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General Abstract 
 

The proteins that accelerate chemical and biological processes within cells are called 

enzymes. The dimensions and shape of a protein molecule are very important to its 

functionality within the cell as agents that catalyze biochemical reactions. The three-

dimensional structure of a protein or enzyme determines how the molecule will react with 

other molecules, including amino acids, carbohydrates, steroids, hormones, and lipids. 

However, the three-dimensional structures of many proteins are still unknown. 

I have been involved in two major research projects that require protein structural 

information i) identification of the subcellular localization mechanism of a mammalian 

carbonyl reductase, and ii) clarification of the substrate recognition mechanisms of 

phosphoglucose isomerases from a malarial parasite and mouse. Specifically, in this 

thesis, I summarize in Chapter 1, the structural studies I have performed examining the 

subcellular localization mechanism of peroxisomal tetrameric carbonyl reductase and in 

Chapter II I describe the substrate recognition mechanism of phosphoglucose isomerase 

isolated from a human malarial parasite Plasmodium falciparum. 

In Chapter I—The peroxisome is an organelle also known as a microbody, which has 

been identified in virtually all eukaryotic cells. Although almost all peroxisomal enzymes 
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function within the organelle matrix, the peroxisome, unlike the mitochondrion, has no 

genetic material of its own and consequently these enzymes must be imported from the 

cytosol.  

Carbonyl reductase (CR) (EC 1.1.1.184) catalyzes the NADPH-linked reduction of a 

variety of carbonyl compounds to their corresponding secondary alcohols. Recently, 

cDNA cloning of pig heart CR and rabbit heart CR have revealed that both enzymes 

belong to the short-chain dehydrogenase/reductase (SDR) family, and that pig heart CR 

and rabbit heart CR have a peroxisomal target signal located in their C-termini.  

With regard to the availability of the C-terminal tripeptide required for peroxisomal 

import, enzymes containing wild-type (SKR) and mutated (SKL, SHL, SLL, and SL) 

peroxisomal pig heart CR (PerCR) PTS1 sequences were examined for their ability to be 

transported into the peroxisome by expressing the respective cDNAs in HeLa cells. 

Although the mutant enzymes containing the SKL and SHL sequences were imported 

into the peroxisomes and retained full enzymatic activity, those with the SLL and SL 

sequences were not targeted to this organelle and were enzymatically inactive. Moreover, 

interestingly, the wild-type pig heart CR did not show specific targeting when introduced 

to the cells using a protein transfection reagent. 

Thus, I decided to explore the PerCR peroxisomal subcellular localization mechanism 
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using crystallography. 

 I purified the PerCR protein from recombinant Escherichia coli (E.coli) and 

crystallized it. X-ray diffraction data were collected at the Photon Factory (Tsukuba). 

Finally, I determined the crystal structure of pig heart PerCR complexed with its 

coenzyme NADPH at 2.2 Å resolution. The crystal structure shows that the C-terminal 

Ser-Arg-Leu signal is involved in the R-axis-related inter-subunit interactions of 

tetrameric PerCR and is buried in the interior of the tetrameric PerCR molecule. The 

structure therefore reveals why, when injected into cells, the tetrameric PerCR molecule 

is not imported into the peroxisome, and thus enables me to propose a hypothetical model 

for the peroxisomal targeting of PerCR. Additionally, analysis of the geometry of the 

inter-subunit interactions allowed me to understand the role of the C-terminal sequence 

in maintaining an active tetrameric form of this enzyme. 

In Chapter II—Malaria is one of the world’s most serious infection diseases caused by 

parasitic infection of human tissue and blood, and is dependent on blood glucose to 

sustain the infection. An estimated 300–500 million new cases of malaria and up to 2.7 

million deaths due to malaria are reported each year. In addition, recently, resistance to 

currently used anti-malarial drugs has been described.  

Phosphoglucose isomerase (PGI; EC 5.3.1.9), also known as glucose 6-phosphate 
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isomerase (GPI), or phosphohexose isomerase (PHI), is a key enzyme in both glycolysis 

and gluconeogenesis. It catalyzes the second step of glycolysis, namely, the 

interconversion of glucose 6-phosphate (G6P) to fructose 6-phosphate (F6P) and vice 

versa. Since PGI is a housekeeping enzyme, it would be expected that its catalytic 

residues would be well conserved amongst PGIs from various species. However, 

significant amino-acid sequence differences (both insertions and deletions) are observed 

between mammalian PGIs (558 residues) and PfPGI (579 residues). Thus, a detailed 

comparison of the three-dimensional structures of human and plasmodium PGIs is 

important to understand whether these differences can be applied to future structure-based 

drug design and to gain insight into the structural origin of the species specificity of the 

cytokine activity of PGI.  

I purified Plasmodium falciparum phosphoglucose isomerase (PfPGI) from 

recombinant E. coli and crystallized it. X-ray diffraction data were collected at the Photon 

Factory in Tsukuba and I determined the crystal structure in complexes with two kinds of 

inhibitors (3PGA and 6PGA) as well as its substrate (F6P) at 1.7 to 2.0 Å resolution. The 

crystal structures show two additional insertion loops (referred to as malaria original 

loops, MOL1 and MOL2) and these MOLs were found to be only conserved in 

Plasmodium species. Moreover, the MOLs contribute to dimer interactions and the 
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MOL2 (residues 438-446) disrupts an interaction between the carbohydrate binding helix 

(CBH) and the α15 helix* by steric hindrance. In the substrate binding site of PfPGI 

complexed with 6PGA, the conformations of the phosphate binding loop and the 310-helix 

containing His411* (i.e. His411 belonging to the other subunit) are quite similar to those 

observed in the crystal structure of mouse PGI in complex with 6PGA. However, the 

position of CBH, containing Lys540, in PfPGI was not as similar to the position in mPGI. 

Although a conformational change in CBH is necessary for it to directly interact with the 

substrate in order to fix the position of substrate in the protonation step of catalysis, CBH 

cannot directly interact with the substrate because of the steric hindrance that arises from 

MOL2 in PfPGI. Though further studies are necessary to make any definitive conclusions, 

the crystallographic data and structural analyses described in this thesis give new insights 

into the catalytic mechanism of PfPGI. 
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ADH  alcohol dehydrogenase 
AKR  aldo-keto reductase 
AMF  autocrine motility factor 
ASU        asymmetric unit  
CBH  carbohydrate binding helix 
CR  carbonyl reductase 
DNA  deoxyribonucleic acid 
E4P  erythrose 4-phosphate 
F6P  fructose 6-phosphate 
G6P  glucose 6-phosphate 
G6PDH glucose 6-phosphate dehydrogenase 
GPI  glucose 6-phosphate isomerase 
HEPES      N-2-hydroxyethylpiperazine-N`-2-ethanesulfonic acid 
HSD  hydroxysteroid dehydrogenase 
MF  maturation factor 
MLCR       mouse lung carbonyl reductase 
MOL  malaria original loop 
mPGI  mouse phosphoglucose isomerase 
MR         molecular replacement 
NADP+      nicotinamide adenine dinucleotide phosphate 
NADPH      nicotinamide adenine dinucleotide phosphate, reduced form 
NLK  neuroleukin 
OD  optical density 
PCR  polymerase chain reaction 
PEG         polyethylene glycol 
Pex         peroxine 
Pf  Plasmodium falciparum 
PF  photon factory 
PfPGI  Plasmodium falciparum phosphoglucose isomerase 
PGI  phosphoglucose isomerase 
PTCR       peroxisomal tetrameric carbonyl reductase 
PTS  peroxisomal targeting signal 
RMSD       root-mean-square deviation 
RNA  ribonucleic acid 
SDR         short-chain dehydrogenase/reductase 
TPR         tetratricopeptide repeat 
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Tris         tris (hydroxymethyl) aminomethane 
3PGA  3-phosphoglyceric acid 
6PGA  6-phosphogluconic acid 
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General Introduction 
 

The proteins that accelerate chemical and biological processes within cells are called 

enzymes. The dimensions and shape of an enzyme molecule are very important to the 

protein’s functionality within the cell as an agent that catalyzes biochemical reactions. 

Enzymes react with other molecules, including amino acids, carbohydrates, steroids, 

hormones, and lipids (1). 

Enzymes are highly selective catalysts that can be specifically localized in the cells of 

specific organs. Some enzymes are localized on the surface of specific cells to allow them 

to be able to degrade large molecules into smaller molecules so that these smaller 

molecules can be easily taken up by cells. In contrast, some enzymes catalyze the opposite 

process by combining two substrates to produce a new molecule. In tandem with 

advanced research technologies such as PCR, DNA sequencing, bioinformatics databases 

and so on, we can now easily predict each enzyme’s subcellular location and function. 

Currently, according to the UniProt Knowledgebase (UniProtKB: 

http://www.ebi.ac.uk/uniprot ), which is the central access point for extensive protein 

https://www.livescience.com/17908-earth-oxygen-enzyme.html
http://www.ebi.ac.uk/uniprot
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information such as function, classification, and cross-reference data, a total of 80 million 

protein sequences have been registered.  

However, in order to obtain more detailed information about enzymes (proteins), such 

as the phenotypic form of mutant proteins, catalytic mechanisms, and protein-protein 

interactions at the atomic level, it is necessary to know the structure of the enzyme. To 

achieve this, various methods such as an X-ray crystallography, electron microscopy, and 

nuclear magnetic resonance have been developed. As a result, we can now visualize how 

enzymes work (2, 3).  

In microscopy, the resolution is limited by the wavelength of the electromagnetic wave 

used. Using an optical microscope with a wavelength of approximately 300 nm, we can 

see individual cells and sub-cellular organelles. For an electron microscope, using a 

wavelength of under 10 nm, we can see the cellular architecture in more detail and 

visualize the approximate dimensions of large proteins. However, in both methods, we 

cannot observe protein behavior at the atomic level. Thus, it is necessary to use an 

electromagnetic wave with a wavelength of around 0.1 nm (or 1 Å) using X-rays in order 

to understand protein behavior at the atomic level (4).  
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X-ray crystallography is a higher resolution microscopy that uses the diffraction data 

obtained by X-rays and a protein crystal produced by crystallization methodologies (5-7).  

Recently, advances in both hardware (brilliant synchrotron radiation sources and highly 

sensitive detectors) and software (computer programs for protein crystallography) have 

enabled us to determine new protein structures at high resolution more easily than in the 

past decade, and a huge number of protein structures are being rapidly solved. According 

to the Protein Data Bank (PDB; https://www.rcsb.org/pdb/home/home.do), which is an 

information website related to the 3D conformations of proteins, nucleic acids, and 

complex assemblies, approximately 800,000 protein structures have now been deposited. 

As a result, we can understand how proteins interact with other molecules, how they 

undergo conformational changes, and, in the case of enzymes, how they perform catalysis. 

Moreover, we can design specific compounds to target proteins, and these resources have 

contributed to basic research and education in molecular biology, structural biology, 

computational biology, and so on (8). In addition, X-ray crystallography can structurally 

classify the protein family type, and can answer research questions based on the 3D 

structure. I have been involved in two major research projects which require protein 

structural information: i) the identification of the subcellular localization mechanism of a 

https://www.rcsb.org/pdb/home/home.do
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mammalian carbonyl reductase and ii) clarification of the substrate recognition 

mechanism of phosphoglucose isomerases from a malarial parasite and mouse. 

   

Peroxisomal carbonyl reductase from pig heart tissue 

Carbonyl reductase (CR; EC 1.1.1.184) catalyzes the NADPH-linked reduction of a 

variety of carbonyl compounds to their corresponding secondary alcohols, and contains 

different types of subunit found in several mammalian tissues (9). Some CRs are 

monomeric enzymes (approximately 280 amino acids) with molecular weights of around 

30 kDa. Tetrameric mitochondrial CRs (4 × 250 amino acid acids) are found in the lungs 

of guinea pigs, mice, and pigs (10-13). The endogenous substrates of the monomeric CRs 

are thought to be isatin and 20-ketosteroids, whereas those of the mitochondrial tetrameric 

lung CRs are 3-ketosteroids and carbonyl compounds derived from lipid peroxidation. 

Both the cytosolic CRs and mitochondrial CRs belong to the short-chain 

dehydrogenase/reductase (SDR) family (14, 15). In addition to these multiple forms of 

CR, oligomeric and soluble forms of CR have been isolated from dog liver, rabbit heart, 

and pig heart (16-18). The properties of the oligomeric liver/heart enzymes differ from 

those of the monomeric CRs and the tetrameric mitochondrial lung CRs. Partial amino-
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acid sequencing and full-length cDNA cloning of both pig heart CR (PHCR) and rabbit 

heart CR (RHCR) have identified that both enzymes consist of 260 amino-acid residues, 

and belong to the SDR family (18). cDNA cloning of RHCR has demonstrated that this 

enzyme is identical to rabbit NADP+ dependent retinol dehydrogenase (NDRD). PHCR 

has a low sequence identity (<30%) to other mammalian monomeric CRs and 

mitochondrial tetrameric lung CRs, but has a high (80%) sequence identity to 

NDRD/RHCR. Characterization of recombinant PHCR and NDRD showed that they are 

identical enzyme species which reduce alkyl phenyl ketones, dicarbonyl compounds, and 

retinals, such as all-trans-retinal and 9-cis-retinal, as endogenous substrates (18). Further 

studies have shown that PHCR is localized in peroxisomes.  

The first CR crystal structure was reported for mouse lung CR (MLCR) (19). The crystal 

structures of two monomeric CRs, porcine testicular CR and human CR, were 

subsequently determined (20, 22). The structural features, including the active site and 

the coenzyme-binding region, of the tetrameric MLCR and the monomeric CRs are 

similar to those of the other SDR enzymes. However, the substrate-binding region, which 

is the most variable part of the structure, differs among the various SDR enzymes. The 

crystal structures of SDR enzymes in the form of a retinal/retinol complex have not been 

reported (19, 23, 24).  
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Phosphoglucose isomerase from Plasmodium falciparum 

Phosphoglucose isomerase (PGI; EC 5.3.1.9), also called as glucose 6-phosphate 

isomerase (GPI) or phosphohexose isomerase (PHI), is involved in the second step of the 

glycolytic pathway that interconverts glucose 6-phosphate (G6P) and fructose 6-

phosphate (F6P). The pathway is key to the generation of free energy, which is used to 

form the high-energy molecule ATP (adenosine triphosphate) and NADH (reduced 

nicotinamide adenine dinucleotide) by converting glucose C6H12O6, into pyruvate 

(CH3COCOO− + H+) in almost all species (25).  

In mammals, PGI also functions as an angiogenic factor (autocrine motility factor, 

AMF) that is involved in tumor metastasis signaling, and as a neurotrophic factor, 

neuroleukin (NLK) in spinal and sensory neurons (26-28).  

With regard to the structure of PGI, several crystal structures have already been reported 

(human, pig, mouse, as well as others) (29-35). 

PGI is a housekeeping enzyme; therefore, it was expected that its catalytic residues 

should be well conserved amongst PGIs from various species. However, significant 

amino-acid sequence differences (including insertions and deletions) are observed 

between the mammalian PGIs (558 residues) and Plasmodium falciparum PGI (579 
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residues). A structural comparison between mammalian and malaria PGIs should enable 

us to obtain useful information in order to design a selective inhibitor of PfPGI, which 

might serve as a lead compound for developing novel anti-malarial compounds. 

In this thesis, I describe the subcellular localization mechanism of a mammalian 

carbonyl reductase, and a difference in the substrate recognition mechanism of 

mammalian and malaria parasite PGIs. In chapter I, I reveal the structure of tetrameric 

PerCR and the fact that this tetrameric form cannot be imported into the peroxisome from 

the cytosol because the peroxisomal targeting signal is buried in the interior of the 

tetrameric molecule. In Chapter II, I describe the structures of PfPGI in complexes with 

inhibitors and its substrate F6P, and show that the substrate recognition mechanism of 

PfPGI is somewhat different from that of mammalian PGIs as a result of steric hindrance 

caused by the malaria original loop domain. 
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Chapter I 

Crystallization and Preliminary X-ray Crystallographic Studies and Structural Basis for 

the Peroxisome Localization Mechanism of Pig Heart Carbonyl Reductase  
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Abstract 

Pig heart peroxisomal carbonyl reductase (PerCR), which belongs to the short-chain 

dehydrogenase/reductase family, and has a C-terminal SRL tripeptide, which is a variant 

of the type 1 peroxisomal targeting signal (PTS1) Ser-Lys-Leu-C term. PerCR is imported 

into the peroxisomes of HeLa cells when the cells are transfected with vectors expressing 

the enzyme. However, PerCR does not show specific targeting when introduced into the 

cells using a protein transfection reagent. To understand the structural basis for 

peroxisomal localization of PerCR, I determined the crystal structure of PerCR.  

Purified PerCR was crystallized by the hanging drop vapor-diffusion method. Two 

crystal forms (I and II) were obtained in the presence of NADPH. Form I crystals belong 

to the tetragonal space group P42, with unit-cell parameters a = b = 109.61, c = 94.31 Å, 

and diffract to 1.5 Å resolution. Form II crystals belong to the tetragonal space group 

P41212, with unit-cell parameters a = b = 120.10, c = 147.00 Å, and diffract to 2.2 Å 

resolution. Both crystal forms were suitable for X-ray structure analysis at high resolution. 

The data revealed that the C-terminal PTS1 of each subunit of PerCR is involved in 

inter-subunit interactions and is buried in the interior of the tetrameric molecule. These 

findings indicate that the PTS1 receptor Pex5p in the cytosol recognizes the monomeric 

form of PerCR whose C-terminal PTS1 is exposed, and that this PerCR is targeted into 

the peroxisome, thereby forming a tetramer. 
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Introduction  

The peroxisome is an organelle known as a microbody, that has been identified in 

virtually all eukaryotic cells (36,37). Peroxisomes are involved in the β-oxidation of fatty 

acids, the metabolism of amino acids and polyamines, the reduction of reactive oxygen 

species, specifically hydrogen peroxide, and the biosynthesis of plasmalogens in 

mammalian brains and lungs (39). While almost of the enzymes function within the 

organelle matrix, the peroxisome, unlike the mitochondria, has no genome and so these 

enzymes are all imported from the cytosol. The peroxins, which are referred to as Pex1p, 

Pex2p, Pex3p, and so forth up to Pex23p, function as part of the mechanism for the import 

of soluble peroxisomal enzymes from the cytosol into the peroxisomal matrix. 

Peroxisomal matrix proteins are synthesized by polyribosomes in the cytosol (40). 

Currently, two type of peroxisomal targeting signals (PTSs): PTS1 and PTS2 have been 

reported (41-43). Peroxisomal matirix proteins have either of one of the two PTS signals 

and are recognized in the cytosol by Pexs (44-48). PTS1 is found at the Carboxy- terminus 

and is encoded by the sequence Ser-Lys-Leu (SKL), or similar sequences (48). In the case 

of PTS1, proteins are recognized by Pex5p and the protein-Pex5p complexes are 

transported into the peroxisome via Pex14p. In contrast, PTS2 is an amino-terminal signal, 

[RK]-[LVI]-x5-[HQ]-[LA], which is formed by an α helix motif and is cleaved in 
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mammalian cells (42, 43, 49). In the case of PTS2, proteins are recognized by Pex7p and 

Pex5p and proteins-Pex7p-Pex5p complexes are transported into the peroxisome via 

Pex19p. 

Carbonyl reductase (CR) (EC 1.1.1.184) catalyzes the NADPH-linked reduction of a 

variety of carbonyl compounds to their corresponding secondary alcohols (9). In 

mammalian tissues, the enzyme exists in several forms that differ in subcellular 

localization and/or subunit structure. The cytosolic enzymes purified from several 

mammalian tissues are monomers (around 30 kDa), and have been shown to catalyze 

isatin and 20-ketosteroids (11,50). A tetrameric form of CR (around 27 kDa for each 

subunit) exists in the lungs of guinea pigs, mice, and pigs, and is localized in the 

mitochondrial matrix (12, 13, 51). Although the two forms of CR belong to the short-

chain dehydrogenase/reductase (SDR) family, they have low sequence identity (<30%) 

and differ in the number of amino acid residues (14, 15).  

The first crystal structure of CR was reported for tetrameric mouse lung CR (MLCR) 

(19). Subsequently, the crystal structures of two monomeric CRs, porcine testicular CR 

and human CR, were determined (21, 52). In addition to the monomeric and lung CRs, 

oligomeric and soluble CRs have been isolated from dog liver, rabbit heart, and pig heart 

(16-18). Protein sequencing and cDNA cloning of pig heart CR and rabbit heart CR have 
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revealed that both enzymes belong to the SDR family, and that their subunits consist of 

260 amino acid residues (18). Interestingly, the properties of these enzymes can be 

distinguished from those of the monomeric and lung CRs and in particular, the heart CR 

is localized in peroxisomes. In addition, both pig and rabbit heart CRs are tetrameric and 

show low sequence identity (<30%) with other mammalian monomeric and lung 

tetrameric CRs. With regard to the substrate specificity of the recombinant heart CRs, 

they have been shown to be able to uniquely catalyze the reduction of alkyl phenyl 

ketones and retinals/ retinols. In particular, pig and rabbit heart CRs can efficiently reduce 

all-trans-retinal. These reactions are not efficiently catalyzed by the monomeric and lung 

CRs.  

The heart CR is localized in peroxisomes, and the enzyme is ubiquitously expressed in 

pig and rabbit tissues (18). Hence, in this thesis, I will refer to the heart CR as PerCR 

(peroxisomal CR). As I have discussed previously, pig and rabbit PerCR contain a C-

terminal Ser-Arg-Leu (SRL) tripeptide, which is a variant of the PTS1 SKL, while, the 

C-terminal sequence of dog liver oligomeric CR is Ser-His-Leu (SHL) (48, 53). Notably, 

with regard to the availability of the C-terminal tripeptide in peroxisomal import, 

mutation of the PTS1 sequence of pig PerCR from Ser-Arg-Leu (SRL) to Ser-Lys-Leu 

(SKL), Ser-His-Leu (SHL), Ser-Leu-Leu (SLL), and Ser-Leu (SL) were performed to 
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assess the effect on the peroxisomal transport of pig PerCR in HeLa cells. Although the 

mutant enzymes containing the SKL and SHL sequences were imported into the 

peroxisomes and retained enzymatic activity, those with the SLL and SL sequences were 

not targeted to this organelle and were enzymatically inactive. Gel filtration data showed 

that the inactive SLL and SL mutants, as well as the active SKL and SHL mutants formed 

tetramers. Moreover, interestingly, the wild-type pig heart CR did not show specific 

targeting when transfected as a protein into cells. 

To understand the structural basis for peroxisomal localization of PerCR, I decided to 

initiate a crystallographic analysis of PerCR. 
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Material and Methods 
Expression and purification 

The expression and purification of recombinant pig heart PerCR were performed as 

described in Usami et al. (18). Briefly, the expression plasmids (pCR-T7/CT TOPO 

vectors; Invitrogen, Thermo Fisher Scientific K.K., Japan) harboring the cDNA for 

PHCR were transformed into Escherichia coli BL21(DE3)pLysS cells (Invitrogen). 

Bacterial cultures were grown in LB medium (3 L shaker flask containing 1 L medium) 

at 310 K to an OD600 of 0.4. Expression of PHCR was induced by the addition of 1 mM 

IPTG for 6 h at 310 K. After this period, cells were harvested by centrifugation at 5000 × 

g for 15 min, suspended in lysis buffer (0.1% Triton X-100, 5 mM 2-mercaptoethanol, 

and 1 mM EDTA in 10 mM Tris-HCl buffer pH 7.5) and sonicated at 180 W for 10 min 

using an UH-150 Ultrasonic homogenizer (SMT Co., Tokyo, Japan). The cell extract was 

obtained by centrifugation at 12 000 × g for 15 min. The enzyme was purified from the 

cell extract by ammonium sulfate fractionation (30–75% saturation) and consecutive 

column chromatography on Sephadex G-100, Red-Sepharose, and hydroxylapatite. SDS–

PAGE of the purified enzyme revealed a single 27 kDa protein band by Coomassie 

Brilliant Blue staining. The purified enzyme fractions were dialyzed against 200 mM 

sodium chloride, 5 mM 2-mercaptethanol, and 20%(v/v) glycerol in 10 mM phosphate 

buffer pH 7.0, and concentrated to 3 mg/mL by ultrafiltration using an Amicon YM-10 
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membrane and stored at 253 K. The enzyme is a basic protein with a pI value of 9.3 and 

was easily precipitated when concentrated to a protein concentration greater than 3.3 

mg/mL. Avoidance of the precipitation during ultrafiltration resulted in a high yield (27 

mg protein from 1 L of culture) of the homogenous enzyme compared with a previous 

purification (5 mg protein from 1 L culture (18)). The preparation of the E. coli cell extract 

and purification of the enzyme were carried out at 278 K. 

 

Assay for enzyme activity 

The reductase activity of the enzyme was determined by recording the change of 

absorbance of NADPH at 340 nm. The standard reaction mixture for the reductase activity 

consisted of 0.1 M potassium phosphate (pH 6), 0.1 mM NADPH, 1 mM 4-

benzoylpyridine, and enzyme, in a total volume of 2.0 mL. One unit of enzyme activity 

was defined as the enzyme amount that catalyzes the reduction of 1 mmol of NADPH per 

minute at 25°C. 

 

Crystallization 

The stock solution of 3 mg/mL PerCR described above was dialyzed against 1 mM 

NADPH and 50 mM NaCl in 20 mM Tris-HCl buffer pH 7.5, and concentrated using a 

Centricon-30 (Millipore), yielding a working solution of 3 mg/mL PHCR with 1 mM 
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NADPH and 50 mM NaCl in 20 mM Tris-HCl buffer pH 7.5. Initial sparse-matrix crystal 

screening was conducted using Crystal Screen I (Hampton Research, USA) (54). 

Crystallization was carried out by the hanging-drop method, in which 1 μL of working 

solution was mixed with the same volume of crystallization buffer and incubated at 293 

K. The drops were suspended over a 200 μL reservoir solution in 48-well plates.  

 

X-ray data collection 

Since the crystallization conditions for PerCR described above included 20%(v/v) 

glycerol in the reservoir solution, X-ray data collection could be performed under 

cryogenic conditions, without further addition of cryoprotectant. Thus, crystals from the 

hanging drop were directly mounted in nylon loops and flash-cooled in a cold nitrogen-

gas stream at 100 K just prior to data collection. Data collection for the form I crystal was 

performed by the rotation method at 100 K using an ADSC Q210 CCD detector with 

synchrotron radiation (λ = 1.000 Å at beamline NW12 of the Advanced Ring of the 

Photon Factory, Tsukuba, Japan). The Laue group and unit-cell parameters were 

determined using the DPS program package (55). 
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Structure determination 

The initial phase determination was performed by the molecular replacement (MR) 

technique with the coordinate set of the ternary complex of mouse lung carbonyl 

reductase, MLCR (PDB code; 1CYD) as a search model. Crystallographic refinement 

was performed with the program REFMAC (55).  

Structural analysis  

Least-squares comparisons of the molecular models were performed using the DALI 

server (55). Figures were produced using the ViewerPro program (Figures 3, 4, 5, 6, 7A, 

7B, and 7D, and Figure S1) and the Raster3D and XtalView programs (57, 58). Other 

figures were produced using the program Chimera. 
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Results 

 

Crystallization 

Several microcrystals, and two morphologically distinct crystals, were observed within 

a week. Crystals of form I grew as rod-shaped crystals from condition No. 38 in Crystal 

Screen I (100 mM HEPES buffer and 1.4 M sodium citrate as a precipitant). Crystals of 

form II grew as rectangular-shaped crystals from condition No. 4 in Crystal Screen I (100 

mM Tris-HCl buffer and 2.0 M ammonium sulfate as a precipitant). Trials to improve the 

crystallization conditions were performed for the form I and II crystals by varying the pH, 

buffer system, and precipitant concentration.  

Simultaneously, I also examined the addition of glycerol to the reservoir solutions. 

 In order to obtain form I crystals suitable for X-ray analysis, a droplet was prepared by 

mixing equal volumes (2.0 + 2.0 μL) of the working solution (3 mg/mL PerCR) described 

above, and the reservoir solution [1.2 M sodium citrate and 20% (v/v) glycerol in 100 

mM HEPES buffer pH 7.5], and this was suspended over a 500 μL reservoir solution in 

24-well plates. Rod-shaped crystals with typical dimensions of approximately 0.1× 0.1 × 

0.5 mm were grown in one week (Fig. 1A). 

In order to obtain form II crystals suitable for X-ray analysis, a droplet was prepared by 

mixing equal volumes (2.0 + 2.0 μL) of the working solution (3 mg/mL PHCR) described 
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above, and the reservoir solution [1.4 M ammonium sulfate and 20% (v/v) glycerol in 

100 mM MES buffer pH 6.0], and was suspended over a 500 μL reservoir solution in 24-

well plates. Rectangular-shaped crystals with typical dimensions of approximately 0.1 × 

0.2 × 0.3 mm grew in one week (Fig. 1B). 

 

X-ray data collection 

The Laue group was found to be 4/m, the unit-cell parameters were a = b = 109.61, c = 

94.31 Å, and the space group was P42. For the form II crystal, the Laue group was found 

to be 4/mmm, and the unit-cell parameters were a = b = 120.10, c = 147.00 Å and the 

tetragonal space groups were P41212 or P43212. The data-collection statistics are 

summarized in Table 1.  

 

Crystallographic analyses 

Initial phase determination for the form I crystal was performed by the molecular-

replacement (MR) technique using the coordinate set of the whole tetramer of MLCR 

(PDB code; 1CYD), which has approximately 27% amino-acid sequence identity to 

PerCR, as a search model. The bound NADPH, 2-propanol, and water molecules were 

removed from the search model. Cross-rotation and translation functions were calculated 
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using the program AMoRe from the CCP4 suite (59). The results showed a clear solution 

[correlation coefficient of 0.321 (the first noise solution was 0.286) and R factor of 0.539 

(0.553) in the resolution range 15.0–2.5 Å] and a reasonable molecular arrangement of 

PerCR in the ASU. The MR solution was supported by the observation that the directions 

of the non-crystallographic (NCS) two-fold axes determined by the self-rotation function, 

showing that the 222 point group symmetry of the tetrameric PerCR molecule, were 

consistent with the MR solution obtained. The model was improved using a manual model 

building with the program XtalView, and refined to a resolution of 1.5 Å with an R factor 

of 0.223 (free R factor of 0.244), without incorporating the bound NADPH and water 

molecules, using REFMAC (58, 60). A random subset of the data (5%) were not included 

in the refinement. Refinement of the form I crystal at 1.5 Å is incomplete at this time, and 

work on it continues. The incompletely refined form I model could nevertheless be used 

for structure determination of the form II crystal by the MR method, which was performed 

by procedures similar to those described above. The space-group ambiguity (P41212 or 

P43212) for the form II crystal was resolved by calculating the translation function for 

either case. The results showed a clear solution [correlation coefficient of 0.729 (the first 

noise solution 0.398) and R factor of 0.397 (0.562), in the resolution range 15.0–2.5 Å, 

and a reasonable molecular arrangement of PerCR in the ASU for the space group P41212. 
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Finally, the model was refined to an R-factor of 0.161 (free R-factor of 0.188) at 1.5 Å 

resolution. The final model includes one NADPH molecule, and all of the non-hydrogen 

atoms except for the nine N-terminal residues (Met1 to Arg9) for each of the four 

crystallographically independent subunits. 

In addition, a total of 772 water molecules are included per ASU. The refinement 

statistics are summarized in Table 2. 
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Effects of mutations of the C-terminal tripeptide on peroxisomal localization and 
enzyme activity 

 

Four mutant pig PerCRs where the C-terminal peroxisomal targeting signal was changed 

from SRL to SHL, SKL, SLL, and SL were generated and expressed in Escherichia coli 

cells. The enzyme activity of the SHL and SKL mutants could be detected, however the 

SLL and SL mutants were catalytically inactive, although all the enzymes were expressed 

appropriately, as assessed by western blotting analysis (Figure 2A). The SHL mutant was 

purified using a three-column chromatographic fractionation procedure using Sephadex 

G-100, Red-Sepharose, and hydroxylapatite, and a homogeneous preparation with a 24% 

yield and a specific activity of 22 U/mg was obtained. However, the SKL mutant 

gradually lost activity during incubation at 0°C (Figure 2B). The inactivation was 

prevented by adding 20% (v/v) glycerol containing 0.1 mM NADPH or 0.5 M KCl, but 

it was not due to the incubation at low temperature, because the enzyme lost 70% of its 

activity after incubation for 15 min at 25°C. The SKL mutant was further purified by re-

chromatography on a Red-Sepharose column using a buffer containing 20% glycerol, and 

the purified protein was obtained as an electrophoretically homogeneous preparation with 

a specific activity of 28 U/mg, although the yield was low (5.4%). The molecular weights 

of the two mutant enzymes (SHL and SKL) were 27 kDa by SDS-PAGE, and 
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approximately 100 kDa following Sephadex G-100 gel filtration, confirming their 

tetrameric structures. The substrate specificities of the purified SHL and SKL mutants 

were essentially identical to that of the wild-type enzyme (18). For example, the Km values 

for 4-benzoylpyridine, ethyl benzoylformate, 1-phenylisatin, and NADPH were 380, 19, 

6, and 6 mM, respectively, for the purified SHL mutant, whereas the respective values of 

the purified SKL mutant were 380, 29, 5, and 5 mM. When the inactive recombinant SLL 

and SL mutants were partially purified, they emerged at the same elution volume as that 

of the wild-type enzyme on Sephadex G-100 gel filtration, suggesting that these mutant 

enzymes retain their tetrameric structures. 

 

Tertiary structure of PerCR 

The subunit of PerCR is a single-domain protein having an α/β double-wound structure 

(Figure 3). Seven β-strands are found as a βsheet in the center of the molecule and three 

helixes sandwich this β-sheet. Two short helixes (αFG1 and αFG2) are located outside of 

the main body. These helixes are known to be involved in substrate binding among 

enzymes in the SDR family (19). The C-terminus containing the PTS1 was found to be 

in the structural core of the subunit.  
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Quaternary structure 

With respect to overall structure, the tetrameric PerCR is similar in conformation to 

tetrameric SDRs (Figure 4). As I have discussed previously, two short helixes (αFG1 and 

αFG2) are also found outside the main body of the enzyme (Figures 4B and 4C). In 

tetrameric SDRs, these four subunits are arranged with a 222-point group symmetry. The 

three mutually perpendicular two-fold axes in the tetrameric SDRs are designated as the 

P, Q, and R-axis, respectively (15).  

Subunit interactions were found to occur in four main areas; i) αE-αE, ii) around αF-αF, 

iii) αG-αG, and iv) C-terminal (Figure 4). The most extensive inter-subunit interactions 

are found between the Q-axis related subunits. The αE and αF helixes of one subunit 

interact with the αE and αF helixes of the neighboring subunit, respectively. Hydrophilic 

interactions are found in the αE-αE helixes interaction of PerCR, (Asp110, Glu113, 

Asp117, His121, Lys125 and Lys132) (Figure 6A, 6B). 

 Generally, in the interaction between the αE-αE helixes of SDRs, the aromatic side 

chains face each other. In the case of E. coli 7D-hydroxysteroid dehydrogenase (7D-HSD), 

Phe111, Tyr115, Phe120, and Phe123 are observed, whereas no aromatic side chains, 

with the exception Trp116 (which corresponds to Phe111 in 7D-HSD), are found in the 

PerCR αE-αE helixes interaction (19). Tyr115, Phe120, and Phe123 in 7D-HSD are 

replaced by Leu120, Lys125, and Val128, respectively, in PerCR. Thus, it is remarkable 
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that the interaction between αE-αE helixes has a hydrophilic nature in PerCR and is more 

hydrophobic in other SDRs. 

With respect to the αF-αF helixes interaction in PerCR, the hydrophobic side chains 

(Val166, Thr169, and Gly173) interact with each other, as well as in MLCR and 7α-HSD. 

(Figure 6B.) Interestingly, the hydrophobic pocket, which consists of Leu172, Gly173, 

and Lys176 in the center (red frame) between αF-αF helixes interfaces to stabilize the 

side chain of Leu260 which is the C-terminus of neighboring subunits related to the R-

axis (Figure 6C). 

For the αG-αG helixes interaction, and C-terminal interaction related to the R-axis, the 

interaction is not as extensive as is found for the αE-αE and αF-αF helixes interactions. 

The benzyl groups from Phe230 are stacked against each other (Figure 6D).  

With respect to the C-terminal interaction, (Figure 7), each C-terminus involving the 

peroxisomal targeting signal (PTS1: Ser258-Arg259-Leu260) is well ordered and 

shielded from the solvent in the tetramer (Figure 7A). Interestingly, the P-axis-related 

PTS1 signals interact with each other by a hydrogen bond/salt bridge network (Figure 

7A). The side chain of Ser258 of subunit A [Ser258(A)] is involved in a hydrogen bond 

network formed by Lys176(D) and Glu248(D) via water molecules (Figure 5B). 

Moreover, the carbonyl group of the main chain forms a hydrogen bond with His156 of 
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the same subunit to stabilize the C-terminal chain. The guanidyl group of Arg259(A) 

mainly interacts with the side chain of Glu248(D) and the C-terminal carboxylate group 

of Leu260(D). (Figures 7C). Interestingly, the hydroxyl group of Glu248(D) adopts two 

conformations which are i) a direct interaction between Glu248(D)-Arg259(A) and ii) a 

water mediated interaction between Glu248(D) and Arg259(A) (Glu248(D)-Wat-

Arg259(A)). Occupancy was fixed at 0.7 for a direct interaction and at 0.3 for a water 

mediated interaction. The side chain of Leu260(A) interacts with hydrophobic pocket, as 

I have previously described, which consists of Leu172(D), Gly173(D), and Lys176(D) 

from the P-axis-related subunit, and the side chains Tyr155(C), Thr169(C), and 

Leu172(C) from the R-axis-related subunit (Figure 7D).  

The inter-subunit (intramolecular) PTS1 recognition mechanism in PerCR can be 

summarized as follows: the side chains of Ser258, Arg259, and Leu260 are recognized 

by hydrogen bonds (i.e. a steric confinement that may accept only small residues), 

electrostatic interactions, and hydrophobic interactions, respectively. In the present 

PerCR structure, only a few hydrophobic interactions are found in the R-axis interface, 

as described above. In the case of MLCR, the R-axis interface involves one prominent 

interaction: the C-terminal carboxylate group belonging to one subunit forms a salt bridge 

with the guanidine group of Arg203 belonging to the other subunit (19).  
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Thus, the C-terminal carboxylate group of PerCR and that of MLCR are involved in 

different inter-subunit interactions: the P-axis interfaces in PerCR and the R-axis 

interfaces in MLCR. 

 

Coenzyme binding site 

In the coenzyme binding site of PserCR, the interactions with NAD(P)(H) are well 

conserved with previously reported SDRs (19). In particular, the coenzyme-binding mode 

of PerCR is quite similar to that of MLCR (Figure 8).  

 

Active site residues  

The catalytic mechanism of the SDRs is also well known. In particular, the Ser-Tyr-Lys 

catalytic triad plays an important role in the catalytic mechanism. The Ser residue plays 

a role in the catalytic step as a stabilizer of the reaction species, the Tyr residue is a 

catalytic residue, and the Lys residue has a dual role in orienting the nicotinamide moiety 

of the coenzyme and lowering the pKa value of the Tyr residue (20). As has been observed 

for many other SDRs, PerCR has the same catalytic triad: Ser151, Tyr164, and Lys168 

(Figure 8). A water molecule is found close to the OH groups of Ser151 and Tyr164, and 

it is suggested that this molecule occupies the binding site for the carbonyl-oxygen atom 

of the substrate. Filling et al. proposed a new catalytic mechanism that extends the above-
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mentioned catalytic triad to form a tetrad of Asn-Ser-Tyr-Lys from a high-resolution 

crystal structure analysis of 3E/17E-HSD (62). The Asn residue plays a role in proton 

relay. The side chain atoms of Asn123 contribute to a hydrogen bond with the main chain 

atoms of Val101 (OD1(Asn123)—N(Val101) and ND2(Asn123)—O(Val101)), which 

constitute the right-side wall of the catalytic cleft. These residues (Asn-Ser-Tyr-Lys) are 

also well conserved in PerCR (Asn123, Ser151, Tyr164, and Lys168), suggesting that the 

catalytic mechanism of PerCR appears to be similar to that proposed for other SDRs (20, 

62). 

 

Discussion 

I have determined the crystal structure of the binary complex of PerCR. Although, the 

amino acid identity is low (<30%) compared to other SDRs, the overall structure adopts 

a similar conformation. In addition, both the coenzyme binding site and the active site are 

well conserved. 

 

Hypothetical model for peroxisomal localization of PerCR 

The structure reveals that the SRL motif located in the C-terminus contributes to inter-

subunit interactions in PerCR, and is buried in the internal region of the tetrameric PerCR 

molecule. The structure provokes the question as to whether tetrameric PerCR molecules 
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injected into cells would be imported into the peroxisome. With regard to the import of 

proteins into the peroxisome, Pex5p which is a cytosolic receptor that requires an 

interaction with PTS1 (43, 44). In other words, the PTS1 recognition sequence cannot be 

recognized by Pex5p in the tetrameric form and this suggests that the tetrameric form of 

PerCR is not formed in the cytosol.  

Hence, on the basis of the present crystal structure analysis and the biochemical studies 

of PerCR, I propose a possible model for the peroxisomal targeting mechanism of PerCR, 

assuming that Pex5p recognizes the monomeric form of PerCR in the cytosol (Figure 9). 

First, the exposed PTS1 in monomeric PerCR (yellow) is recognized by Pex5p in the 

cytosol. Second, monomeric PerCR is transported into the peroxisome by the 

Pex5p/Pex14p complex. Finally, the monomeric PerCR molecules (yellow, blue, red, and 

green) form a tetramer in the peroxisome.  

With respect to the possibility of oligomerization of PerCR in cytosol, an 

immunofluorescence study of PerCR expressed in HeLa cells showed that the SRL 

tripeptide in the enzyme sequence also acts as a peroxisomal-targeting signal for this 

enzyme (18). Moreover, a peroxisomal isoenzyme of NADP+-dependent isocitrate 

dehydrogenase has been suggested to provide the intra-peroxisomal supply of NADPH 

(63). Thus, these data suggest that oligomerization of PerCR does not occur in the cytosol.  
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With respect to the import mechanism from cytosol to the peroxisome, although further 

detailed research is needed, I assume that molecular chaperones within the cytosol prevent 

the assembly of PerCR into tetramers and retain it in its monomeric form. The cytosolic 

chaperone Hsp70, is well-known to unfold proteins and play a role in protein import into 

mitochondria and the endoplasmic reticulum (64). It has also been reported that Hsp70 is 

involved in the import of proteins into the peroxisomal matrix (65).  

Two previous reports have shown that mitochondrial precursor proteins are partially 

unfolded to the monomeric state in order to be translocated across the mitochondrial 

membrane (66). In fact, both catalase and alcohol oxidase are imported into the 

peroxisome as monomers, and their oligomerization is observed to occur within the 

peroxisome (36, 67). Although excellent cell-biological studies have been conducted for 

both catalase and alcohol oxidase, the present study clearly provides the first structural 

explanation of the PTS1 recognition mechanism and the import model for an oligomeric 

protein, which is imported into the peroxisome as a monomer. 

 

The PTS recognition of Pex5p 

When monomeric PerCR is imported to the peroxisome, I have to consider the C-

terminal interactions, including PTS1. In the case of monomeric PerCR, the C-terminal 

residues (Gly253-leu260) are located outside of the main body of the enzyme structure 
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and have no electrostatic or hydrophobic interactions (Figure 10A). However, according 

to the surface model of tetrameric PerCR, the C-terminal residues are buried within the 

molecule (Figure 10B).  

Interestingly, the C-terminal residues are well conserved in other species (Figure 10C). 

Thus, these residues are more flexible in the PerCR monomeric state. 

With regard to the PTS-Pex5p interaction, the crystal structure of Pex5p with the signal 

peptide has been resolved (68). Based on the crystal structure of Pex5P, for Pex5p-PTS1 

recognition, the tetratricopeptide repeat (TPR) domain of Pex5p (which has a wide active 

site), interact with the PTS within the TPR active site which has a diameter of 

approximately 8 Å. Based on this report, the Leu (-1) position requires a hydrophilic 

amino acid and the Lys (-2) position requires a basic amino acid residue. Finally, the Ser 

(-3) position requires small residues, such as Ser, Ala, and Cys, due to the sterically 

confined space (Figure 10D).  

It is well accepted that PTS1 in metazoans is typically composed of amino acids with 

small side chain residues (Ser, Ala, Cys) at the -3 position, positively charged residues 

(Lys, Arg, His) at the -2 position, and large hydrophobic residues (Leu, Met) at the -1 

position (69). Thus, the intramolecular (inter-subunit) PTS1 recognition mode observed 

in PerCR is equivalent to the canonical intermolecular PTS1 recognition mode observed 
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for the Pex5p/ PTS1 peptide complex. 

  

Significance of the C-terminal S-(R/H)-L tripeptide of PerCR 

With regard to the subcellular localization study of the pig PerCR mutants expressed in 

HeLa cells, the data show that the C-terminal S-(R/H/K)-L tripeptide of the enzyme, 

which functions as PTS1, is found in peroxisomal proteins and suggests that dog liver 

oligomeric CR containing the C-terminal SHL tripeptide is also a peroxisomal protein, 

despite the fact that this enzyme is designated to be a cytosolic oligomeric CR (16, 53). 

The C-terminal amino acid sequences of the mammalian enzymes are well conserved 

(Figure 10C), however the SKL sequence which has been reported in many peroxisomal 

proteins is not well conserved. With respect to subunit-subunit interactions, although the 

Q-axis-related dimer shows a strong electrostatic interaction between αE-αE and αF-αF 

helixes and the R-axis-related dimer shows a strong hydrophobic interaction between the 

hydrophobic pocket in C-terminal and Leu260. In particular, the hydrogen bond between 

Arg259(A) and Glu248(D) is important. In fact, following mutation of the second residue 

from SRL to SHL, SKL, SLL, and SL in the C-terminal of pig PerCR, the SLL and SL 

forms lost enzymatic activity and stability. These data suggest that the C-terminal 

residues are important for the stability of the architecture of tetramer. In addition, the 

PerCR enzyme with a Lys (K) mutation had impaired the stability (Figure 2B), whereas 
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the wild type and SHL mutant had similar stability and activity. This is the reason that 

the Arg to His mutation can maintain the hydrogen bond network that exists in the wild-

type enzyme. The hydrogen bonds in the SHL mutant are predicted to be the hydrogen 

bond (NH1(Arg259(A))-Wat and NE(Arg259(A))-OXT(Leu260(D)), respectively, in the 

wild type enzyme. On the other hand, the SKL mutant can retain either of the two 

hydrogen bonds, because the Lys side chain has only one nitrogen atom. Thus, the SKL 

sequence is unfavorable as the PTS1 in tetrameric mammalian PerCRs (Figure 10C), 

rather than their inability to bind Pex5p.  

 

Conclusion 

I have determined the crystal structure of pig heart PerCR complexed with its coenzyme 

NADPH at 2.2 Å resolution. The C-terminal SRL motif is involved in the inter-subunit 

interactions related to the R-axis of PerCR and is buried in the interior of the tetrameric 

PerCR molecule. The structure reveals why the tetrameric PerCR molecules injected into 

the cells are not imported into the peroxisome and it enables me to propose a hypothetical 

model for the peroxisomal targeting of PerCR. Additionally, the analysis of the geometry 

of the inter-subunit interactions has allowed me to understand the role of the C-terminal 

sequence in maintaining an active tetrameric form of this enzyme. 

 



 

43 
 

  



 

44 
 

 

Chapter II  

Crystallization and Preliminary X-ray Crystallographic Study and Structural Basis for the 

Substrate Recognition Mechanism of Phosphoglucose Isomerase from Plasmodium 

falciparum. 
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Abstract 

Malaria is one of the world’s most serious infection diseases in which parasites infect 

human tissues and blood, and rapidly multiply in the presence of blood glucose. An 

estimated 300–500 million new malarial cases and up to 2.7 million malaria-related 

deaths are reported each year. In addition, recently, cases of resistance to malarial 

treatments have been reported. Thus, the development of new anti-malarial drug is 

urgently needed. Phosphoglucose isomerase (PGI) is a key enzyme involved in glycolysis 

and gluconeogenesis that catalyzes the interconversion of glucose 6-phosphate (G6P) and 

fructose 6-phosphate (F6P).  

For crystallographic studies, PGI from the human malaria parasite Plasmodium 

falciparum (PfPGI) complexed with 6-phosphogluconic acid (6-PGA) was overproduced 

in Escherichia coli, purified, and crystallized using the hanging-drop vapor-diffusion 

method. X-ray diffraction data to 1.5 Å resolution were collected from an orthorhombic 

crystal form belonging to space group P212121 with unit-cell parameters a = 103.3, b = 

104.1, c = 114.6 Å.  

A comparison of the PfPGI-6PGA and mPGI-6PGA, revealed there to be differences in 

the catalytic recognition mechanism, particularly in the interaction between Lys540 of 
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PfPGI and O3 of 6PGA, a water mediating this interaction, in contract to the direct 

interact between Lys519-O3 and PGA in mammalian PGI. 

In addition, PfPGI has two malaria original loop domains (MOL1; residues 175-200, 

MOL2; residues 438-442) which are well conserved in Plasmodium vivax, Plasmodium 

malariae, and Plasmodium ovale, and make a strong contribution to the dimerization 

between subunit A and subunit B. Moreover, the MOL2 domain is inserted between the 

carbohydrate moiety-binding helix, including Lys540 (CBH; α37 helix; residue 534-555) 

and α15 helix* of the small domain (* the neighbor subunit) and maintains the binding 

site space through a different mechanism from that of mPGI (steric hindrance and 

numerous hydrogen bonds in CBH*-MOL2-α15 helix* in PfPGI versus one hydrogen 

bond in CBH-α15 helix* in mPGI). These findings might explain the CBH 

conformational difference between Lys540 (PfPGI) and Lys519 (mPGI) and thus the 

difference in catalytic activity observed in mouse and plasmodium.  
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Introduction 

Malaria is one of the world’s most serious parasitic diseases. An estimated 300–500 

million new cases of malaria and up to 2.7 million malaria-related deaths are reported 

each year. Human malaria is caused by infection with protozoan parasites of the genus 

Plasmodium that are transmitted by Anopheles mosquitoes. Plasmodium falciparum is 

the most lethal of the four species of Plasmodium (P. falciparum, P. vivax, P. ovale, and 

P. malariae) that infect humans. Chemotherapy for malaria is available, but the 

emergence of strains that are resistant to conventional drug therapy has stimulated the 

search for anti-malarial agents with novel modes of action. Proteins important for survival 

of the parasite and that show differences in structure from the host homologue serve as 

potential drug targets. Such proteins can be classified as surface proteins, proteins 

involved in invasion, and metabolic enzymes (70).  

Phosphoglucose isomerase (PGI; EC 5.3.1.9), also known as glucose 6-phosphate 

isomerase (GPI) or phosphohexose isomerase (PHI), is a key enzyme in glycolysis and 

gluconeogenesis. It catalyzes the second step of glycolysis, namely the interconversion 

between glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P). In recent years, 

several other protein factors have been confirmed to be identical to PGI: autocrine 

motility factor (AMF), neuroleukin (NLK), maturation factor (MF), antigens involved in 
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rheumatoid arthritis and sperm agglutination, and a novel serine-protease inhibitor 

(MBSPI) (26-28, 71-74). PGI therefore not only acts as a housekeeping enzyme for sugar 

metabolism inside the cell, but also has various cytokine properties (AMF, NLK, MF), as 

well as several other functions outside the cell. The cytokine activity of PGI is specific to 

mammalian PGIs, and the enzymatic activity of PGI is not essential for either the 

receptor-binding or the cytokine activity of mammalian PGIs (75, 76). The enzymatic 

activity of the PGI from P. falciparum (PfPGI) was found to be comparable to that of 

mammalian PGIs, but the cytokine activity of PfPGI against mammalian cells was not 

detectable (Haga et al., unpublished data). Since PGI is a housekeeping enzyme, its 

catalytic residues should be well conserved amongst PGIs from various species. However, 

significant amino-acid sequence differences (insertions and deletions) are observed 

between the mammalian PGIs (558 residues) and PfPGI (579 residues). Thus, a detailed 

comparison of the three-dimensional structures of human and plasmodium PGIs is 

important to understand whether these differences can be applied to future structure-based 

drug design, and to gain insight into the structural origin of the species specificity of the 

cytokine activity of PGI. To date, crystal structures of PGI from human, pig, mouse, rabbit, 

Bacillus stearothermophilus, Pyrobaculum aerophilum, Leishmania mexicana, Thermus 

thermophiles, and Trypanosoma brucei have been reported (29-36, 77-82). With respect 
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to the crystal structure of Plasmodium falciparum, although Gileadi et al. resolved the 

substrate-free form of PfPGI and PfPGI complexed with fructose 6-phsophate (F6P) and 

deposited the structures in the PDB (PDB code; 3QKI and 3PR3), these data have not 

been published. Here, I determined the crystal structure of PfPGI complexed with two 

carbohydrate inhibitors of different lengths (6-phosphogluconic acid (6PGA) and 3-

phosphoglyconate (3PGA)) and its substrate (fructose 6-phosphate (F6P)) at high 

resolution (1.5–2.0 Å). In addition, I also compared the structural differences between 

these PfPGIs and the crystal structures of mPGI-6PGA (PDB code; 2CXR), mPGI-3PGA 

(in-house data), and mPGI-F6P (PDB code; 2CXS) (35). These findings therefore provide 

key insights into the design of new anti-malarial compounds.  
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Material and Methods 
Overproduction and purification 

The cDNA encoding the full-length P. falciparum PGI (residues 1–579) was obtained 

by reverse-transcription PCR. Reverse transcription was carried out using SuperScript II 

reverse transcriptase, as described in the user’s manual (Invitrogen, Thermo Fisher 

Scientific K.K., Japan), with total RNA derived from P. falciparum (FCR-3) as the 

template. The target DNA was PCR amplified from the reverse-transcription products 

using AccuPrime Pfx DNA polymerase (Invitrogen) with 5’-

CGCGGATCCATGAATATGGAGATTACAAAT-3’ and 5’-

CGCAAGCTTATTTGGACAAGTAATAATTTA-3’ as the forward and reverse 

primers, respectively. The PCR product was cloned into the pQE30 expression plasmid 

(Qiagen, QIAGEN K.K., Japan.) with the BamHI and HindIII cloning sites (bold). The 

construct was verified by sequencing. 

Escherichia coli BL21 (DE3) cells (Novagen; Merck Millipore, USA) harboring the 

expression plasmid were grown in LB medium (3 L shaker flask containing 1 L medium) 

at 310 K to an OD600 of 0.6. Overproduction of PfPGI was induced by the addition of 0.5 

mM IPTG for 4 h at 310 K. After this period, the cells were harvested by centrifugation 

at 8000 × g for 15 min, suspended in buffer A (20 mM Bis-HCl pH 6.5, 50 mM NaCl), 

and disrupted by ultrasonication on ice for 4 × 30 s. The cell extract was obtained by 
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centrifugation at 15000 × g for 15 min and was applied onto a 5 mL HiTrap SP HP column 

(GE Healthcare, UK) equilibrated with buffer A. The column was washed with 20 column 

volumes of wash buffer (0.3 M NaCl in buffer A). After washing, the PfPGI was eluted 

with a linear gradient of 0.3–0.7 M NaCl in buffer A. The PfPGI was further purified by 

gel chromatography using a Superdex 200 PG column (GE Healthcare, UK) equilibrated 

with buffer A. Fractions containing PfPGI were pooled and concentrated to 5 mg/mL 

using an Amicon Ultra-15 (Merck Millipore, USA). 

 

Crystallization 

The protein solution (5 mg/mL PfPGI) was mixed with 10 mM 6-phosphogluconic acid 

(6PGA) dissolved in buffer A at a volume ratio of 1:1. Initial sparse-matrix crystal 

screening was conducted using Crystal Screen I (Hampton Research) and Cryo I and II 

(Emerald BioSystems) (54). Crystallization was carried out by the hanging-drop vapor-

diffusion method. Briefly, 1 mL of protein solution (5 mg/mL protein and 5 mM 6PGA) 

was mixed with the same volume of reservoir solution and incubated at 293 K. Drops of 

the solution were then suspended over a 200 μL reservoir solution in 48-well plates.  

 

X-ray data collection 

Since the crystallization conditions for PfPGI included 38% (v/v) PEG 400 in the 
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reservoir solution, X-ray data collection could be performed under cryogenic conditions 

without further addition of cryoprotectant. Crystals from the hanging drop were directly 

mounted in nylon loops and flash-cooled in a cold nitrogen-gas stream at 100 K just prior 

to data collection. Data collection was performed by the rotation method at 100 K using 

an ADSC Q315 CCD detector with synchrotron radiation [λ = 1.000 Å on beamline 5A 

at the Photon Factory (PF), Tsukuba, Japan]. The Laue group and unit-cell parameters 

were determined using the DPS program package (55). 

 

Structure determination 

The initial phase determination was performed using the molecular replacement 

technique with the coordinate set of mouse Autocrine Motility Factor, mPGI (PDB code; 

2CXR) as a search model (34). Crystallographic refinement was performed with the 

REFMAC program (59).  

Least-squares comparisons of the molecular models were performed using the DALI 

server. Figures were generated using the CHIMERA program package. 
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Results 
Purification and crystallization 

PfPGI was successfully cloned, overproduced, and purified to homogeneity. SDS–

PAGE of the purified enzyme revealed a single 65 kDa protein band by Coomassie 

Brilliant Blue staining (Figure 11A). 

Initial crystal screening produced several microcrystals within one week. Micro-plate 

crystals grew from condition Nos. 6, 13, 24, and 38 for Cryo I [No. 6, 40% (v/v) PEG 

600 and 0.2 M calcium acetate in 0.1 M sodium cacodylate–NaOH pH 6.5; No. 13, 30% 

(v/v) PEG 200 and 5% (w/v) PEG 3000 in 0.1 M MES–NaOH pH 6.0; No. 24, 40% (v/v) 

PEG 400 and 0.2 M sodium chloride in 0.1 M sodium/potassium phosphate pH 6.2; No. 

38, 40% (v/v) PEG 400 and 0.2 M lithium sulfate in 0.1 M Tris-HCl pH 8.5] and No. 4 

for Cryo II [40% (v/v) PEG 400 and 0.2 M calcium acetate in 0.1 M HEPES–NaOH pH 

7.5]. Trials to improve the crystallization conditions were performed by varying the pH, 

the buffer system, and the concentration of the crystallizing agent. To obtain crystals 

suitable for X-ray analysis, a droplet was prepared by mixing equal volumes (2 μL + 2 

μL) of the working solution described above, and a reservoir solution [38%(v/v) PEG 400 

and 0.2 M calcium acetate in 0.1 M sodium cacodylate–HCl pH 6.5] and was suspended 

over a 500 μL reservoir solution in 24-well plates. Plate-shaped crystals with typical 

dimensions of approximately 0.3 × 0.1 × 0.03 mm grew within one week (Figure 11B). 
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 The crystallization of the PfPGI with the inhibitor, 3-phosphoglycerate (3PGA) a 

phosphate containing carbohydrate, and the substrate F6P were also prepared using the 

same regimen described above at a final inhibitor concentration of 10 mM.   

 

Data collection 

The Laue group of the PfPGI crystals was found to be mmm, with unit-cell parameters 

a = 103.3, b = 104.1, c = 114.6 Å. Only reflections with h = 2n, k= 2n and l = 2n were 

observed along the [h00], [0k0], and [00l] axes, respectively, indicating the orthorhombic 

space group P212121. Assuming the presence of two subunits (one dimer) per asymmetric 

unit led to an empirically acceptable VM value of 2.29 Å3 Da-1, corresponding to a solvent 

content of 46.3% (83). The current best diffraction data from the PfPGI crystal were 

collected to 1.5 Å resolution. The data-collection statistics are summarized in Table 3. 

 

Initial phase determination 

Initial phase determination was performed by molecular replacement (MR) with the 

coordinates of the dimeric molecule of the mouse PGI–6PGA complex (PDB code; 

2CXR), which shares approximately 36% amino-acid sequence identity with PfPGI, as a 

search model. The bound inhibitor and water molecules were removed from the search 

model. Cross-rotation and translation functions were calculated using the MOLREP 
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program from the CCP4 suite (84). The results showed a clear solution [correlation 

coefficient of 0.313 (the first noise solution was 0.215) and an R factor of 0.519 the first 

noise solution was 0.554) in the resolution range 40.0–3.0 Å] and a reasonable molecular 

arrangement of PfPGI in the asymmetric unit. The MR solution was supported by the 

observation that the directions of the non-crystallographic two-fold axes determined by 

the self-rotation function (data not shown) were consistent with the MR solution obtained. 

Automatic model building and refinement using the ARP/wARP and REFMAC5 programs, 

as well as manual model building and refinement with the XtalView (McRee, 1999) and 

REFMAC5 programs (58, 60, 85).  

 

Structure determination 

I determined the crystal structure of PfPGI-inhibitor (6PGA) complex at 1.7 Å 

resolution and refined it to an R-factor of 0.166 (Rfree of 0.193). The final model comprised 

four identical protein subunits (two homodimers) with 2 × 579 amino acid residues and 

1016 water molecules per asymmetric unit (ASU). The amino acid residues between Met1 

– Met3 at the N-terminus of each subunit, and between Lys557 – Thr562 in the C-

terminus, were disordered in the B subunit. The crystal structure of the PfPGI-the 3PGA 

and the PfPGI-F6P complexes were are also determined by the difference Fourier method, 

using the refined model of the PfPGI-6PGA complex model (excluding water molecules) 
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as a starting model, and further refined to an R-factor of 0.190 (Rfree of 0.231) at 2.0 Å 

resolution, and an R-factor of 0.183 (Rfree of 0.209) at 1.7 Å resolution, respectively. In 

each final model, two identical protein subunits (two homodimers) were also comprised 

of 2 × 579 amino acid residues, 2 × 3PGA molecules (one molecule per subunit)/777 

water molecules per asymmetric unit, and 2 × F6P molecules (one F6P molecule per 

subunit) /925 water molecules per asymmetric unit, respectively. In the 3PGA complex 

model, electron density map 3PGA, with the exception of the phosphate region, was not 

observed. The data collection and refinement statistics are summarized in Table 4.  

 

Overall structure of the PfPGI subunit 

The overall structure of PfPGI (Figure 12A, 12B) is similar to that of mPGI, although, 

the amino acid sequence homology is low (approximately 36%) between Plasmodium 

falciparum and mouse (30, 35). One dimer of PfPGI was contained in the asymmetric 

unit in the PfPGI crystal. The dimer is spherical in shape. The subunits interact in an arm-

to-arm hugging manner, with intimate contacts at the catalytic site.  

Based on previous PGI reports, a PfPGI subunit can be characterized as having three 

domains; the large (residues 1–101 and 310–533), small (residues 102–309), and C-

terminal (residues 533–579) domains (Figure 12A, 12B). Interestingly, in PfPGI, an 

additional loop (Maralia Original Loop; MOL) domain was found, which is not found in 
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mammalian PGIs.  

The large domain has an α/β structure composed of a six-stranded β-sheet. The β-sheet 

core is surrounded by the α helices, loops, and a “hook” region (residues 446–489)(Figure 

12A).  

The small domain has an α/β structure composed of a five stranded parallel β-sheet core 

(β4–β7) surrounded by α helixes, and loops. (Figure 12A).  

The C-terminal domain is composed of two α helixes (α37 and α38) and a loop (Figure 

12B).  

The MOL domain was found in two insertion loops (MOL1; residues 175-200, and 

MOL2; residues 438-446) (Figure 12C). It is interesting to note that MOL1 is rich in 

asparagine (Asn) residue and forms an Asn-Asn interaction network (Asn176, Asn182, 

and Asn192) to maintain the folding of the loop. MOL2, which is inserted between the 

small domain and the C-terminal domain, contribute to dimer interactions. 

 

Dimeric interaction between the two subunits 

In PfPGI, a large number of hydrogen bonds are found compared to mammalian PGI 

(Figure 13A, 13B). In mammalian PGIs, only four hydrogen bonds have been reported. 

However, two out of these four hydrogen bonds are lost in PfPGI. Hydrogen bonds are 

found between the carboxylate group of Glu238 and the hydroxyl group of Thr407 



 

58 
 

(OG1(Thr407)-OE2(Glu238*); 2.74 Å, *: neighbor subunit ) and the hydroxyl group of 

Gln365 and the amide group of Asn207* (OE1(Gln365)-ND2(Asn207); 2.87 Å). These 

hydrogen bond are also in the same positions in mammalian PGIs. The Glu238 residue 

(corresponding to Glu217 in mPGI and hPGI, and Glu216 in rabbit PHI) is assumed to 

be part of the catalytic diad (77).  

In addition in PfPGI, additional dimeric interactions were found in MOL1, MOL2/α33 

helix, and the C-terminal domain (Figure 13B, 13C, 13D). 

In MOL1, hydrogen bonds between the amide group of Asn176 and the hydroxyl group 

of Asn214* (ND2(Asn176)-OD1(Asn214*); 2.92 Å), and between the hydroxyl group of 

Tyr194 and the amide group of Asn214* (OH(Tyr194)-ND2(Asn214*); 2.87 Å) are 

observed (Figure 13D).  

In MOL2 and α33 helix, a dimeric interaction is found involving four hydrogen bonds 

and a CH/π interaction, namely between the carboxylate group of Glu442 and the 

guanidyl group of Arg244* (NE(Glu442)-OE2(Arg 244*); 2.7 Å and OE1(Glu442)-

NH2(Arg244*); 2.96 Å) , between the amide group of Asn446 and the hydroxyl group of 

Ser245* (ND2(Asn446)-OG(Ser245*): 3.10 Å) and the CH/π interaction (CE(Phe439)-

CD1(Lys248*): 4.05 Å, CE1(Phe439)-CD(Lys248*); 3.98 Å and CZ(Phe439)-

CG(Lys248*); 3.81 Å) . Additionally, residues Asp448 and Glu449 in α33 helix help 



 

59 
 

MOL2 to form hydrogen bonds with Arg554* and Tyr576* as follows: Asp448* 

(OD2(Asp448)-NE(Arg554*);2.84 Å and OD1(Asp448)-OH(Tyr576*); 2.7 Å) and 

Arg547* (OE1(Glu449)-NE(Arg547*); 2.75 Å and OE2(Glu449)-NH2(Arg547*); 2.91 

Å) respectively (Figure 13d, 13E). The dimer interface which involves MOL1, MOL2 

and α33 helix is not observed in mammalian PGIs. 

In the C-terminal domain, a hydrophobic pocket is formed between α33 helix and the 

C-terminal domain (α37 helix and α38 helix). Moreover, although, Tyr576 in the C-

terminal tail forms a hydrogen bond with Asp448*, Tyr576 interacts with Arg547 of the 

same subunit and contributes to stabilizing the two helixes (α37 and α38) in the C-

terminal domain (Figure 13F).     

 

Inhibitor molecule and inhibitor binding site 

I solved three PfPGI crystal structures containing either inhibitors or substrates (6-

phosphogluconic acid; 6PGA and 3-phosphoglyceric acid; 3PGA as inhibitors and 

fructose 6-phosphate; F6P as substrate. See Material and methods)  

The substrate-binding sites are located between the large and small domains of one 

subunit and at the interface between the two subunits (see Figure 12A, 12B).  

The electron density map for each of the 6PGA and F6P are very well-defined (data are 

not shown). 
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In the binding site, hydrogen bonds and electrostatic interactions between the negatively 

charged phosphate group and positively charged Arg or His side-chains were found 

(Figure 14).  

With regard to the phosphate binding site, the phosphate group of 6PGA strongly 

interacts with the hydroxyl groups of Ser159 (OG(Ser159)-O2P):2.57 Å, Ser231 

(OG(Ser231)-O1P): 2.52 Å, Thr233 (OG1(Thr233)-O3P): 2.75 Å, and Thr236 

(OG1(Thr236)-O1P): 2.62 Å and the nitrogen atoms of Lys232 (N(Lys232)-O2P) and 

Thr233 (N(Thr233)-O3P): 2.92 Å) (Figure 14A). These interactions and the positions of 

the residues and the phosphate group, overlap with the reported mammalian PGI 

structures (Figure 14D). In addition to the PfPGI complex with 3PGA and F6P, these 

phosphate interactions and the position of side chain residues are also similar for the 

PfPGI-6PGA structure (Figure 14B, 14C).  

With regard to the sugar binding site, numerous hydrogen bonds were observed. 

In the case of the PfPGI-6PGA complex, the following hydrogen-bonds were found; 

(N(Arg294)-N(Gly293)-O1A(6PGA)), OE1(Glu380)-O1B(6PGA), (NE2(Gln376) -

O(His411*)-O3(6PGA)), N(Gly158)-O4(6PGA), and (ND1(His411*)-O5(6PGA) ) 

(Figure 14A).  

Superimposing the structures of both PfPGI-6PGA and mPGI-6PGA revealed that the 
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individual position of residues and these hydrogen bonds overlapped with the mPGI-

6PGA complex (Figure 14D). Importantly, it should be noted that the interaction between 

the amino group of Lys540 and O5 of 6PGA in PfPGI is different from that seen in mPGI 

(Figure 14D). In mPGI-6PGA, a direct hydrogen bond between the NZ of Lys519 and the 

O5 of 6PGA was reported in 6PGA. However, in the PfPGI-6PGA complex, a water 

molecules bridges the interaction between the NZ of Lys540 and O5 of 6PGA (Figure 

14D). 

In the case of the PfPGI-F6P structure, previous reports have suggested that the omit 

map of F6P is difficult to define due to PGI catalyzing the forward and reverse catalytic 

reaction between F6P and G6P, however my omit map was well defined. The high-

resolution omit map at the substrate-binding site of the PfPGI-F6P complex clearly 

demonstrated the presence of a five membered sugar ring in both subunits in the ASU 

(Figure 14B). However, unfortunately, the open chain form of the sugar ring for F6P was 

not observed in this crystal.  

The O1, O3, O4, and Oxygen atoms of ring form F6P formed the following hydrogen-

bonds; (OE2 (Glu380)-O1(F6P); 2.48 Å, OE1(Glu380)-O3(F6P);2.93 Å, N(G159)-

O3(F6P); 2.73 Å, and (ND1(H411*) and a water molecule). A water molecule formed a 

bridge interaction between the side chain of Lys540 and O4 of F6P (Figure 14B) (86).  
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In the case of 3PGA, although the electron density of the phosphate group was found, 

the electron density of the carbon portion of 3PGA could not be defined. The main reason 

is that carbon portion of 3PGA is too short to fill the binding site space and interact with 

the substrate binding residues. It follows that carbon portion of 3PGA might adopt a 

flexible conformation due its lower interaction with the binding pocket (Figure 14C), 

although, the 3PGA was well defined in mPGI.  

 

A comparison of the PfPGI-F6P and mPGI-F6P structures revealed that the hydrogen 

bond between NZ(K519)-O1(F6P) in mPGI-F6P is not observed in PfPGI. This is likely 

because although O1 (F6P) in mPGI can adopt a double conformation, and only one 

conformation can interact with the NZ of Lys519 in mPGI, however, in PfPGI, a double 

conformation for O1 (F6P) was not found and the O1-NZ Lys540 hydrogen bond was not 

found (Figure 14E).  

 

Conformational change in the inhibitor complex  

In the case of the complex with the inhibitor, a conformational change in the mPGI 

binding site has been reported which involves three domains i) the phosphate binding 

loop (residues 210-216), ii) 310-helix (residues 386*-389* containing the His411* 

neighboring subunit), and iii) the carbohydrate moiety-binding helix (CBH; α37 helix; 
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residues 513-529) including Lys519 of the C-terminal domain (34). The conformation 

change of each domain has been classified as “Open/Closed” based on the sugar form 

bound. For an open-chain sugar such as 6PGA, all three domains are closed to the 

inhibitor molecule (“Closed”). In contrast, in the case of combination with ring-form 

sugars, such as F6P and G6P, although the phosphate binding loop and 310-helix come 

close to the inhibitor molecule (Closed), the CBH does not undergo a conformational 

change (Open).    

Comparing PfPGI-6PGA and mPGI-6PGA, as I shown previously, both the phosphate 

binding loop and the 310-helix are close to the inhibitor molecule. These individual 

residues overlap closely with the mPGI-6PGI structure. However, a change in the 

conformation of the CBH in PfPGI does not occur (Open) and a water molecule and a 

water-mediated interaction between NZ of Lys540 and O5 of 6PGA is observed instead 

(Figure 15).  

In the case of the PfPGI-ring sugar form (F6P) complex, the conformational change is 

also quite similar to the mPGI-F6P complex. This conformation is also the same seen in 

the PfPGI-6PGA complex.  

These data importantly suggest that a conformational change in CBH does not occur, 

regardless of whether the sugar is in the open or ring form in PfPGI.  
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Discussion 

I have determined the crystal structure of Plasmodium falciparum (Pf) PGI in complex 

with 6PGA at 1.7 Å, with 3PGA at 2.0 Å, and with F6P at 1.7 Å resolution. While the 

structures of the substrate-free PfPGI and PfPGI complexed with F6P have been solved 

and deposited in PDB (PDB code; 3QKI and 3PR3), this is the first report of PfPGI bound 

to the open sugar form. These crystal structures show that the key catalytic amino acids, 

which are reported to be Arg272 (Arg294 in PfPGI), Glu358 (Glu380 in PfPGI), His388 

(His411 in PfPGI), Lys518 (Lys540 in PfPGI) for mammalian PGIs are well conserved 

in PfPGI, and they are superimposable (see Figure 14). However, an MOL domain and 

the unique dimeric interactions (CBH-α33 helix-MOL2-α15 helix* interaction) suggest 

that there may be differences in the catalytic mechanism between mouse and plasmodium 

PGIs.   

 

The role of the MOL domain 

I have detected two MOL domains (MOL1; residues 175-200, MOL2; residues 438-

446) in the overall structure. As I have discussed above, MOL1 and MOL2 play important 

roles in maintaining dimerization in PfPGI. Although mammalian PGIs have only one 

hydrogen bond, a total of eleven hydrogen bonds are found in PfPGI (see Figure 13). This 
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presumably results in higher stability of the dimer conformation compared to mammalian 

PGIs.  

MOL2 is found between the CBH including C-terminal domain and the Small domain 

of the neighboring subunit and cause a steric hindrance to prevent the moving of α33 

helix. The MOL2 is located outside part of the structure as loop structure. In general, a 

loop structure is flexible, but the MOL2 is more rigid due to interactions between CBH 

and Small domain and MOL2 fixes the domains. Thus, MOL2 is assumed to play an 

important role as a “Frame” to retain space in the binding pocket. In addition, the α33 

helix was found to form tight hydrogen bonds with the C-terminal domain (α37 (CBH) 

helix and α38 helix). It is likely that these interactions strongly affect the C-terminal 

domain. 

Interestingly, the CBH-α33 helix-MOL2-Small domain interaction is only found in 

plasmodium PGI. In particular, residues (Phe435, Glu442, Asn446, Asp448, Arg547, 

Arg554, and Tyr576) which are important in the CBH-α33 helix-MOL2-Small domain 

interaction, are conserved completely in plasmodium PGIs, while in mammalian PGIs, 

the interaction motif is very simple, consisting of only a hydrogen bond between Glu526 

in the α37 helix and Gln216 in the α15 helix and a “Frame” is not required (Figure 17). 

Notably, residues Gln216 and Glu526 in mPGI correspond to Ala237 and Arg547, 
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respectively, suggesting that the binding site retention mechanisms are very different, 

even though the catalytic residues are the same between mammalian and plasmodium 

PGIs (Figure 16A, 16B).  

 

Conformational change in the PGI substrate binding site 

In the structure of the PfPGI-6PGA complex, both the phosphate binding loop and the 

310 helix are in similar “Closed” form as in mPGI; in contrast, the CBH is not in a“Closed” 

form. In order to clarify the conformational change, I performed an overlap structure 

analysis of the substrate binding site between PfPGI-6PGA complex and the substrate-

free form of PfPGI, which had already been resolved at 1.9 Å and deposited in the PDB. 

(PDB code; 3QKI) (Figure 18). It showed that the phosphate binding loop shifts to the 

inhibitor around 1.5 Å and a change in the 310-helix conformational occurred with the 

imidazole group of His411* rotating and shifting the ND1 of the imidazole group close 

to O5 of 6PGA (3.98 Å to 2.69 Å) to become more suitable for substrate binding in the 

active site. These conformational changes are considered to cause steric hindrance 

between Thr236 and His411* .This is because the Cα of Thr236 is shifted 1.5 Å to tightly 

contact the phosphate group of 6PGA. As a result, His411* seems to move toward the 

hydroxyl group of 6PGA to avoid steric hindrance.  

These conformational changes are similar to conformational changes previously 
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reported in mammalian PGIs (28-34). However, the CBH in the PfPGI complex with 

6PGA does not shift toward the 6PGA inhibitor (i.e. there is no conformational change).   

With respect to the conformational change for the CBH, there is no uniform change, and 

several reports of conformational change in PGI with substrates in the open chain form 

(F6P and G6P) and open chain inhibitors (6PGA, E4P, sorbitol 6-phospate (S6P), 5-

phospho-darabinonate (5PAA), and 5-phospho-arabinonohydroxamate (5PAH)) have 

been published (28-30, 32-34, 74, 83-86).  

Table 5 shows a summary of the conformational changes in the three domains in 

previously reported PGI-substrate/inhibitor complexes. Both the phosphate binding loop 

(residue 230-236 in PfPGI) and the 310 helix are “Closed” in complexes with all 

inhibitors and the open chain form of substrates. Interestingly, in contrast, the changes 

in the conformation of CBH have remained unclear. In fact, in PGIs complexed with 

almost all inhibitors it shifted from “Open” to “Closed”, however, in PGIs complexed 

with open chain form of substrates it did not shift from “Open” to “Closed”. As a specific 

example, in the complex with S6P, Lee and Jeffery et al., have reported it as being “Open” 

in the rPGI-S6P complex, whereas Tanaka et al. have reported it as being “Closed” in 

the mPGI-S6P complex (35).   

For this question regarding substrate-structure (open or closed forms) dependent 
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conformational change of CBH, based on X-ray crystal structures, several proposals have 

been made about the catalytic mechanism in substrate binding site  

From the structure of the rabbit PGI F6P complex, Glu216, His388, Lys518, and a water 

molecule were identified as having roles in the ring opening step, and the structure of 

rabbit PGI complexed with 5PAA suggested that Glu357 and a water molecule act in the 

proton transfer mechanism, whereby a proton is moved from C1 to C2 in the cis-

enediol(ate) intermediate step (34, 83-86). Arg272 has also been proposed to have a role 

in helping to stabilize the cis-enediol(ate) intermediate (84).  

In addition, detailed catalytic mechanisms have also been suggested from high 

resolution structures containing the open chain/ring forms of G6P. The phosphoglucose 

isomerase catalytic reaction is thought to proceed in seven steps; i) ring opening by 

His388 and Lys518, ii) rotation about C3-C4, iii) substrate stabilization by Lys518, iv) 

proton abstraction to the form cis-enediol(ate) intermediate by Glu358 and stabilization 

of the intermediate by Arg272, v) proton re-donation to Glu358, vi) rotation about C3-4, 

and vii) ring closure by His388 and Lys518 (28, 29, 34, 83-86).  

With regard to the Lys518 (corresponding to Lys540 in PfPGI) conformational change, 

Lee and Jeffery et al. have concluded that Lys518 has an important role in the ring 

opening/closure step, and in the substrate stabilization (intermediate) step before 
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protonation by Glu358 and formation of the cis-enediol(ate) intermediate (33, 83). The 

Lys residue is involved in the water-mediated interaction with the ring oxygen atom of 

the ring form of F6P to deprotonate the hydroxyl group on C2 of F6P in the ring opening 

step. Thus, in this state, the CBH conformation is “Open”. In contrast, in the substrate 

stabilization step, after C3-C4 rotation of the open chain F6P, the water molecule which 

contributes the water-mediated interaction between Lys and substrate, is lost, and the Lys 

residue shifts and comes into direct contact with the C5 hydroxyl group and the oxygen 

atom of the phosphate group. In this state, the CBH conformation is “Closed”.     

Because open chain inhibitors such as 5PAH, A5P, S6P, and 6PGA (especially 5PAH 

and A5P), are similar to the cis-enediol(ate) intermediate this suggest that the status of 

shifted Lys residue appears to be an intermediate step in this isomerization reaction that 

is involved in both glycolysis and gluconeogenesis. Thus, based on the reported crystal 

structure, the conformational change of CBH involving Lys518 might occur in 

intermediate step in which Glu358 protonates the substrate (28, 34, 83, 86-88).  

From my study, the data showing there is no CBH shift in PfPGI-6PGA may be a 

snapshot of the intermediate step based on the proposal of Lee and Jeffery et al. however, 

the further concern is needed to be conclusion (33, 83). There is a steric hindrance caused 

by the additional MOL domain. As described previously, MOL2 is found in-between 
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CBH and α15 helix* and creates a steric hindrance to inhibit the movement of the CBH. 

In addition, two hydrogen bonds between CBH and α33 helix, which interact for subunit 

dimerization, strongly restrain the movement of the CBH, and also inhibit the shift to 

substrate. In mammalian PGIs, this steric hindrance does not occur and the Gln216-

Gln526 hydrogen bond maintain the substrate binding space. Interestingly, while two 

interactions occur between Gln216-Gln526 (NE2 (Gln216)-OE1(Gln526); 2.93 Å and 

OE1(Gln216)-OE2(Gln526); 3.37 Å) in the case of substrate/inhibitor free mPGI, only 

one interaction occurs (NE2(Gln216)-OE2(Glu526); 2.84 Å) in the case of mPGI 

complexed with 6PGA. This is because the position of Gln216 is close to the phosphate 

binding loop and shifts to become close to the substrate binding pocket (approximately 

1.0 Å, Cα of Gln216) after substrate/inhibitor binding. Therefore, the space retention 

motif breaks down and Lys519 can easily contact 6PGA directly. These differences 

suggest that the binding site in PfPGI is more rigid than those of mammalian PGIs, and 

that Lys540 may not contribute to stabilization at the substrate intermediate step due to 

the fact that it cannot form a direct contact with the substrate. With regard to substrate 

stabilization, the C1-C2 interaction pocket, which consists of residues Gln533, Gly293, 

and Arg294 is sufficient to stabilize the open chain form of the substrate and to protonate 

C1-C2 by Glu380, even though Lys540 does not shift and stabilize the substrate by 
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interaction with the oxygen atoms of C5 and C6.  

This structural differences would affects the enzyme catalytic activity and indicate that 

the catalytic activities of mammalian PGIs might be greater than those of plasmodium 

PGIs. 

In fact, Table 6 shows the enzyme catalytic activity of PGIs where the Km values for 

mammalian PGIs are lower than for PfPGI (Km = 0.037–0.119 mM for mammalian PGI, 

Km = 0.26 mM for PfPGI) for the forward reaction (i.e. F6P converting to G6P).  

Moreover, in PGI from Trypanosoma brucei (tPGI), a Km value of 0.122 mM has been 

reported, and the Ki value of 5PAH revealed that the preference for tPGI was a four-fold 

that for rPGI (Ki = 0.05 μM for tPGI, Ki = 0.20 μM for rPGI) (89-95). In the tPGI crystal 

structure, the CBH does not form hydrogen bonds, but hydrophobic interactions are used 

instead. Hence, CBH is able to stabilize the substrate to allow for efficient catalysis of the 

substrate.  

In the PGI from Pyrobaculum aerophilum (PaPGI), interestingly, the Km value is 

different at different temperatures. (Km = 0.06 μM at 80°C, and Km = 0.3 μM at 50°C). In 

crystal structure of PaPGI, the CBH domain is stabilized by one hydrogen bond between 

Glu250*-Arg300. These data show that CBH become more flexible and loses hydrogen 

bonds at high temperatures (94).  
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Thus, these results support the notion that CBH flexibility contributes to substrate 

stabilization for protonation and can affect the catalytic activity.  

 

Conclusion 

I have determined the crystal structure of Plasmodium falciparum PGI complexed with 

two inhibitors (3PGA and 6PGA) at 2.0 Å and 1.7 Å and a substrate (F6P) at 1.7 Å, 

respectively. The overall of crystal structure shows two additional insertion loops (MOLs) 

and these MOLs are only conserved in the plasmodium species. Moreover, these MOLs 

contribute significantly to the dimeric interaction and MOL2 (residues 438-446) creates 

a steric hindrance by inserting itself between CBH and α15 helix*. In the substrate 

binding site, the position of the phosphate binding loop domain and the 310-helix 

containing His411* in PfPGI complexed with 6PGA are quite similar as in the crystal 

structure of mouse PGI with 6PGA, however, the position of the CBH containing Lys540 

is more extended than in mPGI. Although, the CBH conformational change should allow 

the CBH to closely and directly interact with the substrate to help position the substrate 

for the protonation step, CBH cannot get close to the substrate due to steric hindrance. 

Although further studies are required to form a firm conclusion, my crystallographic data 

and review of the data may allow me to propose a new catalytic mechanism which is 

somewhat different from those proposed in previous reports.   
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General Discussion 
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This thesis reports on the mechanism of peroxisomal localization of tetrameric carbonyl 

reductase and on the substrate binding recognition mechanism in phosphoglucose 

isomerase from Plasmodium falciparum using X-ray crystallography. From the results 

described in Chapter 1, I found that the peroxisomal targeting signal is not only an import 

signal for the peroxisome, but also has a role in inter-subunit interactions, and plays a role 

in enzyme activity. 

Although, PerCR forms a homo-tetrameric molecule consisting of four monomeric 

PerCRs, a recent crystal structure showing a hetero-tetrameric SDR has been reported 

(96). This enzyme, which is called 3-ketoacyl-acyl carrier protein reductase (KAR), 

catalyzes the second step in the mitochondrial fatty acid synthesis (mtFAS) pathway. 

Although all of the other mtFAS enzymes identified thus far are encoded by a single gene, 

human KAR (HsKAR) is a hetero-tetrameric α2β2 enzyme formed by two subunits, 

namely, 17β-hydroxysteroid dehydrogenase type 8 (HSD17β8) and carbonyl reductase 

type 4 (CBR4) (97). This finding suggest a new question that can only be addressed 

currently by X-ray crystallography. The question is whether PerCR can form hetero-

tetramers with other enzyme SDRs.  
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From the crystal structure of HsKAR, both dimers of HSD17β8 and CBR4, each of 

which is related by the Q-axis (please see Figure 5) comprise the hetero-tetramer. When 

the possible dimeric form of PerCR is considered, the Q-axis related dimer is a candidate 

form. This is because the Q-axis related inter-subunit interaction is stronger than the 

interaction between the R-axis related subunits. In this state, the dimeric form of PerCR 

related to the Q-axis, requires complementary amino acid residues of the P-axis related 

subunit for peroxisomal targeting signal (PTS) of PerCR (Ser-Arg-Leu). In my research, 

Ser258 (involved in a hydrogen-bond network between Lys176 and Glu248), Arg259 

(forming a hydrogen bond with Glu248) and Leu260 (forming a hydrogen bond between 

Lys172 and hydrophilic interaction with R-axis related hydrophobic residues) were 

identified and have been used to seek for candidate enzymes with complementary amino 

acids. Although I carried out an amino acid sequence alignment using the UniProt 

database (URL; http://www.uniprot.org/ ) using the following key words “Peroxisome”, 

“SDRs or reductase or oxidase” and “pig or human”, unfortunately, I have not yet been 

able to identify any candidate partner enzyme, so further research is need to resolve this 

question. 
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In Chapter II, with regard to the substrate binding mechanism of PfPGI, I found a hint 

of the reason why the CBH conformational change occurs in this important reaction that 

is involved in both glycolysis and glucogenogenesis. This finding could be of relevance 

to the design of selective anti-malarial drugs. With respect to Trypanosoma brucei PGI, 

several selective anti-malarial PGI candidate compounds have been reported (suramin, 

and agaricic acid) (Figure 19A, 19B) (82, 98, 99). However, suramin cannot fit into the 

substrate binding site due to fact that it is a large molecule and it is therefore unclear how 

it inhibits tPGI. As for agaricic acid inhibition, its mechanism may be explained based on 

the CBH interaction motif (Figure 19E). The CBH interaction motif is very different 

among species, as I discussed in Chapter II. In particular, the tPGI CBH – α helix which 

maintain the binding site space, forms only hydrophobic interactions, whereas the 

mammalian PGI CBH – α helix forms hydrogen bond between Glu526-Gln216* (Figure 

19D). This difference suggests two important points, first that tPGI CBH is more flexible 

and second that the space between CBH and its α helix is more extensive. This may 

explain why the long carbon chain of agaricic acid can fit into this space.  

In my research, the MOL2 is identified as being a cause of steric hindrance and creates 

an extensive space between CBH and α15 helix* with the same volume as in tPGI (Figure 

19F). 
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Currently, I am focusing on this space and I am studying the compound salicin which is 

an alcoholic β-glucoside, comprised of glucose and salicyl alcohol, as a new selective 

anti-malarial drug. Salicin is the historical origin of aspirin, and is chemically related to 

it, with a similar mechanism of action (100) (Figure 19C).  

If salicin, or its derivatives, are capable of inhibiting PfPGI, salicin could become a 

candidate for a selective anti-malarial drug. In particular, this compound is very well 

known, is safe in humans, and is inexpensive to produce. Since malarial disease most 

often occurs in developing country, an inexpensive and new selective anti-malaria drug 

could make a significant contribution to the treatment of malarial disease.  

In summary, I have solved the crystal structures of PerCR and PfPGI, and as a result I 

identified the mechanism for peroxisomal localization and the mechanism of substrate 

recognition for these two enzymes, respectively. 

These findings could only be made and explained through the use of X-ray 

crystallography and I am happy to be able to make a contribution to biological science.    
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Tables and Figures



(a) (b)

Figure 1
Tetragonal crystals of PerCR. (a) Form I. (b) Form II.
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Table 1.
Data-collection statistics for the forms I and II crystals of PerCR.

Form I Form II

Space group P42 P41212

Unit-cell parameters (Å) a = 109.6, b = 109.6, c = 94.3 a = 120.1, b = 120.1, c = 147.0
No. of subunits per 
asymmetric unit 4 [one tetramer] 4 [one tetramer]

Solvent content (%) 48 44

X-ray source PF- AR NW12 PF- AR NW12

Detector ADSC Q210 ADSC Q210

Wavelength (Å) 1.000 1.000

Resolution  (Å) 1.5 (1.58-1.5)* 2.2 (2.32-2.2)

No. of unique reflections 174385 54751

Multiplicity 4.9 (4.9) 8.3 (6.8)

Mean I/σ 6.5 (2.3) 5.4 (3.3)
B factor (Wilson plot) 
(Å2) 13.4 34.8

Rmerge† (%) 8.2 (31.0) 8.1 (19.4)

Completeness (%) 98.0 (98.4) 99.3 (96.4)

*values in parentheses are for the outer shell.
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Table 2.

Refinement statistics for the form II crystal of PerCR.

Resolution range (Å ) 40-1.5

No. of reflections

Working set 167,340

Test set 8,816

R-factor 0.161

Free R-factor 0.188

No. of protein atomsa 7,516 (1,879×4)

No. of NADPH atoms 192 (48×4)

No. of water molecules 772

RMS deviations

Bond distances (Å ) 0.014

Bond angles (°) 1.541

Ramachandran plot

Most favored (%) 90.4

Additional allowed (%) 8.8

Generously allowed (%) 0.8
a N-terminal residues (Met1 to Arg9) are not included in each of the four subunits in ASU.
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Figure 2. Effects of mutation of the C-terminus on enzyme activity and stability*.
(A) Activity analysis of E. coli extracts expressing wild-type pig PerCR (SRL) and the C-terminal 
mutants (SHL, SKL, SLL, and SL). Standard deviation obtained from three independent 
experiments. No enzymatic activity was detected in extracts expressing the C-terminal SLL and 
SL mutants. The inset depicts a representative western blot analysis using the anti-pig PerCR
antibody. The western blot was used to detect the expression levels of the different PerCR
enzymes and shows only the monomeric enzyme size.
(B) Stability of the purified enzymes. The wild-type pig PerCR (●), and the C-terminal mutants 
SHL (□) and SKL (▲) were diluted to 2 mg/mL with 10 mM potassium phosphate (pH 7) and 
incubated in an ice bath for the indicated times. Reductase activity was then measured and is 
expressed as the activity relative 
to that at 0 min.
*Dr. Makoto Nagano & Prof. Akira Hara (Gifu Pharmaceutical University)
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Figure 3. Stereo view of the PerCR Subunit.
The ball-and-stick model shows the bound NADPH molecule.
The D helices (red), E strands (cyan), and the N and C termini are marked.
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(a)

(b) (c)

Figure 4. Ribbon representations of the PerCR tetramer viewed.
along each of the three non-crystallographic two-fold axes
The subunits A, B, C, and D are shown in yellow, blue, red, and green, respectively.
Bound NADPH molecules are shown as space-filling models (cyan).
(A) View along the R-axis, (B) View along the Q-axis, (C) View along the P-axis.
Please define what DF, DE, and DFG2 refer to.

αF αE
αFG2

C-term

αFG2
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Figure 5. Overview of the inter-subunit interactions.
The inter-subunit interactions are αE-αE (pink), αF-αF(cyan), αG-αG (yellow), and C-terminal 
(orange).

86



Figure 6. Inter-subunit interaction between the Q-axis related subunits and the R-axis related 
subunits.
(a) Pattern diagram of the αE-αE interaction: the electrostatic interactions are shown as a dashed 
line. (b) Surface model of the αE-αE interaction: anionic and cationic charged residues are shown 
in blue and red, respectively. (c) Surface model of the αF-αF interaction; hydrophilic residues are 
shown in light green. (d) Surface model of the αG-αG interaction: hydrophilic residues are shown 
in light green. The C-terminal tail interaction and the hydrophilic interactions are shown as a pink 
circle.

(a) (b)

(c) (d)
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Figure 7. Intramolecular and inter-subunit PTS1 recognition mode observed in PerCR.
Stick models of the PTS1 (Ser258-Arg-259-Leu260) belonging to subunit A and the surrounding 
amino acids. Water molecules are shown as spheres (blue). The dashed lines indicate possible 
hydrogen bonds (or salt bridges); all distances are given in Å.
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Lys47
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Arg46
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Val101
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3.2
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Ser45
2.7

Catalytic 
triad

Asn123

Lys168

Ser151

Tyr164

Substrate binding site

Wat

Figure 8. Active site of PerCR complexed with NADPH.
Possible hydrogen bonds (or salt bridges) are shown as dashed lines. The bound NADPH molecule and the 
surrounding amino acids are shown as ball-and-stick, and stick models, respectively. A water molecule 
bound to the side chains of Ser151 and Tyr164 is shown as a sphere (blue). The catalytic triad are shown 
as diamonds (Cyan) and the substrate binding site is highlighted as a circle (light yellow).
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Figure 9. The most likely scenario for the transport of PerCR into the peroxisome.
1) Translated monomeric PerCR is recognized by Pex5p in the cytosol through PTS1.
2) The monomeric PerCT is the imported into the peroxisome by the Pex5p-Pex14p complex.
3) The monomeric PerCR form adopts a tetrameric structure inside the peroxisome.
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Figure 10. C-terminal residues of PerCR and insights into recognition.
(a) Monomeric PerCR; the C-terminal residues are shown in cyan. (b) Surface model of tetrameric
PerCR. The blue circle shows the C-terminal region. (c) C-terminal amino acid alignments for 
different mammalian PerCRs. (d) Surface model of the Pex5p-PTS1 peptide complex model 
(PDBID; 1FCH, Gatto et al., 2000). The orange circle shows the recognition pocket which interact 
with PTS1

Pig      250 VVVGGGTASRL 260
Human        VVVGGGTPSRL
Rat          VVVGGGTPSRL
Rabbit       VVVAGGAPSRL
Dog          VVVGGGTPSHL

(a) (b)

(c) (d)

C-terminal region

PTS1 recognition pocket

C-terminal residues
(-GGGTASRL)
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(a) (b)

Figure 11. Result of purification and crystallization. 
(a) An orthorhombic crystal of PfPGI (b) 10% SDS-PAGE of purified PfPGI. Purified PfPGI is 
shown in L1 after concentration. L2 contains the molecular mass markers.

L1 L2

75 kDa

50 kDa

37 kDa
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Table 3
Data-collection statistics for Plasmodium falciparum Phosphoglucose isomerase (PfPGI) values in 
parentheses are for the outer shell.

PfPGI-6PGA

Space group P212121

Unit-cell parameters (Å) a = 103.3, b = 104.1, c = 114.6

No. of subunits per asymmetric unit 2 [one dimer]

Solvent content (%) 46.3

X-ray source PF BL5A

Detector ADSC Q315

Wavelength (Å) 1.000

Resolution range (Å) 50–1.5 (1.58–1.50)

No. of observed reflections 933398

No. of unique reflections 195801

Multiplicity 4.8 (4.7)

Mean I/σ 7.6 (2.9)

B factor (Wilson plot) (Å2) 16.4

Rmerge† (%) 5.7 (26.2)

Completeness (%) 99.3 (96.5)

† Rmerge =∑hkl ∑i | Ii(hkl) - ,〈I(hkl)〉|/ ∑hkl ∑iI(hkl), where Ii(hkl) is the ith measurement and〈I(hkl)〉is the 

weighted mean of all measurements of I(hkl).
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Table 4.
Refinement statistics for PfPGI.
Values in parentheses are for the 
outer shell.

PfPGI-6PGA

Resolution range (Å ) 40-1.5

No. of reflections

Working set 167,340

Test set 8,816

R-factor 0.161

Free R-factor 0.188

No. of protein atomsa 7,516 (1,879×4)

No. of NADPH atoms 192 (48×4)

No. of water molecules 772

RMS deviations

Bond distances (Å ) 0.014

Bond angles (°) 1.541

Ramachandran plot

Most favored (%) 90.4

Additional allowed (%) 8.8

Generously allowed (%) 0.8
a N-terminal residues (Met1 to Arg9) are not included in each of the four subunits in ASU.
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Figure 12. Dimeric structure of the Plasmodium falciparum PGI/6-phosphogluconoic 
acid (6PGA) complex. 
One subunit is colored light blue, and the other is colored red (α-helixes) and cyan
(β-strands) for the large domain, orange (α-helixes) and magenta (β-strands) for the small 
domain, and green (α-helixes) for the C-terminal domain. The bound 6PGA molecules 
(yellow) are shown as space-filling models for each of the two subunits. Some short 
helices, and the 310-helix, are not shown. The non-crystallographic two-fold axis is 
parallel with the plane. (a) Front view of the molecule. The N and C termini, and the 
hooks are marked. (b) A side-view of the molecule. The large, small, and C-terminal 
domains are marked. The view in (b) is obtained by rotating the view in (a) by 90º. (c) 
malaria original loop domains 1 and 2 (MOL1 and Mol2) are shown in yellow and green 
respectively. 

Malaria Original Loop 1

Malaria Original Loop 2

(c)
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Figure 13. Dimeric interaction between subunits.
Overview of dimeric interactions. The four interaction areas (internal, MOL1, MOL2, and C-terminal) 
are shown as dashed circles colored in blue, red, green and pink, respectively. (b) Location overview of 
the dimeric interaction indicated by the dashed circle through rotating the view in (a) by 90°. (c) The 
dimeric interaction is shown in the internal area. Dashed lines indicate possible hydrogen bonds. 
Distances are given in Å.   (d) Dimeric interaction in MOL1. (e) Dimeric interaction in MOL2. (f) 
Dimeric interaction in the C-terminal domain.
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Figure 14. The substrate-binding site in subunit A of PfPGI. 
The carbon and phosphorus atoms of bound inhibitor/substrate molecules are shown as follows; 
purple and orange for 6PGA, and sky blue and orange for fructose 6-phosphate. Possible hydrogen 
bonds are indicated by the dashed lines (red). The bound water molecules are shown as ball models 
(red). (a) 6PGA, (b) F6P, and (c) 3PGA. The structural overlap between the PGI substrate binding in 
PfPGI and mouse PGI. The ribbon diagram and each inhibitor/substrate for mouse PGI is colored in 
gray; (d) 6PGA, (e) F6P, (f) 3PGA; (g) F6P.
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Figure 15. The structure overlap of conformational change between PfPGI and mPGI
complex with 6PGA.
This ribbon diagram shows a superimposition of PfPGI in complex with 6PGA (pink, red and 
orange) and mPGI in complex with 6PGA .
Each phosphate binding loop, 310-helix and CBH are colored by pink, orange and red in 
PfPGI, and by light green, green and yellow, in mPGI

CBH 

Phosphate binding 
loop domain

310-helix
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Figure 16. The space retention mechanism of the binding site.
(a) CBH, α33-helix, MOL1, MOL2, and the α15-helix are shown in light blue, light green , 
yellow, green, and blue in PfPGI, respectively. (b) CBH, α33, and the α15-helix are shown in 
purple, light green, and pink in mPGI, respectively. Possible hydrogen bonds are indicated by 
the dashed line (blue). Helixes and loops are colored for each subunit; subunit A and B are in 
red and blue respectively. 
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Figure 17. A sequence alignment of PfPGI with PGIs from other species. 
The conserved substrate binding site residues are highlighted in blue. The MOL domains are 
indicated by red boxes. Key dimeric interaction residues for malaria and mouse PGI are 
highlighted in red and green, respectively.

PLASMODIUM FALCIPARUM         163 TEFVYEAMKYYYYNMELNKNEK-----------------DQVNNFNNNYDQDNVFNVRFL 205
PLASMODIUM OVALE 160 TEFVYEALRFYYYNRVVHTREKTNNSS-NTSNDGDTNDENSVNEFSKAHDNDENFQVRFL 219
PLASMODIUM VIVAX         160 TEFVYEAMKYYHYNSVAGEKKKKKKEEEEKKMENEVCKTDAASNFNLNYDQDEMINVRFL 220
PLASMODIUM MALARIAE 160 TEFVYEALKFYYYNKILNKNTNNDNFG------------------SLNNNNDDIFDVRFL 202
HUMAN          163 PLMVTEALKPYSSG---------------------------------------GPRVWYV 184
MOUSE           163 PLMVTEALKPYSKG---------------------------------------GPRVWFV 184

:* **:: *  .                                          * ::

PLASMODIUM FALCIPARUM         206 ANVDPNDVNRAIQNLDQYDTLVIIISKTFTTAETMLNARSIKKWLSLKIKDDENLSKHMV 265
PLASMODIUM OVALE 220 ANVDPNDINRAIYNLDQTDTLVIIISKTFTTAETMLNARSIKNWLSLKIKNEKDLSKHMV 279
PLASMODIUM VIVAX         221 ANVDPNDINRAVHNIEQTDTLVVIISKTFTTAETMLNARSIKHWLSLKIKDDQELSKHMV 280
PLASMODIUM MALARIAE 203 ANVDPNDVNRAIYDLDQTSTLVIIISKTFTTAETMLNARSIKNWLNLKIKDEKQLSKHMV 262
HUMAN           185 SNIDGTHIAKTLAQLNPESSLFIIASKTFTTQETITNAETAKEWFLQAAKDPSAVAKHFV 244
MOUSE          185 SNIDGTHIAKTLASLSPETSLFIIASKTFTTQETITNAETAKEWFLEAAKDPSAVAKHFV 244

:*:* ..: ::: .:.   :*.:* ****** **: **.: *.*:    *: . ::**:*

PLASMODIUM FALCIPARUM         266 AVSTNLKLTDEFGISRDNVFEFWDWVGGRFSVTSSVGILPLSIAFGYKNMRNFLNGCHDM 325
PLASMODIUM OVALE 280 AISTNLKLTDEFGISRENVFEFWDWVGGRFSVTSAVGMLPLSIIFGYKNMRLFLNGCYDM 339
PLASMODIUM VIVAX         281 AVSTNLKLTDEFGIVRENVFEFWDWVGGRFSVTSAVGILPLSIAFGYQNMRQFLNGCHDM 340
PLASMODIUM MALARIAE 263 AISTNLKLTDEFGIVRENVFEFWDWVGGRFSVTSAVGMLPLSIAFGYKNMRNFLNGCHDI 322
HUMAN           245 ALSTNTTKVKEFGIDPQNMFEFWDWVGGRYSLWSAIGL-SIALHVGFDNFEQLLSGAHWM 303
MOUSE           245 ALSTNTAKVKEFGIDPQNMFEFWDWVGGRYSLWSAIGL-SIALHVGFDHFEQLLSGAHWM 303

*:***   ..****  :*:**********:*: *::*:  ::: .*:.::. :*.*.: :

PLASMODIUM FALCIPARUM         326 DEHFLHADLKENIPVLLALTSFYNSHFFDYKNVAILPYFQNLLKFSAHIQQLSMESNGKS 385
PLASMODIUM OVALE 340 DNHFLNSKYDENIPILLALTSFYNNHFFDNKNIAILPYFQNLLTFTKHIQQLAMESNGKS 399
PLASMODIUM VIVAX         341 DEHFLKTKFEENIPVLLALTSFYNNQFWDCKNVAILPYFQNLQKFAAHIQQLSMESNGKT 400
PLASMODIUM MALARIAE 323 DEHFLNTNNKDNIPVLLALTSFYNNHFFDCKNIAVLPYFQHLLKFSTHVQQLAMESNGKS 382
HUMAN           304 DQHFRTTPLEKNAPVLLALLGIWYINCFGCETHAMLPYDQYLHRFAAYFQQGDMESNGKY 363
MOUSE           304 DQHFLKTPLEKNAPVLLALLGIWYINCYGCETHALLPYDQYMHRFAAYFQQGDMESNGKY 363

*:**  :  ..* *:**** .::  : :. :. *:*** * :  *: :.**  ****** 

PLASMODIUM FALCIPARUM         386 VDRNNQPIHYNTCQVYFGEPGTNGQHSFYQLIHQGQ-VIPVELIGFKHSHFPIKFDKEVV 444
PLASMODIUM OVALE 400 VDRNNNFINYNTCQIYFGEPGTNGQHSFYQLIHQGQ-IVPVELIGFKKSHFPINFQNEIV 458
PLASMODIUM VIVAX         401 VDRSNNLVSYNTCQVFFGEPGTNGQHSFYQLIHQGQ-MIPVELIGFKHSHFPLHFPSEKV 459
PLASMODIUM MALARIAE 383 VDRNNNFINYNTCQVYFGEPGTNGQHSFYQLIHQGQ-IIPVELIGFKYSHFPLHFQNEKV 441
HUMAN           364 ITKSGTRVDHQTGPIVWGEPGTNGQHAFYQLIHQGTKMIPCDFLIPVQTQHPI----RKG 419
MOUSE           364 ITKSGARVDHQTGPIVWGEPGTNGQHAFYQLIHQGTKMIPCDFLIPVQTQHPI----RKG 419

: :..  : ::*  : :*********:********  ::* :::    ::.*:    .  

PLASMODIUM FALCIPARUM        445 SNHDELMTNFFAQADALATGKTYEQVKEENEK--N--KMSPELLTHKVFNGNRPSTLLLF 500
PLASMODIUM OVALE 459 SNHDELMTNFFAQADALAIGKTFEQVKEENENHKK--KVPIECLNHKVFQGNRPSTLLLF 516
PLASMODIUM VIVAX         460 SNHDELMTNFFAQADALAVGKSLEEVAHENEMNKK--KMPPELLTHKVFQGNRPSTLLLF 517
PLASMODIUM MALARIAE 442 SNHDELMTNFFAQADALAIGKTVEQVKEENENSKR--KVPLELLNHKVFKGNRPSTLLLF 499
HUMAN           420 LHHKILLANFLAQTEALMRGKSTEEARKELQAAGKSPEDLERLLPHKVFEGNRPTNSIVF 479
MOUSE           420 LHHKILLANFLAQTEALMKGKLPEEARKELQAAGKSPEDLEKLLPHKVFEGNRPTNSIVF 479

:*. *::**:**::**  **  *:. .* :   .  :   . * ****:****:. ::*

PLASMODIUM FALCIPARUM         501 DELNFYTCGLLLSLYESRIVAEGFLLNINSFDQWGVELGKVLAKEVRNYFNDTRNQKKS- 559
PLASMODIUM OVALE 517 DELNFYTCGLLLALYESRIIAEGFLLNINSFDQWGVELGKVLAKEIRNYFHDARSQSKEN 576
PLASMODIUM VIVAX         518 DELNFYTCGLLLSLYESRVVAEGYLLNVNSFDQWGVELGKVLAKEVRDYFHEVRSKKGP- 576
PLASMODIUM MALARIAE 500 DELNFYTCGLLLALYESRIVAEGFLLNINSFDQWGVELGKVLAKEVRDYFHDTKAHKN-- 557
HUMAN          480 TKLTPFMLGALVAMYEHKIFVQGIIWDINSFDQWGVELGKQLAKKIEPELDGSAQVTS-- 537
MOUSE           480 TKLTPFILGALIAMYEHKIFVQGIMWDINSFDQWGVELGKQLAKKIEPELEGSSAVTS-- 537

:*. :  * *:::** ::..:* : ::************ ***::.  :.     .   

PLASMODIUM FALCIPARUM         560 -DNTYNFNESTKILLNYYLSK------ 579
PLASMODIUM OVALE 577 TQSSHTFNESTKIMLNYYLS------- 596
PLASMODIUM VIVAX         577 -AAAHGFNESTKILLGYYLS------- 595
PLASMODIUM MALARIAE 558 -LDAYNFNESTKILLNYYLN------- 576
HUMAN           538 ------HDASTNGLINFIKQQREARVQ 558
MOUSE           538 ------HDSSTNGLISFIKQQRDTKLE 558

.: **: ::.:  .       

Malaria original domain 1

Malaria original
domain 2

CBH

α15

α33
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Figure 18. Conformational differences between the substrate-free PfPGI and the 
PfPGI–6PGA complex. 
Each phosphate binding loop, 310-helix, and CBH are colored pink, orange and 
red in the substrate free form, and light green, green, and yellow in the 6PGA 
complexed form.

CBH

Phosphate binding 
loop domain

310-helix*
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Figure 19. (a) suramin structure, (b) agaricic acid structure, (c) salicin structure , (d) Surface 
model of the CBH-α15 region in mPGI, (e) Surface model of the CBH-α15 arregion in PGI from 
Trypanosoma brucei,  (f) Surface model of the CBH-α15 region in mPGI.  (d), (e) and (f) Each 
pocket between CBH and α15 are shaded by yellow, red and light blue. Drug target region of 
PfPGI is colored by yellow
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