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The vitamin D receptor (VDR), a member of the nuclear receptor superfamily, 

mediates the biological actions of the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1, 

25(OH)2D3). It regulates calcium homeostasis, immunity, cellular differentiation, and other 

physiological processes. Secondary bile acids such as lithocholic acid (LCA) were identified as 

endogenous VDR agonists. The LCA binds to VDR and induces expression of an enzyme that 

metabolizes itself and reduces its toxicity. 

I determined amino acid residues of VDR required for its activation by 1, 25(OH)2D3 

and LCA by generating VDR mutants predicted to modulate ligand response based on sequence 

homology to pregnane X receptor, another bile acid-responsive nuclear receptor. In both vitamin 

D response element activation and mammalian two-hybrid assays, I clarified molecular 

mechanisms underlying VDR activation mediated by 1, 25(OH)2D3 and LCA. 

To elucidate the relationship between chemical structures of bile acids and their 

agonistic activities for VDR, I examined the effect of several LCA derivatives on VDR 

activation. I determined structural elements required for potent activation of VDR and identified 

compounds with more potent activity than LCA. LCA acetate is the most potent of these VDR 

agonists with selectivity. LCA acetate induced VDR target genes in intestinal cells. Unlike LCA, 

LCA acetate inhibited the proliferation of human monoblastic leukemia cells and induced their 
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differentiation. These results clearly demonstrated LCA acetate exhibits more potent efficacies 

in cancer cells relative to LCA.  

Molecular and biological analyses on bile acids and their derivatives as VDR agonists 

should be useful in the development of ligands that selectively target VDR function in cancer 

and immune disorders without inducing adverse effects. 
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AF activation function 

CAR constitutive androstane receptor 

CDCA chenodeoxycholic acid 

CYP cytochrome P450 enzyme 

DR direct repeat 

ER everted repeat 

ER estrogen receptor alpha 

GST glutathione S-transferase 

HEK293 human embryonic kidney 293 

FXR farnesoid X receptor 

LBD ligand-binding domain 

LBP ligand-binding pocket 

LCA lithocholic acid 

LUC luciferase 

LXR liver X receptor 

N-CoR nuclear receptor co-repressor 

NBT nitroblue tetrazolium 

NR nuclear receptor 
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PPAR peroxisome proliferator-activated receptor 

PXR pregnane X receptor 

RAR retinoic acid receptor 

RXR retinoid X receptor 

SERM selective estrogen receptor modulator 

SRC-1 steroid receptor coactivator-1 

VDR vitamin D receptor 

VDRE vitamin D response element 
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Structure and function of nuclear receptors 

Nuclear receptors (NRs) function as ligand-inducible transcription factors. They are 

engaged in many biological processes such as cell growth and differentiation, embryonic 

development, and metabolism (Mangelsdorf et al., 1995). Forty-eight nuclear receptors have 

been identified in human (Germain et al., 2006), many of which are still classified as orphan 

receptors because their ligands are unknown (Gallastegui et al., 2015). The primary structures of 

NRs are highly conserved among the family with six subregions from A to F based on degree of 

homology (Krust et al., 1986) (Fig. 1). The divergent amino terminal A/B region possess 

ligand-independent transactivation function (activation function 1; AF-1). The most conserved 

C region is the deoxyribonucleic acid (DNA)-binding domain (DBD). The short D region is 

called hinge domain that connects the DBD and the following E region. The part of C and D 

regions encodes the nuclear localization signal. The E region acts as the ligand-binding domain 

(LBD) that serves ligand-dependent transactivation function (activation function 2; AF-2). A 

few receptors possess the F region. Intensive structural biology efforts have been made to reveal 

NR conformations in regulating their signal transductions (Rastinejad et al., 2013). 

The carboxyl-terminal LBD plays a pivotal role in ligand-dependent transcriptional 

control. The transcription activity of NRs is regulated by small molecule ligands such as 

steroids, retinoids, fatty acids, and other lipid-soluble compounds. On ligand binding, NRs 
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undergo a conformational change in the cofactor binding site and AF-2 domain, a structural 

rearrangement that results in the dynamic exchange of cofactor complexes (Glass and Rosenfeld, 

2000). In the absence of ligand, corepressors bind to the AF-2 surface, that is composed of 

portions of helix 3, loop 3 – 4, helix 4, 5, and 11, and mediate silencing of gene transcription. 

Binding of a ligand mediates conformational changes; it alters the AF-2 surface by repositioning 

helix 12, reduces the binding affinity for corepressors and increases the affinity for coactivators, 

resulting in the stimulation of transcription (Fig. 2). These cofactors form complexes with 

transcription factors that induce chromatin remodeling or recruitment of the basal transcription 

machinery. These interactions allow NRs to modulate transcription of specific target genes and 

mediate dramatic changes of the transcription status within cells. 

Though all NRs ultimately act to increase or decrease gene transcription, some (e.g., 

glucocorticoid receptor) reside primarily in the cytoplasm, whereas others (e.g., thyroid 

hormone receptor) are always located in the nucleus. After ligand binding, the cytoplasmically 

localized NRs translocate to the nucleus. The localization of NRs is controlled through the 

nuclear localization signal located between the C and D regions. 

The DBD, consisting of two zinc fingers, contacts specific DNA recognition 

sequences in target genes. Most NRs bind to DNA as dimers. Consequently, each monomer 

recognizes an individual DNA motif, referred to as a "half-site". The steroid receptors, including 



10 

 

the glucocorticoid, estrogen, progesterone, and androgen receptors, bind to DNA as 

homodimers. Consistent with this twofold symmetry, their DNA recognition half-sites are 

palindromic. The thyroid, retinoid, peroxisome proliferator activated, and vitamin D receptors 

bind to DNA preferentially as heterodimers in combination with retinoid X receptors (RXRs). 

Their DNA half-sites are arranged as direct repeats (DRs). 

 

NR family as drug target 

Certain disease states are associated with defective regulation of gene transcription. A  

well-known instance is that, in promyelocytic leukemia, fusion of retinoic acid receptor (RAR) 

 to other nuclear proteins causes aberrant gene silencing and prevents normal cellular 

differentiation (de The et al., 1990; Goddard et al., 1991; Kakizuka et al., 1991; Pandolfi et al., 

1991; Chang et al., 1992). Treatment with retinoic acid reverses this repression and allows 

cellular differentiation and apoptosis to occur (Fenaux and Degos, 1997). Not only the steroid 

hormone NRs such as estrogen receptor (Heldring et al., 2007) and glucocorticoid receptor 

(Sundahl et al., 2015), but also RXR-partnered NRs such as peroxisome proliferator-activated 

receptor (PPAR) (Spiegelman, 1998) have been intensively studied for their biological 

functions and their ligands have been under development or clinically used in diverse disease 

conditions (Evans and Mangelsdorf, 2014). Analyses of the gene-family distribution of targets 
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by drug substance for both small-molecule and biological drugs revealed that more than 50% of 

drugs target only four key gene families: class I G protein-coupled receptors (GPCRs), NRs, 

ligand-gated ion channels, and voltage-gated ion channels (Overington et al., 2006). 

Collectively, NRs are considered to be a viable drug target class and is under active 

investigations. 

 

NR modulators 

Because many NRs play pivotal roles in diverse diseases, their synthetic ligands have 

been under active investigations to generate drugs either mimic the action of typical endogenous 

ligands (agonists) or block the action of endogenous ligands (antagonists). In order to design 

more suitable drugs with reduced side effects, selective modulators for NRs have been studied 

(Smith and O’Malley, 2004; Burris et al., 2013). Selective NR modulators function as tissue 

and/or target gene selective ligands by exhibiting agonist, antagonist, or inverse agonist activity 

through interaction with coregulators. 

The well-known examples of tissue-selective modulators were those for estrogen 

receptors, which are considered as a model case in studying NR modulators. Tamoxifen works 

as an antagonist in breast tissue but as an agonist in bone and uterus. Raloxifen was discovered 

as a selective estrogen receptor modulator (SERM) that is used in the prevention of osteoporosis 
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in postmenopausal women with reduced agonistic activity in endometrial growth in comparison 

to tamoxifen (Gottardis et al., 1990). The structural analyses have revealed their distinctive 

linkage between structure and functions (Fig. 2). X-ray crystallography shows that various 

SERMs induce distinct estrogen receptor conformations (Heldring et al., 2007). The 

tissue-specific responses caused by these agents in breast, bone, and uterus appear to reflect 

distinct interactions with coactivators. Moreover, there are examples of gene-selective 

modulators that exhibit target-gene selective actions within a single cell type (Bramlett and 

Burris, 2003; Quinet et al., 2004), the mechanism of which cannot be ascribed to differential 

expression of cofactor proteins or receptor subtypes. Thus, diverse types of NR modulators have 

been studied for pursuing opportunities to develop novel pharmaceutical entities. 

 

Vitamin D receptor 

The vitamin D receptor (VDR [NR1I1]) is a member of the NR superfamily, which 

was originally identified as a receptor for the active form of vitamin D3, 

1,25-dihydroxyvitamin D3 [1, 25(OH)2D3] (Fig. 3A) (Baker et al., 1988). 1, 25(OH)2D3 

influences transcription of specific genes and this is mediated through the direct binding of the 

1, 25(OH)2D3 to VDR/RXR heterodimeric complex (Fig. 3B). Activation of VDR results in 

the induction of the target genes, nearby which specific DNA sequences exist. This pathway is 
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called the genomic action of 1, 25(OH)2D3. On the other hand, rapid signal transduction 

responses to 1, 25(OH)2D3 have been observed within seconds to minutes, resulting in 

transcaltachia, insulin secretion, or ion channel regulation (Haussler et al., 2011), which are 

called non-genomic actions. These are suggested to be mediated by plasma membrane-bound 

VDR. 

VDR regulates many physiological processes including cell growth and differentiation, 

embryonic development, and metabolic homeostasis (Yamada et al., 2003a). It has been 

reported that VDR binds more than 2700 sites in human genome (Ramagopalan et al., 2010) 

and regulates over 900 genes (Wang et al., 2005), reflecting its pleiotropic functions. Typically, 

target genes that have been studied include those for calbindin D9K (Cao et al., 2002), calbindin 

D28K (Gill and Christakos, 1993), osteocalcin (Kerner et al., 1989; Morrison et al., 1989; Ozono 

et al., 1990), Cyp24A1 (Zierold et al., 1995), transient receptor potential vanilloid type 6 

(TRPV6) (Meyer et al., 2006), Rankl (Kim et al., 2006), and CDKN1A (p21) (Liu et al., 1996). 

The genes for Cyp27b1 (Murayama et al., 1999) and PTH (Demay et al., 1992) are reported to 

be regulated in negative ways. These target genes highlight the important roles of VDR in 

vitamin D metabolism, calcium homeostasis, and cell cycle regulation. 

The active form of vitamin D, 1, 25(OH)2D3, regulates calcium metabolism, cellular 

differentiation, and immunity through VDR activation (Bouillon et al., 1995; Haussler et al., 
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1998). Vitamin D is a secosteroid, in which the B ring of steroid structure is ruptured (Yamada 

et al., 2003b). Ultraviolet irradiation induces a photochemical reaction of 7-dehydrocholesterol, 

which is synthesized from acetyl-coenzyme A and is a precursor of cholesterol, to produce the 

secosteroid vitamin D3 in the skin. Vitamin D3 is hydroxylated at the 25 position by vitamin D3 

25-hydroxylase (cytochrome P450 enzyme (CYP)27A1) in the liver to yield 25-hydroxyvitamin 

D3, the major form of vitamin D in the circulation. The 25-hydroxyvitamin D3 is further 

hydroxylated in the 1 position by CYP27B1. This reaction is tightly regulated and occurs 

exclusively in the kidney to yield the active metabolite, 1, 25(OH)2D3. 

1, 25(OH)2D3 has been demonstrated to be able to inhibit the proliferation and/or to 

induce the differentiation of various types of malignant cells, including breast, prostate, colon, 

skin, and brain cancer cells, as well as myeloid leukemia cells in vitro (Brown et al., 1999). The 

administration of 1, 25(OH)2D3 or its analogs has therapeutic effects in mouse models of 

malignancies such as leukemia and colon cancer (Honma et al., 1983; Kumagai et al., 2003). 

Although vitamin D and its synthetic analogs have been used for the treatment of bone and skin 

disorders, clinical application to the management of cancer and leukemia has been limited by 

their adverse effects, especially hypercalcemia (Bouillon et al., 1995). Therefore, development 

of synthetic vitamin D analogs that have efficient growth-inhibitory activity with low calcemic 

activity is underway in pharmaceutical point of view (Guyton et al., 2003). Overall, modulating 
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the intracellular VDR activity would be beneficial for the treatment of cancer, infectious 

diseases, autoimmune disease, cardiovascular diseases, and androgenic alopecia. 

Three-dimensional modeling and the solution of a VDR crystal structure have yielded valuable 

insight into the mode of binding of 1, 25(OH)2D3 in the VDR-ligand binding pocket (LBP) 

(Norman et al., 1999; Rochel et al., 2000; Yamamoto et al., 2000). 

 

Development of VDR agonists 

Synthetic vitamin D analogs have been used successfully in the treatment of bone and 

skin disorders. However, their adverse effects, including hypercalcemia, bone resorption, and 

soft tissue calcification, limit the clinical application of VDR agonists in the management of 

malignant tumors and immune disorders (Bouillon et al., 1995). The need for VDR ligands with 

potent anticancer activity that lack adverse effects on calcium metabolism has led to a major 

synthetic chemistry effort (Nagpal et al., 2005). Extensive researches have been made for 

development of potential VDR modulators. Several analogs exhibit efficient anti-proliferation 

and pro-differentiation activities with fewer calcemic side effects than 1, 25(OH)2D3, but the 

underlying molecular mechanism of this functional specificity is still not understood (Bouillon 

et al., 1995). Structure-function analyses of vitamin D analogs suggest that these secosteroids 

also act on a membrane receptor and that adverse effects are at least partly due to a poorly 
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characterized non-genomic mechanism of action (Norman et al., 2001). There are the examples 

of VDR modulators that escaped their calcemic actions via modulation on the pharmacokinetic 

exposures (Burris et al., 2013). Alfacalcidol (alpha D3) is a prodrug that is enzymatically 

converted to the active form 1, 25(OH)2D3 in the liver through the metabolism by 

25-hydroxylase. Thus, alfacalcidol exhibits its tissue-selectivity after the metabolic activation 

without affecting the enterocytes found in the small intestine. Alfacalcidol has been developed 

for the treatment of osteoporosis with less calcemic activity (Menczel et al., 1994). Topical 

maxacalcitol has been clinically developed for the treatment of psoriasis vulgaris (Barker et al., 

1999). It is another example of VDR modulator that exhibited pharmacokinetic tissue selectivity 

with reduced binding to the serum vitamin D binding protein and its application has been 

approved for secondary hyperparathyroidism in patients (Brown et al., 2002). In the medicinal 

chemistry efforts for pursuing the VDR modulators, Ro-26-9228 was identified that exhibits 

cell-type selective action and has a bone-protecting effect without inducing hypercalcemia with 

preferred gene regulation effects on osteoblasts over intestinal cells (Ismail et al., 2004). 

Another example of tissue-selective VDR modulator is 2MD. It displays potent stimulating 

effects on bone formation with a selective activity on bone over intestine (Sicinski et al., 1998). 

However, vitamin D analogues that possess cellular or tissue selectivity caused by distinctive 

transcriptional regulation have not been fully understood, while tissue selective estrogen 
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receptor modulators have been discovered and well characterized (Heldring et al., 2007). Thus, 

multiple vitamin D derivatives have been in active research and development.  

Researches seeking synthetic VDR agonists are also under active investigations by 

exploring a chemical space that is different from vitamin D3. Non-secosteroidal VDR agonists 

have been subject to major medicinal chemistry efforts in pharmaceutical industries. 

Non-secosteroidal VDR ligands have been reported with less calcium mobilization side effects 

than 1,25(OH)2D3 (Boehm et al., 1999). As examples, LY2108491 and LY2109866 have been 

reported to function as potent and efficacious agonists to VDR in multiple cell types but exhibit 

attenuated transcriptional activity in intestinal cells (Ma et al., 2006). VDRM2 has a 

nonsecosteroidal scaffold and acts as a tissue-selective and orally bioavailable VDR ligand that 

induces the expression of the bone genes. Animal experiments demonstrated its wider safety 

margin between bone efficacy and hypercalcemia (Sato et al., 2010). Although these are the 

examples of VDR modulator with distinctive cell/tissue selective actions, they are still in 

preclinical investigations. 

 

VDR as a bile acid sensor 

It has been reported that VDR has dual functions as an endocrine receptor for 1, 

25(OH)2D3 and as a metabolic sensor for bile acids (Makishima et al., 2002). NRs belonging to 
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the NR1H and NR1I subfamilies, including VDR, have been shown to control cholesterol and 

bile acid metabolism (Lu et al., 2001). Liver X receptor  (LXR; NR1H3) and LXR 

(NR1H2) function as oxysterol receptors and regulate cholesterol metabolism in liver, intestine, 

adipose tissue, and macrophages. Bile acids, which are major metabolites of cholesterol in the 

body, bind to farnesoid X receptor (FXR; NR1H4) and induce the feedback mechanism in the 

liver bile acid synthesis from cholesterol. Bile acids produced in the liver, called primary bile 

acids, are excreted in bile after conjugation with taurine and glycine, and most of them are 

reabsorbed in the intestine. Bile acids that escape reabsorption are converted to the secondary 

bile acids by the intestinal microflora. Pregnane X receptor (PXR, also called as steroid and 

xenobiotic sensing nuclear receptor (SXR); NR1I2), which acts as a receptor for various 

xenobiotics, responds to the secondary bile acids and induces their metabolism in the liver. Like 

other members from NR1H and NR1I subfamilies, VDR was also found to function as a 

receptor for the secondary bile acids such as lithocholic acid (LCA) (Fig. 3A) and be involved 

in bile acid metabolism by inducing detoxyfication mechanism for the toxic LCA in the liver 

and intestine (Makishima et al., 2002).  

These findings provided a rationale for the development of novel VDR ligands derived 

from bile acids and from other non-secosteroid compounds that regulate non-canonical VDR 

functions (Choi and Makishima, 2009). To develop new VDR ligands as therapeutic agents, it is 



19 

 

crucial to separate the desired biological functions of 1, 25(OH)2D3 that exhibits various 

functions including calcium regulation, cell differentiation, anti-proliferation, and immune 

modulation. 

Diverse VDR analogs created an additional cavity in the VDR-LBP to accommodate 

their side chains and thus changed the structure of the LBP. Intriguingly, the VDR ligands acted 

as an agonist, a partial agonist, or an antagonist depending on the structure of the side chain 

(Yamamoto et al., 2014). These results demonstrate that modifications of the VDR ligands 

change the pocket structure and provide a new perspective for the development of VDR 

modulators that exhibit a specific biological activity. In terms of development of pharmaceutical 

agents for modulating VDR activity, changing the chemical scaffold could provide novel 

chemical spaces and generally could have large impacts (Böhm et al., 2004) on 

"chemotype"-related risks. Identifying the optimal starting point is very important to commence 

chemical optimization campaigns. Thus, bile acid-derived VDR agonists could be an alternative 

ligands to mitigate the limitations observed for 1, 25(OH)2D3 and its derivatives. In addition, it 

is of note that VDR acts as an anticancer transcription factor by upregulating expression of 

detoxifying enzymes for LCA that cause cancer whereas a physiological link between bile acids 

and calcium homeostasis has not been clarified. Thus, I hypothesize that bile acid-derived VDR 
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ligands may provide novel opportunities for development of VDR ligands and function as 

selective VDR modulators without causing hypercalcemia. 

 

Objectives of this research 

  The aims of this research are to deeply analyze the interaction between the 

VDR-LBP and its ligands such as 1, 25(OH)2D3 and bile acids, provide the fundamental 

information regarding the relationship between VDR structure and its function, and develop 

novel VDR ligands that could lead to efficient VDR-targeting therapy.  
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Part 1 

Structural determinants for vitamin D receptor response to endocrine and xenobiotic 

signals 
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ABSTRACT 

 

VDR responds to endocrine and xenobiotic signals that are mediated by 

1,25(OH)2D3 and secondary bile acids such as LCA, respectively, and regulates diverse 

physiological processes. To identify structural determinants required for VDR activation by 

1,25(OH)2D3 and LCA, I generated VDR mutants predicted to modulate ligand response based 

on sequence homology to PXR, another bile acid-responsive nuclear receptor. In both vitamin D 

response element activation and mammalian two-hybrid assays, I found that a VDR mutant with 

S278V is activated by 1,25(OH)2D3 but not by LCA, whereas another VDR mutant with 

S237M can respond to LCA but not to 1,25(OH)2D3. Based on mutagenesis data, I propose a 

docking model for LCA binding to VDR-LBP in which LCA interacts with amino acids of VDR 

in a different mode from 1,25(OH)2D3. Comparative analysis of the VDR-LCA and 

VDR-1,25(OH)2D3 structure-activity relationships should be useful in the development of bile 

acid-derived synthetic VDR ligands that selectively target VDR function in cancer and immune 

disorders without inducing adverse hypercalcemic effects. 
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INTRODUCTION 

 

VDR functions as a receptor for a number of secondary bile acids including LCA 

(Makishima et al., 2002). LCA is also a weak agonist for the nuclear receptors FXR and PXR. 

The primary bile acids, cholic acid and chenodeoxycholic acid (CDCA), are synthesized from 

cholesterol in the liver and secreted in bile as glycine or taurine conjugates (Nagengast et al., 

1995). After assisting in the digestion and intestinal absorption of lipids and fat-soluble vitamins, 

including dietary vitamin D, the majority of bile acids are reabsorbed and returned to the liver 

through the enterohepatic circulation. Bile acids that escape reabsorption in the ileum are 

converted to the secondary bile acids deoxycholic acid and LCA by intestinal microflora. While 

FXR serves as a sensor for both primary and secondary bile acids (Makishima et al., 1999a; 

Parks et al., 1999; Wang et al., 1999), PXR and VDR are selectively activated by secondary bile 

acids (Staudinger et al., 2001; Xie et al., 2001; Makishima et al., 2002). PXR, which shows the 

highest sequence identity with VDR, responds to steroid hormone metabolites and xenobiotics, 

but not to 1,25(OH)2D3 (Blumberg et al., 1998; Lehmann et al., 1998). The crystal structures 

of the VDR and PXR LBDs reveal strong structural conservation (Rochel et al., 2000; Watkins 

et al., 2001). In this study, I compared the LBD structures of VDR and PXR, generated multiple 

VDR point mutants, and analyzed their responses to1,25(OH)2D3 and LCA. I also examined 
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the LCA responses of VDR mutants that are observed in patients of vitamin D-resistant rickets 

(Haussler et al., 1998) to gain insights into the potentially different functions of 1,25(OH)2D3 

and LCA. These experiments led to the identification of VDR mutants that selectively respond 

to 1,25(OH)2D3 or LCA. Computational docking analysis was utilized to model the structural 

requirement for the mutated residues in ligand discrimination. Identification of critical residues 

for response to endocrine and bile acid ligands should aid the development of VDR agonists 

with improved pharmacological specificity. 
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MATERIALS AND METHODS 

 

Chemical compounds 

1,25(OH)2D3 and LCA were obtained from Calbiochem (San Diego, CA) and 

Nacalai (Kyoto, Japan), respectively. 

 

Graphical manipulation and docking 

Graphical manipulations were performed using SYBYL 6.7 (Tripos, St. Louis, MO) 

(Yamamoto et al., 2000; Choi et al., 2001). The atomic coordinates of the crystal structures of 

hVDR-LBD (165-215) (1DB1) and hPXR-LBD (1ILH) were retrieved from the Protein Data 

Bank. LCA was docked into VDR and PXR using the docking software FlexX (version 1.11.0) 

(Rarey et al., 1996). The active site (in the case of NRs, the LBP) was defined to include all 

amino acids within 6.5 Å of the cocrystallized ligand. 

 

Plasmids 

A fragment of hVDR (GenBank Accession # J03258) was inserted into pCMX-flag 

vector to make pCMX-VDR (Willy and Mangelsdorf, 1997; Makishima et al., 2002). The LBD 
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of hVDR was inserted into pCMX-GAL4 vector to make pCMX-GAL4-VDR, and full-length 

hVDR was inserted into pCMX-VP16 vector to make pCMX-VP16-VDR (Makishima et al., 

2002). In the mammalian two-hybrid assay, the NR-interacting fragment of SRC-1 exhibited 

more robust ligand-dependent interaction with VDR than full-length SRC-1. Therefore, nuclear 

hormone receptor-interacting domains of SRC-1 (amino acid 595-771; GenBank Accession # 

U90661) and N-CoR (amino acid 1990-2416; # U35312) were inserted into pCMX-GAL4 

vector for pCMX-GAL4-SRC-1 and pCMX-GAL4-N-CoR, respectively. Mutations were 

introduced into pCMX-VDR, pCMX-GAL4-VDR and pCMX-VP16-VDR using QuikChange 

Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). VDR-responsive hCYP3A4-everted 

repeat (ER)-6x3-tk-luciferase (LUC) and GAL4-responsive MH100 (upstream activating 

sequence; UAS)x4-tk-LUC reporters were utilized (Willy and Mangelsdorf, 1997; Makishima et 

al., 2002). All plasmids were sequenced prior to use to verify DNA sequence accuracy. 

 

Cell culture and cotransfection assay 

Human embryonic kidney (HEK) 293 cells were cultured in Dulbecco's modified 

Eagle's medium (DMEM) containing 5% fetal bovine serum and Antibiotic-Antimycotic 

(Nacalai) at 37oC in a humidified atmosphere of 5% CO2 in air. Transfections were performed 

by the calcium phosphate coprecipitation assay as previously described (Lu et al., 2000). Eight 
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hours after transfection, cells were treated with ligands. Then, cells were harvested 16~20 hr 

after the treatment and luciferase and -galactosidase activities were measured using a 

luminometer and a microplate reader (Molecular Devices, Sunnyvale, CA). DNA cotransfection 

experiments included 50 ng of reporter plasmid, 20 ng of pCMX--galactosidase, 15 ng of each 

receptor and/or cofactor expression plasmid, and pGEM carrier DNA for a total of 150 ng of 

DNA per well in a 96-well plate. Luciferase data were normalized to an internal -galactosidase 

control and represent the mean (± standard deviation) of triplicate assays. 

 

Ligand binding assay 

LBDs of hVDR and its mutants were cloned into the glutathione S-transferase 

(GST)-fusion vector pGEX-4T1 (Amersham, Piscataway, NJ). GST-VDR fusion proteins were 

expressed in BL21 DE3 cells (Promega, Madison, WI) and purified with glutathione sepharose 

beads (Amersham). Competitive ligand binding assay was performed by modification of 

previous reports (Nakajima et al., 1994; Solomon et al., 2001). Briefly, 500 ng of GST fusion 

proteins were bound to glutathione sepharose and incubated with [26,27-methyl-3H] 

1,25(OH)2D3 (Amersham) in the presence or absence of nonradioactive ligand in a buffer (10 

mM tris(hydroxymethyl)aminomethane (Tris)-HCl, pH 7.6, 1 mM ethylenediaminetetraacetic 

acid (EDTA), 300 mM KCl, 1 mM dithiothreitol, 10% glycerol) for 3 hr at 4oC. After washing 
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twice, the protein and bound 1,25(OH)2D3 was resuspended in 200 μl of the binding buffer and 

150 l was assessed by liquid scintillation counting. 

 One-way ANOVA followed by Dunnett's multiple comparisons test was performed 

using GraphPad Prism version 7.04 for Windows (GraphPad Software, La Jolla California USA, 

www.graphpad.com). 

 

RESULTS 

 

Comparison of LBDs of VDR and PXR 

Since hVDR and hPXR share significant amino acid identity (44% in the LBDs) and 

PXR is responsive to LCA but not 1,25(OH)2D3, I hypothesized that substitution of VDR 

residues with PXR amino acids at critical LBP positions which make hydrogen bonds with the 

hydroxyl groups of 1,25(OH)2D3 might yield LCA-selective mutants. The 

VDR-1,25(OH)2D3 co-crystal shows that the 1-hydroxyl group of 1,25(OH)2D3 contacts 

S237 and R274, the 3-hydroxyl group is coordinated by S278 and Y143, and the 25-hydroxyl 

group makes hydrogen bonds to H397 and H305 (Rochel et al., 2000). These amino acids, 

except for Y143, are conserved among human, mouse, rat, and chicken VDRs (Fig. 4A). Y143 

is replaced with phenylalanine in cVDR, which is identical to the corresponding amino acid in 
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PXRs. R274 in hVDR is conserved in VDRs and PXRs, and H397 of hVDR is identical among 

other VDRs and hPXR. The alignment indicates that S237, S278, and H305 are unique to VDRs 

and that PXR has other amino acids at these positions. Although the C backbone of the VDR 

and PXR structures are very similar, PXR possess a flexible loop between the -sheet and H7 

instead of the H6 found in VDR, which is responsible for PXR’s ability to respond to diverse 

ligands (Watkins et al., 2001) unlike VDR (Fig. 4B and C). In addition, the crystal structures 

defined for the VDR-LBD (165-215) and the PXR-LBD (Rochel et al., 2000; Watkins et al., 

2001) indicate that small differences in the amino acids of LBD cause significant change in the 

shape of the LBP (Fig. 4). These findings suggest that mutational analysis of VDR based on an 

amino acid alignment and structural comparison with PXR should be very useful in elucidating 

the structure-function relationship of VDR and its ligands. 

 

Functional analysis of VDR mutants 

The structure-activity relationships for NRs and ligands have been elucidated by 

experiments based on site-directed mutagenesis. Replacement of a LBP residue with the 

corresponding residue of a closely related receptor was utilized to analyze PPARs and 

estrogen-related receptor-(Takada et al., 2000; Greschik et al., 2002). Alanine scanning 

mutagenesis was used to analyze the interaction of VDR with several vitamin D analogs and 



30 

 

bile acids (Choi et al., 2003). To further analyze structure-activity relationships between VDR 

and two different natural ligands (1,25(OH)2D3 and LCA), I replaced ligand-coordinating 

residues with the corresponding PXR amino acids. I generated hVDR mutants of Y143 and 

S278, which make hydrogen bonds with the 3-hydroxyl group of 1,25(OH)2D3, and that of 

S237, which interacts with the 1-hydroxyl group of 1,25(OH)2D3. These amino acids were 

changed to the corresponding amino acids of hPXR (Fig. 4A) or alanine. Vitamin D-resistant 

rickets-associated mutants of VDR (R274L and H305Q) were also examined. Since F288 of 

hPXR contributes to structural differences between VDR and PXR (Watkins et al., 2001), the 

corresponding amino acid in VDR (S275) was replaced with either phenylalanine or alanine 

(S275F and S275A). The crystal structure of VDR-LBD was determined in a deletion mutant 

(165-215), because a long flexible loop between helices 1 and 3 prevents the preparation of 

stable crystals (Rochel et al., 2000). This loop does not seem to contribute to ligand interaction, 

since VDR (165-215) can be transactivated by 1,25(OH)2D3, its synthetic analogs, and LCA 

as efficiently as wild-type VDR (Rochel et al., 2001; Choi et al., 2003). 

I examined ligand-responsive transcriptional activation by the full-length VDR point 

mutants. HEK 293 cells were transfected with wild-type VDR or VDR mutants and a luciferase 

reporter containing a VDR-responsive element called everted repeat (ER)-6 from the CYP3A4 

promoter (Fig. 5A). Because kidney-derived HEK293 cells express endogenous VDR, the 
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addition of 1,25(OH)2D3 or LCA basally induced luciferase activity. Transfection of wild-type 

VDR effectively increased induction by both ligands. Y143A, Y143F, S278A, and S278V are 

the VDR mutants of Y143 or S278 that coordinate the 3-hydoxyl group of 1,25(OH)2D3. They 

were activated by 1,25(OH)2D3 but not by LCA. S237A and S237M are the VDR mutants of 

S237 that coordinate the 11-hydroxcyl group of 1,25(OH)2D3. 1,25(OH)2D3 weakly 

activated S237A and had no effect on S237M activity, while LCA activated both mutants. 

These data suggested that the responses of VDR to 1,25(OH)2D3 and LCA are changed by the 

mutations of the amino acid residues S237, Y143, and S278. The rickets-causing mutant R274L 

was unresponsive to both 1,25(OH)2D3 and LCA, while another rickets-causing mutant 

H305Q exhibited the response to 1,25(OH)2D3 but lost that to LCA, suggesting that R274L 

and H305Q mutants differently respond to LCA. S275A maintained responsiveness to 

1,25(OH)2D3 and LCA, but the S275F mutation abolished ligand response, suggesting that the 

substitution of S275 with a bulky phenylalanine hinders the ligand responses. The basal 

luciferase activity induced by 1,25(OH)2D3 was repressed by transfection of S237M, R274L 

and S275F. This may be due to dominant negative effects of these mutants on endogenous VDR 

activity through sequestration of RXR or cofactors and competitive binding to the vitamin D 

response element (VDRE). The responses to LCA and 1,25(OH)2D3 for S237A, S275A, and 

S278A mutants are consistent with a previous report utilizing a reporter with a direct repeat 
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(DR)-3 element from the osteopontin promoter (Choi et al., 2003). In that study, Y143A did not 

respond to 10 nM 1,25(OH)2D3, wheares I observed the response of Y143A to 1,25(OH)2D3. 

This discrepancy may be due to the difference in ligand concentration or the response element 

construct tested. To evaluate the effects of mutations on the VDR responses without interference 

from the endogenous VDR, the following experiments were conducted using different assay 

systems. 

Upon ligand binding, NRs undergo a conformational change that results in the 

dissociation of corepressors such as nuclear receptor corepressor (N-CoR) and recruitment of 

coactivators such as steroid receptor coactivator 1 (SRC-1) (Glass and Rosenfeld, 2000). 

Ligand-inducible cofactor recruitment was monitored to further examine ligand-response by 

VDR mutants in the mammalian two-hybrid assay using GAL4-SRC-1 receptor-interacting 

domain, containing the three LXXLL motifs, and VDR fused to the transactivation domain of 

herpesvirus VP16 protein. 1,25(OH)2D3 induced association of SRC-1 strongly with wild-type 

VDR, Y143F, S275A and S278A, and moderately with Y143A, S237A, S278V, and H305Q. 

LCA was able to induce association of SRC-1 with wild-type VDR, Y143F, S237A, S237M, 

S275A (Fig. 5B). Compared to wild-type VDR, mutation of Y143 with phenylalanine (Y143F) 

retained both the responses to LCA and 1,25(OH)2D3. Mutation with alanine (Y143A) 

eliminated the response to LCA, while it retained the 1,25(OH)2D3 response, suggesting the 
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crucial role of Y143 for LCA response. Mutation of S237 with alanine (S237A) reduced the 

response to 1,25(OH)2D3 but not to LCA. The bulky S237M mutation abolished the response 

to 1,25(OH)2D3 but not to LCA, suggesting the crucial role of S237 for the 1,25(OH)2D3 

response. Mutation of S278 with alanine or valine abolished the response to LCA with retained 

response to 1,25(OH)2D3, suggesting the crucial role of S278 for the LCA response. The 

S275A mutation did not affect the responses to LCA and 1,25(OH)2D3, while more bulky 

S275F abolished both the responses, suggesting S275F hindered the conserved interactions for 

LCA and 1,25(OH)2D3. 

The mammalian two-hybrid assay using the GAL4-N-CoR chimeric corepressor 

showed 1,25(OH)2D3-dependent dissociation of N-CoR from wild-type VDR, Y143A, Y143F, 

S237A, S275A, S278A, S278V, and S305Q, as well as LCA-dependent dissociation from 

wild-type VDR, Y143F, S237A, S237M, S275A, S278A, and H305Q (Fig. 5C). The 

dissociations of N-CoR from VDR and associations of SRC-1 with VDR were consistent except 

that LCA dissociated N-CoR from S278A and H305Q mutants. Difference in sensitivity of 

these assays may account for differential responsiveness of VDR mutants to ligands. The data 

indicate that S237 is more critical for induction by 1,25(OH)2D3 and that Y143 and S278 are 

more important for LCA activation. 
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To exclude the possibility that R274L and S275F were not expressed or not able to 

associate with RXR, the functional expression of VDR mutants were examined in the cells 

using VP16-VDR chimeric mutants together with the VDRE-containing reporter. The luciferase 

activity gives an indirect measure of the protein expression levels of transfected receptors 

because VP16 chimeric receptors exhibit ligand-independent activity. All of the VDR mutants 

showed luciferase activities similar to wild-type VDR (Fig. 5D), indicating similar expression 

of functional VDR mutants in the cells. 

The data shown in Fig. 5 suggest that S278V and S237M respond selectively to 

1,25(OH)2D3 and LCA, respectively. To further investigate the preference of these VDR 

mutants for the ligands, dose-response curves were analyzed with the GAL4-VDR system, 

which eliminates the activity of endogenous VDR (Fig. 6). S278A was activated by 

1,25(OH)2D3 as effectively as wild-type VDR. The S278V mutation partially decreased 

1,25(OH)2D3 response. S237M completely abolished 1,25(OH)2D3 response, while S237A 

had a more moderate effect (Fig. 6A). Importantly, LCA was able to activate S237M as 

effectively as S237A (Fig. 6B). LCA was unable to activate S278V and weakly activated 

S278A (Fig. 6B). The data indicate that the S278V mutant is unresponsive to LCA and the 

S237M mutant loses 1,25(OH)2D3 response. Therefore, S278V selectively responds to 

1,25(OH)2D3 while S237M is specifically activated by LCA. 
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I examined direct binding of ligands to mutant VDRs in vitro. Isotopically-labeled 

1,25(OH)2D3 was incubated with GST-VDR proteins in the presence or absence of excess 

unlabeled 1,25(OH)2D3 and specific binding of 1,25(OH)2D3 was calculated. 1,25(OH)2D3 

effectively bound to wild-type VDR and S278V but only interacted weakly with S237M (Fig. 

7A). 1,25(OH)2D3 did not bind to GST control protein. The binding of labeled 1,25(OH)2D3 

to wild-type VDR and the S278V mutant was significantly reduced by addition of unlabeled 

1,25(OH)2D3 (Fig. 7B). Addition of unlabeled LCA inhibited the interaction of 1,25(OH)2D3 

with wild-type VDR at both 30 M and 100 M and with S278V at 100M, indicating that 

LCA binds more potently to wild-type VDR proteins than S278V. 

 

Docking models of VDR interacting with LCA 

To reveal the molecular basis for the mutated residues in mediating ligand specificity, 

I generated docking models. As shown by the 1, 25(OH)2D3 model and the VDR crystal 

structure, S237 makes a hydrogen bond with the 1-hydroxyl group, Y143 and S278 interact 

with the 3-hydroxyl group, and H305 interacts with the 25-hydroxyl group (Rochel et al., 2000) 

(Fig. 8A). The S237M mutation loses the ability to interact with 1,25(OH)2D3 (Fig. 5 and 6). 

The model shows that a methionine residue at position 237 is too close to the 1-hydroxyl 

group of 1,25(OH)2D3 and would be expected to destabilize binding (Fig. 8B). Y143F and 
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S278V do not affect activation by 1,25(OH)2D3. This may be due to the relatively conservative 

substitutions in these mutants and an apparent weak contribution of contacts between VDR and 

the 3-hydroxyl group of 1,25(OH)2D3 to overall binding energy. S275F mutation causes a 

marked change in the VDR-LBP conformation such that it is unable to accommodate 

1,25(OH)2D3 (Fig. 8B). The mutational analysis in this study confirms the importance of 

contacts with the 1-hydroxyl group of 1,25(OH)2D3 in ligand binding and receptor activation. 

Because no crystal structure data was available for VDR bound to secondary bile acid 

ligands when the study was conducted, a docking model was generated for LCA in the 

VDR-LBP (Fig. 8C). The carboxyl group of the LCA side chain is positioned within hydrogen 

bond distance of H305. Residues Y143 and S278 weakly interact with the 3-hydroxyl group of 

LCA. Mutation of H305 to glutamine decreased LCA response (Fig. 5), indicating that contacts 

of Y143 and S278 with LCA are insufficient for VDR activation. The S278V mutation 

abolished LCA response, although S278A maintained LCA response (Fig. 6). A valine residue 

at position 278 would be expected to sterically interfere with the 3-hydroxyl group of LCA, an 

unfavorable interaction that would be absent in S278A (Fig. 8D). Although the Y143F mutant 

was responsive, Y143A was not activated by LCA (Fig. 5). The conservative tyrosine to 

phenylalanine mutation maintains a large aromatic amino acid, while the alanine mutation is 

expected to more severely alter the VDR-LBP conformation. S237M mutation abolished 
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1,25(OH)2D3 response, but did not affect activation by LCA (Fig. 6). As predicted by the 

docking model, S237 does not interact with LCA and the S237M mutation has little effect on 

LCA activity. S275F prevents both LCA and 1,25(OH)2D3 from docking in the VDR-LBP 

(Fig. 8D). Taken together, these data indicate that LCA and 1,25(OH)2D3 make 

non-overlapping critical interactions with residues of the VDR-LBP. 
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DISCUSSION 

 

VDR (NR1I1) belongs to the NR1I subfamily along with PXR (NRI12) and 

constitutive androstane receptor (CAR; NR1I3) (Maglich et al., 2001). PXR is activated by a 

broad variety of compounds such as xenobiotics, steroid derivatives and bile acids (Blumberg et 

al., 1998; Lehmann et al., 1998; Moore et al., 2002). The PXR crystal structure reveals that 

polar residues spaced throughout the hydrophobic LBP modulate responsiveness of the receptor 

to various xenobiotics (Watkins et al., 2001). CAR also functions as a xenobiotic receptor and 

shares some ligand selectivity with PXR (Moore et al., 2002). Structural modeling shows that 

CAR and PXR have a relatively large internal LBP cavity (Dussault et al., 2002). Despite these 

similarities, CAR has a more restrictive ligand selectivity profile than PXR. The ordered 

structure of H6 of CAR, which is similar to that of VDR, may impart more narrow ligand 

selectivity, because PXR has flexible loop 6 in that region (Moore et al., 2002). Although the 

cavity of VDR-LBP is smaller than that of PXR or CAR, it is still larger than that of estrogen 

receptor (NR3A1), progesterone receptor (NR3C3), or RAR-(NR1B3) (Rochel et al., 2000; 

Watkins et al., 2001; Dussault et al., 2002). CAR and PXR are functionally redundant 

xenobiotic sensors in that both can regulate common target genes encoding CYP3A and CYP2B 

(Xie et al., 2000b). VDR is also able to regulate transcription of genes for CYP3A by binding to 
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the same response element as PXR and CAR (Xie et al., 2000b; Makishima et al., 2002), 

suggesting that NR1I receptors have evolved from a common ancestor and have a shared role in 

mediating the detoxification response to xenobiotics. These findings suggest a potential role of 

VDR as a xenobiotic sensor and the possibility that VDR responds to natural or synthetic 

compounds other than vitamin D and bile acid. 

VDR is distinct from other NR1I receptors in that it interacts with bile acids with low 

affinity (at micromolar levels) like PXR and CAR but also responds to an endocrine ligand, 

1,25(OH)2D3, with high affinity, similar to steroid hormone receptors. In this study, I 

demonstrate that distinct amino acid residues in the VDR-LBP are important for interaction with 

1,25(OH)2D3 and LCA. This finding leads to the possibility that 1,25(OH)2D3 and LCA 

induce different activated receptor conformations that might recruit distinct sets of cofactors 

(Takeyama et al., 1999). Further analysis of ligand structure-function relationships should be 

helpful in elucidating the dual functions of VDR as an endocrine receptor for 1,25(OH)2D3 and 

as a “xenobiotic sensor” for secondary bile acids produced by intestinal microflora. 

I generated several VDR mutants at residues which make hydrogen bonds with 

hydroxyl groups of 1,25(OH)2D3 and compared their responses to 1,25(OH)2D3 and LCA in 

VDRE activation and mammalian two-hybrid assays (Fig. 5). There are some discrepancies in 

the behavior of VDR mutants in the three assays shown in Fig. 5A-C. 1,25(OH)2D3 induced 
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the activation of Y143A as effectively as that of wild-type VDR, but the recruitment of SRC-1 

by Y143A was weak. The effect of LCA on Y143F in VDRE activation was very weak, 

although LCA induced strong interaction with SRC-1 in Y143F as in wild-type VDR. Thus, the 

VDRE activation by full-length VDR was not completely correlated with recruitment of SRC-1. 

This may be because NR activation is mediated by sequential interaction with several sets of 

cofactor complexes (Glass and Rosenfeld, 2000). LCA induced N-CoR dissociation from 

Y143F, S278A, and H305Q. But these mutants showed low or undetectable transactivation by 

LCA in the VDRE-based assay. The data indicate the ligand-inducible dissociation of 

corepressor is not sufficient to induce VDR transactivation. Transfection experiments using the 

VDRE activation and mammalian two-hybrid assays in combination are useful in the detection 

of VDR-ligand interactions and ligand-induced receptor activation. The significance of 

interaction with particular cofactors on overall VDR transactivation potential requires further 

investigation. 

I found that VDR mutants of S278V and S237M respond selectively to 1,25(OH)2D3 

and LCA, respectively. These mutants should be useful not only for analysis of 

structure-activity relationships but also for development of new synthetic VDR agonists. 

Selective screening using S278V and S237M may lead to discovery of a new synthetic ligand 

that lacks hypercalcemic activity. Mice with humanized PXR or CAR were generated because 
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human PXR and CAR have different ligand selectivity from their rodent homologues (Xie et al., 

2000a; Zhang et al., 2002). Substitution of endogenous VDR with VDR possessing S278V may 

produce mice with defects in bile acid response with normal calcium metabolism while mice 

expressing VDR mutated with S237M may show selective dysfunction in vitamin D response. 

Development of ligand-specific VDR substituted mice should provide a valuable tool in 

clarifying VDR function in vivo. 
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Part 2 

Selective activation of VDR by LCA acetate, a bile acid derivative 
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ABSTRACT 

 

The VDR, a member of the nuclear receptor superfamily, mediates the biological 

actions of the active form of vitamin D, 1, 25(OH)2D3. It regulates calcium homeostasis, 

immunity, cellular differentiation, and other physiological processes. VDR was found to 

respond to bile acids as well as other nuclear receptors, FXR and PXR. The toxic LCA induces 

its metabolism through VDR interaction. To elucidate the structure-function relationship 

between VDR and bile acids, I examined the effect of several LCA derivatives on VDR 

activation and identified compounds with more potent activity than LCA. LCA acetate is the 

most potent of these VDR agonists. It binds directly to VDR and activates the receptor with 30 

times the potency of LCA and has no or minimal activity on FXR and PXR. LCA acetate 

effectively induced the expression of VDR target genes in intestinal cells. Unlike LCA, LCA 

acetate inhibited the proliferation of human monoblastic leukemia cells and induced their 

monocytic differentiation. I propose a docking model for LCA acetate binding to VDR. The 

development of VDR agonists derived from bile acids should be useful to elucidate 

ligand-selective VDR functions. 
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INTRODUCTION 

 

In Part 1, I analyzed the structure-function relationships of the endocrine (1, 

25(OH)2D3) and xenobiotic (LCA) ligands with VDR, and revealed that 1, 25(OH)2D3 and 

LCA interact with a different set of amino acids of the VDR-LBP. The results suggest the 

possibility that VDR adopts distinct conformations in response to 1, 25(OH)2D3 and LCA 

binding and provides a possible mechanism for the compounds' different biological actions. 

Encouraged by these considerations, I moved the study forward to elucidate the biological 

actions of bile acid-derived VDR agonists. However, application of LCA to further studies is 

not practical because it is cytotoxic and genotoxic and is a promoting factor for colon 

carcinogenesis (Nagengast et al., 1995). The docking models of LCA and 3-keto-cholanic acid 

(3-keto-LCA), which is a metabolite of LCA, reveal that these compounds are accommodated in 

the VDR ligand binding pocket more weakly than 1, 25(OH)2D3 (Choi et al., 2003), 

suggesting that modification of these bile acids can increase the agonistic activities for VDR. 

To identify potent bile acid-derived VDR agonists, I examined the ability of several 

LCA analogs to activate VDR and found that modification of the 3 position of LCA increased 

VDR transactivation by more than 30-fold. Furthermore, the anti-proliferation and 
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pro-differentiation activities of the LCA analog, LCA acetate, were demonstrated in leukemia 

cells. 

 

MATERIALS AND METHODS 

 

Chemical compounds 

LCA, 3-Keto-LCA, and their derivatives (LCA methyl ester, LCA ethyl ester, LCA 

benzyl ester, LCA acetate, LCA hemisuccinate, Iso-LCA, Ursocholanic acid, LCA acetate 

methyl ester, 3-Keto-LCA methyl ester, 3-Keto-LCA ethyl ester, 3-Keto-LCA benzyl ester, 

3,6-Diketo-LCA, 3,7-Diketo-LCA, and 3,12-Diketo-LCA) were purchased from Sigma-Aldrich 

(St. Louis, MO), Wako (Osaka, Japan), Nacalai (Kyoto, Japan), or Steraloids (Newport, RI). 1, 

25(OH)2D3 was obtained from Calbiochem (San Diego, CA). LCA formate was synthesized and 

its purity was confirmed as described (Ishizawa et al., 2008). 

 

Plasmids 

Fragments of human VDR (GenBank accession number NM_000376), FXR 

(accession number NM_005123), and PXR (accession number NM_022002) were inserted into 
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pCMX vector to make pCMX-VDR, pCMX-FXR, and pCMX-PXR, respectively (Makishima et 

al., 1999a, 2002). The LBDs of human VDR, FXR, thyroid hormone receptor (TR) 1 

(accession number NM_199334), RAR (accession number NM_000964), LXR (accession 

number NM_005693), CAR (accession number NM_005122), estrogen receptor alpha (ER) 

(accession number NM_000125), RXR (accession number NM_002957), mouse PPAR 

(accession number NM_011144), PPAR (accession number NM_011145), and PPAR 

(accession number NM_011146) were inserted into pCMX-GAL4 vector to make 

pCMX-GAL4-VDR, pCMX-GAL4-FXR, pCMX-GAL4-TR, pCMX-GAL4-RAR, 

pCMX-GAL4-LXR, pCMX-GAL4-CAR, pCMX-GAL4-ER, pCMX-GAL4-RXR, 

pCMX-GAL4-PPAR, pCMX-GAL4-PPAR, and pCMX-GAL4-PPAR, respectively. 

pCMX-GAL4, pCMX-GAL4-SRC-1, or pCMX-GAL4-N-CoR in combination with 

pCMX-VP16-VDR were used in the mammalian two-hybrid assays as described in Part 1. 

Mutations were introduced into pCMX-GAL4-VDR to make its point mutants as described in 

Part 1. hCYP3A4-ER-6x3-tk-LUC reporter was utilized to evaluate the activities of VDR or 

PXR. IR-1x3-tk-LUC reporter was utilized for FXR assay. GAL4-responsive MH100 

(UAS)x4-tk-LUC reporter was utilized to evaluate the activities of GAL4-chimera receptors. All 

plasmids were sequenced prior to use to verify DNA sequence fidelity. 
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Cell lines and cell culture 

HEK 293 cells were cultured in DMEM containing 5% fetal bovine serum and 

antibiotic-antimycotic (Nacalai). Human hepatoblastoma HepG2 cells and colon cancer SW480 

cells were cultured in DMEM containing 10% fetal bovine serum and antibiotic-antimycotic 

(Nacalai). Human myeloid leukemia THP-1 cells were cultured in suspension in RPMI 1640 

medium containing 10% fetal bovine serum and 80 g/ml gentamicin (Makishima et al., 1998). 

The cells were cultured at 37oC in humidified atmosphere of 5% CO2 in air. 

 

Cotransfection assay 

Transfections, treatment with compounds, and the reporter gene assay were performed 

as described in Part 1. 

 

Competitive ligand binding assay 

Human VDR protein was generated using the TNT Quick Coupled 

Transcription/Translation System (Promega, Madison, WI) with a VDR expression vector. The 

protein was diluted 5-fold with ice-cold TEGWD buffer (20 mM Tris-HCl, pH 7.4, 1 mM 

EDTA, 1 mM dithiothreitol, 20 mM sodium tungstate, 10% glycerol). The diluted protein was 
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incubated with 1 nM of [26,27-methyl-3H]1, 25(OH)2D3 for 16 h at 4oC in the presence or 

absence of nonradioactive compounds for competition. Bound and unbound labeled 1, 

25(OH)2D3 were separated by the dextran-charcoal method (Yamamoto et al., 2000). Bound 1, 

25(OH)2D3 was measured using scintillation counting. 

 One-way ANOVA followed by Tukey’s multiple comparisons test was performed 

using GraphPad Prism version 7.04 for Windows. 

 

Graphical manipulation and docking 

Graphical manipulations and docking of LCA acetate to hVDR-LBD (165-215) 

(1DB1) were performed as described in Part 1.  

 

Animal studies 

C57BL/6J mice were obtained from Japan SLC (Hamamatsu, Japan) and housed in a 

room under controlled temperature (23 ± 1oC) and humidity (45-65 %) and had free access to 

water and chow (Oriental Yeast, Tokyo). Experiments were conducted when the mice (males) 

were between 8 and 9 weeks of age. Mice were treated orally with LCA or LCA acetate in a 

polyethylene glycol/Tween 80 (4/1) formulation or vehicle alone. Mice were analyzed 12 h after 
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treatment under fasting conditions. The experimental protocol was approved by the Ethics 

Review Committee for Animal Experimentation of Osaka University. 

 

Quantitative real time reverse transcription (RT)-polymerase chain reaction (PCR) 

analysis 

Total ribonucleic acids (RNAs) from samples were prepared with an RNA STAT-60 

kit (Tel-Test, Friendswood, TX). The cDNA was synthesized using ThermoScript RT-PCR 

System (Invitrogen, Carlsbad, CA). Real time PCR was performed on a LightCycler using the 

FastStart DNA Master SYBR Green I (Roche Diagnostics, Tokyo, Japan) according to the 

instructions provided by the manufacturer as described (Kaneko et al., 2003). Primers for 

human cDNAs were as follows: VDR, 5'-GCTGACCTGGTCAGTTACAGCA-3' and 

5'-CACGTCACTGACGCGGTACTT-3'; RXRA (RXR), 

5'-AAGATGCGGGACATGCAGAT-3' and 5'-CAGGCGGAGCAAGAGCTTAG-3'; PPIA 

(cyclophilin), 5'-CCCACCGTGTTCTTCGACAT-3' and 

5'-CCAGTGCTCAGAGCACGAAA-3'; CYP24A1, 5'-TGAACGTTGGCTTCAGGAGAA-3' 

and 5'-AGGGTGCCTGAGTGTAGCATCT-3'; CYP3A4, 

5'-AGTGTGGGGCTTTTATGATG-3' and 5'-ATACTGGGCAATGATAGGGA-3'; TRPV6, 

5'-AGCCTACATGACCCCTAAGGACG-3' and 5'-GTAGAAGTGGCCTAGCTCCTCGG-3'; 
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CDH1 (E-cadherin), 5'-GAAGGTGACAGAGCCTCTGGATAG-3' and 

5'-CTGGAAGAGCACCTTCCATGA-3'. Primers for mouse cDNAs were as follows: Ppia 

(cyclophilin), 5'-CAGACGCCACTGTCGCTTT-3' and 

5'-TGTCTTTGGAACTTTGTCTGCAA-3'; Cyp24a1, 5'-CCCATTACTCAGGGAAGCAC-3' 

and 5'-CCACTCAGACAATGAAGCCA-3'; Cyp3a11, 5'-CCAACAAGGCACCTCCCACG-3' 

and 5'-TGGAATTCTTCAGGCTCTGA-3'; Fabp6 (ileal bile acid binding protein), 

5'-GGTACCACCATGGCCTTCAGTGGCAAATAT-3' and 

5'-GCTAGCTCAAGCCAGCCTCTTGCTTAC-3'. The RNA values were normalized to the 

amount of cylclophilin mRNA and are represented in arbitrary units. 

 One-way ANOVA followed by Dunnett’s multiple comparisons test was performed 

using GraphPad Prism version 7.04 for Windows. 

 

Growth and differentiation of myeloid leukemia cells 

Suspensions of cells were cultured with or without the test compound. The cells were 

counted in a Model ZM Coulter Counter (Coulter Electronics, Luton, UK). Cell morphology 

was examined in cell smears stained with May-Gruenwald-Giemsa. -Naphthyl acetate esterase 

was determined cytochemically. Nitroblue tetrazolium (NBT) reduction was assayed 

colorimetrically as described (Makishima et al., 1996). Briefly, cells were incubated with NBT 



51 

 

and added with HCl to stop the reaction. Formazan deposits were solubilized in DMSO, and the 

absorption of the formazan solution at 560 nm was measured in a spectrophotometer. 

Expression of monocytic antigens CD11b and CD14 on the cell surface was determined using a 

flow cytometer (Epics XL; Coulter Electrinics) after indirect immunofluorescent staining. 

FITC-conjugated F(ab')2 fragment of goat anti-mouse IgG and mouse monoclonal antibodies to 

CD11b (2LPM19c) and CD14 (TUK4) were used as described (Makishima et al., 1998, 1999b). 
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RESULTS 

 

Transactivation of VDR by LCA derivatives 

To elucidate structure-activity relationship between VDR and LCA, I examined the 

effects of various LCA derivates on VDR activation (Fig. 9A). HEK293 cells were transfected 

with a VDR expression vector and a luciferase reporter containing a VDR-responsive ER-6 

element from the CYP3A4 promoter. Cells were treated with test compounds and the induced 

luciferase activities were compared (Fig. 9B). 1, 25(OH)2D3 and LCA activated wild-type 

VDR as reported previously (Makishima et al., 2002). The esterification of the side chain of 

LCA with methyl, ethyl, and benzyl groups drastically decreased the activity on wild-type VDR 

(Fig. 9B). Next, I examined the effects of LCA derivatives modified at position 3 (Fig. 9A). 

LCA formate and LCA acetate were able to activate wild-type VDR as efficiently as LCA at the 

concentration of 10 M. LCA isobutyrate activated wild-type VDR moderately, whereas LCA 

hemisuccinate was not an effective agonist for wild-type VDR. The data indicate that addition 

of a large acyl group at the 3-hydroxy group of LCA abolishes activation for wild-type VDR. 

The stereochemistry, as well as the substituent of the 3-hydroxyl group, is also important for 

LCA activity. Iso-LCA with a 3-hydroxyl group and ursocholanic acid with no hydroxyl group 

at C-3 (Fig. 9A) have little activity on wild-type VDR (Fig. 9B). Interestingly, although the 
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effect of LCA methyl ester on wild-type VDR activation was weak, LCA acetate methyl ester 

was able to induce wild-type VDR activation effectively. 3-keto-LCA, a metabolite of LCA, is 

another potent bile acid for wild-type VDR (Makishima et al., 2002). The esterification on the 

side chain of 3-keto-LCA modestly decreased its activity on wild-type VDR (Fig. 9B). 

6-Keto-LCA is a very weak agonist for wild-type VDR, and 7-keto-LCA and 12-keto-LCA 

were not able to activate wild-type VDR (Makishima et al., 2002). Transactivation of wild-type 

VDR by 3,6-diketo-LCA, 3,7-diketo-LCA, and 3,12-keto-LCA was almost absent (Fig. 9B). 

These data indicate that addition of a ketone group at position 6, 7, or 12 to LCA or 3-keto-LCA 

disturbs the interaction with wild-type VDR. Collectively, these data suggested that the position 

3 of LCA could be modified to modulate VDR activation, while the esterifications of the 

carboxylic acid of LCA and modifications of 3-Keto-LCA could lose or diminish their agonistic 

activities. 

 

LCA acetate is a potent agonist for VDR 

To evaluate the potencies of LCA derivatives with the modifications at the position 3, 

I compared wild-type VDR dose-response curves for LCA, LCA formate, LCA acetate, LCA 

acetate methyl ester, and 3-keto-LCA. LCA acetate activated wild-type VDR with an EC50 of 

0.40 M, followed in rank order by LCA formate (EC50 = 4.0 M), 3-keto-LCA (6.8 M), and 
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LCA (12.1 M) (Fig. 10A). Notably, the potency of wild-type VDR activation by LCA acetate 

was 30-fold greater than that of LCA. These results demonstrated that the modifications of LCA 

at the position 3 lead to more potent VDR agonists in comparison with LCA. 

To evaluate ligand-dependent interactions of VDR with cofactors, the mammalian 

two-hybrid assays were performed on LCA derivatives using receptor-interacting domains of 

SRC-1 and N-CoR that were fused to the GAL4 DNA-binding domain as described in Part 1. 

Cotransfection of GAL cofactors with VDR fused to VP16 allowed for detection of 

ligand-dependent cofactor interaction. Although there was no association between control 

GAL4 protein and VP16-VDR, LCA acetate at 10 M and 1, 25(OH)2D3 at 100 nM strongly 

induced the association of wild-type VDR with SRC-1 (Fig. 10B). The effects of LCA formate 

and LCA acetate methyl ester on this interaction were modest, and activation by LCA and 

3-keto-LCA were weak at 10 M concentration. LCA acetate, LCA formate, LCA acetate 

methyl ester, and 3-keto-LCA dissociated N-CoR from wild-type VDR as effectively as 1, 

25(OH)2D3 (Fig. 10B). The effects of these LCA derivatives on N-CoR dissociation were 

stronger than that of LCA. Thus, it was demonstrated that LCA formate and LCA acetate are 

potent regulators of VDR-cofactor interaction in comparison with LCA. 

Next, to assess the ability of LCA derivatives to bind directly to wild-type VDR in 

vitro, I conducted the competitive binding assay. Isotopically labeled 1, 25(OH)2D3 was 
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incubated with in vitro translated wild-type VDR protein in the absence or presence of test 

compounds. The binding of labeled 1, 25(OH)2D3 to wild-type VDR was significantly reduced 

by the addition of unlabeled 10 nM 1, 25(OH)2D3 and 200 M LCA (Fig. 11). LCA formate, 

LCA acetate, 3-keto-LCA, and LCA acetate methyl ester also inhibited the binding of labeled 

1, 25(OH)2D3 to wild-type VDR, indicating that these LCA derivatives directly bind to 

wild-type VDR. Competition with 50 M LCA was weaker than that of LCA formate and LCA 

acetate at 50 M and 200 M. Interestingly, although LCA acetate methyl ester showed 

enhanced activation of wild-type VDR compared with 3-keto-LCA in the luciferase reporter 

assay as shown Fig. 10A, its direct interaction with wild-type VDR protein was weaker than 

those of LCA and 3-keto-LCA (Fig. 11). LCA acetate did not inhibit the binding of labeled 

estradiol to ER. Taken together, these data indicate that LCA formate and LCA acetate 

activates wild-type VDR by direct binding. 

 

LCA acetate is not a potent agonist for other bile acid receptors 

Bile acids are endogenous ligands for NRs including VDR, PXR, and FXR. Therefore, 

it is important to examine the selectivity of bile acid-derived VDR ligands over other NRs. The 

LBDs of various NRs were fused to the DBD of the yeast transcription factor GAL4 to examine 

the effect of LCA acetate on these receptors. The GAL4-chimera receptors were cotransfected 
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with a GAL4-responsive luciferase reporter into HEK293 cells. Because this reporter is 

activated only by the GAL4-chimera receptors, the potentially confounding effects of 

endogenous receptors are eliminated. LCA acetate at 30 M induced the activation of wild-type 

GAL4-VDR (Fig. 12A). It induced weak activation of FXR but was not effective on TR, 

RAR, PPAR, PPAR, PPAR, LXR, CAR, RXR, and ER. FXR has been previously 

shown to respond to various bile acids, such as CDCA and deoxycholic acid (Makishima et al., 

1999a, 2002). Next, I determined FXR dose-response curves for LCA derivatives modified at 

position 3. As reported previously (Makishima et al., 1999a), CDCA was a potent FXR agonist 

(Fig. 12B). Urosocholanic acid and iso-LCA, which were not effective on wild-type VDR (Fig. 

9B), strongly induced the activation of FXR (Fig. 12B). LCA formate and LCA acetate, as well 

as LCA, were weak FXR agonists. These data indicate that structure-activity relationships of 

LCA derivatives are different between VDR and FXR. PXR was reported to respond to high 

concentrations of LCA (Staudinger et al., 2001; Xie et al., 2001). To examine the effects of 

LCA derivatives on PXR, I transfected wild-type VDR or PXR expression vectors with a 

reporter containing a CYP3A4 element, which can be activated by both receptors. Liver-derived 

HepG2 cells were used for this experiment, because PXR activation is cell type dependent. In 

the absence of transfected receptors, the luciferase activity was increased by addition of the 

LCA derivatives (Fig. 12C). Because a PXR agonist, rifampicin, did not activate the reporter, 
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this effect may be derived from endogenous receptors such as VDR but not PXR. LCA acetate 

and LCA formate strongly induced the activity of transfected wild-type VDR, indicating that 

these LCA derivatives activate VDR in HepG2 cells. Rifampicin did not activate wild-type 

VDR. When HepG2 cells were cotransfected with PXR, rifampicin and 3-keto-LCA increased 

the reporter activity, but LCA acetate and LCA formate were not effective PXR ligands (Fig. 

12C). Collectively, these findings indicate that LCA formate and LCA acetate are selective for 

VDR activation among the examined NRs. In the following experiments, the most potent LCA 

derivative, LCA acetate, was investigated in detail. 

 

Effect of VDR mutation on LCA acetate response 

To elucidate the structure-activity relationship of LCA acetate and VDR, I examined 

the effects of LCA acetate on the activation of several VDR mutants. Wild-type GAL4-VDR 

and several alanine mutants, Y143A, S237A, S275A, S278A, W286A, and H305A, were 

introduced into HEK293 cells and activation by LCA, LCA acetate, and 1, 25(OH)2D3 were 

compared (Fig. 13A). According to the crystal structure of the VDR-1, 25(OH)2D3 complex 

(Rochel et al., 2000), Y143 and S278 interact with the 3-hydroxyl group of 1, 25(OH)2D3, 

S237 makes a hydrogen bond with the 1-hydroxyl group, H305 coordinates the 25-hydroxyl 

group, and S275 and W286 mediate hydrophobic interaction with 1, 25(OH)2D3. The Y143A 
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and W286A mutations inhibited the responses to LCA acetate, LCA, and 1, 25(OH)2D3, 

suggesting that Y143 and W286 interact with LCA acetate, LCA, and 1, 25(OH)2D3 in  

similar ways. The effects of S237A was modest on LCA, LCA acetate, and 1, 25(OH)2D3 

activity. Whereas S275A and S278A almost abolished the activity of LCA, LCA acetate and 1, 

25(OH)2D3 still activated these mutants, suggesting that S275 and S278 are important for the 

activity of LCA but not for those of LCA acetate and 1, 25(OH)2D3. Interestingly, although 

H305A had significant effects on the activity of LCA and 1, 25(OH)2D3, this mutation had 

little effect on the activity of LCA acetate. Thus, LCA acetate is similar to 3-keto-LCA in its 

ability to activate H305A (Choi et al., 2003). In Part 1, I found that S278V mutant is activated 

by 1, 25(OH)2D3 but not by LCA, whereas S237M can respond to LCA but not to 1, 

25(OH)2D3. I next examined the effects of LCA acetate on these mutants (Fig. 13B). The 

S237M mutation weakly affected the activity of LCA acetate as well as that of LCA. S278V 

drastically decreased LCA acetate activity. Based on these findings, I modeled LCA acetate in 

the VDR LBD (165-215) (PDB #1DB1) using FlexX software. In contrast to the LCA docking 

model, the side chain of LCA acetate directs to the -turn site (Fig. 13C, left panel). The 

oxygen of the side chain carboxyl group and the carbonyl oxygen of the 3-O-acetyl acetate 

group nearly overlap with the 3-hydroxyl oxygen and 25-hydroxyl oxygen, respectively, of 1, 

25(OH)2D3 in the crystal structure of VDR-1, 25(OH)2D3 (Fig. 13C, right panel). The 
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proximity of these amino acid residues to hydrogen bond acceptors within 1, 25(OH)2D3 may 

be responsible for the strong activity of LCA acetate on VDR.  

 

Induction of VDR target genes by LCA acetate in intestinal cells 

VDR is highly expressed in intestinal mucosa cells and known to regulate the 

expression of genes involved in calcium homeostasis and bile acid metabolism (Berger et al., 

1988; Haussler et al., 1998; Makishima et al., 2002). To investigate the ability of LCA acetate 

to activate endogenous VDR target genes, I utilized colon cancer-derived SW480 cells that 

highly express VDR gene. SW480 cells were incubated with LCA, LCA acetate, 1,25(OH)2D3, 

CDCA, or rifampicin, and the expression of the VDR target genes for CYP24A1, CYP3A4, 

TRPV6, and CDH1 (E-cadherin) were examined. CYP24A1 and TRPV6 are involved in 

calcium homeostasis and CYP3A4 metabolizes LCA (Haussler et al., 1998; Van Cromphaut et 

al., 2001). CDH1 is reported to be regulated by 1, 25(OH)2D3 and its induction leads to cell 

growth inhibition (Pálmer et al., 2001). As shown in Fig. 14, 1, 25(OH)2D3 significantly 

increased the expression of CYP24A1, CYP3A4, TRPV6, and CDH1. LCA acetate significantly 

increased expression of CYP24A1 at 100 M and CYP3A4, TRPV6, and CDH1 at both 10 M 

and 100 M, while LCA significantly increased expression of CYP3A4 and TRPV6 only at 100 

M. These results indicate that that LCA acetate acts as a more potent agonist in colon cancer 
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cells in comparison with LCA. To assess potential secondary effects, mRNAs for VDR and 

RXR were monitored. The expression of VDR was reduced upon the treatments with 100 M 

LCA (0.78-fold), 100 M LCA acetate (0.71-fold), and 1, 25(OH)2D3 (0.74-fold) in 

comparison with vehicle control, while the expression of RXRAwas not significantly changed. 

These data indicate that the drastic increases observed for VDR target genes were not caused by 

the increase of VDR and RXRA. The FXR agonist CDCA and the PXR agonist rifampicin were 

not able to induce the expression of these genes, although PXR was reported to be involved in 

CYP3A4 gene regulation (Luo et al., 2002). This inability of PXR agonist to increase gene 

expression is likely attributable to the fact that PXR is not expressed in SW480 cells. 

Collectively, these data indicate that LCA acetate is a potent agonist for endogenous VDR in 

intestinal cells. 

Next, to assess the ability of LCA acetate to induce VDR target genes in vivo, I 

examined the expression of VDR target genes in the intestine where tested compounds can be 

delivered via oral administrations. Mice were orally administrated LCA or LCA acetate, and the 

expressions of intestinal Cyp24a1 and Cyp3a11 were evaluated. Both LCA and LCA acetate 

tended to increase Cyp24a1 and Cyp3a11 although the differences compared to the vehicle 

controls were not statistically significant (Fig. 15). LCA and LCA acetate did not increase the 

expression of an FXR target gene, Fabp6 (Fig. 15). Therefore, it was not clear from this 
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experiment whether LCA acetate acts as VDR agonist in the mouse intestine. Further 

investigations are necessary to demonstrate the biological actions of LCA acetate in vivo in 

different experimental conditions.  

 

LCA acetate induces the differentiation of monoblastic leukemia cells 

1, 25(OH)2D3 is known as an inducer of myeloid leukemia differentiation (Haussler 

et al., 1998). To assess the ability of LCA acetate to induce cellular differentiation, I examined 

the effects of LCA acetate on the growth and differentiation of human monoblastic leukemia 

THP-1 cells. 1, 25(OH)2D3 inhibited the proliferation of THP-1 cells and induced the NBT 

reduction, a differentiation marker of myeloid leukemia cells, as reported previously 

(Makishima et al., 1996). LCA acetate inhibited cell proliferation more effectively than LCA 

and 3-keto-LCA (Fig. 16A), and it induced the NBT-reducing activity in the cells. In contrast, 

LCA and 3-keto-LCA were not able to induce the NBT-reducing activity even at concentrations 

that completely inhibit cell proliferation (Fig. 16B). Untreated THP-1 cells have large nuclei 

with visible nucleoli and basophilic cytoplasmic staining. LCA acetate induced a 

concentration-dependent increase in the percentage of differentiated cells (Fig. 16C). In the 

cells treated with LCA acetate, the nuclei were condensed, nucleoli were no longer apparent, 

and the cytoplasm appeared gray, indicating monocytic differentiation (Fig. 16C). Esterase 
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activity, a functional marker of monocytic differentiation, was also induced by LCA acetate 

(Fig. 16D). LCA and 3-keto-LCA did not induce morphological and functional differentiation 

of THP-1 cells. LCA acetate increased the expression of surface makers, such as CD11b and 

CD14, as effectively as 1, 25(OH)2D3 (Fig. 16E). Therefore, the VDR agonist LCA acetate is 

a potent inducer of monocytic differentiation in THP-1 leukemia cells. 

 

DISCUSSION 

 

In this study I found that the modification of the 3-hydroxyl group of LCA increases 

the transactivation activity and selectivity on VDR. Structure-function relationship analysis of 

the VDR-LCA interaction using several VDR mutants shows that the side chain of LCA faces 

H12 of the receptor and 3-keto-LCA is directed toward the -turn site (Choi et al., 2003). As 

shown in Fig. 9, esterification of the side chain carboxyl group of LCA abolished VDR 

activation. However, in 3-keto-LCA, the corresponding esterifications had only moderate 

effects. This may be ascribed to the opposing docking modes of LCA and 3-keto-LCA. The 

LCA derivatives modified at position 3, such as LCA formate and LCA acetate, have stronger 

activity than LCA (Fig. 9 and 10). The docking model shown in Fig. 13 indicates that LCA 

acetate is accommodated in the VDR-LBP in the same manner as 3-keto-LCA. LCA acetate 
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methyl ester has much stronger activity than LCA methyl ester. This may be attributable to 

different docking modes of these two LCA esters. LCA acetate and LCA can activate S237M 

mutant (Fig. 13B), which does not respond to 1, 25(OH)2D3. S237 is located in H3 and may 

mediate allosteric communication with the cofactor interaction surface. These findings suggest 

the possibility that LCA acetate induces an alternative conformation in VDR, which results in 

differential cofactor recruitment and selective physiological function. Further study is required 

to elucidate the structure-function relationship of VDR and LCA derivatives such as LCA 

acetate.  

FXR is activated by both primary bile acids (CDCA and cholic acid) and secondary 

bile acids (LCA and deoxycholic acid) (Makishima et al., 1999a; Parks et al., 1999; Wang et al., 

1999). In contrast, VDR responds to only LCA and its derivatives (Makishima et al., 2002). In 

the previous study, 6-keto-LCA was identified as a selective ligand for VDR, but its activity 

was very weak (Makishima et al., 2002). The potent VDR agonist LCA acetate activated FXR 

to low levels, similar to the weak FXR agonist LCA (Fig. 12B). The activity of LCA acetate for 

FXR was much weaker than CDCA (Fig. 12B). In HepG2 cells, CDCA induced the expression 

of the BSEP gene, which is an FXR target (Lu et al., 2001), but LCA and LCA acetate were not 

effective in its induction, although LCA acetate increased the VDR target CYP24A1 expression. 

Although LCA and 3-keto-LCA were agonists for PXR at higher concentrations, LCA acetate 
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did not activate PXR (Fig. 12C). These data indicate that LCA acetate is a selective agonist for 

VDR. Interestingly, although iso-LCA and ursocholanic acid were not able to activate VDR, 

they were more potent FXR agonists than LCA. Crystal structures of FXR and PXR have been 

reported (Watkins et al., 2001; Downes et al., 2003; Mi et al., 2003). Mutational analysis of 

FXR and PXR should be useful in elucidating the structure-function relationship of these LCA 

derivatives and in the development of selective ligands for the bile acid receptors, VDR, FXR, 

and PXR. 

Vitamin D has been identified as a protective agent against the development of 

colorectal cancer (Garland et al., 1999). Epidemiological analysis revealed that solar exposure, 

which results in vitamin D production in the skin, or vitamin D uptake reduces the incidence of 

colorectal cancer (Garland et al., 1999). Protective effects of vitamin D in colon carcinogenesis 

are mediated through its receptor VDR. VDR activation induces the expression of genes 

involved in growth inhibition, differentiation, and apoptosis (Haussler et al., 1998; Pálmer et al., 

2003). In contrast to vitamin D, the secondary bile acid LCA is considered to be a promoter of 

colon carcinogenesis (Nagengast et al., 1995). LCA induces DNA strand breaks, forms DNA 

adducts, inhibits DNA repair enzymes, and can promote colon cancer in rodent models 

(Narisawa et al., 1974). CYP3A was reported to detoxify LCA to a nontoxic hydodeoxycholic 

acid and is a VDR target gene (Thummel et al., 2001; Xie et al., 2001). By binding to VDR, 1, 
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25(OH)2D3 and LCA induce the genes for CYP3A in the intestine. VDR may serve as a sensor 

for LCA and function to protect intestinal mucosa from its harmful effects. A significant 

correlation between a VDR polymorphism and colorectal cancer risk was reported in Singapore 

Chinese population (Wong et al., 2003). These findings suggest that VDR functions as an 

anticancer factor and indicate that it is a promising molecular target for chemoprevention 

against colorectal cancer. 

Clinical trials of vitamin D and its analogs have been unsuccessful because of their 

hypercalcemic activities (Guyton et al., 2003). Structure-function analysis of vitamin D analogs 

suggests that 1, 25(OH)2D3 and its analogs also induce non-genomic VDR actions and that 

adverse effects are at least partly attributable to non-genomic mechanisms (Huhtakangas et al., 

2004; Zanello and Norman, 2004). Ligand-dependent dissociation of non-genomic from 

genomic activity was reported for the estrogen receptor (Kousteni et al., 2001). An estrogen 

receptor ligand, pyrazole, induced the transactivation of an estrogen receptor target gene but had 

weak non-genomic activity, whereas another ligand, estren, induced strong non-genomic action 

of the estrogen receptor without altering gene expression. There has been no reported 

physiological correlation between bile acids and intestinal calcium absorption, suggesting that 

LCA or its derivatives may relatively induce genomic actions in the intestine, such as bile acid 

metabolism and cell growth control, without inducing hypercalcemia. LCA acetate induced 
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VDR target genes via genomic action, including the LCA-detoxyfying enzyme CYP3A, in 

colon cancer cells more effectively than LCA (Fig. 14). Non-genomic action of bile acids and 

derivatives should be further investigated. The development of more potent LCA derivatives 

that are nontoxic and less hypercalcemic should be useful for chemoprevention against colon 

carcinogenesis. 

1, 25(OH)2D3 was found to induce the differentiation of mouse myeloid leukemia 

M1 cells more than 30 years ago (Abe et al., 1981). Treatment with 1, 25(OH)2D3 or 

1-hydroxyvitamin D3, which is rapidly metabolized to 1, 25(OH)2D3, was reported to prolong 

survival in mice inoculated with M1 leukemia cells (Honma et al., 1983). The 

differentiation-inducing effects of 1, 25(OH)2D3 were also demonstrated in human leukemia 

cells (Miyaura et al., 1981; Mangelsdorf et al., 1984). However, the molecular mechanisms of 

differentiation induced by 1, 25(OH)2D3 have not been elucidated. I found that the potent VDR 

agonist LCA acetate was able to induce the differentiation of human monoblastic leukemia 

THP-1 cells at concentrations that induce VDR activation (Fig. 16). LCA and 3-keto-LCA 

inhibited the proliferation but did not induce differentiation. The growth-inhibiting activity of 

these bile acids may be attributable to their cytotoxic effects. Zimber et al. reported that bile 

acids, including deoxycholic acid, CDCA, and LCA, induced the differentiation of human 

promyelocytic leukemia HL-60 cells (Zimber et al., 1994). I did not observe 
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differentiation-inducing activity of these bile acids in HL-60 cells. This is probably because of 

differences between subclones of leukemia cell lines, which could affect sensitivity to the 

compounds. Regardless, LCA acetate did induce differentiation markers in HL-60 cells. These 

findings indicate that LCA acetate is a more effective inducer of leukemia differentiation than 

bile acids such as LCA and CDCA. Zimber et al. reported that LCA alone did not induce the 

differentiation of THP-1cells but that it enhanced the response to all-trans-retinoic acid, which 

is a potent differentiation inducer of myeloid leukemia cells (Zimber et al., 2000). The 

combinational effects of LCA acetate and other differentiation inducers are to be investigated. 

The protein kinase C inhibitor sphingosine decreased the NBT-reducing activity induced by 

deoxycholic acid and CDCA in HL-60 cells but did not alter the response to LCA (Zimber et al., 

1994), suggesting that the effect of LCA is mediated by mechanisms distinct from those used by 

deoxycholic acid and CDCA. Expression of some VDR target genes was increased in 

THP-1cells after treatment with LCA acetate. The observation indicate that LCA acetate 

functions as a VDR agonist in leukemia cells and induces cell differentiation. Further studies are 

required to elucidate the precise mechanisms of LCA acetate- and 1, 25(OH)2D3-induced 

leukemia cell differentiation. 
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Structural determinants for VDR responses to its ligands 

Structure-function relationship studies on the interaction of vitamin D analogs with 

VDR have revealed different patterns of docking of ligands into the VDR-LBP (Yamada et al., 

2003b). The difference in ligand-receptor interaction may contribute selective recruitment of 

coactivators to VDR, leading to selective biological actions (Takeyama et al., 1999). Based on 

these considerations, I hypothesized that bile acid analogues function as novel VDR modulators. 

In Part 1, I determined important amino acids for VDR responses to LCA based on functional 

comparison with PXR amino acids. A docking model suggested LCA and 1, 25(OH)2D3 

differently interacted with the amino acid in helix 3 of VDR-LBP that form coactivator binding 

surface. In Part 2, I clarified structure-activity relationship for LCA derivatives and VDR 

response. Based on biological analyses, LCA acetate exhibited anti-proliferation and 

pro-differentiation activities for THP-1 cells. I believe that these fundamental results 

obtained in this study could facilitate the development of selective VDR modulators and 

further understanding of biological functions of VDR. 

The identification of potent VDR agonist provided a good research tool for the 

analyses of VDR structure and functions (Ikura and Ito, 2016). The crystal structures of the rat 

VDR-LBD in ternary complexes with a synthetic partial peptide of the coactivator MED1 

(mediator of RNA polymerase II transcription subunit 1) and four ligands, LCA, 3-keto LCA, 
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LCA acetate, and LCA propionate were determined, elucidating a part of their agonistic 

mechanism (Masuno et al., 2013). The structures reveal that LCA and its derivatives bind to the 

same VDR-LBP that 1,25(OH)2D3 binds to. Interestingly, the crystal structures revealed that 

LCA bound to VDR in a reverse direction to that obtained from the docking model generated in 

this research (Fig. 8). The discrepancy might be explained by limitations of the docking method 

that was employed in this research. However, it is of note that the importance of the 

hydrogen-bonding network that I have demonstrated for agonistic activity of LCA was 

recaptured by the crystallographic analyses. Namely, the important interactions between LCA 

and Y143, R274, S278, and H305 of human VDR were suggested by the determined 

interactions between LCA and Y143, R270, S274, and H301 of rat VDR. Interestingly, 

interactions with S233, R270, and H301 of rat VDR were suggested to be water-mediated 

bondings, which highlights an unique binding mode of LCA different from that of 

1,25(OH)2D3. Collectively, the structure-function relationship analysis conducted in this 

research and the resolved VDR structures consistently demonstrated that LCA and its 

derivatives interact with the VDR-LBP in a mode different from 1,25(OH)2D3, especially in 

interactions regarding helix 3 and 4/5 residues. Although the crystallographic analysis provides 

a concrete snapshot of ligand-receptor interactions, the drawback is that it is not able to 

visualize dynamic motions of interactions. For example, different VDR ligands exhibit agonistic 
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or antagonistic activities although the main chains including helix 12 of VDR-LBD are almost 

identical to those two crystal structures (Nakabayashi et al., 2008; Inaba et al., 2009; Kakuda et 

al., 2010). Combinations of the other methodologies could support us to fully understand the 

dynamic actions of VDR modulators. The research strategy employed in my study that mutated 

unconserved amino acids of the most-related PXR would be one of the viable approaches 

because such VDR mutants could keep receptor functionality in comparison to random 

mutations. The functional analyses are complementary to the structural analyses for better 

understanding the molecular mechanism underlying the interaction between VDR and its 

ligands. 

 

LCA acetate acted as a VDR modulator 

Mutational analyses suggested that LCA and vitamin D interact with the different 

amino acids. Especially, S237 resides in a crucial helix that composes a molecular surface for 

the dynamic recruitment of cofactors (Yamada and Yamamoto, 2006; Yamamoto et al., 2006). 

This strongly drove me to further investigate the biological actions of the bile acid-derived VDR 

ligands. There are multiple reports that describe the functional difference of LCA and vitamin 

D3 in activating VDR functions. Thus, potent LCA derivatives are under active development to 



72 

 

identify novel VDR modulators. Of particular interest, it was reported that LCA acetate and its 

analogue effectively induced VDR target genes in the kidney without causing hypercalcemia 

(Ishizawa et al., 2008). The effect of 1,25(OH)2D3 on the induction of TRPV6 was 4- to 7-fold 

greater than that on CYP24A1 induction, while the potency of LCA derivatives on TRPV6 

induction was 2- to 3-fold greater than that on CYP24A1 induction in intestinal SW480 cells 

(Ishizawa et al., 2008). The result suggested that the vitamin D signal is amplified for the 

induction of TRPV6 in intestinal cells, highlighting the gene-selective effects of VDR ligands. 

Their molecular mechanism of action is to be further investigated. 

 

Possible molecular mechanism of VDR modulators 

There could be several explanations for gene-selective action of the VDR modulators.  

The combination of cellular fluorescence resonance energy transfer (FRET) and chromatin 

immunoprecipitation (ChIP) assays have revealed that LCA induce unique cofactor complex 

formation differently from 1,25(OH)2D3 and its analogue in a cell context-dependent manner, 

suggesting ligand-selective dynamic VDR conformations (Choi et al., 2011). In addition, it was 

demonstrated that structurally diverse ligands could affect not only VDR-LBP but also DNA 

binding activity of VDR. Binding of an agonist to the VDR/RXR heterodimer alters the stability 

of the VDR-DBD, demonstrating that the ligand influences the DNA recognition (Zhang et al., 
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2011). These data suggested a mechanism by which NRs show promoter specificity and have 

differential effects on various target genes. On the other hand, it has been proposed that the 

DNA response element functions as a sequence-specific allosteric ligand that modulates the 

activity of the NRs (Meijsing et al., 2009). Based on these researches, it could be hypothesized 

that bile acid-derived ligands could regulate a distinctive target gene set different from 1, 

25(OH)2D3 by binding to unique response elements in coordinated interactions with cofactors 

on the promoter regions. These potential mechanisms are to be investigated in the future studies 

for bile acid-derived ligands. Further investigations would provide insight into the function of 

gene-selective NR modulators and the functional difference between LCA derivatives and 

vitamin D3.  

 

Development of better bile acid-derived VDR modulators 

To develop better bile acid-derived VDR modulators, further investigations are 

necessary to address the following concerns. First, several off-target effects other than NRs are 

to be clarified. Vitamin D binding protein (Verboven et al., 2002) and bile acid binding proteins 

(Nakahara et al., 2005; Monaco, 2009) are lipid binding proteins that exhibit binding activities 

to endogenous VDR ligands and versatile functions. LCA derivatives including LCA acetate 

were reported not to have significant activity for G protein-coupled bile acid receptor (GPBAR) 
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1 (Ishizawa et al., 2008), a G-protein coupled plasma membrane receptor for bile acids that 

mediates many of the rapid, non-genomic actions of bile acids (Lieu et al., 2014). Second, the 

pharmacokinetic profile needs to be determined and optimized so as to exhibit desirable 

efficacies in animal models. Together with the functional and structural analyses, rational 

designs could be employed to develop more potent and selective VDR modulators.  

 

Application to studies on the biological function of VDR 

Identification of potent and novel VDR ligands provided useful chemical tools to 

elucidate the function of VDR modulation in vitro and in vivo. As an example of noncanonical 

function of VDR, it is present in caveolae-enriched plasma membranes and binds 1, 

25(OH)2D3 (Huhtakangas et al., 2004). VDR signaling was studied using VDR ligands 

including 1, 25(OH)2D3, LCA, and its derivative in primary human hepatocytes (Han et al., 

2010), demonstrating that VDR ligands activate membrane VDR and activate the intracellular 

kinase pathway, which results in recruitment of corepressors to suppress CYP7A1 gene 

transcription. This membrane VDR-signaling pathway may suppress bile acid synthesis as a 

rapid response to bile acids and protect hepatocytes from cholestatic liver injury. Thus, it is 

intriguing to examine whether the potent VDR agonists that were derived from bile acids could 

affect the non-canonical VDR signaling pathways.   
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The induction of genes encoding CYP3As has been studied in vitro and in vivo using 

LCA as a bile acid ligand (Matsubara et al., 2008). The results indicated the selective 

engagement of VDR, but not PXR, in the LCA-mediated induction of CYP3As in vivo. In 

addition, LCA can substitute for a diverse 1, 25(OH)2D3 dependent actions in calcium and 

bone homeostasis, as shown by the increase in serum calcium levels in vitamin-D-deficient rats 

treated with LCA (Nehring et al., 2007). However, utilization of LCA as a native VDR ligand 

still has limitations for its solubility or difficulty in application due to its low potency. Therefore, 

the potent VDR ligands could provide further insights into the bile-acid mediated and other 

physiological gene regulation in comparison to vitamin D. 

 

Future directions for the study of NR modulators 

Recent advancement in the technology has provided high-throughput sequencing 

capabilities in basic research areas. For example, ChIP-sequence analysis would facilitate 

further understanding of the functional characteristics mediated by VDR modulators.  

As discussed above, although crystallography is a powerful technology to uncover the 

molecular basis for ligand-receptor interactions, the approach can capture only the snapshots. 

Thus, dynamic behavior of protein conformations is to be investigated by multiple approaches. 

Hydrogen/deuterium exchange (HDX) has been applied to determine molecular mechanism of 
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VDR modulators that could not be inferred from static crystal structures (Zhang et al., 2010). 

NMR chemical shifts of rat VDR-LBD when bound to three distinctive ligands demonstrated 

the differential influence of these ligands on the solution conformation of the protein (Singarapu 

et al., 2011). A combination of small-angle X-ray scattering and molecular dynamics 

simulations proposed a model for mechanism of agonism/antagonism of VDR-LBD (Anami et 

al., 2016). HDX analyses has demonstrated the intra- and interdomain structural 

communications for VDR-RXR complex in the presence of target DNA sequences (Zhang et al., 

2011). These emerging technologies can provide fundamental information regarding dynamic 

interaction between ligand and receptors. Moreover, recent advancement in cryo-electron 

microscopy (Cryo-EM) prompted efforts towards understanding the full-length NR and 

provided transcriptional platforms. Notably, the structure of the full-length human RXR/VDR 

nuclear receptor heterodimer complex was determined in complex with its DR-3 response 

element (Orlov et al., 2012). Application of these technologies to the analyses on the interaction 

between bile acid-derived ligands and full-length VDR as well as VDR-LBP would address the 

dynamic behavior of VDR modulators. On top of that, elucidation of the dynamic behaviors of 

full-length NRs along with coregulators and DNA are crucial for structural and functional 

understanding of the biology regarding NRs. 
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Fig. 1. Schematic representation of primary structure of the NR 

Typical NR is comprised of A/B, C, D, E, and F regions. The amino terminal A/B region 

encode ligand-independent transactivation function. The C region encodes the DNA-binding 

domain (DBD). The D region connects the DBD and the following E region. The C and D 

regions encode nuclear localization signals. The E region encodes the ligand-binding domain 

(LBD) that serves ligand-dependent transactivation function and dimerization. A few receptors 

encode the F region in the C-terminal. 
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Fig. 2. Conformational change mediated by NR ligands observed in estrogen receptor crystal 

structures 

A, B, and C: Agonist conformation in complex with estradiol (PDB 1ERE) (A), antagonist 

conformation in complex with raloxifen (PDB 1ERR) (B), and antagonist conformation in 

complex with ICI182780 (PDB 1HJ1) (C) are drawn using PyMol. Helix 12 is depicted as red 

syringes. In the presence of pure antagonist, helix 12 is disordered and does not appear in the 

structure. 
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Fig. 3. The vitamin D receptor and its ligands 

A: Chemical structures of 1,25-dihydroxyvitamin D3 and lithocholic acid (LCA). B: The full 

length RXR-VDR structural model derived from SAXS and cryo-EM experiments proposed by 

Molnar (Molnar, 2014). A surface representation of the RXR (blue)-VDR (green) heterodimer is 
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shown on direct repeat (DR)-3 VDRE. The possible location of the coactivator peptide (orange) 

is highlighted as well. The 5'- and 3'-prime orientation of the DR-3 is annotated. 
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Fig. 4. Comparison of the LBD sequence of VDR and PXR 

A: Sequence alignment of VDR-LBDs [h, human (NCB accession no. AAA61273); m, mouse 

(NP_033530); r, rat (NP_058754); c,chicken (O42392)] and PXR-LBDs [m, mouse 

(AAC39964); h, human (AAD05436)]. Bars show helices (H) and -strands in hVDR and 

hPXR. Dark shadows show completely conserved residues in the alignment, and light shadows 

indicate partially conserved residues. Black circles show amino acid residues lining the LBP of 

hVDR. B and C: Ribbon loop presentations of hVDR-LBD (165–215) (B) and hPXR-LBD (C). 

-Helix, -sheet, and loop are shown as ribbons, arrows, and tubes, respectively. The LBPs of 

VDR and PXR are shown as Connolly channel surfaces. 
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Fig. 5. Functional analyses of VDR mutants 

A: Activation of VDR and its mutants by LCA and 1, 25(OH)2D3. VDR expression vectors or 

a control vector and a CYP3A4-ER-6x3-tk-LUC reporter were transfected into HEK293 cells 

and treated with LCA and 1, 25(OH)2D3. B: Association between SRC-1 and VDR and its 

mutants by LCA and1, 25(OH)2D3. C: Dissociation of N-CoR from VDR and its mutants by 

LCA and 1, 25(OH)2D3. Mammalian two-hybrid analysis using GAL4-SRC-1 or 

GAL4-N-CoR and VP16-VDR was performed in HEK293 cells. D: Evaluation of expression 

levels of functional VDR mutants in transfected cells. Cells were cotransfected with VP16-VDR 
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mutants or VP16 control vector and CYP3A4-ER-6x3-tk-LUC reporter. Fold induction by the 

ligands is relative to ethanol control (EtOH) vehicle. RLU, Relative light units. The values 

represent means  SD of triplicate assays. 
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Fig. 6. Dose response of wild-type VDR, S237M, S237A, S278V, and S278A mutants to 1, 

25(OH)2D3 and LCA using aGAL4-receptor luciferase assay 

Cells were cotransfected with GAL4-VDRs and MH100(UAS)x4-tk-LUC reporter, followed by 

treatment with the various concentrations of 1, 25(OH)2D3 (A) and LCA(B). RLU, Relative 

light units. The values represent means  SD of triplicate assays. 
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Fig. 7. Ligand binding specificity of wild-type VDR, S237M, and S278V mutants 

A: Direct binding of 1, 25(OH)2D3 to VDR. GST-fusion VDR proteins or GST control protein 

were incubated with increasing concentrations of [3H]1, 25(OH)2D3 in the presence or absence 

of 400-fold excess nonradioactive 1, 25(OH)2D3 to calculate the specific binding. B: 

Competitive binding of 1, 25(OH)2D3 and LCA to wild-type VDR and S278V mutants. 

GST-fusion VDR proteins were incubated with 1 nM [3H]1, 25(OH)2D3 in the presence or 
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absence of the indicated concentrations of nonradioactive 1, 25(OH)2D3 or LCA. *** P < 

0.0005, **** P < 0.0001 compared with control for wild-type VDR; ### P < 0.0005, #### P < 

0.0001 compared with control for S278V. The values represent means  SD of triplicate assays. 

  



117 

 

 

 

Fig. 8. Molecular modeling of VDR interaction with ligands 

A: 25-Hydroxyl group, 1-hydroxyl group, and 3-hydroxyl group of 1,25(OH)2D3 make 

hydrogen bonds with H305, S237, and Y143/S278 of VDR, respectively. B: Docking model of 

VDR point mutants with 1,25(OH)2D3. S237M and S275F mutations are predicted to weaken 

interaction with 1,25(OH)2D3, whereas the effects of H305Q, Y143F, and S278V on the 

modeled interaction are minor. C: Docking model of LCA and wild-type VDR. Y143 and S278 

weakly interact with the 3-hydroxyl group of LCA. These interactions are critical because S237 

cannot make a hydrogen bond with LCA. H305 is suitably positioned to form a hydrogen bond 

with the carboxyl group of LCA. D: Docking model of LCA and VDR mutants. Mutation of 
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S278V, H305Q, and S275F would be expected to destabilize interaction with LCA. Because 

S237 does not interact with LCA, S237M would be expected to have no effect on LCA 

interaction. 
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Fig. 9. LCA derivatives activate VDR 

A: Structures of LCA, its derivatives, and 1,25(OH)2D3 are shown. B: Activation of VDR by 

LCA derivatives. HEK293 cells were cotransfected with CMX-VDR and 

CYP3A4-ER-6x3-tk-LUC and then treated with vehicle control (ethanol), 1, 25(OH)2D3 (100 

nM), or bile acid derivatives (10 M) for 24 h. Luciferase activity of the reporter is expressed as 

fold induction with compound treatment relative to vehicle control. The values represent means 

± SD of triplicate assays. 
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Fig. 10. LCA acetate is a potent VDR agonist 

A: Concentration-dependent activation of VDR by LCA acetate and its related compounds. 

HEK293 cells were cotransfected with CMX-VDR and CYP3A4-ER-6x3-tk-LUC reporter and 

treated with several concentrations of LCA, LCA formate, LCA acetate, LCA acetate methyl 

ester (LCA acetate ME), and 3-keto-cholanic acid (3-keto-LCA) for 16 h. Activation of VDR 

was monitored by measuring the luciferase activities. B: Interactions of VDR with SRC-1 and 

N-CoR induced by LCA acetate and its related compounds. HEK293 cells were cotransfected 

with GAL4 control vector or GAL4-chimera vectors for SRC-1 or N-CoR, in combination with 

VP16-VDR and MH100(UAS)x4-tk-LUC reporter, and were treated with ethanol (EtOH) 

control, 10 M LCA acetate, or related bile acids. The luciferase activities were measured. The 

values represent means ± SD of triplicate assays. 
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Fig. 11. LCA acetate is a potent VDR ligand 

Direct binding of LCA acetate to VDR. In vitro translated VDR proteins were incubated with 

1nM [3H] 1, 25(OH)2D3 in the presence or absence of nonradioactive 10 nM 1, 25(OH)2D3 or 

50 M or 200 M bile acid derivatives. Bound [3H] 1, 25(OH)2D3 was measured. * P < 0.05, 

** P < 0.01, **** P < 0.0001 compared with EtOH control; ## P < 0.01, #### P < 0.0001 

compared with 50 M LCA. The values represent means ± SD of triplicate assays. 
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Fig. 12. LCA acetate is a selective agonist for VDR 

A: Receptor-specific activation by LCA acetate. GAL4-chimera receptors for various NRs were 

expressed with MH100 (UAS)x4-tk-LUC reporter in HEK293 cells and assayed for activation 

by 30 M LCA acetate. Luciferase activity of the reporter is expressed as fold induction with 

compound treatment relative to vehicle control. B: Concentration-dependent activation of FXR 

by LCA acetate and its related compounds. HEK293 cells were cotransfected with CMX-FXR 

and IR-1x3-tk-LUC reporter and treated with several concentrations of LCA, LCA formate, 

LCA acetate, iso-LCA, ursocholanic acid, or CDCA. The luciferase activities were measured. 

C: Comparative response of VDR and PXR to LCA acetate in liver HepG2 cells. HepG2 cells 

were transfected with CMX control vector (-), CMX-VDR, or CMX-PXR with 

CYP3A4-ER-6x3-tk-LUC and treated with vehicle control (EtOH), 30 M LCA, LCA formate, 

LCA acetate, 3-keto-LCA, or rifampicin. The luciferase activities were measured. The values 

represent means ± SD of triplicate assays. 
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Fig. 13. Structure-function analysis of LCA acetate and VDR 

A: Activation of VDR or its mutants by LCA acetate. GAL4-VDR and its alanine mutants 

(Y143A, S237A, S275A, S278A, W286A, and H305A) were cotransfected with 

MH100(UAS)x4-tk-LUC reporter in HEK293 cells and treated with vehicle control [ethanol 

(EtOH)] or the indicated concentrations of test compounds. WT, wild type. B: Does response of 

VDR S237M and S278V mutants for LCA acetate. HEK293 cells were cotransfected with 

GAL4-VDR, GAL4-VDR-S237M, or GAL4-VDR-S278V with MH100(UAS)x4-tk-LUC 

reporter in HEK293 cells. The values represent means ± SD of triplicate assays. C: Docking 

model of VDR interaction with LCA acetate. Left panel: The side chain carboxyl group is 

directed to the -turn site interacting with S278. The Connolly channel surface of the VDR-LBP 

is shown in translucent gray. Right panel: Overlay of LCA acetate (yellow) and 1, 25(OH)2D3 

(gray) accommodated in the VDR-LBP. 
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Fig. 14. Induction of VDR target genes by LCA acetate in intestinal cells 

LCA acetate induced VDR target genes more effectively than LCA in colon cancer-derived 

SW480 cells. Cells were treated with vehicle control (EtOH), 10 M or 100 M of LCA or 

LCA acetate, 100 nM 1, 25(OH)2D3, 100 M CDCA, or 30 M rifampicin for 24 h. 

Quantitative real-time PCR from mRNA for CYP24A1, CYP3A4, TRPV6, CDH1 (E-cadherin), 

VDR, and RXRA(RXR) was performed. * P < 0.05, ** P < 0.01, *** P < 0.0005, **** P < 

0.0001 compared with EtOH control. The values represent means ± SD of triplicate assays. 
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Fig. 15. Induction of VDR target genes by LCA acetate in the intestine 

Mice were orally administrated with vehicle (n=3), 200 mg/kg LCA (n=3), or 200 mg/kg LCA 

acetate (n=3). Twelve hours after administration, total RNA was extracted from intestinal 

mucosa and quantitative real-time PCR from mRNA for Cyp24a1, Cyp3a11, and Fabp6 (ileal 

bile acid binding protein) was performed. The values represent means ± SD. 

Cyp24a1 Cyp3a11 Fabp6
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Fig. 16. Effects of LCA acetate on growth and differentiation of human myeloid leukemia 

THP-1 cells 

A: Growth inhibition of THP-1 cells by 1, 25(OH)2D3 and LCA acetate. B: Induction of 

NBT-reducing activity in THP-1 cells by 1, 25(OH)2D3 and LCA acetate. THP-1 cells were 

treated with 1, 25(OH)2D3, LCA acetate, LCA, or 3-keto-LCA for 4 days. C: LCA acetate 

induces the morphological differentiation of THP-1 cells. Cells were treated with LCA acetate, 

LCA, or 3-keto LCA for 6 days, and differentiated cells as shown in the left panel were counted. 

Percentage of the differentiated cells are plotted in the right graph in response to the compounds. 

D: LCA acetate induces monocyte-specific esterase activity. Cells were treated with LCA 

acetate, LCA, or 3-keto-LCA for 6 days. Esterase activities were measured for monitoring 

differentiation of the cells. E: LCA acetate increases the expression of CD11b and CD14 surface 

antigens. Cells were treated with LCA or 1, 25(OH)2D3 for 4 days and CD11b and CD14 

expression was examined using monoclonal antibodies and flow cytometry. EtOH, ethanol. The 

values represent means ± SD of triplicate assays. 

 

 

 


