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Abstract 

Heat effects on mortality have been drawing much attention in recent years. Many studies have 

assessed this issue. Some of them examined heat-mortality from single cities, and some 

conducted multi-country / multi-city studies. However, most studies so far only used daily 

temperature (daily mean, minimum and max temperatures) as the exposure indices. The effects 

of other heat temperature indices on mortality should also been investigated. This thesis tends to 

investigate this issue by using wet bulb globe temperature (WBGT), which is widely around the 

world.  

 

Chapter one analyzed the association between WBGT and mortality, and compared WBGT with 

mean temperature for evaluating mortality risk in 47 Japanese prefectures using data from 1972–

2012. Firstly, the prefecture-specific effect of WBGT on mortality using a time series regression 

model combined with a distributed lag non-linear model was calculated. Secondly, the minimum 

mortality WBGT (MMW) and minimum mortality (mean) temperature (MMT) for all the 

prefectures were compared.  

 

Chapter two checked the reliability of WBGT estimation method used by the Bureau of 

Meteorology of Australia and compared it with another WBGT estimation method which was 

proved to be accurate in Japan, for evaluating the mortality in 47 Japanese prefectures.  
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Chapter 1: Introduction  

 

1.1 Climate change and health 

In recent years, the impact of extreme temperatures on the human health has been drawing an 

increasing number of concern. According to the 4th assessment report of the Intergovernmental 

Panel on Climate Change, the global mean surface temperature at the end of this century could 

increase 1.0–3.7 °C compared with the level during 1986–2005 (IPCC, 2007), and it is projected 

to rise by 0.3–4.8°C by the end of 2100 (IPCC, 2014). In general, global climate change affects 

human health via diverse ways, including landslide, drought, heavy snow disease vectors, rising 

sea level, air pollution, occupation diseases, malnutrition and psychological diseases (IPCC, 

2014).  

 

The temperature-mortality (both all-cause mortality and specific-specific mortality) appear J-, 

V-, U-shaped, which means, exposure to both extreme high and low temperatures increases 

mortality (Goldberg, Gasparrini, Armstrong, & Valois, 2011; Guo, Barnett, Pan, Yu, & Tong, 

2011; Guo et al., 2014; Patz, Campbell-Lendrum, Holloway, & Foley, 2005; Yang, Ou, Ding, 

Zhou, & Chen, 2012). The minimum point of the temperature-mortality relationship curve is the 

temperature where the mortality rate is the lowest. The optimum temperature varies across 

regions and populations and it is generally higher in warmer areas since people can get 

accustomed to the climates, which is also called adaptation (Patz et al., 2005).  

Some epidemiological evidences showed the negative heat effects actually caused more deaths 

than lightning, earthquakes, floods, landslides, hurricanes and many other natural disasters 
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(Luber & McGeehin, 2008). Extreme heat can affect human health either in the form of separate 

hot days, or some consecutive hot days (i.e. heat waves). Many previous researches quantified 

the negative effect of heat on health (Basu, 2009; Basu & Samet, 2002; Huang et al., 2011; 

Luber & McGeehin, 2008; Stafoggia et al., 2006; Turner, Barnett, Connell, & Tong, 2012). 

Comparatively, there are less studies on the negative effect of cold (Analitis et al., 2008; 

Anderson & Bell, 2009; Group, 1997; Huynen, Martens, Schram, Weijenberg, & Kunst, 2001; 

Keatinge & Donaldson, 2001; Wilkinson et al., 2004). Previous studies also found several factors 

can modify the effect of temperature on mortality. For example, Women (B. G. Armstrong, 

2003; Bobb, Peng, Bell, & Dominici, 2014); having low education level (Antonio Gasparrini et 

al., 2016; Medina-Ramon, Zanobetti, Cavanagh, & Schwartz, 2006), people with chronical 

disease (Li, Zhou, Cai, Zhang, & Pan, 2011; Zanobetti, O'Neill, Gronlund, & Schwartz, 2013) , 

the elderly  (Bai et al., 2014; Basu & Malig, 2011), blacks (Gronlund, 2014; Reid et al., 2009), 

living in the houses without good ventilation (Loughnan, Carroll, & Tapper, 2015; Maller & 

Strengers, 2011), living in the city (Hondula, Davis, Rocklov, & Saha, 2013; Ma et al., 2015) and 

having no access to air conditioning (Kovats & Hajat, 2008) were more susceptible to the hot 

weather. However, the modification effects of these factors are not consistent.  

 

1.2 Time series analysis in environmental epidemiology 

Both time series regression and case-crossover design are popular to quantify the heat-mortality 

relationship. However, the latter is mainly more popular in case the data are individual level 

records. Time series analysis has been popular in many fields, such as finance and econometrics. 

In recent years, most of the studies which explored the adverse impact of both hot and cold 

temperatures on health are also based on a time series design (Guo et al., 2011; Luber & 
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McGeehin, 2008; Turner et al., 2012). The purpose of using time series model is to quantify 

short-term associations of exposures, such as temperature, air pollution and health outcomes, 

such as mortality, morbidity and hospitalizations on the same day and on previous days (i.e. lag-

effects) after controlling for the potential confounders. There are some features in this kind of 

studies worth noting which have been well addressed in previous studies (Bhaskaran, Gasparrini, 

Hajat, Smeeth, & Armstrong, 2013; Gasparrini & Armstrong, 2010). Firstly, in general, time 

series is just a sequence of measurements that are equally spaced through time. For example, 

daily mean temperature and daily mortality, both of which are regularly measured every day. 

Secondly, the unit of the time series analysis is the day (e.g. annual, monthly, weekly, or hourly), 

not the individual. Thirdly, the outcome is a count, such as the number of mortality, morbidity or 

hospitalizations. Figure 1.1 shows an example of how time series data look like.  

Table 1.1 Example of time series data (Hokkaido (Japan), Jan 1972–Dec 2012) 

 

 

 

Date Temperature Relative humidy ISCHHD

1972.01.01 -1.4 87 9

1972.01.02 -5.3 83 2

1972.01.03 -4.7 66 8

1972.01.04 1.5 79 7

1972.01.05 -1.6 91 4

1972.01.06 -6.1 79 6

1972.01.07 -4.2 75 2

1972.01.08 -1 70 11

1972.01.09 -2.9 70 6
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Since the aim of time series regression is to find if there is an association between day-to-day 

variation in exposure and daily risk of health outcome. To do this, it is necessary to remove the 

long-term and seasonal patterns (Analitis et al., 2008). Figure 1.1 gives a simple visual 

explanation. There are many common ways to achieve this, such as Fourier series (Zeger, 

Dominici, & Samet, 1999),  LOESS (Schwartz & Zanobetti, 2000).  

 

Fig.  1.1 Decomposition of time series  

             (Bhaskaran et al., 2013).  

 

1.3 Limitations of current studies  

Various temperature indices have been used to assess the association between mortality and 

temperature around the world (Gasparrini, Guo, Hashizume, Lavigne, et al., 2015; Guo et al., 
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2017). In addition, some studies have already determined which index is optimal to describe 

temperature-mortality association in some countries. For example, Lin et al. compared 8 high-

temperature indices to evaluate all-cause mortality and outpatient in Taiwan and found the 

performance of each temperature index was inconsistent in different areas and in estimating 

diverse types of mortality (Lin, Chang, Li, Wu, & Wang, 2012). A study conducted in Korea 

showed that heat index and mean temperature are replaceable when assessing mortality (Kim, 

Ha, & Park, 2006). However, few similar studies have been done in Japan.  

 

WBGT is also used for heat warnings and restrict activities at school in Japan, though it also has 

some limitations, such as high humidity and low wind speed yields high stress, but WBGT is not 

that high. It should be overcome by different indices. Despite this limitation, WBGT would be 

better than temperature alone in describing heat stress. However, there is no comparison made so 

far between WBGT and daily mean temperature for assessing heat related mortality.  

 

1.4 Research aim  

The thesis aims to fill the gap by comparing daily mean temperature and WBGT for assessing 

all-cause mortality in 47 Japanese prefectures using data from 1972–2012.   
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Chapter 2: Heat stress indices  

 

2.1 Some frequently heat related disasters 

People may suffer health problems if they are exposed to the heat, especially the abnormal heat. 

There are many accidents caused by the heat in history. In Chicago in July 1995, at least 700 

deaths were caused by the heat wave (Semenza et al., 1996). During August 2003 in France, over 

15,000 excess deaths were due to the record high temperatures (Filleul et al., 2006). In 2010, an 

exceptional heat wave in summer caused 55,000 in Russia (Barriopedro, Fischer, Luterbacher, 

Trigo, & Garcia-Herrera, 2011). 

 

2.2 Classification of Heat stress indices 

Heat should not be considered equal to high temperatures. Therefore, heat stress indices should 

account for all possible aspects of heat sources and pathways (McGregor & Vanos, 2017). A heat 

stress index is a number that integrates the effects of the basic parameters in any human thermal 

environment such that its value would change with the thermal strain experienced by the 

individual exposed to the hot environment (Parsons, 2002a).  

 

The heat stress indices can be divided into three groups: rational indices, empirical index and 

direct indices. Rational indices are based on the calculations involving heat balance equations. 

Empirical indices are based on building equations considering human subjective strain. Direct 

indices are based on the direct measurement of environmental variables, such as temperature and 
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humidity (Epstein & Moran, 2006; Parsons, 2002b). Some of the examples of heat stress indices 

are given in table 2.1. compared with the first two groups, the indices of the third group are more 

practicable since they are based on fewer assumptions and measured values in real. 

Table 2.1 Some main heat stress indices 

 (Parsons, 2002c).  

Index name Abbreviation Indices classification Equation  Variables used 

Heat stress index  

(Belding & Hatch, 

1955) 

HSI Rational 

Ereq / Emax * 100 

 

Ereq: Required sweat loss 

Emax: Maximum evaporative loss 

Required sweat loss 

Metabolic heat production 

Radiation loss  

Convection loss 

Maximum evaporative loss 

Index of thermal 

stress  

(Givoni, 1964) 

ITS Rational 

(H - (R + C) - Rs) / 0.37 ŋ 

H: Metabolic heat production 

R: Radiation loss 

C: Convection loss 

Rs: Solar load 

Required sweat loss 

Metabolic heat production 

Radiation loss 

Convection loss 

Maximum evaporative loss 

Heat rate prediction  

(Fuller & Brouha, 

1966) 

HR Empirical  

22.4 + 0.18M + 0.25 (ta + 2Pa) 

M: Metabolic rate 

Ta: Air temperature  

Pa: vapor pressure  

Metabolic rate  

Air temperature 

Vapor pressure  

Wet-bulb globe 

temperature 

(Yaglou & Minaed, 

1957) 

WBGT Direct 
0.7tnwb + 0.2tg + 0.1ta (outdoor) 

0.7tnwb + 0.3tg (Indoor) 

tnwb: Wet bulb temperature  

ta: Air temperature  

tg: Black globe thermometer 

 

Oxford index  

(Lind, Hellon, 

Jones, Weiner, & 

Fraser, 1957) 

WD Direct 0.85 twb + 0.15 tdb 

twb: Aspirated wet bulb 

temperature 

tdb: dry bulb temperature 
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Chapter 3: Study 1 

Comparison of wet-bulb globe temperature (WBGT) and 

mean temperature for assessment of heat-related mortality: 

evidence from 47 Japanese prefectures 

 

3.1 Aim 

This study aims to compare WBGT and mean temperature in evaluating heat related mortality in 

47 Japanese prefectures during 1972–2012.   

 

3.2 Methods 

3.2.1 Data collection 

Data on the daily number of deaths and weather variables were collected from all 47 Japanese 

prefectures, during the period 1972–2012 (except for Okinawa, which was 1973–2012). 

Mortality data included two age groups: 0–64 and over 65 years old. Mortality was represented 

by daily counts of death from all causes. The mortality data were obtained from the Ministry of 

Health, Labor, and Welfare with special permission. The weather data were collected from the 

Japan Meteorology Agency. Daily mean values of temperature (°C) and water vapor pressure 

(hPa) were calculated from the 24 h average. 
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3.2.2 Estimation of WBGT 

Many equations have been proposed for estimating WBGT (Gaspar & Quintela, 2009; Maia, 

Ruas, & Bitencourt, 2015). In this study, the method followed the Bureau of Meteorology of 

Australia (WBGT = 0.567 * temperature + 0.393 * water vapor pressure + 3.94). This method 

does not consider variations in the intensity of wind speed or of solar radiation, and assumes a 

moderately high radiation level in light wind conditions. Use of this approximation may be 

inaccurate in cases of cloudy and windy conditions (Meteorology, 2010). Because most of the 

days when a heat warning would be issued are bright days without strong wind, this assumption 

is supposed acceptable.   

 

In this study, daily mean temperature and daily mean vapor pressure were used to calculate daily 

mean WBGT.  In the case of temperature, daily maximum temperature and daily mean 

temperature have a very high correlation, and temperature impact evaluation can be done using 

either daily maximum temperature or daily mean temperature. In this study, daily mean WBGT 

was used as the main exposure index, and daily mean temperature for comparison. For brevity, 

"WBGT" is used instead of daily mean WBGT from here.  

 

3.2.3 Statistical analysis 

In this study,  a quasi-Poisson regression model combined with a distributed lag nonlinear model 

(DLNM) (B. Armstrong, 2006) were used to estimate WBGT– and temperature–mortality 

relationships for each prefecture. The main advantage of DLNM is the ability to simultaneously 

estimate the nonlinear association of mortality with present day exposure, and its lag (Gasparrini 
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& Armstrong, 2011; Gasparrini, Armstrong, & Kenward, 2010). The key issue is to describe the 

relationship in each dimension based on functions, like polynomials, double threshold, simple 

stratification and so on. Among all of them, cubic spline functions are better to describe the 

flexible relationship. In the models, A natural cubic spline of time with eight degrees of freedom 

(df) per year was used to control for long term and seasonal trends, and the week was controlled 

for as a categorical variable after examining the parameter settings of some representative studies 

(Gasparrini, Guo, Hashizume, Lavigne, et al., 2015; Vicedo-Cabrera et al., 2016).  

 

the exposure–response curve was modelled for both mean temperature and WBGT with a natural 

cubic spline with three internal knots placed at the 10th, 75th and 90th percentiles of prefecture 

specific WBGT and temperature distributions. For the lag–response curve, a natural cubic spline 

was used with an intercept and five internal knots at equally spaced values on the log scale. A 

maximum lag of 21 days was used to capture the long delay of the cold effect (Guo et al., 2011; 

Guo et al., 2014; Tong, Ren, & Becker, 2010; Vicedo-Cabrera et al., 2016). The minimum 

mortality WBGT (MMW) and the minimum mortality temperature (MMT) were used as 

reference values to calculate the relative risks. Each lag day has its own risk, but, for easier 

understanding, overall cumulative risk was shown, which is the sum of the contributions for 21 

days across the lag, unless otherwise stated. To obtain MMW and MMT and their confidence 

intervals (CIs), a newly proposed method (Tobias, Armstrong, & Gasparrini, 2017) was 

implemented. In cases that there were multiple local minimum risks, the highest value was 

chosen (Rocklov, Ebi, & Forsberg, 2011). After obtaining the MMWs and MMTs, the relations 

between the two were explored. 
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3.3 Results 

Table 3.1 shows the statistical summary on the daily total mortality, mean temperature, and 

WBGT distributions from the 47 Japanese prefectures. The daily total mortality ranged from 15 

in Tottori to 204 in Tokyo. The prefectures include different climate zones, from subpolar 

Hokkaido to subtropical Okinawa. As expected, the daily mean temperature was lowest in 

Hokkaido (8.8 °C) and highest in Okinawa (22.9 °C). These were consistent with daily WBGT, 

reaching the lowest in Hokkaido (12.5 °C) and highest in Okinawa (25.5 °C).  

 

Figure 3.1 shows the overall cumulative mortality effect of WBGT and temperature (95% CI) for 

five prefectures. These prefectures were selected to show the north–south difference. The graphs 

of the other prefectures are reported in the supplemental materials. The common shape of the 

patterns of the results for these prefectures can be regarded as inverse J, with some differences. 

These differences are explored in more detail in the discussion section. Table 3.2 shows 

estimates of MMT and MMW, and their corresponding percentile values (MMTP, MMWP). In 

general, the MMT increased from north to south, and the ranges were about 21 °C and 29 °C for 

most prefectures (with the exception of Kochi: 32.1 °C). The MMTP ranges were at about the 

80th and 90th percentiles for most prefectures, with the exception of Kochi (100th) and Okinawa 

(44.6th). The MMW was consistent with MMP, increasing from north to south except for Kochi 

(19.6 °C). The MMWP ranges were at about the 80th and 90th percentiles for most prefectures 

except for Kochi (51.4th) and Okinawa (42.6th). 
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Figure 3.2 shows the relationship between MMW and MMT for each prefecture. There is a high 

correlation between MMT and MMW after removing Kochi. Figure 3.3 shows the associations 

between temperature– and WBGT–mortality for the outlier (Kochi). The estimated MMT is at 

the maximum of its temperature range.  

 

The identical methods were implemented among two age groups (younger than 64 and older than 

65 years old). Supplementary Figures S2 and S3 show the overall risk curves for both two 

groups. In general, the curves of the older group were more similar to the whole population than 

the younger group because most of the deaths were from the 65+ population.  
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Table 3.1 Distribution of daily mean temperature and daily WBGT in 47 Japanese prefectures 

(1972–2012).  

“r” indicates the Pearson correlation coefficient between daily mean temperature and WBGT in 

each prefecture.    

Prefecture 
  

Study 
period 

 
Daily 
mean 
death 

  
Daily mean temperature 

 
Daily WBGT 

 r 
Mean Min P25 P50 P75 Max Mean Min P25 P50 P75 Max 

Hokkaido 

  

1972-2012 

  

109 

 

8.8 -14.1 0.1 9.2 17.2 30.1 

 

12.7 -3.6 5.7 12.1 19.2 32.1 

 

0.99 

Aomori 1972-2012 33 10.3 -8.7 2.1 10.6 17.9 30.1 14.1 0.1 7.2 13.4 20.2 32.4 0.99 

Iwate 1972-2012 33 10.2 -8.9 1.6 10.3 18.3 29.6 14.0 -0.2 6.8 13.3 20.7 31.8 0.99 

Miyagi 1972-2012 43 12.4 -5.2 4.8 12.8 19.1 31.2 15.7 2.1 8.8 15.0 21.6 32.9 0.99 

Akita 1972-2012 30 11.7 -6.4 3.3 11.6 19.6 31.6 15.2 1.2 7.9 14.4 21.7 32.8 0.99 

Yamagata 1972-2012 31 11.7 -7.4 3.0 11.9 19.7 31.5 15.2 1.0 7.8 14.4 21.8 32.5 0.99 

Fukushima 1972-2012 48 13.0 -5.2 4.8 13.3 20.2 31.4 16.0 2.1 8.8 15.4 22.2 33.0 0.99 

Ibaraki 1972-2012 57 13.6 -3.8 6.1 14.1 20.2 31.3 17.0 3.0 9.9 16.6 23.1 34.2 0.99 

Tochigi 1972-2012 40 13.7 -4.5 5.8 14.3 20.8 31.4 16.8 2.6 9.5 16.5 23.1 33.7 0.99 

Gunma 1972-2012 41 14.5 -3.8 6.7 14.8 21.5 32.6 17.0 2.9 9.9 16.6 23.4 33.7 0.99 

Saitama 1972-2012 96 14.9 -2.8 7.1 15.3 21.8 33.7 17.5 3.3 10.3 17.1 23.9 34.3 0.99 

Chiba 1972-2012 89 15.7 -1.4 8.6 16.1 22.0 32.2 18.4 4.4 11.5 18.2 24.4 34.0 0.99 

Tokyo 1972-2012 204 16.1 -0.6 9.0 16.5 22.5 33.1 18.4 4.8 11.5 18.1 24.3 34.1 0.99 

Kanagawa 1972-2012 119 15.7 -1.0 8.8 16.1 21.9 30.9 18.3 4.4 11.5 18.1 24.3 33.9 0.99 

Niigata 1972-2012 56 13.8 -3.9 5.8 13.9 21.2 32.6 16.8 3.2 9.7 16.1 23.3 33.6 0.99 

Toyama 1972-2012 25 14.0 -4.4 6.1 14.3 21.3 33.8 17.3 2.9 10.2 16.7 23.9 34.1 0.99 

Ishikawa 1972-2012 24 14.6 -3.9 6.9 14.9 21.8 32.3 17.5 3.2 10.6 16.9 23.9 33.3 0.99 

Fukui 1972-2012 18 14.5 -3.8 6.4 14.9 22.0 32.1 17.6 3.3 10.4 17.2 24.2 33.2 0.99 

Yamanashi 1972-2012 19 14.5 -4.4 6.5 15.1 22.1 31.8 17.1 2.6 9.8 16.9 23.9 33.2 0.99 

Nagano 1972-2012 50 11.9 -7.7 3.0 12.4 20.3 30.7 15.2 0.7 7.8 14.8 22.1 31.3 0.99 

Gifu 1972-2012 42 15.7 -3.0 7.9 16.2 23.1 32.9 18.3 3.5 11.1 17.9 25.1 34.4 0.99 

Shizuoka 1972-2012 70 16.6 -0.9 9.9 17.0 22.7 31.9 19.1 4.4 12.5 18.8 25.2 33.8 0.99 

Aichi 1972-2012 112 15.7 -2.9 7.9 16.2 22.9 32.7 18.2 3.5 11.0 17.9 24.9 33.9 0.99 

Mie 1972-2012 39 15.8 -2.4 8.3 16.1 22.8 33.5 18.6 3.3 11.4 18.1 25.2 35.2 0.99 

Shiga 1972-2012 24 14.6 -3.2 6.8 14.8 22.0 31.4 17.8 3.3 10.6 17.2 24.4 33.0 0.99 

Kyoto 1972-2012 52 15.8 -3.4 7.9 16.2 23.2 32.8 18.2 2.9 11.1 17.8 24.6 34.0 0.99 

Osaka 1972-2012 152 16.8 -2.1 9.1 17.2 23.9 32.9 18.9 3.5 11.8 18.5 25.3 34.4 0.99 

Hyogo 1972-2012 106 16.3 -4.3 8.8 16.8 23.2 32.0 18.7 2.2 11.7 18.4 25.2 33.9 0.99 

Nara 1972-2012 26 14.8 -3.7 6.9 15.1 22.1 31.7 17.8 2.6 10.6 17.4 24.5 32.7 0.99 

Wakayama 1972-2012 27 16.6 -2.7 9.1 17.0 23.5 31.9 19.0 3.3 11.9 18.7 25.5 34.7 0.99 

Tottori 1972-2012 15 14.8 -5.6 7.3 15.0 21.9 32.3 17.8 2.0 10.9 17.3 24.1 33.5 0.99 

Shimane 1972-2012 21 14.8 -5.3 7.5 15.0 21.6 32.2 18.1 2.0 11.2 17.5 24.3 33.9 0.99 

Okayama 1972-2012 44 15.9 -4.8 7.9 16.2 23.2 32.3 18.5 2.1 11.2 18.0 25.2 34.2 0.99 

Hiroshima 1972-2012 59 15.9 -5.8 8.3 16.2 23.0 32.7 18.5 1.9 11.5 18.0 25.1 33.7 0.99 

Yamaguchi 1972-2012 38 15.3 -5.4 7.7 15.7 22.6 31.2 18.3 2.1 11.3 17.9 24.9 33.7 0.99 

Tokushima 1972-2012 21 16.5 -4.0 9.2 17.0 23.3 32.3 18.9 2.5 11.9 18.7 25.4 33.9 0.99 

Kagawa 1972-2012 24 16.1 -3.3 8.5 16.4 23.2 32.3 18.7 2.9 11.5 18.2 25.3 34.1 0.99 

Ehime 1972-2012 36 16.3 -3.1 9.1 16.6 23.1 31.9 18.7 3.0 12.0 18.3 25.1 33.1 0.99 

kochi 1972-2012 22 16.9 -2.3 10.1 17.6 23.6 32.1 19.4 3.7 12.6 19.2 26.0 33.9 0.99 

Fukuoka 1972-2012 97 16.9 -3.2 9.9 17.1 23.3 32.4 19.3 3.2 12.7 18.9 25.6 34.2 0.99 

Saga 1972-2012 21 16.5 -3.6 9.2 16.9 23.6 32.2 19.2 3.0 12.3 18.8 25.9 34.3 0.99 

Nagasaki 1972-2012 36 17.1 -2.5 10.5 17.6 23.5 32.2 19.7 3.8 13.1 19.4 26.0 34.4 0.99 

Kumamoto 1972-2012 42 16.8 -3.2 9.5 17.5 24.0 31.5 19.4 3.2 12.5 19.2 26.3 34.9 0.99 

Oita 1972-2012 29 16.3 -3.4 9.4 16.7 22.9 31.6 19.0 3.1 12.3 18.6 25.3 33.7 0.99 

Miyazaki 1972-2012 26 17.5 -1.0 11.0 18.1 23.8 32.0 20.3 4.4 13.7 20.3 26.9 34.5 0.99 

Kagoshima 1972-2012 46 18.3 -2.1 12.0 18.9 24.8 31.1 20.8 4.4 14.4 20.8 27.4 34.4 0.99 

Okinawa 1973-2012 19 22.9 9.1 19.2 23.3 27.2 31.1 25.5 11.9 20.9 25.7 30.9 34.9 0.98 
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Table 3.2  Estimations of minimum mortality temperature (MMT), minimum mortality 

temperature percentile (MMTP), minimum mortality WBGT (MMW) and minimum mortality 

WBGT percentile (MMWP).  

“-” indicates that limits were not identified.  

Prefecture MMT (℃) MMTP (%) MMW (℃) MMWP (%) 

Hokkaido 21.0 (20.4, 21.5) 89.5 (87.3, 91.2) 23.3 (22.6, 23.8) 89.7 (87.4, 91.3) 

Aomori 21.6 (0.9, 22.0) 88.6 (19.7, 89.8) 24.5 (7.0, 24.9) 89.2 (24.1, 90.4) 

Iwate 22.1 (-8.9, 29.6) 88.4 (-, -) 25.1 (-0.2, 29.1) 89.5 (-, 96.6) 

Miyagi 23.4 (22.5, 24.7) 89.6 (86.9, 93.5) 26.0 (25.1, 26.9) 88.5 (86.2, 90.9) 

Akita 23.1 (22.4, 23.6) 88.5 (86.0, 90.3) 25.5 (24.7, 26.1) 87.9 (85.2, 89.5) 

Yamagata 23.4 (22.8, 23.9) 87.7 (85.9, 89.2) 25.6 (24.8, 26.2) 87.1 (84.9, 88.8) 

Fukushima 24.1 (5.6, 25.1) 87.8 (28.1, 90.6) 26.6 (9.6, 27.5) 88.2 (28.9, 90.5) 

Ibaraki 24.5 (23.8, 25.7) 89.2 (87.1, 92.8) 27.6 (26.8, 28.6) 88.6 (86.5, 91.2) 

Tochigi 24.2 (9.9, 24.9) 86.6 (38.0, 88.8) 26.7 (13.2, 27.5) 85.9 (39.5, 88.1) 

Gunma 25.0 (23.7, 25.7) 86.6 (82.7, 88.9) 26.6 (25.3, 27.5) 84.9 (81.0, 87.5) 

Saitama 25.3 (24.8, 25.6) 86.6 (85.2, 87.7) 27.3 (26.7, 27.8) 85.5 (83.7, 86.6) 

Chiba 25.8 (25.2, 26.4) 88.0 (86.0, 90.0) 28.8 (28.1, 29.8) 87.8 (85.8, 91.0) 

Tokyo 26.1 (25.8, 26.4) 86.8 (85.7, 87.6) 28.1 (27.7, 28.4) 86.2 (85.2, 86.9) 

Kanagawa 25.4 (25.0, 25.9) 86.5 (85.3, 88.4) 28.1 (27.5, 28.7) 86.4 (84.6, 88.0) 

Niigata 24.6 (24.1, 25.1) 87.7 (86.0, 89.2) 26.7 (25.9, 27.2) 86.2 (83.7, 87.7) 

Toyama 24.1 (13.3, 25.4) 85.2 (46.7, 89.5) 26.8 (23.2, 28.4) 84.0 (72.7, 88.7) 

Ishikawa 25.1 (24.1, 25.8) 86.7 (83.6, 88.8) 27.1 (25.9, 27.9) 84.9 (81.1, 87.1) 

Fukui 26.3 (25.2, 28.3) 89.7 (86.5, 95.5) 28.6 (27.7, 30.2) 88.6 (85.6, 94.7) 

Yamanashi 25.7 (24.8, 27.1) 88.6 (85.1, 93.8) 28.3 (26.8, 33.1) 90.2 (84.2, -) 

Nagano 24.4 (23.9, 25.0) 89.7 (88.2, 91.4) 26.2 (25.5, 26.8) 88.3 (86.2, 90.4) 

Gifu 26.6 (26.0, 27.1) 87.7 (85.7, 89.5) 28.6 (28.0, 29.2) 86.2 (84.2, 88.4) 

Shizuoka 26.2 (25.8, 26.8) 87.9 (85.9, 91.0) 29.0 (28.3, 29.8) 87.7 (84.9, 90.9) 

Aichi 25.9 (25.4, 26.3) 85.5 (83.9, 87.0) 27.5 (26.8, 27.9) 83.0 (80.9, 84.3) 

Mie 25.3 (13.8, 26.5) 84.0 (43.0, 88.8) 27.9 (19.7, 29.4) 83.3 (55.8, 88.2) 

Shiga 25.9 (24.4, 29.5) 88.3 (83.2, 99.2) 27.9 (25.1, 32.9) 85.6 (77.1, -) 

Kyoto 26.5 (25.5, 27.3) 86.4 (83.0, 88.9) 27.5 (18.6, 28.6) 83.2 (53.0, 86.8) 

Osaka 26.6 (25.8, 27.1) 84.4 (81.8, 86.1) 28.0 (18.6, 28.6) 82.5 (50.2, 84.4) 

Hyogo 26.9 (9.7, 28.8) 88.1 (28.4, 96.2) 28.9 (14.1, 30.9) 85.9 (35.2, 94.3) 

Nara 25.6 (10.4, 26.6) 87.3 (36.6, 91.1) 27.8 (26.6, 28.8) 84.7 (80.9, 88.6) 

Wakayama 25.8 (19.7, 27.2) 82.7 (60.2, 88.2) 27.5 (24.2, 28.7) 80.7 (70.9, 84.1) 

Tottori 25.1 (20.9, 26.4) 86.4 (71.5, 90.0) 27.4 (20.5, 31.4) 84.6 (62.3, 98.4) 

Shimane 26.6 (25.6, 32.2) 91.7 (88.9, -) 29.8 (28.4, 33.9) 91.7 (87.2, -) 

Okayama 28.2 (27.2, 32.3) 91.9 (88.7, -) 30.0 (29.0, 34.2) 89.3 (85.8, -) 

Hiroshima 26.3 (25.4, 27.0) 86.3 (83.7, 89.1) 27.7 (21.1, 28.8) 82.4 (61.5, 85.9) 

Yamaguchi 25.5 (11.9, 26.4) 85.7 (39.1, 89.0) 28.2 (14.9, 29.3) 84.7 (40.1, 88.6) 

Tokushima 26.3 (12.4, 32.3) 86.5 (36.1, -) 24.3 (17.5, 28.3) 71.6 (46.1, 83.3) 

Kagawa 26.3 (15.4, 27.6) 85.8 (47.1, 90.9) 27.4 (20.8, 29.2) 80.7 (59.6, 86.4) 

Ehime 26.8 (11.5, 28.9) 88.1 (34, 96.7) 28.6 (15.2, 31.3) 85.9 (39.0, 98.6) 

Kochi 32.1 (13.9, 32.1) 100 (38.4, -) 19.6 (16.7, 33.8) 51.4 (41.0, -) 

Fukuoka 26.9 (26.2, 27.4) 87.5 (85.1, 89.1) 29.2 (28.6, 29.7) 85.7 (83.6, 87.3) 

Saga 26.3 (17.8, 28.3) 85.6 (52.6, 93.5) 26.9 (18.7, 28.9) 77.9 (49.6, 83.8) 

Nagasaki 28.5 (26.4, 32.2) 95.5 (85.5, -) 30.1 (21.5, 34.3) 87.2 (58.6, -) 

Kumamoto 27.9 (26.4, 31.5) 91.1 (84.3, -) 29.2 (19.9, 30.7) 83.7 (52.5, 91.2) 

Oita 26.6 (25.5, 27.9) 89.0 (84.3, 94.5) 29.2 (16.5, 31.7) 87.0 (42.5, 98.7) 

Miyazaki 26.1 (24.9, 26.7) 83.5 (78.6, 86.5) 28.6 (23.0, 29.4) 79.7 (61.1, 82.4) 

Kagoshima 27.3 (26.0, 28.9) 84.5 (79.3, 94.1) 29.7 (22.6, 31.1) 81.7 (57.7, 89.2) 

Okinawa 22.3 (20.4, 28.3) 44.6 (32.7, 85.4) 24.3 (22.7, 27.2) 42.6 (34.2, 56.9) 
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Fig.  3.1 Comparison of the associations between WBGT– and temperature–mortality for five 

selected prefectures at different latitudes in Japan, 1972–2012.  

All show unconstrained minimum mortality temperature and solid vertical lines are minimum 

mortality temperature or minimum mortality WBGT, and dashed vertical lines are their 95% 

confidence intervals. RR indicates the relative risk. Tave is daily mean temperature. 
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Fig.  3.2  Comparison of the associations of MMW–MMT with and without outlier.  

“r” is Pearson correlation coefficient.  

 

 
Fig.  3.3 Associations between WBGT– and temperature–mortality for Kochi. 
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Fig.  3.4 Overall effect of temperature– and WBGT–mortality in Kochi when the lag was set to 

seven days. 

 

 

Fig.  3.5 Estimated effects at different WBGTs and lags for Kochi.  



18 
 

3.4 Discussion 

In this study, the effects of WBGT on all-cause mortality were examined and compared it with 

the effects from mean temperature using data from 47 Japanese prefectures. To the best of our 

knowledge, this is the first study to systematically compare WBGT and temperature for all of 

Japan. 

 

As was shown in previous studies, we also observed that, overall, the pattern of WBGT mortality 

was generally inverse J-shaped, and the north–south differences were in line with the results 

from previous studies (Chung et al., 2015; Gasparrini, Guo, Hashizume, Lavigne, et al., 2015). 

Although some prefectures showed inconsistent patterns, like Iwate, that may be due to its small 

population and other unknown extraneous factors.  Moreover, in terms of Iwate, although the 

colder part showed a strange pattern, usual definition of MMT / MMW is the highest temperature 

among multiple local minimum mortality risks (Rocklov et al., 2011), and the MMT / MMW 

appeared similar to the neighboring prefectures. It was found extreme cold temperatures and 

WBGT had stronger effects than did extreme hot temperatures and WBGT in most of the 

prefectures. The cold effects were more apparent in southern areas, while the heat effects were 

more pronounced in northern areas; which is also in line with results from previous studies 

(Gasparrini, Guo, Hashizume, Lavigne, et al., 2015; Ma et al., 2015). As with MMT, MMW 

increased from north to south.  In summary, the mortality patterns associated with mean 

temperature and WBGT showed similar patterns. In this regard, either measure could be used in 

risk evaluations, at least in Japan. 
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Kochi and Tokushima were outliers in the pattern when comparing MMW and MMT. However, 

unlike the extreme pattern of Kochi, Tokushima's relation appeared acceptable. Since the curves 

in Tokushima showed a very low risk over a wide range, which means a small statistical 

difference could change MMT and MMW drastically. Therefore, although Tokushima looked 

like an outlier, it was accepted. In terms of Kochi, one of the reasons could be the relatively 

small population, but another possibility could be the extraneous confounding effect from using a 

too long lag time. Previous studies suggested that cold effects can last for 2–4 weeks, while the 

heat effects were limited within a few days (Braga, Zanobetti, & Schwartz, 2002; Gasparrini, 

Guo, Hashizume, Lavigne, et al., 2015; Ma et al., 2015). 21 lag days was firstly used to capture 

the longer lag effect for cold, but the lag effect for heat was considered to be much shorter. 

Although in a simulation study (Gasparrini, 2016) ) DLNM appropriately captured both short 

and long lag effects, in some real cases, due to accident or disaster; a long lag effect could be 

erroneous. To explore this issue, an identical analysis was conducted for Kochi, except for 

setting a shorter lag of seven days. As shown in Figure 2.4, with this adjustment, the estimated 

set of MMT and MMW became non-outliers. In addition, Figure 2.5 shows that there was 

virtually no heat effect for lag days close to Day 7. This implies that, in this case, it is not 

necessary to use a lag longer than seven days to evaluate the heat effect. 

 

There are limits to this study. First, the formula used to estimate WBGT assumes moderately 

high radiation in light wind, and constant wind speed or solar radiation. This partly explains why 

temperature and WBGT yielded similar results, but at least it was showed that humidity did not 

systematically alter the relation. Because a more sophisticated method for WBGT estimation was 

used in a study of a limited number of areas in Japan, our next step will be to evaluate the use of 
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this sophisticated method. However, this involves hourly measurements of radiation and would 

be difficult to use in a multi-country study. On the other hand, our simple WBGT method could 

be used in such settings.  

 

3.5 Conclusions 

Mean temperature and WBGT were highly correlated when evaluating mortality in most 

prefectures. Therefore, the mean temperature is a good index to use when obtaining WBGT for a 

heat warning is difficult. 
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Chapter 4: Study 2 

Comparison of two WBGT estimation methods for 

assessment of heat-related mortality: evidence from 47 

Japanese prefectures 

 

4.1 Aim 

This study aims to test the reliability of WBGT estimation method used by the Bureau of 

Meteorology of Australia (BMA), a comparison is made between this and another method (Ono 

& Tonouchi, 2014), which is proved to be accurate in Japan for evaluating the mortality risk in 

47 Japanese prefectures.  

 

4.2 Methods 

4.2.1 Data collection  

Data were collected on the daily number of deaths and weather variables from 47 Japanese 

prefectures, during the period 2006–2012. The data were restricted to the warmest months of the   

year (May–October). Mortality was represented by the daily counts of deaths from all-cause 

mortality. The mortality data were obtained from the Ministry of Health, Labor, and Welfare 

with special permission. The weather data were collected from the Japan Meteorology Agency. 

The daily mean values of temperature (°C) and water vapor pressure (hPa) were calculated from 

the 24 h average. In addition, the estimated values by the method (Ono & Tonouchi, 2014) were 
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provided by the authors. In this study, the estimated values by the method (Ono & Tonouchi, 

2014) were regarded as observed WBGT values. 

 

4.2.2 Ono and Tonouchi (2014) 

Ono and Tonouchi developed WBGT estimation equation and proved that the equation could be     

applied for different years and for different cities with good accuracy (Ono & Tonouchi, 2014). 

WBGT = 0.735 * Ta * 0.0374 * RH * 0.00292 * Ta * RH + 7.619 * SR – 4.557 * SR2 – 0.0572                                                                                         

               * WS – 4.064  

Where Ta refers to the air temperature; RH is relative humidity; SR represents solar radiation.   

 

4.2.3 Statistical analysis 

In this study, the quasi-Poisson regression model combined with a distributed lag nonlinear 

model (DLNM) was implemented to estimate WBGT-mortality relationships by using the two 

estimation methods in each prefecture. In the models, seasonality was controlled for by using 

natural cubic B-splines with equally spaced knots and 4 degrees of freedom (df). And interaction 

between the spline function and indicators of summer of the year was specified to allow the 

different seasonal trend. In addition, a natural cubic B-spline with equally spaced knots and 

approximately 1 df per decade were included to control for long-term trends. Day of the week 

variable is also included in the model. In specific, the quadratic B-splines for the exposure-

response with 1 internal knot at the 75th percentile of each prefecture’s WBGT distribution and 

natural cubic B-splines for the lag-response with an intercept and 2 internal knots placed at 

equally spaced values in the log scale. The lag period was extended to 5 days to capture the delay 
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of the heat effects. These modelling choices were motivated by the previous studies (Gasparrini, 

Guo, Hashizume, Kinney, et al., 2015; A. Gasparrini et al., 2016).  

 

4.3 Results 

Table 4.1 shows the statistical summary on the daily total mortality WBGT distribution using 

two estimation methods and the correlation coefficients between mean values using two 

estimation methods from the 47 Japanese prefectures. The daily total mortality ranged from 17 in 

Tottori to 257 in Tokyo. As expected, the daily mean WBGTs by both methods were lowest in 

Hokkaido and highest in Okinawa. The estimated WBGT values by BMA were generally higher 

than the values by Ono’s method, especially in the southern prefectures. The correlation 

coefficient between daily mean WGBT using two methods was around 0.95.  

 

Figure 4.1 shows the overall cumulative mortality effect of WBGT by two methods. These 

prefectures were selected to show the most densely populated areas with geographical difference. 

The graphs of the other prefectures are reported in the supplemental materials (Fig.S5). The 

common shapes of these curves are U or inverse J, with some difference. The reference value of 

the curves was either the estimates of minimum mortality WBGT (MMW) or 50th percentile 

values of WBGT distribution if the MMW was at the extreme WBGT. Table 4.2 shows the 

estimates of MMW and minimum mortality WBGT percentile (MMWP) by using the two 

methods. In general, the difference between the estimates of MMW and MMWP was significant 

in many prefectures. Figure 4.2 shows the comparison of MMW by using two WBGT estimation 

methods for each prefecture. 



24 
 

Table 4.1 Distribution of daily mortality and estimated WBGT values by using two methods in 

May–October of 2006–2012 in 47 Japanese prefectures.  

“r” represents the Pearson correlation coefficient between WBGT estimates by using two 

methods.  

Prefecture 

 
Daily mean 

death 

 Australian Bureau of Meteorology 

  

Ono (2014) 

 r   Mean Min P25 P50 P75 Max Mean Min P25 P50 P75 Max 

Hokkaido  143  19.8 8.0 16.0 19.9 23.5 30.7 

  

19.7 5.4  15.7  20.2  23.6  30.5  

  

0.96  

Aomori  41  21.0 9.5 17.0 20.6 24.7 32.4 21.1 6.2  17.3  21.1  25.1  32.0  0.96  

Iwate  39  21.2 8.3 17.2 21.0 25.2 31.8 21.4 4.2  17.7  21.3  25.5  31.5  0.95  

Miyagi  54  22.7 10.5 18.8 22.3 26.7 32.9 22.2 6.2  18.5  21.8  26.2  32.7  0.96  

Akita  36  22.4 10.1 18.2 22.2 26.4 32.8 21.8 5.4  18.1  22.0  25.5  32.3  0.95  

Yamagata  36  22.3 10.0 18.4 22.0 26.5 31.8 22.6 5.8  18.8  22.6  26.9  32.4  0.95  

Fukushima  56  23.0 10.5 19.2 22.6 27.0 32.8 23.0 6.9  19.5  22.8  27.0  32.5  0.95  

Ibaraki  70  23.8 12.1 20.2 23.5 27.9 33.3 23.9 8.1  20.3  23.7  28.0  34.3  0.92  

Tochigi  48  24.1 12.2 20.4 23.7 28.3 33.7 24.0 8.9  20.4  23.6  28.2  33.8  0.95  

Gunma  49  23.9 11.9 20.1 23.5 28.0 32.9 23.8 9.0  20.2  23.6  28.0  32.6  0.94  

Saitama  135  24.8 12.7 20.8 24.5 29.0 34.3 24.9 8.9  21.2  24.7  29.2  35.2  0.92  

Chiba  123  25.2 13.5 21.6 24.8 29.5 33.9 24.8 9.6  21.3  24.6  28.9  34.6  0.92  

Tokyo  257  25.0 13.1 21.4 24.6 29.3 34.1 23.5 9.9  20.1  23.3  27.4  32.5  0.97  

Kanagawa  168  25.0 13.3 21.4 24.6 29.1 33.7 24.4 9.0  21.0  24.1  28.6  32.7  0.93  

Niigata  66  23.8 12.2 19.7 23.7 27.7 33.6 22.9 8.3  19.4  23.0  26.6  32.2  0.97  

Toyama  30  24.8 12.6 20.7 24.6 29.1 34.1 24.6 10.7  20.9  24.6  28.6  33.6  0.96  

Ishikawa  29  24.1 12.0 20.2 23.9 28.3 32.8 24.1 10.8  20.7  24.0  28.1  34.4  0.93  

Fukui  21  24.6 12.7 20.7 24.6 29.0 32.8 24.4 11.3  20.9  24.3  28.5  33.0  0.95  

Yamanashi  22  24.1 12.3 20.3 24.3 28.1 32.3 24.2 9.4  20.7  24.3  28.2  32.7  0.94  

Nagano  58  22.4 9.7 18.5 22.5 26.7 30.7 23.4 7.1  19.5  23.6  27.7  33.2  0.93  

Gifu  50  25.1 13.8 21.2 25.2 29.3 33.4 25.2 12.3  21.6  25.2  28.9  34.7  0.91  

Shizuoka  88  25.7 15.4 22.0 25.7 29.6 33.5 25.0 14.2  21.7  24.7  28.8  32.6  0.95  

Aichi  45  25.6 13.7 21.7 25.7 29.9 34.0 24.7 10.8  21.2  24.9  28.7  32.5  0.94  

Mie  45  25.6 13.7 21.7 25.7 29.9 34.0 25.3 12.6  21.8  25.5  29.0  34.5  0.98  

Shiga  28  24.8 13.7 20.8 24.8 29.2 33.0 24.4 12.2  20.8  24.3  28.6  32.7  0.96  

Kyoto  60  24.8 13.7 21.0 24.7 29.1 32.6 25.1 12.5  21.6  25.3  29.0  34.2  0.91  

Osaka  190  25.6 14.0 21.9 25.5 29.9 33.2 24.9 12.3  21.7  25.0  28.8  32.3  0.96  

Hyogo  126  26.0 14.2 22.3 25.9 30.4 33.9 25.3 13.6  22.1  25.4  29.1  32.5  0.97  

Nara  32  24.6 13.3 20.8 24.7 28.9 32.2 25.0 10.9  21.7  25.1  28.8  32.3  0.95  

Wakayama  30  25.4 14.1 21.7 25.4 29.6 32.7 25.0 12.7  21.8  25.0  29.0  32.6  0.94  

Tottori  17  24.6 13.2 20.7 24.5 29.1 32.9 24.8 13.0  21.4  24.7  28.8  33.2  0.92  

Shimane  23  24.8 13.3 20.9 24.6 29.2 33.6 23.5 10.2  19.9  23.4  27.2  33.0  0.93  

Okayama  49  25.6 13.4 21.6 25.6 30.0 33.2 25.3 12.5  21.9  25.4  29.4  33.5  0.93  

Hiroshima  69  25.4 13.2 21.5 25.5 29.7 33.3 24.1 9.7  21.0  24.2  27.5  33.4  0.94  

Yamaguchi  44  25.0 13.4 21.2 25.2 29.5 33.0 22.5 10.3  19.5  22.8  25.8  29.1  0.97  

Tokushima  23  25.7 14.5 21.9 25.7 29.9 32.9 25.4 12.9  22.1  25.4  29.4  34.0  0.92  

Kagawa  27  25.7 14.2 21.8 25.7 30.1 33.7 25.1 11.6  21.6  25.2  29.1  32.6  0.96  

Ehime  40  25.3 13.7 21.6 25.5 29.4 32.4 25.0 13.0  21.8  25.0  28.9  31.9  0.95  

kochi  24  26.6 14.8 22.8 26.8 30.7 33.9 25.9 14.1  22.8  25.9  29.6  32.5  0.95  

Fukuoka  117  26.0 14.5 22.3 26.0 30.3 33.5 25.2 13.5  22.2  25.2  28.8  33.1  0.95  

Saga  23  25.7 14.4 21.9 26.0 30.0 33.1 25.3 13.3  22.1  25.3  29.1  32.3  0.93  

Nagasaki  41  26.3 15.1 22.5 26.4 30.6 33.8 25.4 14.3  22.2  25.5  29.3  32.7  0.95  

Kumamoto  48  26.4 15.1 22.6 26.8 30.5 33.8 26.0 14.5  22.9  26.2  29.7  33.0  0.94  

Oita  33  25.5 14.7 21.8 25.7 29.7 32.3 25.0 11.6  21.7  24.8  28.9  32.0  0.95  

Miyazaki  31  26.7 15.8 23.1 27.2 30.7 33.5 25.9 14.1  22.8  26.4  29.6  32.6  0.95  

Kagoshima  51  27.4 16.5 23.9 27.9 31.3 34.4 26.4 15.5  23.5  26.7  30.0  32.7  0.95  

Okinawa  26  30.3 21.2 28.3 31.2 32.6 34.8 28.3 18.8  26.5  29.3  30.5  32.5  0.94  
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Fig.  4.1 Comparison of the associations of WBGT-mortality by using two WBGT estimation 

methods for five selected prefectures at different latitudes in May–October of 2006–2012. 

 RR indicates the relative risk.  
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Table 4.2 Estimations of minimum mortality WBGT (MMW) and minimum mortality WBGT 

percentiles (MMWP) by using two methods.  

Prefecture BMA MMWP (%) Ono (2014) MMWP (%) 

Hokkaido 24.0 79.5 24.0 78.4 

Aomori 25.0 77.1 25.0 74.8 

Iwate 26.0 78.8 26.5 81.6 

Miyagi 22.5 51.2 21.5 47.8 

Akita 27.0 79.2 22.0 50.0 

Yamagata 27.0 77.8 27.0 75.9 

Fukushima 24.0 58.0 21.5 41.8 

Ibaraki 22.5 44.0 22.0 38.4 

Tochigi 25.0 56.4 23.5 49.5 

Gunma 23.5 49.9 9.0 0.1 

Saitama 13.0 0.1 25.0 53.0 

Chiba 26.5 59.1 26.0 58.7 

Tokyo 25.5 54.7 24.0 55.5 

Kanagawa 24.0 45.8 23.5 45.7 

Niigata 24.5 55.0 22.5 46.7 

Toyama 29.5 77.6 11.0 0.1 

Ishikawa 25.0 55.8 23.5 46.7 

Fukui 29.5 77.9 28.5 75.1 

Yamanashi 23.5 45.8 13.0 0.6 

Nagano 24.0 58.2 23.5 49.8 

Gifu 21.0 24.0 22.0 28.0 

Shizuoka 25.0 46.5 23.5 39.9 

Aichi 25.0 46.9 24.5 48.5 

Mie 25.0 46.9 24.5 43.9 

Shiga 24.5 48.7 12.5 0.2 

Kyoto 25.0 52.2 24.5 44.4 

Osaka 22.5 29.9 21.5 24.4 

Hyogo 27.0 54.4 27.0 60.7 

Nara 27.5 64.3 11.0 0.1 

Wakayama 32.5 99.7 32.5 99.9 

Tottori 26.5 60.2 13.0 0.2 

Shimane 30.0 79.7 10.5 0.1 

Okayama 30.5 79.4 30.5 85.1 

Hiroshima 21.0 21.1 23.0 41.1 

Yamaguchi 32.5 99.9 24.5 63.8 

Tokushima 14.5 0.1 13.0 0.1 

Kagawa 28.5 63.2 26.0 56.1 

Ehime 25.0 47.2 22.0 26.7 

kochi 28.0 55.2 25.0 43.3 

Fukuoka 25.5 47.0 13.5 0.1 

Saga 23.0 33.0 24.0 41.1 

Nagasaki 15.5 0.1 14.5 0.1 

Kumamoto 26.5 48.3 14.5 0.1 

Oita 29.5 73.2 26.0 56.9 

Miyazaki 33.5 99.9 32.5 99.9 

Kagoshima 34.0 99.9 32.5 99.8 

Okinawa 29.0 29.6 26.6 25.9 
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Fig.  4.2 Comparison of MMW estimated by two WBGT estimation methods for each prefecture.  

 

4.4 Discussion  

In this study, the effects of WBGT on all-cause mortality were examined and compared between 

two WBGT estimation methods. WBGT-mortality relationships were found non-linear for both 

methods. 

 

WBGT estimates by using BAM’s method were higher than by Ono’s method. In addition, the 

comparison of MMW by using two WBGT estimations showed that the MMW estimates were 

very inconsistent. The difference is supposed to be due to the assumption of fixed solar radiation 

and wind speed of BAM’s method. Therefore, at least it is safe to say considering the variation 
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of solar radiation and wind speed is necessary when evaluating WBGT-mortality relationships in 

Japan.  

 

There are several limitations in this study. First, due to the availability, only 6-month data were 

used in this study. In future, the full year data should be analyzed by the same method.  Second, 

WBGT estimated by BAM’s method may apply better in Australia than in Japan. Therefore, the 

same comparison should also be made in the Australian setting to check if the result is still very 

different. Third, since the assumption of BAM’s method is mild and constant radiation and wind 

speed, it is necessary to do the analysis stratified by the location of the death (indoor and 

outdoor).  
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Chapter 5: General discussion  

As far as I know, this is the first study to assess relationships between temperature and mortality 

in Japan. Daily mean temperature is the most frequently used temperature index to assess the 

temperature effects. WBGT is a type of apparent temperature invented during 1950s and used by 

United States Army and Marine Corps to prevent from heat illness, and since then it has been 

adopted by athletes to control work out hours (Budd, 2008). For example, WBGT is taken as 

ISO7243 standard for controlling exposure to hot temperature (Epstein & Moran, 2006). WBGT 

was found a better and more comprehensive index than other indices (Hyatt, Lemke, & 

Kjellstrom, 2010). Hoshi et al.  (Hoshi, Inaba, & Murayama, 2007) suggested that the heat stress 

risk for emergency risk would be similar if WBGT is used even when the risk is different if daily 

maximum temperature is used. Thus, it is interesting to see the relation between WBGT and 

mortality across the prefectures in Japan. 

 

 The present thesis shows that WBGT and daily mean temperature are highly correlated. In study 

2, the comparison was made between two WBGT methods in terms of estimating WBGT-

mortality associations. The results showed that the assumption of constant and mild solar 

radiation and wind speed may cause problems when assessing WBGT effect on health outcomes. 

 

This thesis may have implications for public health and clinical trials.  For example, MMW is 

different depending on the climate of the area. We may need to take MMW difference into 

account in implementing heat-health warning depending on different climate zones, or we need 
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to ask them to be aware of heat related illnesses for frail patients, who may be well off if the 

WBGT is low enough but may die due to the high WBGT, such as construction workers.  

 

The future direction could be: (1) to use more systematic and scientific methods to calculate 

WBGT; (2) to include more heat indices, such as maximum temperature, minimum temperature, 

heat index, humidex, temperature humidity index, apparent temperature; (3) to stratify the 

mortality by occupations and ages. (4) to expand the study period to the whole year; (5) to add 

the air pollutants to evaluate the interactions between WBGT and air pollutants.  
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Supplemental materials  

Fig. S1 

The overall cumulative mortality effect of WBGT and temperature in 47 Japanese prefectures, 

1972–2012: All show unconstrained minimum mortality temperature and solid vertical lines are 

minimum mortality temperature or minimum mortality WBGT, and dashed vertical lines are 

their 95% confidence intervals. RR indicates the relative risk. Tave is mean temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 



37 
 



38 
 

 



39 
 



40 
 



41 
 



42 
 



43 
 



44 
 



45 
 

 



46 
 

S Table 1  

Estimation of minimum mortality temperature (MMT), minimum mortality temperature 

percentile (MMTP), minimum mortality WBGT (MMW) and minimum mortality WBGT 

percentile (MMWP) among people of 0–64 years old.  

“-” indicates that limits were not identified.  

MMT (℃) MMTP (%) MMW (℃) MMWP (%) MMT (℃) 

Hokkaido 20.3 (-2.6, 21.5) 86.8 (14.3, 91.2) 22.7 (8.4, 24) 87.8 (37, 91.9) 

Aomori 20.7 (-3.71, 22.2) 85.5 (3.6, 9-.5) 24.1 (0.1, 25.6) 87.9 (-, 92.2) 

Iwate -8.9 (-8.9, 29.6) - (-, -) -0.2 (-0.2, 30.5) - (-, 99.7) 

Miyagi 18.0 (-5.2, 31.2) 7-.2 (-, -) 20.7 (2.1, 32.9) 71.2 (-, -) 

Akita 23.5 (22.5, 24.4) 9- (86.4, 92.4) 25.9 (9.4, 26.9) 89 (32, 91.6) 

Yamagata 23.7 (-7.4, 31.5) 88.6 (-, -) 1.0 (1, 32.4) - (-, -) 

Fukushima -5.2 (-5.2, 31.4) - (-, -) 2.1 (2.1, 32.9) - (-, -) 

Ibaraki 31.3 (-3.7, 31.3) - (-, -) 18.2 (3.0, 34.2) 55.7 (-, -) 

Tochigi 17.2 (5.8, 24.4) 6-.4 (24.9, 87.2) 20.4 (8.6, 26.7) 64.6 (2-.4, 85.9) 

Gunma 25.5 (-3.7, 32.6) 88.2 (-, -) 26.3 (2.9, 33.7) 84.1 (-, -) 

Saitama 25.0 (11.5, 26) 85.7 (39.-, 89.-) 27.0 (12.6, 28.4) 84.6 (35.1, 88.5) 

Chiba 8.3 (6.1, 32.2) 24.2 (13.9, -) 12.9 (10.8, 34.0) 3-.8 (21.4, -) 

Tokyo 26.5 (25.9, 27.3) 88 (86.1, 9-.7) 28.5 (27.8, 29.4) 87.2 (85.4, 89.9) 

Kanagawa 26.1 (24.6, 30.9) 89.1 (84.2, -) 28.9 (14.4, 33.8) 88.7 (37.1, -) 

Niigata 24.5 (-3.9, 25.7) 87.4 (-, 9-.7) 26.3 (3.2, 27.9) 85 (-, 89.6) 

Toyama -4.4 (-4.4, 24.3) - (-, 85.8) 22.1 (2.9, 26.7) 68.7 (-, 83.7) 

Ishikawa 26.9 (20.8, 32.3) 91.7 (7-.9, -) 28.1 (23.9, 33.3) 87.8 (75, -) 

Fukui 32.1 (-3.7, 32.1) - (-, -) 33.1 (3.4, 33.1) - (-, -) 

Yamanashi 26.3 (-4.4, 31.8) 9-.9 (-, -) 30 (2.7, 33.1) 97.1 (-, -) 

Nagano 30.7 (14.8, 30.7) - (56.7, -) 28.3 (11.6, 31.2) 95.9 (4-.2, -) 

Gifu 26.8 (24.3, 28.3) 88.4 (79.4, 93.6) 29.1 (26.5, 34.4) 88 (79.6, -) 

Shizuoka 25.9 (5.6, 27.4) 86.8 (6.9, 93.9) 29 (4.5, 33.7) 87.7 (-, -) 

Aichi 25.5 (8.4, 26.5) 84.2 (26.9, 87.8) 27.2 (12.6, 28.1) 82.1 (32.1, 84.9) 

Mie 28.4 (-2.3, 33.5) 95.6 (-, -) 29.6 (3.3, 35.2) 89 (-, -) 

Shiga 19.8 (9.09, 31.4) 67.1 (33.5, -) 21.9 (16.6, 32.9) 66.8 (48.1, -) 

Kyoto 25.6 (10, 27.5) 83.3 (32.3, 89.7) 26.6 (2.9, 28.9) 8-.6 (-, 87.8) 

Osaka 27.1 (11.1, 28) 86.1 (32.2, 89.3) 28.4 (13.7, 29.4) 83.7 (33.2, 87.1) 

Hyogo 9.6 (6.4, 32.0) 28.1 (15.5, -) 28.2 (10.8, 33.9) 83.5 (2-.6, -) 

Nara 31.7 (4.6, 31.7) - (14.5, -) 32.7 (11.3, 32.7) - (28.1, -) 

Wakayama 26.7 (23.9, 31.9) 86.1 (76.6, -) 28 (24.1, 34.6) 82 (7-.5, -) 

Tottori 32.3 (13.7, 32.3) - (45.5, -) 33.5 (17.3, 33.5) - (5-.1, -) 

Shimane 27.8 (-5.2, 32.2) 95.- (-, -) 33.9 (2.1, 33.9) - (-, -) 

Okayama 27.4 (10.4, 32.3) 89.5 (33.5, -) 29.5 (10.8, 34.2) 87.5 (22.8, -) 

Hiroshima 10.6 (-5.7, 26.4) 33.4 (-, 87.-) 15.5 (1.9, 27.4) 41.7 (-, 81.6) 

Yamaguchi 26.3 (7.4, 31.2) 88.5 (24.2, -) 29.5 (11.5, 33.7) 89.5 (25.9, -) 

Tokushima 3.7 (-4.0, 32.3) 3.2 (-, -) 2.6 (2.6, 33.9) - (-, -) 

Kagawa 29 (-3.2, 32.3) 95.9 (-, -) 3.0 (3.0, 34) - (-, -) 

Ehime 31.9 (7.1, 31.9) - (16.5, -) 15.7 (11.5, 33) 4-.7 (22.6, -) 

kochi 32.1 (-2.2, 32.1) - (-, -) 20 (3.8, 33.8) 52.9 (-, -) 

Fukuoka 26.4 (9.0, 27.5) 85.8 (21.3, 89.4) 28.7 (13.1, 29.8) 83.9 (27.2, 87.7) 

Saga 15.5 (-3.6, 32.2) 45.5 (-, -) 15.4 (3.1, 34.3) 38.3 (-, -) 

Nagasaki 32.2 (27.2, 32.2) - (89, -) 34.3 (12.8, 34.3) - (23.2, -) 

Kumamoto 31.5 (8.6, 31.5) - (21.8, -) 30.1 (10.4, 34.8) 87.8 (15.5, -) 

Oita 26.9 (7.7, 31.6) 9-.2 (17.5, -) 29.6 (11.5, 33.7) 88.7 (21.1, -) 

Miyazaki 26.6 (13.1, 32.0) 86.- (32.8, -) 29.2 (16.1, 34.4) 81.7 (34.6, -) 

Kagoshima 31.1 (13.7, 31.1) - (31.6, -) 34.3 (16.3, 34.3) - (32.9, -) 

Okinawa 19.3 (17.8, 31.1) 25.9 (17.9, -) 21.9 (20.0, 25.9) 29.9 (2-.3, 5-.9) 
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S Table 2  

Estimation of minimum mortality temperature (MMT), minimum mortality temperature 

percentile (MMTP), minimum mortality WBGT (MMW) and minimum mortality WBGT 

percentile (MMWP) among people 65+ years old. 

“-” indicates that limits were not identified. 

Prefectures MMT MMTptl MMW MMWptl 

Hokkaido 21.2 (20.3, 21.7) 90.2 (86.8, 91.7) 23.4 (22.5, 24.0) 90 (87.0, 91.9) 
Aomori 21.7 (0.5, 22.1) 88.9 (18.0, 90.2) 24.5 (6.5, 25.0) 89.2 (21.0, 90.7) 
Iwate 22.2 (-8.9, 29.6) 88.7 (-, -) 25.0 (-0.2, 27.8) 89.2 (0, 95.7) 
Miyagi 23.5 (22.9, 24.6) 89.8 (87.8, 93.2) 26.3 (25.6, 27.1) 89.3 (87.5, 91.3) 
Akita 22.9 (21.8, 23.6) 87.8 (83.7, 90.3) 25.3 (24.2, 26.0) 87.3 (83.4, 89.3) 
Yamagata 23.3 (22.7, 23.9) 87.4 (85.6, 89.2) 25.6 (24.9, 26.2) 87.1 (85.1, 88.8) 
Fukushima 24.1 (6.6, 24.9) 87.8 (31.4, 90.0) 26.6 (10.6, 27.4) 88.2 (33.5, 90.2) 
Ibaraki 24.6 (24, 25.3) 89.7 (87.7, 91.8) 27.7 (27.1, 28.5) 88.8 (87.3, 91.0) 
Tochigi 24.5 (10.2, 25.3) 87.4 (38.5, 90.2) 27.2 (13.1, 28.1) 87.2 (39.1, 89.9) 
Gunma 24.9 (23.4, 25.6) 86.2 (81.9, 88.6) 26.6 (25.4, 27.4) 84.9 (81.3, 87.1) 
Saitama 25.3 (24.9, 25.7) 86.6 (85.5, 88.0) 27.4 (26.8, 27.9) 85.7 (84.0, 86.9) 
Chiba 25.6 (25, 26.3) 87.3 (85.4, 89.7) 28.5 (27.8, 29.4) 87.0 (85.0, 89.5) 
Tokyo 26.0 (25.7, 26.3) 86.4 (85.5, 87.3) 27.9 (27.5, 28.3) 85.7 (84.6, 86.6) 
Kanagawa 25.3 (24.8, 25.7) 86.1 (84.8, 87.7) 27.9 (27.2, 28.5) 85.7 (83.8, 87.4) 
Niigata 24.7 (24.1, 25.1) 88.1 (86, 89.2) 26.7 (25.9, 27.3) 86.2 (83.7, 88.1) 
Toyama 24.9 (19.8, 26.4) 87.8 (68.7, 91.8) 27.6 (24.9, 29.3) 86.4 (78.1, 91.6) 
Ishikawa 24.9 (23.8, 25.5) 86 (82.6, 87.8) 26.9 (25.6, 27.8) 84.3 (80.2, 86.8) 
Fukui 26.1 (25.2, 27.4) 89.1 (86.5, 92.9) 28.5 (27.7, 29.7) 88.3 (85.6, 92.6) 
Yamanashi 25.5 (10.8, 27.1) 87.8 (38, 93.8) 28.1 (15.8, 33.1) 89.4 (46.2, 100) 
Nagano 24.2 (23.8, 24.7) 89.2 (87.9, 90.6) 26.1 (25.6, 26.7) 88.0 (86.5, 90.1) 
Gifu 26.5 (25.6, 27.1) 87.4 (84, 89.5) 28.5 (27.8, 29.2) 85.8 (83.6, 88.4) 
Shizuoka 26.3 (25.8, 27) 88.4 (86.3, 92.1) 29.0 (28.2, 30.1) 87.7 (84.5, 92.3) 
Aichi 26 (25.5, 26.4) 85.9 (84.2, 87.5) 27.5 (26.8, 28.1) 83.0 (80.9, 84.9) 
Mie 24.1 (13.8, 25.8) 80 (43, 85.9) 27.3 (19.0, 29.0) 81.4 (53.2, 86.9) 
Shiga 26.1 (25.1, 27.6) 89 (85.5, 94.3) 28.3 (27.0, 30.0) 86.8 (82.6, 93.3) 
Kyoto 26.7 (11.8, 27.6) 87 (37.9, 90.1) 27.8 (15.7, 29.1) 84.2 (43.0, 88.5) 
Osaka 26.3 (17.1, 26.9) 83.4 (49.6, 85.4) 27.8 (19.7, 28.5) 81.9 (54.4, 84.0) 
Hyogo 27 (10.7, 28.2) 88.5 (31.6, 93.7) 29.1 (15.0, 30.6) 86.5 (38.5, 92.6) 
Nara 25.4 (9, 26.2) 86.5 (32.5, 89.5) 27.4 (18.6, 28.3) 83.2 (54.3, 86.7) 
Wakayama 25.1 (14.4, 27.1) 80.4 (41.8, 87.8) 27.3 (20.0, 28.8) 80.2 (55.4, 84.5) 
Tottori 25.0 (20.0, 26.0) 86.1 (68, 89) 27.4 (19.0, 29.0) 84.6 (56.6, 89.4) 
Shimane 26.4 (25.4, 30.6) 91.1 (88.4, 99.9) 29.6 (28.3, 33.9) 90.9 (86.9, -) 
Okayama 28.6 (27.1, 32.3) 93.7 (88.3, 100) 30.2 (29.0, 34.2) 90.2 (85.8, -) 
Hiroshima 26.6 (25.9, 27.4) 87.7 (85.3, 90.7) 28.3 (26.7, 29.5) 84.2 (79.7, 88.3) 
Yamaguchi 25.3 (11.5, 26.3) 85.1 (37.9, 88.5) 27.7 (14.8, 29.0) 83.0 (39.8, 87.6) 
Tokushima 26.4 (13.1, 32.3) 86.9 (38.2, 100) 24.0 (18.0, 28.3) 70.6 (47.7, 83.3) 
Kagawa 26.2 (14.5, 27.3) 85.4 (44, 89.7) 27.4 (20.5, 29.0) 80.7 (58.5, 85.6) 
Ehime 26.7 (11.7, 28.1) 87.6 (34.6, 93.7) 28.6 (15.5, 30.1) 85.9 (40.0, 93.4) 
kochi 32.1 (14.2, 32.1) 100 (39.3, 100) 19.6 (16.8, 33.8) 51.4 (41.3, -) 
Fukuoka 27 (26.3, 27.6) 87.8 (85.5, 89.8) 29.3 (28.7, 30.0) 86.0 (83.9, 88.5) 
Saga 26.6 (24.9, 27.9) 86.6 (80, 91.8) 28.1 (24.5, 29.3) 81.3 (70.8, 85.2) 
Nagasaki 27.2 (21.6, 32.2) 89 (67.5, 100) 28.3 (20.5, 34.3) 81.1 (54.5, 100) 
Kumamoto 27.4 (25.6, 31.5) 88.5 (81.2, 100) 29.1 (22.5, 30.4) 83.3 (62.4, 89.5) 
Oita 26.5 (12.8, 28.2) 88.6 (37.6, 95.6) 29.1 (16.6, 33.7) 86.5 (42.8, 100) 
Miyazaki 25.9 (22.6, 26.6) 82.6 (70, 86) 28.3 (21.2, 29.4) 78.9 (53.8, 82.4) 
Kagoshima 27 (25.5, 28) 83.1 (77.5, 88.5) 29.5 (22.9, 30.5) 81.1 (59, 85.2) 
Okinawa 23.9 (21.4, 28.8) 54 (38.9, 90.5) 25.5 (23.3, 34.8) 48.9 (37.3, 100) 
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Fig. S2 

The overall cumulative mortality effect of WBGT and temperature among people of 0–64 years 

old in 47 Japanese prefectures, 1972–2012: All show unconstrained minimum mortality 

temperature and solid vertical lines are minimum mortality temperature or minimum mortality 

WBGT, and dashed vertical lines are their 95% confidence intervals. RR indicates the relative 

risk. Tave is mean temperature. 
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Fig. S3 

The overall cumulative mortality effect of WBGT and temperature among people of 65+ years 

old in 47 Japanese prefectures, 1972–2012: All show unconstrained minimum mortality 

temperature and solid vertical lines are minimum mortality temperature or minimum mortality 

WBGT, and dashed vertical lines are their 95% confidence intervals. RR indicates the relative 

risk. Tave is mean temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

 



61 
 

 



62 
 

 



63 
 

 



64 
 

 



65 
 

 



66 
 

 



67 
 

 



68 
 

 



69 
 

 



70 
 

  

Fig. S4.  

Comparison of the associations of MMW-MMT among people of 0–64 years old (left) and 65+ 

years old (right).  
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Fig. S5. 

Comparison of the associations of WBGT-mortality by using two WBGT estimation methods for 

47 Japanese prefectures in May–October of 2006 – 2012. RR indicates the relative risk.   
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