258 

Cell area 6 h Hoechst33258 

Cell form factor 6 h Hoechst33258 

Nuclear area 24 h Hoechst33258 

Nuclear form factor 24 h Hoechst33258 

Cell count 24 h Hoechst33258 

Cell area 24 h Hoechst33258 

Cell form factor 24 h Hoechst33258 

LC3 intensity 6 h LC3 

LC3 intensity 24 h LC3 

p62 intensity 24 h p62 

rab7 intensity 24 h Rab7 

rab7 area 24 h Rab7 

LAMP2 area 24 h LAMP2 

LAMP2 intensity 24 h LAMP2 
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Table 3 

The Tanimoto structural similarity indices and Pearson’s correlation coefficients 

(activity versus activity) were calculated for vacuolin-1. 
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 Compound Name Pearson Tanimoto 

Vacuolin-1 1.00  1.00 

YM 201636 0.97  0.25  

Cytochalasin E 0.85  0.16  

Bafilomycin A1 0.84  0.11  

Cytochalasin D 0.84  0.15  

Vinblastine 0.57  0.15  

Colchicine 0.55  0.16  

Vincristine 0.47  0.15  

Bax channel blocker (#2160) 0.42  0.20  

KF 38789 0.21  0.18  

Taxol 0.15  0.16  
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Chapter Ⅱ 

 
 
 

Using a biologically annotated library to analyze the anti-cancer 
mechanism of serine palmitoyl transferase (SPT) inhibitors 
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Abstract 

Lung cancer is by far the leading cause of cancer death among both men and women. 

Here, I reveal that inhibition of serine palmitoyl transferase (SPT), the rate-limiting 

enzyme in sphingolipid synthesis, induced cell death in a lung cancer cell line via a 

necrosis-dependent pathway. To elucidate the mechanism of cell death induced by SPT 

inhibition, a biologically annotated library of diverse compounds was screened with an 

SPT inhibitor. This analysis identified suppressors of SPT inhibitor-mediated cell death. 

Further analysis using hit compounds from this screening revealed that SPT inhibitors 

leaded to necrosis-dependent cell death by inducing COX-2 expression. SPT inhibitors 

might therefore represent novel candidates for cancer therapy via necrosis pathway 

regulation. My data illustrates that compound combination screening of biologically 

annotated libraries could be used for mechanism of action of anti-cancer drug. 
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Introduction 

Cancer is a major public health problem worldwide, and accordingly, pharmaceutical 

companies aim to develop novel anti-cancer-related drugs. Although both genetic and 

environmental factors are closely related to cancer development and are responsible for 

some portion of cancer progression, many as yet uncharacterized factors are also 

involved in cancer progression. In addition to conventional medical and radiation 

treatments, molecular targeted therapy has recently become popular in the drug 

discovery process. Especially, developing anti-cancer drugs regulating metabolic 

pathways that are selectively activated in cancer cells represent a new promising 

approach to cancer therapy.  

   Cancer metabolism is the focus of current and emerging therapeutic approaches to 

anti-cancer drug discovery [65-67]. The best known example of a metabolic shift in 

cancer cells is the Warburg effect [68]. Cancer cells tend to depend on the glycolytic 

pathway rather than the tricarboxylic acid (TCA) cycle in order to generate energy more 

efficiently in a hypoxic microenvironment. Recent metabolomics technology research 

has revealed additional metabolic pathways that are closely related to cancer cell 

growth. Newly identified cancer-metabolism-related targets, such as isocitrate 

dehydrogenase 1 (IDH1) and HMG-CoA reductase, are now considered promising 
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anti-cancer drug targets [69, 70]. 

   Serine palmitoyl transferase (SPT) mediates the conjugation of serine and palmitoyl 

CoA to form ceramide and represents a rate-limiting step in sphingolipid synthesis. 

Ceramide is a well-known lipid that under normal conditions, is readily transferred 

from the endoplasmic reticulum (ER) to the Golgi by the ceramide transfer protein 

CERT, where it undergoes further synthesis to glucosylceramide, sphingomyelin, and 

sphingosine-1-phosphate [71, 72]. Abnormal sphingolipid metabolism has been observed 

in several types of cancer cells. In head and neck cancer, ceramidase overexpression is 

occurred, which enhances resistance to Fas ligand mediated apoptosis. In addition, in 

various solid cancers, sphingosine kinase 1 overexpression is occurred, which leads to 

enhanced proliferation [73-75].  

   Although the metabolomics approach to cancer drug discovery works well and has 

led to the identification of new anti-cancer drug targets, the relationship between 

metabolic alterations and cancer cell growth is not always clear. Therefore, it is 

important for drug discovery researchers to understand the mechanisms of action 

(MOA) for such drugs. There are two commonly accepted methods for analyzing the 

MOA of cancer drugs. One method involves a target specific hypothesis-based approach 

that combines known information with newly obtained data from analyses such as 
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transcriptome and metabolome. The other method involves a discovery-based approach 

involving a functional genomics analysis of whole genome siRNA or shRNA [76, 77]. 

Functional genomics analyses have provided many novel possibilities with regard to 

target relationships and thus represent a powerful approach for the identification of 

relatively novel targets. However, these unbiased siRNA- or shRNA-based approaches 

share the fundamental challenges of off-target effect [27, 28], knockdown efficiency, 

protein turnover, and compensatory reactions [78]. The establishment of alternative 

methods would be valuable to my understanding of the MOA of anti-cancer drugs.  

   Biologically annotated library screening is currently attracting considerable interest 

as a straightforward approach to phenotypic drug discovery [79-84]. This approach 

allows me to easily link target molecules with disease phenotypes and to generate 

hypotheses regarding the underlying biological mechanisms. Unlike siRNA or shRNA, 

small molecules are directly inhibit or activate target protein, independent from 

expression level and turnover rate of target protein. Moreover, it is noteworthy that tool 

compounds collected in biologically annotated library are optimized to enhance not only 

the potency against target protein but also target selectivity. Therefore, I hypothesized 

that MOA analysis of anti-cancer drugs by using biologically annotated library could 

become complementary methods for functional genomics.  
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   In this study, I experimentally demonstrated that inhibitory compounds for SPT, the 

rate-limiting enzyme in sphingolipid synthesis, inhibited the growth of lung cancer cells 

depending on their inhibitory activity. In addition, I also investigated the MOA of SPT 

inhibitors by screening a biologically annotated library and successfully isolated a 

compound that was able to cancel the anti-cancer activity of SPT inhibitors. As a result, 

I demonstrated that COX-2 pathway played essential role in the anti-cancer activity of 

SPT inhibitors. 
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Materials and Methods  

Materials 

Reagents were obtained from Life Technologies (Carlsbad, CA, USA) unless otherwise 

specified. Anti-COX2 antibody (#12282, used at 1/1000 dilution for western blotting) 

and anti-actin antibody (#4970, used at 1/1000 dilution for western blotting) were 

purchased from Cell Signaling Technologies (Danvers, MA, USA). Z-vad, caspase 3/7 Glo 

reagent, and ROS Glo reagent were purchased from Promega Corp (Fitchburg, WI, 

USA). Ferrostatin-1 was purchased from SIGMA (St. Louis, MO, USA). 

 

Compounds  

Biologically annotated compounds were collected to create a screening compound library. 

SPT inhibitors were synthesized at Takeda Pharmaceutical Company, Ltd. (Fujisawa, 

Japan) [85]. 

 

Preparation of human SPT2 enzyme 

Polymerase chain reaction (PCR) with specific primers was used to generate cDNA 

encoding human SPT2, and the PCR product was subsequently subcloned to generate 

expression vectors. For preparation of the SPT2 enzyme, FreeStyle293 cells were 
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transfected with human SPT2 expression plasmids and cultured for three days. Cells 

were then homogenized in 50 mM HEPES buffer (pH 7.5) containing 250 mM sucrose, 5 

mM EDTA, 5 mM DTT, and Complete, EDTA-free (Roche Applied Science, Penzberg, 

Upper Bavaria, Germany). Cell homogenates were centrifuged, and supernatants were 

harvested. Total membrane fractions were isolated by ultracentrifugation. Pellets were 

re-suspended in 50 mM HEPES buffer (pH 7.5) containing 5 mM EDTA, 5 mM DTT, and 

Complete, EDTA-free (Roche) and stored at −80°C. The protein concentration was 

determined with using the CBB Protein Assay [86]. 

 

Enzyme assay  

Enzyme reactions were run in 20 μL volumes with assay buffer comprising 100 mM 

HEPES (pH 8.0), 2.5 mM EDTA, 5 mM DTT, and 0.01% bovine serum albumin (fatty 

acid-free), and conducted in a 384-well assay plate. Briefly, 5 μL of a tested compound 

and 10 μL of 100 μg/mL SPT2-expressed-membrane dissolved in assay buffer were 

mixed and incubated for 60 minutes. Subsequently, 5 μL of a substrate solution 

containing 2 mM L-serine and 20 μM palmitoyl-CoA in assay buffer were added to start 

the enzyme reaction. After a 15-minute incubation at room temperature, the reaction 

was terminated by adding 20 μL of 2% formic acid. Finally, 40 μL of acetonitrile 
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containing 600 nM C17-sphinganine were added as an internal standard.    

   High-throughput online solid-phase extraction was performed using a RapidFire® 

300 device (Agilent Technologies, Santa Clara, CA, USA). Mass spectrometric analysis 

was performed using an API-4000TM triple quadrupole mass spectrometer (AB SCIEX, 

Framingham, MA, USA) in positive SRM mode. The SRM transitions for 

3-ketodihydrosphingosine (reaction product) and C17-sphinganine were set to 

300.5/270.3 and 288.4/60.2, respectively. Analytical data were acquired using Analyst 

software, version 1.5.0 (AB SCIEX), and measured value of 300.5/270.3 was divided by 

that of 288.4/60.2 for calibration. The IC50 values for test compounds were calculated 

using XLfit software (IDBS, London, UK). 

 

Cell line 

HCC4006 cells were purchased from ATCC (Manassas, VA, USA) and maintained in 

RPMI supplemented with 10% fetal bovine serum (Corning Corp., Midland, MI, USA). 

 

Growth inhibition assay 

HCC4006 cells were dispensed into a 384-well culture plate at a density of 250 cells/well 

in 40 µL of culture medium and cultured overnight. Subsequently, the cells were treated 
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with 10 µL of a tested compound and cultured for five days. The medium was then 

removed and replaced with 30 µL of CellTiter Glo Luminescent Cell Viability Assay 

reagent (Promega, Fitchburg, WI, USA). Luminescence was measured on an EnVision 

device (PerkinElmer, Waltham, MA, USA). The IC50 values for test compounds were 

calculated using GraphPad Prism 5.0. 

 

Lactate dehydrogenase (LDH) release 

HCC4006 cells were seeded in black 384-well plates and treated with compounds for 96 

hours. From each well, 20 µL of cell culture medium was transferred to a 384-well 

clear-bottomed plate (#3680, Corning Corp.); CytoTox 96 Non-Radioactive Cytotoxicity 

Assay (Promega Corp.) reagent was added to each well, followed by a 30 minute 

incubation; cell variability was measured on a Spectramax Paradigm multiplate reader 

(Molecular Device Corp., Sunnyvale, CA, USA). 

 

Caspase 3/7 assay 

HCC4006 cells were seeded in white 384-well plates (#3570, Corning Corp., Corning, NY, 

USA) and treated with the indicated compounds for 96 hours. Caspase 3/7 Glo (Promega 

Corp.) was added to each well, and cell viability was determined by measuring the 
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firefly luciferase intensity on an EnVision device (PerkinElmer, Waltham, MA, USA). 

 

ROS Glo assay 

HCC4006 cells were seeded in white 384-well plates (#3570, Corning Corp.) and treated 

with the indicated compounds for 96 hours. ROS-Glo (Promega Corp.) substrate was 

added to each well, after which cells were incubated at 37ºC for three hours. Detection 

solution was then added to each well, and reactive oxygen species (ROS) generation was 

determined by measuring the firefly luciferase intensity on an EnVision device. 

 

siRNA transfection 

HCC4006 cells were transfected with a final concentration of 6 nM siRNA. RNAiMAX 

was used for the reverse transfection according to the manufacturer’s instructions. To 

silence COX-2 or MAGL, specific siRNAs (Silencer® Select Pre-designed siRNA from 

Life Technologies; s11472, s11473, and s11474 for COX-2, s22379, s22380, and s22381 

for MAGL, and negative control siRNA #1 for control) were used. Forty-eight hours after 

siRNA transfection, cells were harvested for real-time RT-PCR analysis using 1-step 

cells to CT reagent, and the knockdown of each mRNA was confirmed using TaqMan 

probes (Hs00228159_m1 for COX-2, Hs00996004_m1 for MAGL, and Hs01060665_g1 
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for Actin as an internal control). 

 

Monoacylglycerol lipase (MAGL) assay 

Compounds were dissolved in DMSO and subsequently diluted in enzyme reaction 

buffer (10 mM Tris-HCl, pH 7.5, 1 mM EGTA, 0.025% (w/v) Triton X-100, 0.01% bovine 

serum albumin [BSA]). Recombinant human MAGL was diluted in enzyme reaction 

buffer to a concentration of 7.5 ng/mL. Five microliters of compound solution were 

added to each well of a 384-well assay plate, and 5 µL of enzyme mixture were added per 

well. The mixtures were incubated at room temperature for 60 min. Next, 5 µL of 

substrate solution (150 µM 2-arachidonylglycerol) was added to each well, and the 

mixture was incubated at room temperature for 10 min. The reaction was stopped by 

adding 10 µL of 2% formic acid and 50 µL of acetonitrile containing 3 µM arachidonic 

acid-d8 (Cayman Chemical). Arachidonic acid production was detected via RapidFire 

mass spectrometry and corrected to arachidonic acid-d8. 

 

Combination screening  

HCC4006 cells were seeded in black 384-well plates and pretreated with Biologically 

annotated compounds for 1 hour, after which SPT inhibitors were added for 120 hours. 
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CellTiter Glo was added to each well, and cell variability was determined by measuring 

the firefly luciferase intensity on an EnVision device. 

 

Western blotting  

Cells were collected and lysed in RIPA buffer (Wako Pure Chemicals, Osaka, Japan) 

containing protease inhibitor cocktail (Roche, Basel, Switzerland). Lysates was boiled 

with sodium dodecyl sulfate (SDS) sample buffer (Bio-Rad, Hercules, CA, USA) 

containing 100 µM of dithiothreitol. Samples were electrophoresed on 5%–20% SDS 

polyacrylamide gels (ATTO, Tokyo, Japan), transferred to polyvinylidene fluoride 

membranes using an iBLOT apparatus (Thermo Fisher Scientific, Waltham, MA, USA), 

and immunostained using the indicated antibodies. 

 

Pathway enrichment analysis 

I used the Ingenuity Pathway Analysis (IPA) system for canonical pathway enrichment 

analysis to perform functional enrichment tests of target candidate genes linked to the 

hit compounds.  

 

Statistical analysis 
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Values are presented as means ± standard deviations. Statistical significance among 

groups was determined using an analysis of variance (ANOVA) followed by Dunnett’s 

test. A P value <0.05 was considered statistically significant. 

 

Curve Fitting  

Curve fitting has performed by using GraphPad Prism 6.0 software (Prism). 

Following equation was used;  

a. For cell growth inhibitory activity 

Y=Bottom + (Top-Bottom)/(1+10^((X-LogIC50))) 

Bottom was fixed to 100 

b. For other assay  

Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X))) 

Bottom was fix to 100 
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Results and Discussion 

SPT inhibitors attenuate lung cancer cell growth 

Previous studies suggested that SPT inhibition suppressed the growth of both 

melanoma and lung cancer cells [87, 88]. I found that the lung cancer cell line HCC4006 

was sensitive to myriocin, a known SPT inhibitor (Fig. 1A). Therefore, I synthesized 137 

pyrazolopyridine derivatives as SPT inhibitors and used these to validate the 

relationship between in vitro SPT activity inhibition and cancer cell growth. I confirmed 

that the inhibition of HCC4006 cancer cell growth correlated well (R2 = 0.87) with the in 

vitro inhibition of SPT2 enzyme activity, suggesting that SPT inhibition is responsible 

for HCC4006 cancer cell growth inhibition (Fig. 1B). One of the pyrazolopyridine 

derivatives, tentatively called “compound 1”, inhibited SPT2 with an IC50 value of 0.8 

nM in an in vitro enzyme assay and suppressed HCC4006 cell growth with an IC50 value 

of 59 nM (Fig. 1C). From then on, I utilized compound 1 as a chemical probe against 

SPT. 

 

SPT inhibitor induces necrosis-dependent cell death in HCC4006 cells 

Although SPT inhibition was shown to induce growth inhibition in HCC4006 cancer 

cells, the underlying MOA remained unclear. The cell growth inhibition might be caused 
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as the result of cell death. Cell death can be largely classified as follows, according to 

morphological and biochemical characteristics; apoptosis or programmed cell death, 

non-apoptotic cell death such as necrosis, and ferroptosis, a recently found 

well-regulated cell death mechanism [89, 90]. To understand the MOA of compound 1, I 

examined which types of cell death were induced by it using a well-characterized assay 

system and specific inhibitors against each cell signaling and metabolic pathways. First, 

I tested the apoptotic pathway since SPT inhibition induced apoptotic signals [88]. 

However, under my assay conditions, I found that caspase 3/7 cleavage, a phenotypic 

marker of apoptosis, was activated by compound 1 only at concentrations exceeding 3 

µM. Moreover, cells treated with another SPT inhibitor, myriocin, used as a control 

compound, did not cause apoptosis. Therefore, the caspase 3/7-activation observed only 

at high concentrations of compound 1 might be the result of an off-target effect (Fig. 2A). 

I also confirmed that treatment with the pan-caspase inhibitor, z-vad, did not attenuate 

SPT inhibitor-induced growth inhibition (Fig. 2B). Taken together, these observations 

suggested that apoptosis was unlikely to be involved in the SPT inhibitor-dependent cell 

growth inhibition. Second, I examined whether SPT inhibitor treatment would induce 

ferroptosis. Ferroptosis is a newly identified type of cell death involving the iron 

dependent accumulation of reactive lipid species [91]. I tested that treatment with SPT 
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inhibitors induced the generation of reactive oxygen species (ROS), a hallmark of 

ferroptosis. Treatment with compound 1 and myriocin induced ROS production in a 

dose-dependent manner,  However, treatment with ferrostatin-1, a well-characterized 

ferroptosis inhibitor, did not attenuate compound 1-induced cell growth inhibition (Fig. 

2D). These data suggest that ROS generation is a secondary effect of SPT inhibitor 

treatment and that SPT inhibitor-induced cell growth inhibition is independent of 

ferroptosis. Third, I evaluated whether SPT inhibitor treatment would induce necrosis. 

Necrosis is an apoptosis independent cell death mechanism characterized by a 

disruption of the cell membrane structure and subsequent release of cellular 

components to the extracellular medium [92]. Treatment with compound 1 and myriocin 

induced LDH release in a dose-dependent manner with respective EC50 values of 47 nM 

and 0.4 nM (Fig. 3A), indicating good agreement with the IC50 values for inhibitory 

effect on cell growth (59 nM and 4 nM, respectively). In order to examine whether SPT 

inhibition leads to necrosis, I further investigated the effect of known necrosis inhibitor 

IM-54, which was originally identified as a suppressor of hydrogen peroxide induced 

necrosis [93]. Co-treatment of compound1 or myriocin with IM-54 attenuated 

compound1 or myriocin induced cell death (Fig. 3B). These results collectively indicate 

that SPT inhibitors suppress cell growth via the necrotic pathway. 
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Compound combination screening using a biologically annotated library with SPT 

inhibitors 

A recent study illustrated that functional genomics studies involving siRNA or shRNA 

could be a useful approach to the elucidation of unknown MOA of targeted compounds 

[94]. However, suppression of a single gene might be overwhelmed by the compensatory 

activity of functionally redundant genes [78] and, for siRNA studies in particular, the 

efficiency of knockdown varied according to the target protein and, in most cases, 

partial knockdown did not affect the desired phenotype; in addition, off-target effects of 

siRNA are frequently observed [27, 28]. To overcome these obstacles, I performed an 

unbiased combination study using a biologically annotated library with SPT inhibitors. 

Several pharmaceutical companies have proposed the concept of a biologically 

annotated library to the elucidation of unknown MOA of targeted compounds [79-82]. I 

collected approximately 3000 compounds to form the biologically annotated library for a 

phenotypic screening in this study. My criteria for the selection of compounds were in 

vitro pharmacological activity with IC50 or EC50 value of less than or equal to 1 µM on 

each target protein, which is based on the results of cell-free and cell-based assays with 

multiple types such as functional and binding assays, as shown in Fig. 4A and Table 1. 
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Consequently, the biologically annotated compound library targeted approximately 

1500 unique proteins, each of which was often annotated by multiple compounds to 

avoid the misinterpretation of the results caused by off-target effects of small molecules. 

In fact, 70% of target protein information was annotated by more than one compound. 

The remaining 30% covered by a single compound for each was still included. In my 

combination study, the concentration of compound 1 was set to 1 µM, whose 

concentration is GI100 against HCC4006 cells with biologically annotated library 

compounds at a concentration of 3 µM; the latter was expected to fully regulate the 

target protein activity. I co-treated 3 µM biologically annotated libraries with or without 

1 µM SPT inhibitor (Fig. 4B), and identified 33 hit compounds that mitigated SPT 

inhibitor induced cell death (Fig. 4C and Table 2).  

 

Upregulation of COX-2 expression triggers necrosis in SPT inhibitor treated cells 

Pathway enrichment analysis, using IPA pathway enrichment software, has performed 

to reveal essential pathways related to SPT inhibitor induced cell death, and eighteen 

pathways were nominated as candidate pathways (Fig. 4D). I focused on the prostanoid 

biogenesis pathway because I noticed that 4 of the 33 hit compounds were related to 

COX-2, which catalyzes the conversion of arachidonic acid to prostanoid. Two selective 
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COX-2 inhibitors, celecoxib and rutaecapine, were included in this category [95], and 

were found to dose-dependently attenuate compound 1 mediated growth inhibition (Fig. 

5A). COX-2 is an inducible family protein that is expressed at low levels under basal 

conditions; expression of this protein can be induced by particular stimuli, leading to 

the generation of prostaglandin products [96, 97]. I examined whether treatment with 

SPT inhibitors would induce COX-2 expression, thus validating my combination library 

screening findings, and confirmed that treatment with SPT inhibitors induced COX-2 

expression after 96 hours (Fig. 5B). I also confirmed that beclomethasone and 

flumethasone suppressed SPT inhibitor mediated cell death (Fig. 5C). These two 

compounds were previously reported as suppressors of COX-2 expression [98]. These 

results strongly suggested that compound 1 induced cell growth inhibition was 

mediated by COX-2 function. Next, I re-analyzed the results of my biologically 

annotated library screening and found that JZL184 suppresses compound 1 induced cell 

growth inhibition. JZL184 is an irreversible inhibitor for monoacylglycerol lipase 

(MAGL), the primary enzyme responsible for degrading the endocannabinoid 

2-arachidonoylglycerol (2-AG) to arachidonic acid [95]. I measured the inhibitory 

activities of two other lipase inhibitors, CHEMBL130098 and CEHMBL1082517 

against MAGL because arachidonic acid metabolism was likely to key pathway for 
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compound 1 induced cell growth inhibition. As expected, both compounds inhibited in 

vitro MAGL enzyme activity (Table 3). These results indicate that seven compounds out 

of 33 hit compounds identified via combination library screening were related to 

arachidonic acid metabolism. These observations strongly support the validity of our 

biologically annotated library screening strategy. Finally, I performed a siRNA-based 

knock-down experiment to exclude the possibility of off-target effect of annotated 

compounds. Treatment of COX-2- or MAGL-targeting siRNAs suppressed compound 1 

induced cell growth inhibition (Fig. 6), and this result also supported the importance of 

COX-2 and MAGL related pathway for SPT inhibitor mediated cancer cell death.  

   In summary, I performed a combination screening of compounds using a biologically 

annotated library to reveal the MOA of SPT inhibition and found that COX-2 expression 

was upregulated by SPT inhibition. Although the mechanism by which COX-2 

expression was induced remains unclear, COX-2 induction was critical for SPT 

inhibition-induced cell death (Fig. 5D). My results present the possibility that the 

expression level of MAGL or COX2 in lung cancer patients could be one of candidate of 

patient stratification marker. A more detailed analysis will be the subject of further 

study. Finally, I emphasize that my combination approach involving a biologically 

annotated library could be widely applicable to the investigation and discovery of the 
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MOA of other types of anti-cancer drugs. My compound combination screening using 

biologically annotated library for anti-cancer drug MOA analysis could provide novel 

findings on target related pathway and be applicable as a complementary method for 

functional genomics-based MOA analysis. 
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Figures and Tables 

Figure 1. Chemical structure and growth inhibitory activities of serine palmitoyl 

transferase (SPT) inhibitors. 

(A) HCC4006 cells were treated with myriocin for 120 hours. Cell viability was 

measured using CellTiter Glo. The chemical structure of myriocin is also described. 

Values are reported as means ± s.e.m. in arbitrary units (n = 4). (B) Relationship of 

HCC4006 cell growth inhibition with SPT inhibitory activity. HCC4006 cells were 

treated with a range of doses of SPT inhibitor for 120 hours. The pIC50 values, 

indicating growth inhibitory activity, of each compound are plotted versus the in vitro 

SPT2 enzyme inhibitory activity. (C) HCC4006 cells were treated with compound 1 for 

120 hours. Cell viability was measured by CellTiter Glo. The chemical structure of 

compound 1 is also described. Values are reported as means ± s.e.m. in arbitrary units 

(n = 4).  
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Figure 2. 

(A) HCC4006 cells were treated with various concentrations of compound 1 or myriocin 

for 96 hours. Caspase 3/7 activity was measured using a Caspase 3/7 Glo assay. 

(B) HCC4006 cells were co-treated various concentrations of compound 1 with or 

without 20 µM z-VAD for 120 hours. Cellular viability was measured using CellTiter 

Glo.  

(C) HCC4006 cells were treated with various concentrations of compound 1 or myriocin 

for 96 hours. Intracellular reactive oxygen species (ROS) production was measured 

using a ROS Glo assay. 

(D) HCC4006 cells were co-treated various concentrations of compound 1 with or 

without 10 µM Ferrostatin-1. Cellular viability was measured by CellTiter Glo.  
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Figure 3. Characterization of the cell death mechanism of action. 

(A) HCC4006 cells were treated with various doses of compound 1 for 96 hours. Necrosis 

activity was measured by a lactate dehydrogenase (LDH) release assay. (B) HCC4006 

cells were co-treated with 1 µM compound 1 or 300 nM myriocin and 10 µM necrosis 

inhibitor IM-51 for 120 hours. Cell viability was measured by CellTiter Glo. 
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Figure 4. Unbiased screening with a biologically annotated library. 

(A) Composition of library used for combination screening. (B) Scheme of combination 

library screening. (C) HCC4006 cells were treated with the biologically annotated 

library components in the presence or absence of 1 µM compound 1 for 120 hours. The 

inhibitory activity of each compound is plotted. (D) Results of an IPA software-based 

pathway enrichment analysis. The significance of canonical pathways was determined 

by IPA’s default threshold. 
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Figure 5. Validation of the combination library screening results. 

(A) HCC4006 cells were treated with various concentrations of the COX-2 selective 

inhibitors celecoxib and rutaecapine together with 1 µM compound 1 for 120 hours. 

Cellular viability was measured with CellTiter Glo. (B) HCC4006 cells were treated 

with 1 µM compound 1 or 300 nM myriocin for 120 hours. Cell lysates (5 µg) were 

separated via 4–20% polyacrylamide gel electrophoresis, and COX-2 and beta-actin 

protein levels were detected via immunoblotting. (C) Cells were treated with various 

concentrations of COX-2 expression inhibitors, Beclomethasone and Flumethasone, and 

1 µM compound 1 for 120 hours. Cellular viability was measured using CellTiter Glo. 

Values are reported as means ± s.e.m. in arbitrary units (n = 4). (D) Summary of the 

molecular mechanism of action of SPT inhibitors. 
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Figure 6. Validation of the combination library screening results by using siRNAs. 

(A) HCC4006 cells were co-treated 6 nM COX-2, MAGL, or control siRNA with 3 µM 

compound 1 for 72 hours. Cellular viability was measured using CellTiter Glo, and the 

relative viability compared to DMSO treated cells was shown. 

(B) HCC4006 cells were treated with 6 nM COX-2, MAGL or control siRNA for 48 hours. 

Total transcripts in treated cells were subjected to measure expression level of COX-2 

and MAGL by qPCR. Relative knock-down efficiency was calculated by delta-delta CT 

method.  
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Table 1. 

Composition of library used for combination screening. 
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Type(s) Unique Target 

kinase 424 

enzyme 318 

G-protein coupled receptor 180 

ion channel 143 

peptidase 112 

other 90 

transporter 77 

transcription regulator 68 

transmembrane receptor 37 

ligand-dependent nuclear receptor 34 

phosphatase 18 

cytokine 9 

growth factor 5 

translation regulator 1 

Total 1516 
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Table 2. List of hit compounds identified via combination screening. 
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Compound Name Mechanism of Action Target class
Orlistat Arachidonic acid production Enzyme
CHEMBL130098 Hormone sensitive lipase Enzyme
CHEMBL1082517 Lysosomal acid lipase (LIPA) Enzyme
JZL184 Monoacyl glycerol lipase(MAGL) Enzyme
Flumetasone COX2 Enzyme
Beclomethasone COX2 Enzyme
Celecoxib COX2 Enzyme
Rutaecarpine COX2 Enzyme
Econazole Ergosterol synthesis Enzyme
CHEMBL557129 CDC25B Enzyme
CHEMBL1471965 PSMD14 Enzyme
Necrostatin-1 RIPK1 Kinase
CHEMBL1462325 AHR ligand-dependent nuclear receptor
CHEMBL334330 RARB ligand-dependent nuclear receptor
PRIMA-1 p53 Transcription regulator
pubchem2115839 STAT3 Transcription regulator
CID:|4283428 KLF5 Transcription regulator
CHEMBL165418 ABCC1 Transporter
Bromocryptine D2R GPCR
MK-329 CCKAR GPCR
Loxapine 5HTR GPCR
N-methylquipazine 5HT3A GPCR
CP-135807 5-HT1D GPCR
CHEMBL133534 MT1 GPCR
Promethazine H1R GPCR
Tripelennamine H1R GPCR
Tolterodine M2/M3 GPCR
Montelukast Leukotriene receptor Transmembrane receptor
4EGI-1 eIF4E/eIF4G interaction inhibitor Other
Pentamidine S100PRAGE Other
Torcetrapib cholesterol ester transfer protein Other
Miltefosine phospholipid antimicrobial drug Other
Azaguanine-8 guanine analog Other  
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Table 3. 

Summary of inhibitory activity against monoacylglycerol lipase (MAGL). 
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Compound Name Mechanism of Action MAGL inhibitory activity (IC50) 

CHEMBL130098 Hormone sensitive lipase  14 nM 

CHEMBL1082517 Lysosomal acid lipase (LIPA) 3100 nM  

JZL184 Monoacyl glycerol lipase(MAGL)  10 nM 
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General conclusion 
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Chemical screening has attracted attention in understanding novel biological 

phenomena by recent remarkable progress in science and technology. Successful 

chemical screening requires sophisticated primary phenotypic screening assay systems 

for identifying hit compounds and precise compound profiling for revealing the 

mechanisms of action and target proteins of the hit compounds. I tried to establish 

highly informative chemical screening platform to identify hit compounds and their 

target molecules, and furthermore to analyze how hit compounds induce the desired 

phenotype. 

   In the first chapter, in order to visualize the elementary processes of autophagy and 

identify factors involved in autophagy control, I have immunostained not only LC3 

which is widely recognized as an autophagic marker, but also p62, rab7, and LAMP2. I 

established quantification methods of each protein, and by using these parameters, 

chemical screening for autophagy regulators was performed. In my study, 11 compounds 

that inhibited autophagy were identified and I focused on vacuolin-1 which was a target 

unknown compound. Target identification of vacuolin-1, one of the hit compounds, was 

performed by clustering analysis that developed and utilized an algorithm to quantify 

the morphology of cells based on image information of drug-treated cells. As a result, it 

was found that vacuolin-1 is an inhibitor of the lipid kinase PIKfyve which is involved in 
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the phosphorylation of phosphatidylinositol, and the transport of the lysosomal protein 

occurring during the transition from the Golgi apparatus to the lysosome is inhibited to 

induce autophagy. Other groups also reported that vacuolin-1 inhibited autophagy via 

suppressing lysosomal maturation [60], and these results strongly support my results. 

In this study, I obtained several types of autophagy inhibitors but, autophagy inducing 

compounds which could be novel drug candidates for several diseases, especially central 

nervous system related diseases were not found. It has recently been reported that 

BRD4 (Bromodomain-containing protein 4) inhibitors activate autophagy via direct 

lysosomal activation [99-102]. BRD4 is a member of the BET family, functions as a 

epigenetic modulator [103], and inhibition of BRD4 activity induces transcriptional 

activation of lysosomal genes. Since BRD4 inhibitor was not included in the library of 

our screening, a larger scale chemical screening by using my established screening 

platform makes it possible to obtain autophagy inducing compounds. In addition, some 

groups have recently developed improved methods for monitoring autophagy. Farkas et 

al. have developed luciferase-based detection system for autophagy flux [104], and  

Kaizuka et al. have debeloped GFP-LC3-RFP-LC3ΔG, a fluorescent probe to evaluate 

autophagic flux [105], Combining my method and other reported method will allow me 

to consider the mechanism of autophagy more deeply.      
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   In the second chapter, SPT inhibitor was discovered as a target of a new anticancer 

drug that controls cancer metabolism, and its mechanism of action was elucidated. 

Little has been reported about the mechanism of action of SPT inhibitors, I have 

constructed a biologically annotated library and constructed a chemical screening 

system applied from the combination study of compounds. As a result of screening and 

following detailed analysis, SPT inhibitor promotes cell death by activating 

prostaglandin production pathway through induction of COX-2 expression. These data 

suggest that SPT inhibitor may be effective as anticancer agents in cancer types where 

COX-2 and prostaglandin pathway is activated. These findings are also interesting in 

that they can be used as patient stratification markers when conducting clinical trials 

using SPT inhibitors. In addition, my combination screening using annotation library 

with anti-cancer drug could be applied to MOA analysis of various anti-cancer drugs. In 

fact, I clarified the mechanism of action as an anticancer agent of another lipid synthase, 

SCD1 inhibitor by our established combination screening [106]. In summary, I 

conducted chemical screening and development of image-analysis algorithms, and 

clarified the control mechanism of autophagy and elucidated the MOA of anticancer 

drugs. My result is significant not only in contributing to the understanding of unknown 

biological phenomena but also in establishing methods for exploring and utilizing 
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compounds useful for medical care. 
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